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Abstract

Subcortical brain structures are integral to motion, consciousness, emotions and learning. We 

identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, 

brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide 

association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We 

show that variability in subcortical volumes is heritable, and identify 48 significantly associated 

loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, 

methylation and neuropathological data identified 199 genes putatively implicated in 

neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and 
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susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila 
orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved 

mechanisms. Our findings uncover novel biology and potential drug targets underlying brain 

development and disease.

Subcortical brain structures are essential for the control of autonomic and sensorimotor 

functions1,2, the modulation of processes involved in learning, memory and decision-

making3,4, and in emotional reactivity5,6 and consciousness7. They often act through 

networks influencing input to and output from the cerebral cortex8,9. The pathology of many 

cognitive, psychiatric and movement disorders is restricted to, begins in or predominantly 

involves subcortical brain structures and related circuitries10. For instance, tau pathology has 

shown to manifest itself early in the brainstem of individuals with Alzheimer’s disease 

before spreading to cortical areas through efferent networks11. Similarly, the formation of 

Lewy bodies and Lewy neurites in Parkinson’s disease appears early in the lower brainstem 

(and olfactory structures) before affecting the substantia nigra12.

Recent investigations have identified genetic loci influencing the volumes of the putamen, 

caudate and pallidum, which pointed to genes controlling neurodevelopment and learning, 

apoptosis and the transport of metals13,14. However, a larger study combining these samples 

and including individuals of a broad age range across diverse studies would enable increased 

power to identify additional novel genetic variants contributing to variability in subcortical 

structures, and further improve our understanding of brain development and disease.

We sought to identify novel genetic variants influencing the volumes of seven subcortical 

structures (the nucleus accumbens, amygdala, caudate nucleus, putamen, globus pallidus, 

thalamus and brainstem (including the mesencephalon, pons and medulla oblongata)), 

through genome-wide association (GWA) analyses in almost 40,000 individuals from 53 

study samples (Supplementary Tables 1-3) from the Cohorts of Heart and Aging Research in 

Genomic Epidemiology (CHARGE) consortium, the Enhancing Neuro Imaging Genetics 

through Meta-Analysis (ENIGMA) consortium and UK Biobank.

Results

Heritability.

To examine the extent to which genetic variation accounts for variation in subcortical brain 

volumes, we estimated their heritability in two family-based cohorts: the Framingham Heart 

Study (FHS) and the Austrian Stroke Prevention Study Family Study (ASPS-Fam). Our 

analyses were in line with previous studies conducted in twins15, suggesting that variability 

in subcortical volumes is moderately to highly heritable. The structures with the highest 

heritability in the FHS and ASPS-Fam were the brainstem (ranging from 79–86%), caudate 

nucleus (71–85%), putamen (71–79%) and nucleus accumbens (66%), followed by the 

globus pallidus (55–60%), thalamus (47–54%) and amygdala (34–59%) (Fig. 1 and 

Supplementary Table 4). We additionally estimated single-nucleotide polymorphism (SNP)-

based heritability (h2
g) using genome-wide complex trait analysis (GCTA) in the Rotterdam 

Study, and linkage disequilibrium score regression (LDSC) in the full European sample. As 
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expected, SNP-based heritability estimates were somewhat lower, ranging from 17% for the 

amygdala to 47% for the thalamus using GCTA, and ranging from 9% for the amygdala to 

33% for the brainstem using LDSC. These values are consistent with heritability estimates 

reported by UK Biobank14.

Genome-wide associations.

We undertook a GWA analysis on the magnetic resonance imaging (MRI)-derived volumes 

of subcortical structures using the 1000 Genomes Project16 reference panel (phase 1; version 

3) for imputation of missing variants in CHARGE and ENIGMA. UK Biobank performed 

imputation of variants using the Haplotype Reference Consortium (HRC) reference panel17 

(see details on image acquisition and genotyping in Supplementary Tables 5 and 6, 

respectively). Our sample comprised up to n = 37,741 individuals of European ancestry from 

48 study samples across CHARGE, ENIGMA and UK Biobank. Additionally, we included 

three samples for generalization in African Americans (up to n = 769) and two for 

generalization in Asians (n = 341). Details on the population characteristics, definition of the 

outcome and genotyping are provided in Supplementary Tables 2-5. Each study examined 

the association between genetic variants with a minor allele frequency (MAF) of ≥1% and 

the volumes of subcortical structures (average volume for bilateral structures) using additive 

genetic models adjusted for sex, age and total intracranial volume (or total brain volume in 

UK Biobank), as well as age2, population structure, psychiatric diagnosis (ENIGMA 

cohorts), and study site when applicable. After quality control, we conducted meta-analyses 

per ethnicity combining all samples using sample-size-weighted fixed-effects methods in 

METAL18. An analysis of genetic correlations (rg) showed consistency of associations 

across the CHARGE and ENIGMA consortia (combined) and UK Biobank (rg > 0.94; P < 

1.46 × 10−15), showing the similar genetic architecture of subcortical volumes in these two 

datasets.

We identified 48 independent genome-wide significant SNPs across all seven subcortical 

structures, 40 of which were novel at the time of analysis (Table 1). Among these, 26 SNPs 

were located within genes (one missense; 25 intronic) and 22 were located in intergenic 

regions. Most of the inflation observed in the quantile plots (Supplementary Fig. 1) was due 

to polygenic effects. We carried forward these 48 SNPs for in silico generalization in 

African American and Asian samples, and performed a combined meta-analysis of all 

samples (Supplementary Table 7). Of the 46 SNPs present in the generalization samples, the 

direction of association was the same for 13 across all ethnicities and for an additional six 

SNPs in either the African American or the Asian samples. In the combined meta-analysis, 

43 of the 48 associations remained significant, and for 21 SNPs, the strength of association 

increased when all samples were combined. Although we did not find significant 

associations for most SNPs at the generalization sample level (probably due to their limited 

sample size), the sign test for the direction of effect suggested that a large proportion of the 

SNPs associated with subcortical volumes in the European sample were also associated in 

the African American and Asian samples at the polygenic level (P < 1 × 10−4; 

Supplementary Table 8).
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To functionally annotate the 48 SNPs identified in the European sample, we used Locus 

Zoom19, investigated expression quantitative trait loci (eQTLs) and methylation QTLs 

(meQTLs) in postmortem brains from the Religious Order Study and the Rush Memory and 

Aging Project (ROSMAP), and queried cis- and trans-eQTL datasets in brain and non-brain 

tissues for the top 48 SNPs or their proxies (linkage disequilibrium r2 > 0.8), using the 

European population reference (Supplementary Tables 9-12). Lead variants and their proxies 

were annotated to genes based on the combination of physical proximity, eQTLs and 

meQTLs, which in some instances assigned more than one gene to a single SNP. Most of our 

index SNPs had genes assigned based on more than one functional source. This strategy 

allowed us to identify 199 putatively associated genes (Supplementary Table 13). More 

details are provided in the Supplementary Note.

Associations with cognition and neuropathology.

Although individual SNPs were not related to neuropathological traits or cognitive function 

in ROSMAP (Supplementary Table 14), we found that the cortical messenger RNA 

expression of 12 of our putatively associated genes was associated with neuropathological 

alterations typically observed in Alzheimer’s disease (Supplementary Table 15). These 

included β-amyloid load/the presence of neuritic plaques (APOBR, FAM65C, KTN1, 

NUPR1 and OPA1) and tau density/neurofibrillary tangles (FAM65C, MEPCE, OPA1 and 

STAT1). Many of these genes—together with ANKRD42, BCL2L1, RAET1G, SGTB and 

ZCCHC14—were also related to cognitive function.

Phenotypic and genetic correlations.

We explored both phenotypic (Supplementary Table 16) and genetic (Supplementary Table 

17) correlations among subcortical volumes. We also investigated genetic correlations of 

subcortical volumes with traits previously examined in the CHARGE and ENIGMA 

consortia, including MRI-defined brain volumes20–22, stroke subtypes23, anthropometric 

traits24, general cognitive function25, Alzheimer’s disease26, Parkinson’s disease27, bipolar 

disorder and schizophrenia28, and attention deficit/hyperactivity disorder (ADHD)29. We 

observed strong phenotypic and genetic overlap among most subcortical structures using 

LDSC methods, consistent with our finding that many of the loci identified have pleiotropic 

effects on the volumes of several subcortical structures.

As expected, we found strong genetic correlations among the nuclei composing the striatum

—particularly between the nucleus accumbens and the caudate nucleus (P = 9.83 × 10−19) 

and between the nucleus accumbens and the putamen (P = 1.02 × 10−17). The genetic 

architecture of thalamic volume highly overlapped with that of most subcortical volumes, 

except for the caudate nucleus. In contrast, there were no significant genetic correlations for 

the volume of the brainstem with that of most structures, with the exception of very strong 

correlations with volumes of the thalamus (P = 1.56 × 10−22) and the globus pallidus (P = 

1.52 × 10−21). Individual-level analyses using GCTA in the Rotterdam Study (n = 3,486) 

showed similar correlations despite the smaller sample.

We also observed strong genetic correlations for hippocampal volumes with amygdalar and 

thalamic volumes. Height correlated with thalamic volumes, and the volume of the 
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brainstem was inversely correlated with ADHD. Notably, caudate nucleus volumes 

correlated with white matter hyperintensity burden.

Cross-species analysis.

To investigate for potential evolutionarily conserved requirements of our gene set in 

neurodevelopment, neuronal maintenance or both, we examined the available genetic and 

phenotypic data from the fruit fly Drosophila melanogaster. Importantly, compared with 

mammalian models, the fly genome has been more comprehensively interrogated for roles in 

the nervous system. We found that a large proportion of candidate genes for human 

subcortical volumes are strongly conserved in the Drosophila genome (59%), and many of 

these genes appear to have conserved nervous system requirements (Supplementary Table 

18). To examine whether this degree of conservation was greater than that expected by 

chance, we leveraged systematic, standardized phenotype data based on FlyBase annotations 

using controlled vocabulary terms. Indeed, 22% of the conserved fly homologs are 

documented to cause ‘neuroanatomy-defective’ phenotypes in flies, representing a 

significant (P = 7.3 × 10−4), nearly twofold enrichment compared with 12.9% representing 

all Drosophila genes associated with such phenotypes (Supplementary Table 19).

Partitioning heritability.

We further investigated enrichment for functional categories of the genome using stratified 

LDSC methods30 (Fig. 2). Super-enhancers were significantly enriched in most subcortical 

structures, with 17% of SNPs explaining 43% of SNP heritability in the brainstem, 39% in 

the caudate, 44% in the pallidum, 37% in the putamen and 38% in the thalamus. Similarly, 

strong enrichment was observed for regular enhancers (H3K27ac annotations from Hnisz et 

al.31) in several subcortical structures, explaining over 60% of their SNP heritability. 

Conserved regions were enriched in the nucleus accumbens and the brainstem, with 2.6% of 

SNPs explaining 53 and 35% of their SNP heritability, respectively. Finally, only the 

brainstem showed enrichment for transcription start sites, with 1.8% of SNPs explaining 

26% of this structure SNP heritability. The full results are presented in Supplementary Table 

20.

Protein–protein interactions.

To explore potential functional relationships between proteins encoded by our set of genes, 

we conducted protein–protein interaction analyses in STRING32. Our results showed 

enrichment of genes involved in brain-specific pathways (that is, regulation of neuronal 

death and neuronal apoptosis), as well as immune-related (that is, antigen processing and 

Epstein–Barr virus infection) and housekeeping processes (that is, proteasome, cell 

differentiation and signaling). Figure 3 shows the protein network, and the detailed pathways 

are presented in Supplementary Table 21.

Discussion

We undertook a large GWA meta-analysis of variants associated with MRI-derived volumes 

of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen 

and thalamus, including almost 40,000 individuals from 53 study samples worldwide. Our 
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analyses identified a set of 199 candidate genes influencing the volume of these subcortical 

brain structures, most of which have relevant roles in the nervous system.

Our results show wide overlap of genetic variants determining the volume of subcortical 

structures, as elucidated from genetic correlations and individual look-ups among structures. 

We found that 26 candidate genes may influence more than one structure. For instance, 

significant SNPs near KTN1 are also associated with the volume of the nucleus accumbens, 

caudate nucleus and globus pallidus, suggesting that this genomic region may have an 

important role in determining multiple subcortical brain volumes during development. 

Furthermore, 14 of the candidate genes were associated with the caudate, globus pallidus 

and putamen, supporting the shared genetic architecture of the functionally defined corpus 

striatum.

We identified genes implicated in neurodevelopment. We confirm that the 11q14.3 genomic 

region near the FAT3 gene, which was previously associated with the caudate nucleus13, 

additionally associated with the putamen in our analysis. This gene encodes a conserved 

cellular adhesion molecule implicated in neuronal morphogenesis and cell migration, based 

on mouse genetic studies33. SNPs near PBX3 were associated with caudate volume. PBX3 is 

robustly expressed in the developing caudate nucleus of the non-human primate Macaca 
fuscata, consistent with a role in striatal neurogenesis34.

We found several genes involved in insulin/insulin-like growth factor 1 (IGF-1) signaling, 

including IGF1, PAPPA, GRB10, SH2B1 and TXNDC5, across the amygdala, brainstem, 

caudate and putamen. PAPPA encodes a secreted metalloproteinase that cleaves IGF-binding 

proteins, thereby releasing bound IGF. Although IGF may be beneficial in early- and 

midlife, its effects may be detrimental during aging. Studies of pregnancy-associated plasma 

protein A similarly support antagonistic pleiotropy. Low circulating pregnancy-associated 

plasma protein A levels are a marker for adverse outcomes in human embryonic 

development35, but in later life, higher levels have been associated with acute coronary 

syndromes and heart failure36,37. Furthermore, Grb10 and SH2B1 act as regulators of 

insulin/IGF-1 signaling through their SH2 domains38. Finally, TXNDC5 has been suggested 

to increase IGF-1 activity by inhibiting the expression of IGF-binding protein 1 in the 

context of rheumatoid arthritis39.

Additional genes related to neurodevelopment include PTPN1 (brainstem), ALPL and 

NBPF3 (both related to the globus pallidus) and SLC20A2 (nucleus accumbens). In studies 

of both human and mouse embryonic stem cells, PTPN1 was implicated as a critical 

regulator of neural differentiation40. In addition, PTPN1 encodes a target for the 

transcriptional regulator encoded by MECP2, which causes the neurodevelopmental disorder 

Rett syndrome, and inhibition of PTPB1 is being explored as a therapeutic strategy in mouse 

Rett models41. ALPL mediates neuronal differentiation early during development and 

postnatal synaptogenesis in transgenic mouse models42. ALPL may also help propagate the 

neurotoxicity induced by tau43, and its activity increases in Alzheimer’s disease44 and 

cognitive impairment45. NBPF3 belongs to the neuroblastoma breakpoint family, which 

encodes domains of the autism- and schizophrenia-related DUF1220 protein46. SLC20A2, 

related to the globus pallidus and the thalamus, encodes an inorganic phosphate transporter 
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for which more than 40 mutations have been described in association with familial 

idiopathic basal ganglia calcification (Fahr’s syndrome)47,48. It is interesting to note that the 

other three solute carrier genes were identified in this GWA (SLC12A9, SLC25A29 and 

SLC39A8), suggesting that the molecular transport of metals, amino acids and other solutes 

across the cellular membrane could play an important role in the development of subcortical 

brain structures.

Several genes were related to synaptic signaling pathways. We found a SNP in NPTX1 
related to the thalamus, a gene expressed in the nervous system. The encoded protein 

restricts synapse plasticity49 and induces β-amyloid neurodegeneration in human and mouse 

brain tissues50. Additionally, we identified an intronic SNP in SGTB for the brainstem, 

which was an eQTL for the expression of SGTB in the dorsolateral prefrontal cortex 

(DLPFC). Experimental rat models showed that βSGT, which is highly expressed in the 

brain, forms a complex with the cysteine string protein and heat-shock protein cognate 

complex (CSP/Hsc70) to function as a chaperone guiding the refolding of misfolded 

proteins near synaptic vesicles51. Other experimental studies in Caenorhabditis elegans, 

showed that genetic manipulation of the ortholog sgt-1 suppresses toxicity associated with 

expression of the human β-amyloid peptide52. Other genes involved in synaptic signaling are 

CHPT1 (brainstem), which is involved in phosphatidylcholine metabolism in the brain, 

KATNA1 (brainstem), a conserved regulator of neuronal process formation, outgrowth and 

synaptogenesis53,54, and DLG2 (putamen), encoding an evolutionarily conserved scaffolding 

protein involved in glutamatergic-mediated synaptic signaling and cell polarity55 that has 

been associated with schizophrenia56, cognitive impairment57 and Parkinson’s disease58.

Another set of SNPs point to genes involved in autophagy and apoptotic processes, such as 

DRAM1 and FOXO3, both of which are related to brainstem volumes. DRAM1 encodes a 

lysosomal membrane protein involved in activating TP53-mediated autophagy and 

apoptosis59, and mouse models mimicking cerebral ischemia and reperfusion have found 

that inhibiting the expression of DRAM1 worsens cell injury60. The top SNP was also 

associated with a CpG site proximate to active transcription start sites upstream of DRAM1 
in several mature brain tissues. FOXO3 has recently been identified as pivotal in an astrocyte 

network conserved across humans and mice involved in stress, sleep and Huntington’s 

disease61, and has been related to longevity62. In Drosophila, a FOXO3 ortholog regulates 

dendrite number and length in the peripheral nervous system63, and in the zebrafish Danio 
rerio, Foxo3a knockdown led to apoptosis and mispatterning of the embryonic central 

nervous system64. Additional genes involved in apoptotic processes are BCL2L1 (globus 

pallidus and putamen), BIRC6 (globus pallidus) and OPA1 (brainstem).

Other genes have been implicated in axonal transport. We confirm the association between 

the 13q22 locus near KTN1 with putamen volume13, and expand by showing that this region 

is also associated with the nucleus accumbens, caudate and the globus pallidus. The most 

significant SNP (rs945270) is a robust eQTL for KTN1 in peripheral blood cells. This gene 

encodes a kinesin-binding protein involved in the transport of cellular components along 

microtubules65, and impairment of these molecular motors has been increasingly recognized 

in neurological diseases with a subcortical component66. The 5q12 locus upstream from 

MAST4 was associated with nucleus accumbens volume. MAST4 encodes a member of the 
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microtubule-associated serine/threonine kinases. This gene has been associated with 

hippocampal volumes20 and juvenile myoclonic epilepsy67, and it appears to be 

differentially expressed in the prefrontal cortex of atypical cases of frontotemporal lobar 

degeneration68. In Drosophila, the knockdown of a conserved MAST4 homolog enhanced 

the neurotoxicity of human tau69, which aggregates to form neurofibrillary tangle pathology 

in Alzheimer’s disease. Furthermore, we identified SNPs near NEFL and NEFM (globus 

pallidus), where the top SNP was an eQTL for these genes in subcortical brain tissue and 

esophagus mucosa. NEFL encodes the light chain, and NEFM the medium chain of the 

neurofilament. The proteins encoded by these genes determine neuronal caliber and 

conduction velocity70. Mutations in NEFL and NEFM genes have been related to 

neuropsychiatric disorders, and both proteins encoded by these genes are increasingly 

recognized as powerful biomarkers of neurodegeneration71.

Finally, several of our candidate genes are also involved in inflammation, immunity and 

infection (ANKRD42, DEFB124, IL27, NLRC4, PILRA/B, TRIM23 and TRIM4), in line 

with the protein–protein interaction analysis highlighting the Kyoto Encyclopedia of Genes 

and Genomes–Epstein–Barr virus infection pathway. This suggests that immune-related 

processes may be an important determinant influencing subcortical volumes, as has been 

shown by other GWA studies of neurologic traits72,73.

Overall, the loci identified by our study pinpoint candidate genes not only associated with 

human subcortical brain volumes, but also reported to disrupt invertebrate neuroanatomy 

when manipulated in Drosophila and many other animal models. Thus, our results are in line 

with the knowledge that the genomic architecture of central nervous system development has 

been strongly conserved during evolution. Partitioning heritability results suggest the 

nucleus accumbens and brainstem are particularly enriched in conserved regions.

One of the main limitations of our study was the small size of our generalization samples, 

which limits the generalizability of our results to non-European ethnicities. However, our 

analyses suggest significant concordance for the direction of effect across all ethnicities at 

the polygenic level. We hope diverse samples become increasingly available to further 

confirm our findings and make new discoveries. Additionally, we have focused on the 

discovery of common and less frequent variants. Further efforts to also reveal rare variants 

and epigenetic signatures associated with subcortical structures will provide an even more 

refined understanding of the underlying mechanisms involved.

In conclusion, we describe multiple genes associated with the volumes of MRI-derived 

subcortical structures in a large sample, leveraging diverse bioinformatics resources to 

validate and followup our findings. Our analyses indicate that the variability of 

evolutionarily old subcortical volumes of humans is moderately to strongly heritable, and 

that their genetic variation is also strongly conserved across different species. The majority 

of the variants identified in this analysis point to genes involved in neurodevelopment, 

regulation of neuronal apoptotic processes, synaptic signaling, axonal transport, 

inflammation/immunity and susceptibility to neurological disorders. We show that the 

genetic architecture of subcortical volumes overlaps with that of anthropometric measures 

and neuropsychiatric disorders. In summary, our findings expand the current understanding 
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of the genetic variation related to subcortical structures, which can help in the identification 

of novel biological pathways of relevance to human brain development and disease.

Methods

Study population.

The present effort included 53 study samples from the CHARGE consortium74, ENIGMA 

consortium75 and UK Biobank76. Briefly, the CHARGE consortium is a collaboration of 

predominantly population-based cohort studies investigating the genomics of age-related 

complex diseases, including those of the brain (https://depts.washington.edu/chargeco/

wiki/). The ENIGMA consortium brings together various studies, approximately 75% of 

which are population based, with the remainder using case control designs for various 

neuropsychiatric or neurodegenerative diseases (http://enigma.ini.usc.edu/). UK Biobank is a 

large-scale prospective epidemiological study of over 500,000 individuals aged 40–69 years 

from the United Kingdom, which was established to investigate the genetic and non-genetic 

determinants of middle- and old-age diseases (https://www.ukbiobank.ac.uk/).

Our sample consisted of up to n = 37,741 individuals of European ancestry. We additionally 

included three generalization samples of African Americans (up to n = 769) and two 

generalization samples of Asians (n = 341). All participants provided written informed 

consent and the investigators on the participating studies obtained approval from their 

institutional review board or equivalent organization. The institutional review boards of 

Boston University and the University of Southern California, as well as the local ethics 

board of Erasmus University Medical Center approved this study.

Exclusion criteria comprised prevalent dementia or stroke at the time of the MRI scan and, 

when available, the presence of large brain infarcts or other neurological pathologies seen 

during MRI that could substantially influence the measurement of brain volumes (for 

example, brain tumor or trauma). Individual studies applied the exclusion criteria before 

analysis.

Definition of phenotypes.

Our study investigated the volumes of seven subcortical structures: the nucleus accumbens, 

amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus. These 

phenotypes were defined as the mean volume (in cm3) of the left and right hemispheres, 

with the exception of the brainstem, for which the total volume (in cm3) was used. Each 

study contributed MRI data obtained using diverse scanners, field strengths and acquisition 

protocols. The estimations of volumes for the seven subcortical brain structures and total 

intracranial volume were generated following freely available and inhouse segmentation 

methods that were previously described and validated. The summary statistics for 

subcortical brain volumes in CHARGE study samples are presented in Supplementary Table 

3. The study-specific MRI protocols and software are described in Supplementary Table 5. 

We recently published results describing the genetic variation associated with hippocampal 

volumes20; therefore, we have not included the hippocampus in this report.

Satizabal et al. Page 9

Nat Genet. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://depts.washington.edu/chargeco/wiki/
https://depts.washington.edu/chargeco/wiki/
http://enigma.ini.usc.edu/
https://www.ukbiobank.ac.uk/


Genotyping.

Genotyping was performed using a variety of commercial arrays across the participating 

studies. Study samples and genetic variants underwent similar quality control procedures 

based on the genetic homogeneity, call rate, MAF and Hardy–Weinberg equilibrium. Good-

quality variants were used as input for imputation to the 1000 Genomes Project (phase 1; 

version 3) reference panel16, or the HRC (version 1.1)17 in UK Biobank, using validated 

software packages. A detailed description of the genotyping and quality control carried out 

by each study is described in Supplementary Table 6.

Heritability.

Heritability of subcortical brain volumes was estimated in the FHS77 and ASPS-Fam78—

two population-based cohorts with family structure. We used SOLAR79 to determine the 

ratio of the genetic variance to the phenotypic variance, including variance component 

models that were adjusted for age, sex and total intracranial volume, as well as age2 and 

principal components if required, in the same way as described for the GWA analysis. We 

also estimated the variance of subcortical structures explained by SNPs in a sample of n = 

3,486 unrelated participants from the Rotterdam Study using GCTA80, and additionally in 

the full European sample using LDSC methods81. Supplementary Table 4 provides family- 

and SNP-based heritabilities for subcortical structures.

Genome-wide associations and meta-analysis.

For CHARGE and ENIGMA, each study undertook a GWA analysis on the volumes of 

seven MRI subcortical brain structures (or those that were available to each study), 

according to a common predefined analysis plan. Studies including unrelated participants 

performed linear regression analyses, whereas those including related participants conducted 

linear mixed models to account for familial relationships. Models assumed additive genetic 

effects and were adjusted for age, sex, total intracranial volume and, if applicable, age2, 

principal components to account for population stratification, psychiatric diagnosis 

(ENIGMA cohorts), and study site. Individual studies shared summary statistics to a 

centralized, secured computing space. Analysis in the UK Biobank sample followed a 

similar approach in n = 8,312 unrelated participants, although the genetic data used for these 

analyses used only those variants imputed using the HRC17 reference panel. As the data 

released by UK Biobank did not include total intracranial volume, linear regression models 

in this sample were adjusted for age, age2, sex, total brain volume and principal components. 

We used LDSC methods81 to investigate the genetic correlations for all subcortical 

structures between the CHARGE and ENIGMA consortia combined and UK Biobank. 

There was no evidence suggesting differences in the genetic architecture of both samples.

Before meta-analysis, we performed quality control on the summary statistics from each 

study sample by using a series of quality checks implemented in EasyQC82. Filters were set 

to remove SNPs with poor imputation (R2 < 0.5), rare SNPs (MAF < 0.1%) or SNPs with an 

effective allele count (2 × MAF × study sample size × imputation quality) of <20. Finally, 

we only considered variants present in at least 70% of the total European sample for each 

structure.
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Fixed-effects meta-analyses weighting for sample size was performed using METAL18, 

given that not all samples used the same methods for acquisition and post-processing of 

brain images. We used the LDSC intercept to correct for population stratification and cryptic 

relatedness81. Quantile and Manhattan plots are presented for each subcortical structure in 

Supplementary Fig. 1. To correct for multiple comparisons across our seven traits, we 

calculated the Pearson’s correlation among subcortical structures, adjusting for age, sex and 

intracranial volume in n = 4,459 participants from the Rotterdam Study. After 1,000 

permutations, the resulting number of independent traits was six, leading to the definition of 

a significant threshold as P < (5 × 10−8/6) = 8.3 × 10−9. To select our top independent SNPs 

in the European meta-analysis, we ran a multi-SNP-based conditional and joint association 

analysis (GCTA-COJO)80 using n = 6,921 participants from the Rotterdam Study as the 

reference sample. In secondary analyses, we looked for associations of our index SNPs (the 

most significant variant in each locus) with the other six subcortical structures.

We conducted separate meta-analyses by ancestry, and further performed a combined meta-

analysis including all samples. Forest plots were created to explore the contribution of 

participating studies to each of the significant SNPs (Supplementary Fig. 4). To assess signal 

overlap with African American and Asian samples, we first clumped variants with P < 1 × 

10−4 in the European sample, and then ran binomial sign tests for the correlation of the 

direction of association across ethnic groups.

Functional annotations.

We used Locus Zoom19, based on the hg19 UCSC Genome Browser assembly, for the 

visualization of the nearest genes within a ±500-kilobase genomic region. We also 

investigated cis (1-megabase) eQTLs and meQTLs for our index SNPs in postmortem brains 

from ROSMAP. In ROSMAP, the DLPFC was selected for initial multi-omics data 

generation, as it is relevant to multiple common neuropathologies and cognitive phenotypes 

in the aging population83. RNA was extracted from the gray matter of DLPFC, and next-

generation RNA sequencing was done on the Illumina HiSeq for samples with an RNA 

integrity score of >5 and a quantity threshold of >5 μg, as previously described83,84. We 

quantile-normalized the fragments per kilobase of transcript per million fragments mapped, 

correcting for batch effect with Combat84,85. These adjusted fragments per kilobase of 

transcript per million fragments mapped values were used for analysis. A subset of n = 407 

participants had quality-controlled RNA sequencing data and were included in the eQTL 

analysis.

DNA methylation levels from the gray matter of the DLPFC were measured using the 

Illumina HumanMethylation450 BeadChip, and the measurements underwent quality control 

processing as previously described (that is, detection P < 0.01 for all samples)83, yielding n 
= 708 participants with 415,848 discrete CpG dinucleotide sites with methylation 

measurement. Any missing methylation levels from any of quality-controlled CpG 

dinucleotide sites were imputed using a k-nearest neighbor algorithm for k = 100 (ref. 83). A 

subset of n = 488 participants in our study had quality-controlled genome-wide methylation 

data and were included in the cis-meQTL analysis. Finally, the associations between our 
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index SNPs and CpG sites were plotted along Roadmap Epigenomics chromatin states for 

ten brain tissues86.

We further queried cis- and trans-eQTLs in non-brain and brain tissues from additional 

eQTL repositories87. We searched for proxies to our index SNPs with linkage disequilibrium 

r2 > 0.8, using the European population reference in rAggr (1,000 G; phase 1; March 2012), 

then queried index and proxy SNPs against eQTLs from diverse databases88. Blood cell-

related eQTL studies included: fresh lymphocytes and leukocytes; leukocyte samples in 

individuals with celiac disease; whole blood samples; lymphoblastoid cell lines (LCLs) 

derived from asthmatic children; HapMap LCLs from three populations; a separate study on 

HapMap Utah Residents with Northern and Western European Ancestry (CEU) LCLs; LCL 

population samples; neutrophils; CD19+ B cells; primary phytohemagglutinin-stimulated T 

cells; CD4+ T cells; peripheral blood monocytes; long non-coding RNAs in CD14+ 

monocytes purified from white blood cells and CD14+ monocytes before and after 

stimulation with lipopolysaccharide or interferon-γ; CD11+ dendritic cells before and after 

Mycobacterium tuberculosis infection; a separate study of dendritic cells before or after 

stimulation with lipopolysaccharide, influenza or interferon-β; micro-RNA QTLs, DNase I 

QTLs, histone acetylation QTLs and ribosomal occupancy QTLs queried for LCLs; and 

splicing QTLs and micro-RNA QTLs queried in whole blood. Non-blood cell tissue eQTL 

searches included: omental and subcutaneous adipose; visceral fat stomach; endometrial 

carcinomas; ER+ and ER− breast cancer tumor cells; liver; osteoblasts; intestine; normal and 

cancerous colon; skeletal muscle; breast tissue (normal and cancerous); lung; skin; primary 

fibroblasts; sputum; pancreatic islet cells; prostate; rectal mucosa; and arterial wall and heart 

tissue from left ventricles and left and right atria. Micro-RNA QTLs were also queried for 

gluteal and abdominal adipose and liver. MeQTLs were queried in pancreatic islet cells. 

Further messenger RNA and micro-RNA QTLs were queried from ER+ invasive breast 

cancer samples, as well as colon, kidney renal clear, lung and prostate adenocarcinoma 

samples. Brain eQTL studies included: brain cortex; cerebellar cortex; cerebellum; frontal 

cortex; gliomas; hippocampus; inferior olivary nucleus (from medulla); intralobular white 

matter; occipital cortex; parietal lobe; pons; prefrontal cortex; putamen (at the level of the 

anterior commissure); substantia nigra; temporal cortex; thalamus; and visual cortex. eQTL 

data were integrated from online sources, including ScanDB89, the GTEx Portal90 and the 

Pritchard Lab91. Cerebellum, parietal lobe and liver eQTL data were downloaded from 

ScanDB. Cis-eQTLs were limited to those with P < 1.0 × 10−6 and trans-eQTLs were 

limited to those with P < 5.0 × 10−8. The results for GTEx Analysis version 6 for 48 tissues 

were downloaded from the GTEx Portal (https://www.gtexportal.org). For all gene-level 

eQTLs, if at least one SNP passed the tissue-specific empirical threshold in GTEx, the best 

SNP for that eQTL was always retained.

Associations of cognition and neuropathology phenotypes with gene expression in the 
brain.

We further related cognitive function and neuropathological findings to the expression of the 

199 genes influencing subcortical volumes in 508 brains from the ROSMAP samples.
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Briefly, brain autopsies were performed as previously described, and each brain was 

inspected for common pathologies relating to loss of cognition in aging populations92,93. In 

this report, we included: neurofibrillary tangles; neuritic plaques; β-amyloid load; tau 

density; hippocampal sclerosis; Lewy bodies; and neuronal loss in substantia nigra. 

Neurofibrillary tangles and neuritic plaques were visualized by modified Bielschowsky 

silver stain, then counted and scaled in five brain regions: mid-frontal; temporal; inferior 

parietal; entorhinal cortex; and hippocampus CA1. Composite scores for each of these three 

pathology types were derived by scaling the counts within each of the five regions and 

taking the square root of the average of the regional scaled values to account for their 

positively skewed distribution92-94. β-amyloid load and tau tangle density were measured by 

immunohistochemistry and square root transformed as previously described95. Lewy bodies 

were identified using immunohistochemistry, and were further dichotomized as present or 

absent based on the recommendations of the Report of the Consortium on DLB International 

Workshop96. Hippocampal sclerosis was recorded as either present or absent, as evaluated 

by hematoxylin and eosin staining. Nigral neuronal loss was assessed in the substantia nigra 

in the mid- to rostral midbrain near or at the exit of the third nerve using hematoxylin and 

eosin staining and 6-μm sections and a semiquantitative scale (0–3)97.

Global cognition was computed as a composite score of 19 (Religious Order Study) and 17 

(Rush Memory and Aging Project) cognitive tests performed during annual evaluations, 

including five cognitive domains: episodic memory; semantic memory; working memory; 

perceptual speed; and visuospatial ability92,93. From these scores, we created normalized 

summary measures to limit the influence of outliers. We used global cognition proximate to 

death to derive cognitive reserve. Separately, the residual slope of global cognitive change 

and the residual slopes of cognitive change in the five cognitive domains were derived 

through general linear mixed models, controlling for age at enrollment, sex and education.

Phenotypic and genetic correlations.

We estimated the Pearson’s partial phenotypic correlations among the volumes of 

subcortical structures in 894 participants from the FHS. Similarly to the GWA, these 

analyses were corrected for the effects of sex, age, age2, total intracranial volume and 

principal component 1.

Genetic correlation analyses were performed using LDSC methods81. The GWA meta-

analysis results for the seven subcortical brain structures were correlated with each other’s, 

as well as with published GWA studies on the following traits: hippocampal volume20; 

intracranial volume21; white matter hyperintensities22; stroke subtypes23; adult height and 

body mass index24; fat-free mass and whole-body water mass98; Alzheimer’s disease26; 

Parkinson’s disease27; general cognitive function25; bipolar disorder and schizophrenia28; 

and ADHD29.

Look-up of functional orthologs in D. melanogaster.

For the cross-species assessment of gene–phenotype relationships in Drosophila, we relied 

on a similar analytic approach as in previous work99. Human genes were mapped to 

corresponding Drosophila orthologs using the Drosophila Integrated Ortholog Prediction 
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Tool (https://www.flyrnai.org/diopt)100, which incorporates 14 distinct algorithms to define 

orthology. Fly gene orthologs were defined based on a Drosophila Integrated Ortholog 

Prediction Tool score of ≥2, indicating that at least two algorithms were in agreement on the 

pairing. When more than one of the fly ortholog was predicted, all such genes meeting this 

threshold were included in our analyses. This resulted in a gene set consisting of 168 

Drosophila homologs of human candidate genes at subcortical volume susceptibility loci. 

The resulting 37 genes associated with neuroanatomy-defective phenotypes in Drosophila 
(22%) were annotated based on the controlled vocabulary terms implemented in FlyBase 

(http://flybase.org/)101. Genes causing neuroanatomy-defective phenotypes in Drosophila 
include both loss-of-function and gain-of-function genetic manipulations of fly gene 

homologs. Loss-of-function studies included both classical mutant alleles (for example, 

point mutations, gene deletions or transposon insertions) or gene knockdown using RNA 

interference transgenic strains. Gain-of-function experiments were based on tissue-specific 

overexpression of the fly gene orthologs. The hypergeometric overlap test was used to assess 

for enrichment of neuroanatomy-defective phenotypes among the conserved gene set.

Protein–protein interactions and network analysis.

We used the human STRING database resource (string-db.org)32 for the exploration of direct 

(physical) and indirect (functional) protein–protein interactions based on the gene set 

derived from the GWA results and functional annotations (Supplementary Table 13). The 

input parameters included a medium-confidence interaction score (0.4) with first and second 

shells of a maximum of five interactors. Finally, we generated a protein–protein interaction 

network based on known and predicted interactions.

Partitioning heritability.

Partitioned heritability was estimated with stratified LDSC methods30. This method 

partitions SNP heritability using GWA study summary results and accounting by linkage 

disequilibrium. We used the meta-analysis results from the European sample to partition 

SNPs by 28 functional categories, including: coding; intron; promoter; 3′5′ untranslated 

region; digital genomic footprint; transcription factor binding site; chromHMM and Segway 

annotations for six cell lines; DNase I hypersensitivity sites; H3K4me1, H3K4me3 and 

H3K9ac marks; two sets of H3K27ac marks; super-enhancers; conserved regions in 

mammals; and FANTOM5 enhancers. Significance was set at P < (0.05/(28 × 6)) = 3 × 10−4.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

The genome-wide summary statistics that support the findings of this study are available 

from the CHARGE dbGaP (accession code: phs000930) and ENIGMA (http://

enigma.ini.usc.edu/research/download-enigma-gwas-results) websites.
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Fig. 1 ∣. Heritability and Manhattan plot of genetic variants associated with subcortical brain 
volumes in the European sample.
a, Family-based heritability (h2) estimates were performed with SOLAR in the FHS (n = 

895) and ASPS-Fam (n = 370). b. Combined Manhattan plot highlighting the most 

significant SNPs across all subcortical structures (nucleus accumbens, n = 32,562; 

amygdala, n = 34,431; brainstem, n = 28,809; caudate, n = 37,741; pallidum, n = 34,413; 

putamen, n = 37,571; thalamus, n = 34,464). Variants are colored differently for each 

structure as in a. Linear regression models were adjusted for sex, age, age2, total intracranial 

volume (CHARGE and ENIGMA) or total brain volume (UK Biobank), and population 

stratification. The solid horizontal line denotes genome-wide significance, as set in this 

study after additional Bonferroni correction for six independent traits (P < 5 × 10−8/6 = 8.3 × 

10−9 for two-sided tests). The dashed horizontal line denotes the classic genome-wide 

threshold of P < 5 × 10−8. Individual Manhattan plots are provided in the Supplementary 

Note.
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Fig. 2 ∣. Partitioning heritability by functional annotation categories.
Analyses performed in the European sample (nucleus accumbens, n = 32,562; amygdala, n = 

34,431; brainstem, n = 28,809; caudate, n = 37,741; pallidum, n = 34,413; putamen, n = 

37,571; thalamus, n = 34,464). Plotted ellipses represent enrichment (proportion of h2
g 

explained/proportion of SNPs in a given functional category) for subcortical structures (y 
axis) across 28 functional categories (x axis). The color bar indicates the magnitude and 

direction of enrichment. Starred pairs denote significant over-representation after Bonferroni 

correction for 168 tests (28 annotation categories and six independent traits; P < 3 × 10−4). 

CTCF, CCCTC-binding factor; DGF, digital genomic footprint; DHS, DNase I 

hypersensitivity site; PGC2, Psychiatric Genomics Consortium; TFBS, transcription-factor-

binding sites; TSS, transcription start site; UTR, untranslated region. Sources represented on 

the x axis are described in ref. 30.
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Fig. 3 ∣. Protein–protein interaction network of 148 genes enriched for common variants 
influencing the volume of subcortical structures.
The arrowheads represent protein–protein associations, where the edge color indicates the 

predicted mode of action (bright green, activation; pink, post-translational modification; red, 

inhibition; dark blue, binding, purple, catalysis; light blue, phenotype; black, reaction; 

yellow, transcriptional regulation) and the arrowhead shape represents the predicted action 

effects (pointed arrow, positive; flat arrow, negative; oval arrow, unspecified). Colored nodes 

represent the queried proteins and first shell of interactors (five maximum), whereas white 

nodes represent the second shell of interactors (five maximum).
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