
ar
X

iv
:1

41
1.

12
16

v1
  [

m
at

h-
ph

]  
5 

N
ov

 2
01

4

Large-x analysis of an operator valued Riemann–Hilbert problem

A. R. Its∗ , K. K. Kozlowski †.

Abstract

The purpose of this paper is to push forward the theory of operator-valued Riemann Hilbert problems and
demonstrate their effectiveness in respect to the implementation of a non-linearsteepest descent methodá la

Deift-Zhou. In the present paper, we demonstrate that the operator-valued Riemann–Hilbert problem arising in
the characterisation of so-calledc-shifted integrable integral operators allows one to extract the large-x

asymptotics of the Fredholm determinant associated with such operators.

1 Introduction

The term integrable integral operator refers to a specific class of integral operatorsI + V whose integral kernel
takes the form

V(λ, µ) =

∑N
a=1 ea(λ) fa(µ)

λ − µ with
N∑

a=1

ea(λ) fa(λ) = 0 (1.1)

whereea , fa, a = 1, . . . ,N are functions whose regularity depends on the functional space on which the operator
acts. The quite specific structure of their kernels endows integrable integral operators with numerous properties
allowing one, in particular, for the construction of the resolvent kernel or computation of the Fredholm determinant
of I + V in terms of a solution to a specificN × N matrix valued Riemann–Hilbert problem [7]. We remind that
the jump matrix for this Riemann–Hilbert problem is built out of the functionsea and fa, a = 1, . . . ,N.

Despite the specific form (1.1) imposed on the kernel of integrable integral operators, such operators still arise
in many concrete problems of mathematical physics. The Fredholm determinants of specific instances of such
operators describe numerous observables, be it in random matrix theory -gap probabilities in the bulk or edge of
the spectrum [2, 3, 4] - or quantum integrable models -correlation functions of products of local operators [15, 17]-
to name a few.

One can, in fact, consider more general integrable integraloperators than those described by (1.1). To gener-
alise the formula, it is enough to replace the discreet variable a ∈ {1, . . . ,N} labelling the functionsea and fa by a
variables living in some measure space (X, ν). One then replaces the discreet and finite sum in (1.1) by an integral
versusdν:

V(λ, µ) =

∫
X

e(λ; s) f (µ; s) · dν(s)
λ − µ with

∫

X
e(λ; s) f (λ; s) · dν(s) = 0 . (1.2)
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Particular, examples of such more general integrable integral operators arose in the context of studying quan-
tum integrable systems at generic value of their interaction strength [6, 7, 12],viz. away from their free fermion
point. Independently from their existing applications, such more general integrable integral operators are of inter-
est in their own right precisely because of the much larger freedom in the form taken by their kernels and yet the
possibility to study them by means of Riemann–Hilbert problems. The price to pay, however, is the complication
of the Riemann–Hilbert problem in that one no longer deals with a matrix valued one but rather an operator valued
one. Still, in the early days of exploring the correlation functions in quantum integrable systems out of their free
fermion point, certain properties of Fredholm determinants of such more general operators were investigated on
the basis of operator valued Riemann–Hilbert problems which are associated with these kernels. The Riemann–
Hilbert machinery allowed to construct systems of partial differential equations satisfied by specific instances of
such operators [7, 11, 13, 14]. It is also important to mention the work [9] where a formal non-linear steepest
descent analysis of an oscillatory operator valued Riemann–Hilbert problem was carried out. This allowed the
authors to extract the leading asymptotic behaviour in the large parameter out of the logarithm of the Fredholm
determinant at stake. However, numerous technical difficulties (the operator nature of the scalar Riemann–Hilbert
problem which arises in the very the first step of the analysis, construction of parametrices in terms of special
functions with operator index,...) which could not have been overcome stopped, for almost 15 years, any activity
related to an asymptotic analysis of operator valued Riemann–Hilbert problems.

Recently in [8] we have proposed a scheme allowing one to extract the large-x asymptotic behaviour of the
Fredholm determinant of so-calledc-shifted integrable integral operators which belong to theclass (1.2), with
X = R+ × [[ 1 ; N ]] and ea, fa depending onx in an oscillatory way. The method of analysis we developed was
completely disconnected from any use of the operator valuedRiemann–Hilbert problem that is underlying to such
c-shifted operators. Notwithstanding, the very fact that the large-x behaviour of these determinants could have
been extracted constituted a strong indication that there must exist a way for overcoming the technical difficulties
that constituted a obstruction to the asymptotic analysis of operator valued Riemann–Hilbert problems.

As a matter of fact, the recent progress in the field of Riemann–Hilbert problems brings new ideas and tools
which allow one for an effective asymptotic analysis of operator valued Riemann–Hilbert problems. The present
paper is precisely devoted to demonstrating this fact. Moreprecisely, we reformulate the original statement of an
operator valued Riemann–Hilbert problem [14] what permitsus to develop a framework allowing one to discuss
the solvability and uniqueness of solutions to operator valued Riemann–Hilbert problems. We demonstrate the
effectiveness of our scheme by carrying out the large-parameter non-linear steepest descent analysis of an oscil-
latory operator-valued Riemann–Hilbert problem which canbe though of as the operator-valued generalisation of
the Riemann–Hilbert problem associated with the so-calledgeneralised sine kernel [10]. Our analysis allows us
to reproduce the results of [8] directly within the operatorvalued Riemann–Hilbert problem setting. We do stress
that the main achievements of this paper is to overcome two technical difficulties which arose previously in the
analysis of operator-valued Riemann–Hilbert problems:

• primo, we reduce the problem of constructing solutions to operator valued scalar Riemann–Hilbert problem
with jump on I to the one of inverting an integral operator acting onL2(Γ(I ), dz

)
, in which Γ is a small

counterclockwise loop aroundI .

• Secundo, we strongly simplify the construction of local parametrices. More precisely, the setting we propose
allows us to construct parameterices in terms of special function (confluent hypergeometric functions in our
case) whose auxiliary parameters are scalar-valued holomorphic functions and not holomorphic functions
taking values in some infinite dimensional Banach spaces, asit was the case in [9].

In the present paper, we shall develop the formalism on the example of the below integrable integral operator
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on L2([a ; b]
)

of c-shifted type whose integral kernel reads

V(λ, µ) =
icF(λ)

2iπ(λ − µ) ·
{e

ix
2 [p(λ)−p(µ)]

(λ − µ) + ic
+

e
ix
2 [p(µ)−p(λ)]

(λ − µ) − ic

}
. (1.3)

Throughout the paper, we shall assume that

• p([a ; b]) ⊂ R and thatp is a biholomorphism from an open neighbourhoodU of [a ; b] in C onto some open
neighbourhood of [p(a) ; p(b)] in C which furthermore satisfiesp′|[a ;b] > 0 ;

• F is holomorphic onU and satisfies
∣∣∣arg

(
1+ F(λ)

)∣∣∣ < π for anyλ ∈ U .

Our analysis allows us to prove the

Theorem 1.1 Let p and F be as described above and V0 denote the integral operator on L2([a ; b]
)

whose integral
kernl reads

V0(λ, µ) =
F(λ)
π(λ − µ) · sin

( x
2

[p(λ) − p(µ)]
)
. (1.4)

Then the below ratio of Fredholm determinants admits the large-x asymptotic behaviour

det
[
id + V

]

det
[
id + V0

] = detΓ([a ;b])
[
I +U+

] · detΓ([a ;b])
[
I +U−

] ·
(
1 + o(1)

)
(1.5)

whereU± are integral operators on L2
(
Γ([a ; b])

)
, withΓ being a small counterclockwise loop around the interval

[a ; b]. The integral kernels U± ofU± read

U±(λ, µ) =
α(λ) · α−1(µ ∓ ic)
2iπ(λ − µ ± ic)

with α(λ) = exp
{ b∫

a

ln
[
1+ F(µ)

]

λ − µ · dµ
2iπ

}
. (1.6)

We do remind that the large-x asymptotic behaviour of det
[
id + V0

]
has been obtained in [10].

The paper is organised as follows. In Section 2 we write down the setting of the operator valued Riemann-
Hilbert problem associated with a one-parametert deformation of the kernelV given in (1.3) and prove its unique
solvability under the assumption of non-vanishing of a Fredholm determinant. In Section 3, we discuss an auxiliary
scalar operator valued Riemann–Hilbert problem and implement the first step of the non-linear steepest descent
method. Then, in Section 4 we construct the parametrices adapted to out problem what allows us to put the
original Riemann–Hilbert problem in correspondence with one whose jump matrices are close, in appropriate
operator norms, to the identity. We then establish the invertibility, in an appropriate functional space, of the
singular integral operator associated with the last operator valued Riemann–Hilbert problem. Finally, in Section 5
we build on the Riemann–Hilbert analysis so as to prove Theorem 1.1. For the reader’s convenience, we gather in
the Appendix certain of the properties of confuent hypergeometric functions that are of interest to our study.

2 The initial Riemann–Hilbert problem

2.1 A few definitions

We first discuss several notations and conventions that willbecome handy in the following.
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• Throughout the paper, given some oriented curveΣ in C, we agree to denote byΓ
(
Σ
)

a small counterclock-
wise loop aroundΣ.

• The superscriptT will denote the transposition of vectors,viz.

if ~v =



v1
...

vN


then ~vT = (v1 . . . vN) . (2.1)

• The spaceMp(C) of p× p matrices overC is endowed with the norm
∣∣∣
∣∣∣M

∣∣∣
∣∣∣ = maxa,b |Ma,b|.

• The spaceMp

(
L2(X, dν)

)
denotes the space ofp × p matrix valued functions onX whose matrix entries

belong toL2(X, dν). This space is endowed with the norm

∣∣∣
∣∣∣M

∣∣∣
∣∣∣2
Mp

(
L2
(
X,dν

)) =
∫

X

tr
[
M†(x) · M(x)

] · dν(x) with
(
M†

)
ab
= Mba (2.2)

with ∗ being the complex conjugation of∗.
• id refers to the identity operator onL2(R+, ds), Ip⊗ id refers to the matrix integral operator on⊕p

a=1L2(
R
+, ds

)

which has the identity operator on its diagonal.

• Given a vector~E of functionsEa ∈ L2(R+, ds)

~E =



E1
...

Ep


and a vector of 1− forms ~κ =



κ1
...

κp


(2.3)

on L2(R+, ds), their scalar product refers to the below sum

(
~κ, ~E

)
=

p∑

a=1

κa[Ea] (2.4)

in which one evaluates the one-form -appearing to the left- on the function -appearing to the right-. Furthermore,
the notation~E ⊗ (

~κ
)T refers to the matrix operator on⊕p

a=1L2(
R
+, ds

)
given as

~E ⊗ (
~κ
)T
=

(
Eq ⊗ κr

)
q,r=1,...,p

(2.5)

whereEq ⊗ κr is the operator onL2(R+, ds) acting as

(
Eq ⊗ κr

)
[g] = Eq · κr [g] for any g ∈ L2(R+, ds) . (2.6)

Definition 2.1 Let Φ̂(λ) be an integral operator on⊕p
a=1L2(

R
+, ds

)
parameterised by an auxiliary variableλ. Let

Φ̂(λ | s, s′) denote its p× p matrix integral kernel. GivenD an open subset ofC, we say that̂Φ(λ) is a holomorphic
in λ ∈ D integral operator on⊕p

a=1L2(
R
+, ds

)
if

• point-wise in
(
s, s′

) ∈ (
R
+
)2, the p× p matrix-valued functionλ 7→ Φ̂(λ | s, s′) is holomorphic inD ;

• pointwise inλ ∈ D,
(
s, s′

) 7→ Φ̂(λ | s, s′) ∈ Mp

(
L2(
R
+ × R+, ds⊗ ds′

))
.
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We also need to define what we mean by± boundary values of a holomorphic integral operator. There are two
kinds of notions that will be of interest for our analysis. Onthe one handL2 and on the other hand continuous
boundary values.

Definition 2.2 LetD be an open subset ofC andΣΦ an oriented smooth curve inC. Let n(λ) be the orthogonal
to ΣΦ at the pointλ ∈ ΣΦ.
We say that a holomorphic inλ ∈ D \ ΣΦ integral operatorΦ̂(λ) on⊕p

a=1L2(
R
+, ds

)
admits L2 ±-boundary values

Φ̂±(λ) onΣΦ if

• there exists a matrix valued function(λ, s, s′) 7→ Φ̂±(λ | s, s′) belonging to L2
(
ΣΦ × R+ × R+

)
and such that

lim
ǫ→0+

∣∣∣
∣∣∣Φ̂(±ǫ) − Φ̂±

∣∣∣
∣∣∣
Mp

(
L2
(
ΣΦ×R+×R+

)) = 0 where Φ̂(ǫ)(λ | s, s′) = Φ̂(λ + ǫn(λ) | s, s′) .

the operatorŝΦ±(λ) are then defined as the integral operators on⊕p
a=1L2(

R
+, ds

)
characterised by the matrix

integral kernel̂Φ±(λ | s, s′).

We say that a holomorphic inλ ∈ D \ ΣΦ integral operatorΦ̂(λ) on⊕p
a=1L2(

R
+, ds

)
admits continuous boundary

valuesΦ̂±(λ) onΣ′
Φ
⊂ ΣΦ if

• pointwise in
(
s, s′

) ∈ (
R
+
)2 the non-tangential limit̂Φ(λ | s, s′) −→

λ→t
Φ̂±(t | s, s′) whenλ approaches t∈ Σ′

Φ

from the± side exists and that the map t7→ Φ̂±(t | s, s′) is continuous onΣ′
Φ

. The operatorŝΦ±(λ) are then

defined as the integral operators on⊕p
a=1L2(

R
+, ds

)
characterised by the matrix integral kernelΦ̂±(λ | s, s′).

2.2 The operator-valued Riemann–Hilbert problem

Let λ 7→ mk(λ) be the below one parametert family of functions taking values in the space of functions on R+:

m1(λ)(s) ≡ m1(λ; s) =
√

ce−
cs
2 eistλ and m2(λ)(s) ≡ m2(λ; s) =

√
ce−

cs
2 e−istλ . (2.7)

Let λ 7→ κk(λ) be the below one-parametert family of functions taking values in the space of one-forms on
functions onR+:

κ1(λ)[ f ] =
√

c

+∞∫

0

e−
cs
2 e−istλ f (s) · ds and κ2(λ)[ f ] =

√
c

+∞∫

0

e−
cs
2 eistλ f (s) · ds . (2.8)

Note that, uniformly inλ ∈ [a ; b], s 7→ mk(λ; s) belong to
(
L1 ∩ L∞

)
(R+, ds) whereasκk(λ) are one-forms on

L2(R+, ds). The one-forms and functions introduced above satisfy to

κk(λ)[mk(µ)] =
icǫk

t(λ − µ) + iǫkc
where k = 1, 2 and

{
ǫ1 = −1
ǫ2 = 1

. (2.9)

We are now in position to introduce the vector-valued function ~ER(µ) and the vector valued one-forms~EL(µ):

~EL(µ) = F(µ)


e−

ix
2 p(µ) · κ1(µ)

−e
ix
2 p(µ) · κ2(µ)

 and ~ER(µ) =
−1
2iπ


e

ix
2 p(µ) · m1(µ)

e−
ix
2 p(µ) · m2(µ)

 . (2.10)
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These allow one to construct the integrable integral kernelVt(λ, µ) of the integral operatorVt on L2([a ; b]
)

as

Vt(λ, µ) =

(
~EL(λ), ~ER(µ)

)

λ − µ =
icF(λ)

2iπ(λ − µ) ·
{ e

ix
2 [p(λ)−p(µ)]

t(λ − µ) + ic
+

e
ix
2 [p(µ)−p(λ)]

t(λ − µ) − ic

}
. (2.11)

Note that the one-parametert family of integral kernelsVt(λ, µ) contains the kernelV(λ, µ) introduced in (1.3) as
a special case; indeed one hasV(λ, µ) = V1(λ, µ).
The kernelVt(λ, µ) gives rise to the Riemann–Hilbert problem for a 2×2 operator-valued matrixχ(λ) = I2⊗id+χ̂(λ)

• χ̂(λ) is a holomorphic inλ ∈ C \ [a ; b] integral operator onL2(
R
+, ds

) ⊕ L2(
R
+, ds

)
;

• χ̂(λ) admits continuous±-boundary valueŝχ±(λ) on ]a ; b[;

• uniformly in (s, s′) ∈ R+ ×R+ and for any compactK such that
◦
K ⊃ {a, b}, there exist a constantC > 0 such

that
∣∣∣
∣∣∣̂χ(λ | s, s′)

∣∣∣
∣∣∣ ≤ C

1+ |λ| · e
− c

4 (s+s′) on C \ K for some C > 0 . (2.12)

• there existsλ-independent vectors~Nς, ς ∈ {a, b} whose entries are functions in
(
L1 ∩ L∞

)
(R+, ds) and an

integral operator̂χ(ς)
reg(λ) on L2(

R
+, ds

) ⊕ L2(
R
+, ds

)
such that

χ(λ) = I2 ⊗ id + ln
[
w(λ)

] · ~Nς ⊗
(
~EL(ς)

)T
+ χ̂

(ς)
reg(λ) where w(λ) =

λ − b
λ − a

. (2.13)

The integral kernel̂χ(ς)
reg

(
λ | s, s′) satisfies to the bound

∣∣∣
∣∣∣̂χ(ς)

reg
(
λ | s, s′)

∣∣∣
∣∣∣ ≤ Ce−

c
4 (s+s′)(s+ 1)(s′ + 1) uniformly in λ ∈ Uς and (s, s′) ∈ R+ × R+ (2.14)

for some open neighbourhoodUς of ς ∈ {a, b}.

• the± boundary values satisfyχ+(λ) ·Gχ(λ) = χ−(λ) where the jump matrix reads

Gχ(λ) =

(
id − F(λ) · m1(λ) ⊗ κ1(λ) F(λ) eixp(λ) · m1(λ) ⊗ κ2(λ)
−F(λ) e−ixp(λ) · m2(λ) ⊗ κ1(λ) id + F(λ) · m2(λ) ⊗ κ2(λ)

)
. (2.15)

Proposition 2.1 The Riemann–Hilbert problem forχ admits, at most, a unique solutions. Furthermore, there
existsδ > 0 and small enough such that for any t such that|ℑ(t)| < δ anddet

[
I + Vt] , 0, this unique solution

exists and takes the explicit form

χ(λ) = I2⊗ id−
b∫

a

~FR(µ) ⊗
(
~EL(µ)

)T

µ − λ ·dµ and χ−1(λ) = I2⊗ id+

b∫

a

~ER(µ) ⊗
(
~FL(µ)

)T

µ − λ ·dµ (2.16)

where~FR(λ) and ~FL(λ) correspond to the solutions to the below linear integral equations

~FR(λ) +

b∫

a

Vt(µ, λ) · ~FR(µ) · dµ = ~ER(λ) and ~FL(λ) +

b∫

a

Vt(λ, µ) · ~FL(µ) · dµ = ~EL(λ) . (2.17)

The solutions~FR/L(λ) can be constructed in terms ofχ as

~FR(µ) = χ(µ) · ~ER(µ) and
(
~FL(µ)

)T
=

(
~EL(µ)

)T · χ−1(µ) with λ ∈]a ; b[ . (2.18)
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Note that the reconstruction formulae (2.18) are independent of the+ or − boundary values ofχ as a conse-
quence of the specific form taken by the jump matrix forχ.

Furthermore, we do insist that solutions to the Riemann–Hilbert problem forχ do exist for larger values of
|ℑ(t)| then those stated in the proposition above. However, for larger values of|ℑ(t)|, they define integral operators
on weightedL2 spaces⊕L2(

R
+, eαsds

)
for someα > 0 whose magnitude depends on|ℑ(t)|. Since the conclusions

of the above proposition are already enough for the purpose developed in the present paper, we chose not to
venture deeper in such technicalities.

Proof —

• Uniqueness

For anyλ ∈ C\[a ; b], the matrix-valued operatorχ(λ) decomposes asχ(λ) = I2⊗id + χ̂(λ), with an integral kernel
χ̂
(
λ | s, s′) that satisfies to (2.12). This guarantees that its Fredholm determinantγ(λ) = det

[
I2⊗ id + χ̂(λ)

]
is well

defined,cf. [5]. Likewise, it is readily seen by applying Fubbini’s andMorera’s theorems thatγ is holomorphic
onC \ [a ; b]. By applying the dominated convergence theorem and the estimates (2.12) it is readily seen thatγ
admits continuous-boundary values on ]a ; b[, which furthermore satisfy

γ±(λ) = det
[
χ±(λ)

]
, (2.19)

ie. one can exchange the± boundary values with the operation of computing the determinant.
We now focus on the behaviour ofγ near the endpointsa, b. Starting from (2.13) one obtains

det
[
χ(λ)

]
= det

[
I2 ⊗ id + χ̂(ς)

reg(λ)
]
+ ln

[
w(λ)

] ·
(
~EL(ς),M(λ) · ~Nς

)
ς ∈ {a, b} (2.20)

wherew(λ) is as in (2.13). The operator

M(λ) = lim
η→1

{
det

[
I2 ⊗ id + ηχ̂(ς)

reg(λ)
]
·
(
I2 ⊗ id + ηχ̂(ς)

reg(λ)
)−1

}
= I2 ⊗ id + M̂(λ) (2.21)

is well defined even if det
[
I2 ⊗ id + χ̂(ς)

reg(λ)
]
= 0. This can be readily seen from its series of multiple integral

representation, seeeg. [5] and the use of the bounds (2.14). The latter ensures thatthe function

λ 7→
(
~EL(ς),M(λ) · ~Nς

)
(2.22)

is bounded in some open neighbourhood ofλ = ς, hence leading to

∣∣∣γ(λ)
∣∣∣ ≤ C ·

∣∣∣∣ ln |λ − a| · ln |λ − b|
∣∣∣∣ for some C > 0 and whenλ→ ς ∈ {a, b}. (2.23)

Finally, independently ofλ ∈ [a ; b], the integral operator̂Gχ(λ) = Gχ(λ) − I2 ⊗ id has a 2× 2 matrix integral
kernels that is smooth and such that

∣∣∣
∣∣∣Ĝχ

(
λ | s, s′)

∣∣∣
∣∣∣ ≤ Ce−

c(s+s′ )
2 . (2.24)

This ensures that the Fredholm determinant ofGχ(λ) is well defined. Then, the multiplicative property of Fredholm
determinants along with

det
[
Gχ(λ)

]
= 1 for any λ ∈ [a ; b] (2.25)

ensure thatγ solves the scalar Riemann–Hilbert problem
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• γ is holomorphic onC \ [a ; b];

• γ admits continuous±-boundary values on ]a ; b[ which satisfyγ+(λ) = γ−(λ);

• there exists a constantC > 0 such that whenλ→ ς ∈ {a, b}, γ satisfies to the bound

∣∣∣γ(λ)
∣∣∣ ≤ C ·

∣∣∣∣ ln |λ − a| · ln |λ − b|
∣∣∣∣ ; (2.26)

• γ(λ) = 1 + O
(
λ−1) whenλ→ ∞ .

The Riemann–Hilbert problem forγ is uniquely solvable, its solution beingγ = 1. As a consequence, the
matrix-valued operatorχ(λ) is invertible for anyλ ∈ C \ [a ; b]. Its ±-boundary valuesχ±(λ) are likewise invertible
for anyλ ∈]a ; b[. Assume thatχ(1) andχ(2) are two solutions to the Riemann–Hilbert problem in question. The
operatorGχ(λ) is invertible due to (2.25). Therefore,Φ = χ(1) · (χ(2))−1

= I2 ⊗ id + Φ̂ solves a Riemann–Hilbert
problem analogous to the one forχ with the sole exception that

• Φ+(λ) = Φ−(λ) on ]a ; b[ ;

• Φ(λ) admits continuous boundary values on [a ; b];

• Φ̂(
λ | s, s′) has, at most, O

(
ln2 |λ − ς|) singularities at the endpointsς ∈ {a, b} in the sense of (2.13) .

This means that, for any (s, s′) ∈ R+ × R+ and lying outside of a set of measure zero, the holomorphic matrix-
valued functionsλ 7→ Φ̂(

λ | s, s′) are continous across [a ; b]. Being bounded by 0 at infinity, they are identically
zero by Liouville’s theorem,viz. Φ(λ) = I2 ⊗ id implying uniqueness.

• Existence

We choseδ > 0 and assume the open neighborhoodU on whichF andp are analytic to be relatively compact and
small enough so that

∣∣∣e±istλ
∣∣∣ ≤ e

c
4 s for any λ ∈ U , δ |ℑ(t)| ≤ δ and s∈ R+. (2.27)

We first show that the integral operator defined by (2.16) is indeed a holomorphic inλ ∈ C \ [a ; b] integral
operator onL2(

R
+, ds

) ⊕ L2(
R
+, ds

)
. Let Rt(λ, µ) be the resolvent kernel of the inverse operator id−Rt to id+Vt.

This operator exists since det
[
id +Vt

]
, 0. Then, one has the representation:

~FR(λ; s) = ~ER(λ; s) −
b∫

a

Rt(λ, µ) ~ER(µ; s) · dµ . (2.28)

It further follows from (2.27) that,

max
a

∣∣∣[~ER(λ; s)
]
a

∣∣∣ ≤ Ce−
sc
4 . (2.29)

The bounds on~ER(λ; s) and the regularity of the resolvent kernelRt(λ, µ) ensure that
∣∣∣~FR(λ; s)

∣∣∣ ≤ e−
cs
4 ·C uniformly in λ ∈ U and |ℑ(t)| ≤ δ . (2.30)

Therefore,̂χ(λ) as defined through (2.16) does indeed correspond to a holomorphic inλ < [a ; b] integral operator
on L2(R+, ds) ⊕ L2(R+, ds).
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We now establish the overall bounds (2.12) uniformly away from the endpointsa andb as well as the local
ones (2.13)-(2.14) in some neighbourhood thereof. SinceRt is holomorphic onU × U, one obtains from (2.28)
that

∣∣∣∣∣
~FR(λ; s) ·

(
~EL(λ; s′)

)T − ~FR(µ; s) ·
(
~EL(µ; s′)

)T

λ − µ

∣∣∣∣∣ ≤ e−
c(s+s′ )

4
(
1+ s

)(
1+ s′

)
C (2.31)

uniformly in λ, µ ∈ U and|ℑ(t)| ≤ δ. The latter informations along with the representation

χ(λ) = id ⊗ I2 − ~FR(λ) ⊗
(
~EL(λ)

)T · ln [
w(λ)

]

−
b∫

a

~FR(λ; s) ·
(
~EL(λ; s′)

)T − ~FR(µ; s) ·
(
~EL(µ; s′)

)T

λ − µ · dµ (2.32)

ensure that̂χ(λ) does indeed admit continuous±-boundary values on ]a ; b[ and that it furthermore satisfies to the
local (2.13)-(2.14) and overall (2.12) bounds.

It now solely remains to prove thatχ, as defined through (2.16), does indeed satisfy to the jump condition. In
fact, this follows from the manipulations outlined in [14],where the operator valued Riemann–Hilbert problem
description of integrable integral operators ofc-shifted type has been proposed for the first time. For the readers
convenience, we recall these arguments below.

It follows directly from the integral representation (2.16) that

χ+(λ) − χ−(λ) = −2iπ · ~FR(λ) ⊗
(
~EL(λ)

)T
. (2.33)

Furthermore, by using the explicit expression forGχ, one has that

χ+(λ) ·Gχ(λ) = χ+(λ) + 2iπ · ~ER(λ) ⊗
(
~EL(λ)

)T − 2iπ

b∫

a

~FR(µ) · Vt(µ, λ) ⊗
(
~EL(λ)

)T · dµ

= χ+(λ) + 2iπ · ~FR(λ) ⊗
(
~EL(λ)

)T
. (2.34)

where, in the last equality, we have used the integral equation satisfied by~FR(λ). By using the above two relations,
one indeed obtains thatχ satisfies to the jump conditions. Finally, it follows from the first equality in (2.34) that

χ+(λ) · ~ER(λ) ⊗
(
~EL(λ)

)T
= ~FR(λ) ⊗

(
~EL(λ)

)T
. (2.35)

Acting with both sides of this equality on a vector function~G such that
(~EL(λ), ~G

)
, 0 for λ ∈ [a ; b], we obtain

(2.18). The proofs of similar statements relative toχ−1 are left to the reader.

We remind that it is a classical fact [7] that the resolvent operatorRt toVt belongs to the class of integrable
integral operator and that its integral kernelRt(λ, µ) reads

Rt(λ, µ) =

(
~FL(λ), ~FR(µ)

)

λ − µ . (2.36)
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3 Towards the implementation of the non-linear steepest descent method

3.1 Auxiliary operator-valued scalar Riemann–Hilbert problems

Let

τ1(λ) = − F(λ)
1+ F(λ)

and τ2(λ) = F(λ) . (3.1)

In the present section, we investigate the solution of two operator-valued scalar Riemann–Hilbert problems that
will become useful in our future handlings. Before stating the Riemann–Hilbert problems of interst, we however
need to introduce a function that will become handy:

ν(λ) =
−1
2iπ
· ln [

1 + F(λ)
]

and α(λ) = exp
{ b∫

a

ν(µ)
µ − λ · dµ

}
(3.2)

The Riemann–Hilbert problem forβk = id + β̂k with k = 1, 2 reads:

• β̂k(λ) is a holomorphic inλ ∈ C \ [a ; b] integral operator onL2(
R
+, ds

)
;

• β̂k(λ) admits continuous±-boundary valueŝβk;± on ]a ; b[;

• uniformly in (s, s′) ∈ R+ × R+ and for any compactK such that Int(K) ⊃ {a, b}, there exist a constantC > 0
such that

∣∣∣̂βk
(
λ | s, s′)

∣∣∣ ≤ C
1+ |λ| · e

− c
4 (s+s′) for C \ K . (3.3)

• There exists a functionnk;ς ∈
(
L1 ∩ L∞

)(
R
+, ds

)
and a neighbourhoodUς of ς ∈ {a, b} such that forλ in

β̂k(λ) =
[
w(λ)

]−ǫkν(ς) · nk;ς ⊗ κk(ς) + β̂(ς)
k;reg(λ) (3.4)

wherew(λ) is as given in (2.13) while, for anyλ ∈ Uς,
∣∣∣̂β(ς)

k;reg

(
λ | s, s′)

∣∣∣ ≤ Ce−
c
4 (s+s′)(s+ 1)(s′ + 1) for some C > 0 . (3.5)

• the boundary values satisfyβk;+(λ) ·
(
id + τk(λ) · mk(λ) ⊗ κk(λ)

)
= βk;−(λ).

Proposition 3.1 There existsδ > 0 small enough such that the Riemann–Hilbert problem forβk admits a unique
solution provided that1+ τk(λ) , 0 on [a ; b] and |ℑ(t)| < δ. Furthermore, the solution exists as soon as

|ℑ(t)| < δ and detΓ([a ;b])
[
id + Uk;t

]
, 0 (3.6)

where the integral kernel Uk;t(λ, µ) of the integral operatorUk;t acting on L2
(
Γ([a ; b])

)
reads

Uk;t(λ, µ) = −t
αk(λ) · α−1

k (µ + iǫkc/t)

2iπ · [t(µ − λ) + iǫkc
] with ǫ1 = −1 and ǫ2 = 1 , (3.7)

in which

αk(λ) = exp
{ b∫

a

νk(µ)
µ − λ · dµ

}
with νk(µ) =

−1
2iπ

ln
[
1+ τk(µ)

]
. (3.8)

Note that one has

νk(λ) = ǫkν(λ) and αk(λ) =
[
α(λ)

]ǫk . (3.9)

Proof —
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• Uniqueness

For anyλ ∈ C \ [a ; b], in virtue of (3.3) the Fredholm determinantαk(λ) = det
[
id + β̂k(λ)

]
is well defined. It

follows from the reasoning outlined previously thatαk is holomorphic onC \ [a ; b] and that it admits continuous
±-boundary values on ]a ; b[, which furthermore satisfy

αk;±(λ) = det
[
βk;±(λ)

]
. (3.10)

Since the integral kernel ofτk(λ) · mk(λ) ⊗ κk(λ) is bounded byCe−
c
4 (s+s′), this independently ofλ ∈ [a ; b], the

multiplicative property of Fredholm determinants and the local structure of̂βk in some neighbourhood of the
endpointsa, b ensure thatαk solves the scalar Riemann–Hilbert problem

• αk is holomorphic onC \ [a ; b];

• αk admits continuous± boundary valuesαk;± on ]a ; b[ which satisfyαk;+(λ) ·
(
1+ τk(λ)

)
= αk;−(λ);

• αk(λ) = O
(
|w(λ)−ǫkν(ς)|

)
whenλ→ ς ∈ {a, b};

• αk = 1 + O
(
λ−1) whenλ→ ∞ .

The hypothesis of the theorem ensure the unique solvabilityof this scalar problem, with its solution being given by
(3.8). In particular,αk(λ) , 0 for λ ∈ C \ [a ; b], just asαk;±(λ) , 0 for λ ∈]a ; b[. As a consequence, the operator
βk(λ) is invertible for anyλ ∈ C \ [a ; b]. Furthermore, its±-boundary valuesβk;±(λ) are also invertible for any
λ ∈]a ; b[. Assume thatβ(1)

k andβ(2)
k are two solutions to the Riemann–Hilbert problem in question. Observe that,

due to

det
[
id + τk(λ) · mk(λ) ⊗ κk(λ)

]
= 1+ τk(λ) , 0 , (3.11)

the operator id+ τk(λ) · mk(λ) ⊗ κk(λ) is invertible. As a consequence,γk = β
(1)
k ·

(
β

(2)
k

)−1 solves a Riemann–
Hilbert problem analogous to the one forβk with the sole exception that nowγk;+(λ) = γk;−(λ) on ]a ; b[ and
that γ̂k

(
λ, | s, s′

)
exhibits at most O

(
|w(λ)−2ǫkν(ς)|

)
singularities inλ whenλ → ς ∈ {a, b}. This means that, for

any (s, s′) ∈ R+ × R+, the holomorphic functionλ 7→ γ̂(λ | s, s′
)

is continuous across ]a ; b[ and has removable
singularities at the endpoints. This function is thus entire and, being bounded by 0 at infinity, it is identically zero
by Liouville’s theorem,viz. γk(λ) = id.

• Existence

Due to its unique solvability, the solution to the Riemann–Hilbert problem forβk, if it exists, is in one-to-one
correspondence with the solution to the singular integral equation [1]

βk;+(λ) = id − C+
[
βk;+ · τk · mk ⊗ κk

]
(λ) where C[ f ](λ) =

b∫

a

f (µ)
µ − λ ·

dµ
2iπ

(3.12)

andC+[ f ](λ) stands for the+ boundary value ofC[ f ](λ) on ]a ; b[. More precisely, the solutionβk can be repre-
sented as

βk(λ) = id − C[βk;+ · τk · mk ⊗ κk
]
(λ) . (3.13)
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We transform the singular integral equation forβk;+ into one for the function

ρk(λ; s) =
(
βk;+(λ) · mk(λ)

)
(s) . (3.14)

We obtain

ρk(λ; s) = hk(λ; s) − C+
[
τk(∗)ρk(∗; s)

]
(λ) where hk(λ; s) =

√
ce−

cs
2 −ǫkitsλ +

b∫

a

tτk(µ)ρk(µ; s)
t(µ − λ) + iǫkc

· dµ
2iπ
. (3.15)

Above the∗ indicates the running variable of the function on which the Cauchy transform acts and we remind that
ǫ1 = −1 while ǫ2 = 1. Equation (3.15) can be recast as a non-homogeneous Riemann–Hilbert problem for the
function

ℵ(λ; s) =

b∫

a

τk(µ)ρk(µ; s)
µ − λ · dµ

2iπ
. (3.16)

Indeed,λ 7→ ℵ(λ | s) is holomorphic onC \ [a ; b], decays as O
(
λ−1) and satisfies to the non-homogeneous jump

conditions

ℵ+(λ; s) · (1+ τk(λ)
) − ℵ−(λ; s) = τk(λ) · hk(λ; s) . (3.17)

This non-homogeneous Riemann-Hilbert problem is readily solved by standard techniques [16] leading to

ℵ(λ; s) = αk(λ) ·
b∫

a

α−1
k;−(µ)

µ − λ · τk(µ)hk(µ; s) · dµ
2iπ
. (3.18)

We do stress that the functionsαk are well defined as a consequence of our hypothesis onF. Making most of the
expression forhk, one gets

ℵ(λ; s) = hk(λ; s) − αk(λ)
∮

Γ([a ;b])

√
c · e− cs

2 −iǫktsµ

αk(µ) · (µ − λ)
· dµ
2iπ
− αk(λ)

b∫

a

t · α−1
k (µ + iǫkc/t)

t(µ − λ) + iǫkc
· τk(µ)ρk(µ; s) · dµ

2iπ
(3.19)

for λ belonging to a small vicinity of [a ; b]. We remind that, in (3.19),Γ
(
[a ; b]

)
stands for a small counterclock-

wise loop around the segment [a ; b] and the pointλ. As a consequence,ρk solves the linear integral equation

(
id + Kk;t

)
[ρk(∗; s)](λ) = αk;+(λ)

∮

Γ
(
[a ;b]

)

√
c · e− cs

2 −iǫktsµ

αk(µ) · (µ − λ)
· dµ

2iπ
(3.20)

where the integral kernelKk;t(λ, µ) of the integral operatorKk;t on L2([a ; b]
)

reads

Kk;t(λ, µ) = −t
αk;+(λ) · α−1

k (µ + iǫkc/t)

2iπ · (t(µ − λ) + iǫkc
) · τk(µ) . (3.21)

In fact, using the jump condition satisfied byαk in the formαk;− − αk;+ = αk;+τk, one can recast the kernel as

Kk;t(λ, µ) = −t
(
αk;−(µ) − αk;+(µ)

)
· αk;+(λ)

αk;+(µ)
·
α−1

k (µ + iǫkc/t)

2iπ · (t(µ − λ) + iǫkc)
. (3.22)
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As a consequence, one gets that

det[a ;b]
[
id + Kk;t

]
= detΓ([a ;b])

[
id + Uk;t

]
(3.23)

where the integral kernelUk;t(λ, µ) of the integral operatorUk;t acting onL2(Γ([a ; b])
)

is as defined in (3.7). The
operator id+Kk,t is thus invertible. Letρk(λ) denote the function

(
ρk(λ)

)
(s) = ρk(λ; s) whereρk(λ; s) is as defined

by (3.20). As a consequence,

βk(λ) = id −
b∫

a

τk(µ)ρk(µ) ⊗ κk(µ)
µ − λ · dµ

2iπ
(3.24)

is the good candidate for the unique solution to the Riemann–Hilbert problem forβk. It is readily checked by
repeating the arguments invoked in the proof of the existence of solutions to the Riemann–Hilbert problem forχ,
thatβk as defined above does satisfy all the requirements stated in the Riemann–Hilbert problem forβk.

3.2 A regularity lemma

In the analysis that will follow, there will arise the one-parameterλ integral operator onL2(
R
+, ds) ⊕ L2(

R
+, ds)

defined as

O(λ) =

(
β1(λ) · m1(λ) ⊗ κ1(λ) · β−1

1 (λ) α2(λ)β1(λ) · m1(λ) ⊗ κ2(λ) · β−1
2 (λ)

α−2(λ)β2(λ) · m2(λ) ⊗ κ1(λ) · β−1
1 (λ) β2(λ) · m2(λ) ⊗ κ2(λ) · β−1

2 (λ)

)
. (3.25)

The main point is that even though the individual operators appearing in its matrix elements have cuts, the operator,
as a whole, is regular. More precisely, one has the

Lemma 3.1 There exists an open neighbourhood V of the segment[a ; b] such that the integral operatorO(λ) on
L2(
R
+, ds) ⊕ L2(

R
+, ds) defined in(3.25)is holomorphic on V.

Proof —
By composition of holomorphic operators,O is holomorphic inV \ [a ; b], with V a sufficiently small open

neighbourhood of [a ; b]. We thus need to show that it is continuous across [a ; b] and that it has removable
singularities ata, b. For this purpose, observe that

(
id + τk(λ) · mk(λ) ⊗ κk(λ)

)
·
(
id − τk(λ)

1+ τk(λ)
· mk(λ) ⊗ κk(λ)

)
= id . (3.26)

Hence, sinceβk;±(λ) are invertible for allλ ∈]a ; b[, one has

β−1
k;−(λ) =

(
id − τk(λ)

1+ τk(λ)
mk(λ) ⊗ κk(λ)

)
· β−1

k;+(λ) . (3.27)

As a consequence, one obtains the jump conditions

βk;+(λ) · mk(λ) = βk;−(λ) · mk(λ) ·
1

1+ τk(λ)
and κk(λ) · β−1

k;+(λ) = κk(λ) · β−1
k;−(λ) ·

(
1+ τk(λ)

)
(3.28)

These are enough so as to conclude thatO
(
λ | s, s′) is continuous across ]a ; b[. It also has removable singu-

larities at the endpoints as readily inferred from the localbehaviour ofα and of the operatorsβk arounda or b. It
thus extends to a holomorphic function in some open neighbourhood of [a ; b].
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3.3 Asymptotic resolution of the Riemann–Hilbert problem for χ

Observe that one has the factorisation

Gχ(λ) =


id

F(λ)eixp(λ)

1+ F(λ)
m1(λ) ⊗ κ2(λ)

0 id

 ·


id − F(λ)
1+ F(λ)

· m1(λ) ⊗ κ1(λ) 0

0 id+ F(λ)m2(λ) ⊗ κ2(λ)



×


id 0

−F(λ)e−ixp(λ)

1+ F(λ)
m2(λ) ⊗ κ1(λ) id

 . (3.29)

One can factor the diagonal operator valued matrix appearing in the centre by using the solutions of the operator
valued scalar Riemann–Hilbert problems considered in Section 3.1. This allows one to factorise the jump matrix
Gχ as

Gχ(λ) =

(
β−1

1;+(λ) 0
0 β−1

2;+(λ)

)
· M↑;+(λ) · M↓;−(λ) ·

(
β1;−(λ) 0

0 β2;−(λ)

)
(3.30)

where the matricesM↑/↓ read

M↑(λ) =

(
id P(λ)eixp(λ)

0 id

)
and M↓(λ) =

(
id 0

Q(λ)e−ixp(λ) id

)
(3.31)

in which

P(λ) =
F(λ)

1+ F(λ)
β1(λ)·m1(λ)⊗κ2(λ)·β−1

2 (λ) and Q(λ) = − F(λ)
1+ F(λ)

β2(λ)·m2(λ)⊗κ1(λ)·β−1
1 (λ) . (3.32)

Note that the operatorsP andQ can be recast as

P(λ) = −2ieiπν(λ) sin
[
πν(λ)

]

α2(λ)
· O12(λ) and Q(λ) = 2ieiπν(λ) sin

[
πν(λ)

]
α2(λ) · O21(λ) (3.33)

whereO(λ) is as defined by (3.25).
Thus, agreeing to denote

Ξ(λ) = χ(λ) ·
(
β−1

1 (λ) 0
0 β−1

2 (λ)

)
(3.34)

and then defining the matrixΥ and the contourΣΥ according to Fig. 1 one gets, upon repeating the steps already
explained previously, thatΥ(λ) = I2 ⊗ id + Υ̂(λ) solves the Riemann–Hilbert problem

• Υ̂(λ) is a holomorphic inλ ∈ C \ ΣΥ integral operator onL2(
R
+, ds

) ⊕ L2(
R
+, ds

)
;

• Υ̂(λ) admits continuous±-boundary valueŝΥ±(λ) onΣΥ \ {a, b};

• uniformly in (s, s′) ∈ R+ × R+ and for any compactK such that Int(K) ⊃ {a, b}, there exist a constantC > 0
such that

∣∣∣Υ̂(λ | s, s′)
∣∣∣ ≤ C

1+ |λ| · e
− c

4 (s+s′) for C \ K . (3.35)
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• there exists an open neighbourhoodUς of ς ∈ {a, b}, vector valued functions~Nς as well as functions̃nk;ς,
k = 1, 2, all belonging to

(
L1 ∩ L∞

)(
R
+, ds

)
such that, forλ ∈ Uς ∩ HIII one hasΥ(λ) = ΥHI I I (λ) where

ΥHI I I (λ) =
(
I2 ⊗ id + ln

[
w(λ)

] · ~Nς ⊗
(~EL(ς)

)T
+ R̂(ς)

Υ
(λ)

)

×


id +
[
w(λ)

]ν1(λ) ñ1;ς ⊗ κ1(ς) + r (ς)
1;Υ(λ) 0

0 id+
[
w(λ)

]ν2(λ) ñ2;ς ⊗ κ1(ς) + r (ς)
2;Υ(λ)

 ,

w(λ) is as defined in (2.13), and̂R(ς)
Υ

(λ), resp.r (ς)
k;Υ, is an integral operator onL2(R+, ds) ⊕ L2(R+, ds), resp.

L2(R+, ds), such that for anyλ ∈ Uς
∣∣∣
∣∣∣R̂(ς)
Υ

(λ | s, s′)
∣∣∣
∣∣∣ ≤ Ce−

c
4 (s+s′)(s+1)(s′+1) resp.

∣∣∣r (ς)
k;Υ(λ | s, s′)

∣∣∣ ≤ Ce−
c
4 (s+s′)(s+1)(s′+1) (3.36)

for some constantC > 0. Furthermore, one has that

Υ(λ) = ΥHI I I (λ) ·
(

id
[
w(λ)

]−2ν(λ) Preg(λ)
0 id

)
where λ→ ς ∈ {a, b} with λ ∈ Uς ∩ HI

Υ(λ) = ΥHI I I (λ) ·
(

id 0[
w(λ)

]2ν(λ)Qreg(λ) id

)
where λ→ ς ∈ {a, b} with λ ∈ Uς∩ ∈ HII

wherePreg(λ) andQreg(λ) are integral operators onL2(R+, ds) such that,

∣∣∣Preg(λ | s, s′)
∣∣∣ ≤ Ce−

c
4 (s+s′)(s+1)(s′+1) and

∣∣∣Qreg(λ | s, s′)
∣∣∣ ≤ Ce−

c
4 (s+s′)(s+1)(s′+1) (3.37)

for some constantC > 0 and anyλ ∈ Uς.

• the boundary values satisfyΥ+(λ)GΥ(λ) = Υ−(λ) where the jump matrix reads

GΥ(λ) = M↑(λ) for λ ∈ Γ↑ and GΥ(λ) = M−1
↓ (λ) for λ ∈ Γ↓ . (3.38)

Again, this Riemann–Hilbert problem is uniquely solvable and hence, its solution is in one-to-one correspon-
dence with the one to the Riemann–Hilbert problem forχ. The fact that the operatorsPreg(λ) andQreg(λ) satisfy
(3.37) follows from (3.33), Lemma 3.1 as well as from the local behaviour ofα aroundλ = ς ∈ {a, b}. Finally, the
local behaviour ofΥ aroundς ∈ {a, b} is inferred from the one ofχ, cf. Fig. 1.

4 The parametrices

4.1 Parametrix around a

The local parametrixPa = id + P̂a on a small diskDa,δ ⊂ U of radiusδ and centred ata, is an exact solution of
the RHP:

• P̂a(λ) is a holomorphic inλ ∈ Da,δ \
{
Γ↑ ∪ Γ↓

}
integral operator onL2(

R
+, ds

) ⊕ L2(
R
+, ds

)

• P̂a(λ) admits continuous±-boundary values
(P̂a

)
±(λ) on

{
Γ↑ ∪ Γ↓ \ {a}

} ∩Da,δ;

• P̂a(λ) has the same singular structure asΥ aroundλ = a;
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a b

b
b

Γ↓

Γ↑
Υ = Ξ

Υ = ΞM↑

Υ = ΞM−1
↓

p−1

b b

p(a) p(b)

p(HI )

p(HII )

p(HIII )

HI

HII

HIII

Figure 1: ContoursΓ↑ andΓ↓ associated with the RHP forΥ. The second figure depicts howp maps the contours
Γ↓ andΓ↑.

• uniformly in (s, s′) ∈ R+ × R+ andλ ∈ ∂Da,δ, one has
∣∣∣
∣∣∣P̂a

(
λ | s, s′)

∣∣∣
∣∣∣ ≤ C

x1−ε · e
− c

4 (s+s′) for some C > 0 ; (4.1)

•

Pa;+(λ) · M↑(λ) = Pa;−(λ) for λ ∈ Γ↑ ∩Da,δ,

Pa;+(λ) · M−1
↓ (λ) = Pa;−(λ) for λ ∈ Γ↓ ∩Da,δ.

Hereεa = 2 sup
λ∈∂Da,δ

∣∣∣ℜ(
ν(λ)

)∣∣∣ < 1. The canonically oriented contour∂Da,δ is depicted in Fig. 2.

ab

Γ↑

Γ↓

ℜ(λ)

ℑ(λ)

Figure 2: Contours in the RHP forPa.

Let ζa(λ) = x
(
p(λ) − p(a)

)
with arg[ζa(λ)] ∈] − π ; π[ for λ ∈ Da,δ\]a− δ ; a] and set

Pa(λ) = Ψa(λ) · [ζa(λ)
]−ν(λ)σ3 · e

iπν(λ)
2 · La(λ) +

(
id − O11(λ) 0

0 id− O22(λ)

)
. (4.2)
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Above, we agree upon

Ψa(λ) =

(
Ψ
( − ν(λ), 1; e−i π2ζa(λ)

) · O11(λ) ib12(λ) · Ψ
(
1+ ν(λ), 1; ei π2 ζa(λ)

) · O12(λ)
−ib21(λ) · Ψ

(
1− ν(λ), 1; e−i π2ζa(λ)

) · O21(λ) Ψ
(
ν(λ), 1; ei π2ζa(λ)

) · O22(λ)

)
, (4.3)

with

b12(λ) = −i
sin

[
πν(λ)

] · Γ2(1+ ν(λ))

πα2
0(λ) · [ζa(λ)

]2ν(λ)e−2iπν(λ)
· eixp(a) , (4.4)

b21(λ) = −i
πα2

0(λ) · [ζa(λ)
]2ν(λ)e−2iπν(λ)

sin
[
πν(λ)

] · Γ2(ν(λ)) · e−ixp(a) . (4.5)

In (4.3), Ψ(a, c; z) denotes the Tricomi confluent hypergeometric function (CHF) of the second kind (see Ap-
pendix A) with the convention of choosing the cut alongR−. The functionΨ(a, c; z) admits an analytical continu-
ation on the universal covering ofC \ {0} and satisfies there monodromy relations (A.2) - (A.3) together with the
asymptotic property (A.4). Also, we have introduced the newfunctionα0 by the equations,

α0(λ) = α(λ)


1 for λ ∈ Da,δ, ℑλ > 0

e2iπν(λ) for λ ∈ Da,δ, ℑλ < 0.
(4.6)

which is a holomorphic function onDa,δ\]a−δ ; a[. Finally, the expression for the piecewise holomorphic constant
matrix La(λ) depends on the region of the complex plane. Namely,

La(λ) =



I2 ⊗ id −π/2 < arg
[
p(λ) − p(a)

]
< π/2,

(
id −e−2iπν(λ) P(λ)eixp(λ)

0 id

)
π/2 < arg

[
p(λ) − p(a)

]
< π,

(
id 0

−Q(λ)e−ixp(λ) id

)
−π < arg

[
p(λ) − p(a)

]
< −π/2.

(4.7)

Using (A.4), (A.2) and (A.3) together with the relations,

O jl (λ) · Olk(λ) = O jk(λ) . (4.8)

one checks that our choice of the matrixLa implies thatPa has the desired form of its asymptotic behaviour on
the boundary∂Da,δ while the desired jump conditions are satisfied automatically. Furthermore, referring again to
(A.4), (A.2), one can see that the functionPa is continuous across the cut ]a− δ ; a[ and thus indeed equation (4.2)
determines a parametrix aroundλ = a.

4.2 Parametrix around b

The RHP for the parametrixPb = I2 ⊗ id + P̂b aroundb reads

• P̂b(λ) is a holomorphic inλ ∈ Db,δ \
{
Γ↑ ∪ Γ↓

}
integral operator onL2(

R
+, ds

) ⊕ L2(
R
+, ds

)
;

• P̂b(λ) admitsL2 ±-boundary values
(P̂b

)
±(λ) on

{
Γ↑ ∪ Γ↓ \ {b}

} ∩Db,δ;

• P̂b(λ) has the same singular structure asΥ aroundλ = b;
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• uniformly in (s, s′) ∈ R+ × R+ andλ ∈ ∂Db,δ, one has
∣∣∣
∣∣∣P̂b

(
λ | s, s′)

∣∣∣
∣∣∣ ≤ C

x1−εb · e
− c

4 (s+s′) for some C > 0; (4.9)

•
{ Pb;+(λ) · M↑(λ) = Pb;−(λ) for λ ∈ Γ↑ ∩Db,δ ,

Pb;+(λ) · M−1
↓ (λ) = Pb;−(λ) for λ ∈ Γ↓ ∩Db,δ

;

andεb = 2 supλ∈∂Db,δ

∣∣∣ℜ(ν(λ))
∣∣∣ < 1 .

bb

Γ↑

Γ↓

ℜ(λ)

ℑ(λ)

Figure 3: Contours in the RHP forPb.

Note that the solution to the RHP for the parametrixPb aroundb can be formally obtained from the one ata
through the transformationb → a andν → −ν on the solution to the RHP forPa. Indeed, the two RHP are
identical modulo this negation. Just as for the parametrix arounda, we focus on the solution

Pb(λ) = Ψb(λ) · [ζb(λ)
]ν(λ)σ3e−

iπν(λ)
2 · Lb(λ) · [ζb(λ)

]ν(λ)σ3 +

(
id − O11(λ) 0

0 id− O22(λ)

)
(4.10)

whereζb(λ) = x
[
p(λ) − p(b)

]
with arg[ζb(λ)] ∈] − π ; π[ for λ ∈ Db,δ\]b− δ ; f ], and

Ψ(λ) =

(
Ψ
(
ν(λ), 1; e−i π2 ζb(λ)

) · O11(λ) ib̃12(λ) · Ψ
(
1− ν(λ), 1; ei π2ζb(λ)

) · O12(λ)
−ib̃21(λ) · Ψ

(
1+ ν(λ), 1; e−i π2ζb(λ)

) · O21(λ) Ψ
( − ν(λ), 1; e−i π2ζb(λ)

) · O22(λ)

)
, (4.11)

with

b̃12(λ) = i
sin

[
πν(λ)

]
Γ2(1− ν(λ))

πα2(λ)
· [ζb(λ)

]2ν(λ) · eixp(b) , (4.12)

b̃21(λ) = i
πα2(λ) · e−ixp(b)

sin
[
πν(λ)

]
Γ2( − ν(λ)) · [ζb(λ)

]2ν(λ) . (4.13)

Finally, the parametrixLb(λ) reads

Lb(λ) =



I2 ⊗ id −π/2 < arg
[
p(λ) − p(b)

]
< π/2,

(
id −P(λ)eixp(λ)

0 id

)
π/2 < arg

[
p(λ) − p(b)

]
< π,

(
id 0

−Q(λ)e−ixp(λ) id

)
−π < arg

[
p(λ) − p(b)

]
< −π/2.

(4.14)
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4.3 The last transformation

We define the integral operatorΠ(λ) = id ⊗ I2 + Π̂(λ) as

Π(λ) =



Υ(λ) · P−1
b (λ) for λ ∈ Db,δ ,

Υ(λ) · P−1
a (λ) for λ ∈ Da,δ ,

Υ(λ) for λ ∈ C \ {Da,δ ∪Db,δ
}
.

(4.15)

ba b b

Γ′↑

Γ′↓

ΣΠ = Γ
′
↓ ∪ Γ′↑ ∪ ∂Da,δ ∪ ∂Db,δ

Figure 4: ContourΣΠ appearing in the RHP forΠ.

It is readily checked thatΠ = I2 ⊗ id + Π̂ satisfies the Riemann–Hilbert problem

• Π̂(λ) is a holomorphic inλ ∈ C \ ΣΠ integral operator onL2(
R
+, ds

) ⊕ L2(
R
+, ds

)
;

• Π̂(λ) admits continuous±-boundary values
(
Π̂
)
±(λ) onΣΠ;

• uniformly in (s, s′) ∈ R+ × R+ and for any compactK such thatΣΠ ⊂ Int(K), one has

∣∣∣
∣∣∣Π̂(λ | s, s′)

∣∣∣
∣∣∣ ≤ C

x1−ε · e
− c

4 (s+s′)
for some C > 0 , anyλ ∈ C \ K

and forε = max{εa, εb}
; (4.16)

• Π+(λ) ·GΠ(λ) = Π−(λ) where GΠ(λ) =



M↑(λ) for λ ∈ Γ′↑ ;

M−1
↓ (λ) for λ ∈ Γ′↓ ;

Pς(λ) for λ ∈ ∂Dς,δ with ς ∈ {
a, b

}
.

Proposition 4.1 The solution to the Riemann–Hilbert problem forΠ exists and is unique, provided that x is large
enough and|ℑ(t)| < δ, with δ > 0 but small enough.

Proof —
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The unique solvability of the Riemann–Hilbert problem forΠ is established along the lines already discussed.
We hence solely focus on the existence of solutions. Introduce the following operator

CΣΠ
[
M

]
(λ) =

∫

ΣΠ

M(µ)
µ − λ ·

dµ
2iπ

for λ ∈ C \ ΣΠ and M ∈ M2

(
L2(ΣΠ × R+ × R+)

)
. (4.17)

Then, we consider the below singular integral equation for the unknown matrix̂Π+ ∈ M2

(
L2(ΣΠ × R+ × R+)

)
:

Π̂+(λ) + CΣΠ;+
[
Π̂+ĜΠ

]
(λ) = −CΣΠ;+

[
ĜΠ

]
(λ) where GΠ(λ) = id ⊗ I2 + ĜΠ(λ) . (4.18)

It follows from

ĜΠ ∈ M2
(
L2 ∩ L∞(ΣΠ × R+ × R+)

)
with ||ĜΠ||M2

(
L2∩L∞(ΣΠ×R+×R+)

) ≤ C

x1−ε , (4.19)

that, for anyM ∈ M2
(
L2∩ L∞(ΣΠ ×R+ ×R+)

)
, one hasMĜΠ ∈ M2

(
L2(ΣΠ ×R+ ×R+)

)
Furthermore, one has that

λ 7→ (
MĜΠ

)
(λ | s, s′) belongs toM2

(
L2(ΣΠ)

)
almost everywhere in (s, s′) ∈ R+ × R+. Therefore, using Fubbini’s

theroem and the continuity of the+ boundary value of the Cauchy operator onΣΠ in respect to theL2(ΣΠ) norm,
we get

∣∣∣
∣∣∣CΣΠ;+

[
MĜΠ

]∣∣∣
∣∣∣2M2

(
L2(ΣΠ×R+×R+)

) =
∫

R+×R+
dsds′

{∣∣∣
∣∣∣CΣΠ;+

[
(MĜΠ)(∗ | s, s′)]

∣∣∣
∣∣∣2M2

(
L2(ΣΠ)

)
}

≤ cΠ ·
∣∣∣
∣∣∣MĜΠ

∣∣∣
∣∣∣2M2

(
L2(ΣΠ×R+×R+)

) ≤ CΠ
x1−ε

∣∣∣
∣∣∣M

∣∣∣
∣∣∣2M2

(
L2(ΣΠ×R+×R+)

) . (4.20)

This guarantees the invertibility of the operator id⊗ I2+CΣΠ;+
[ ·ĜΠ

]
onM2

(
L2(ΣΠ×R+×R+)

)
. SinceCΣΠ;+

[
ĜΠ

] ∈
M2

(
L2(ΣΠ × R+ × R+)

)
, it follows thatΠ̂+ exists and that, furthermore,

∣∣∣
∣∣∣Π̂+

∣∣∣
∣∣∣2M2

(
L2(ΣΠ×R+×R+)

) ≤ C

x1−ε for some C > 0 . (4.21)

We then define

Π(λ) = id ⊗ I2 − CΣΠ
[
ĜΠ

]
(λ) − CΣΠ

[
Π̂+ĜΠ

]
(λ) . (4.22)

It is then straightforward, by using the bounds onΠ̂+ andĜΠ, to deduce thatΠ(λ) as defined through (4.22) does
satisfy the Riemann–Hilbert problem stated above, with thesole difference that it admitsL2 ±-boundary values on
ΣΠ. However,ĜΠ being a holomorphic integral operator onL2(R+, ds) ⊕ L2(R+, ds) in some open neighbourhood
of ΣΠ it is readily seen that̂Π± admits a holomorphic continuation to some open neighbourhood ofΣΠ located on
its ∓-side. In particular, this ensures thatΠ̂ does admit, in fact, continuous± boundary values onΣΠ.

5 The asymptotic behaviour of the determinant

5.1 A determinant identity

Lemma 5.1 The following holds

∂t ln det
[
I + Vt

]
=

∮

Γ
(
[a ;b]

)
z · tr

[
∂zχ(z) · σ3 · s · χ−1(z)

]
· dz

2π
where σ3 =

(
1 0
0 −1

)
(5.1)

and s is the operator of multiplication by s, viz.
(
s · f

)
(s) = s f(s). Note thattr appearing above refers to the

matrix and operator trace.
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Note that the trace used above is well defined due to (2.12) andthe fact that̂χ
(
λ | s, s′

)
is smooth in all its

variables forλ uniformly away from [a ; b].

Proof —
Starting from the identity

∂t ln det[I + Vt] =

b∫

a

[
∂tVt · (I − Rt)

]
(λ, λ) · dλ , (5.2)

along with

∂tVt(λ, µ) = −
∮

Γ
(
[a ;b]

)
dz
2π
· z

(z− λ)(z− µ) ·
(
~EL(λ), sσ3~ER(µ)

)
, (5.3)

as well as invoking the representation of the resolventRt in terms of~FL and~FR, we get

∂t ln det
[
I + Vt

]
= −

∮

Γ
(
[a ;b]

)
dz
2π

z

b∫

a

dλ

(
~EL(λ), sσ3~ER(λ)

)

(z− λ)2

+ tr

{ ∮

Γ
(
[a ;b]

)
dz
4π

z

b∫

a

dλdµ ~FR(λ) ⊗
(
EL(λ)

)T
{ 1
λ − z

− 1
λ − µ

}
sσ3

(z− µ)2
~ER(µ) ⊗

(
~FL(µ)

)T
}
. (5.4)

By using the integral representation forχ , we obtain

∂t ln det
[
I + Vt

]
= −

∮

Γ
(
[a ;b]

)
dz
2π

z

b∫

a

dλ

(
~EL(λ), sσ3~ER(λ)

)

(z− λ)2

+

∮

Γ
(
[a ;b]

)
dz
2π

z

b∫

a

dµ tr
{[
χ(µ) − χ(z)

]
· sσ3

(z− µ)2
~ER(µ) ⊗

(
~FL(µ)

)T
}
. (5.5)

Finally, recalling the integral representation forχ−1(λ), one gets

∂t ln det
[
I + Vt

]
= −

∮

Γ
(
[a ;b]

)
z · tr

{
χ(z) · σ3s · ∂zχ

−1(z)
}
· dz

2π
. (5.6)

It solely remains to invoke that∂z

(
χ−1(z)

)
= −χ−1(z) · ∂zχ(z) · χ−1(z) and the cyclic property of the trace.

5.2 The asymptotic evaluation of the determinant

Proposition 5.1 The following representation holds for the ratio of determinants

det
[
I + V1

]

det
[
I + V0

] = det
[
I +U1;t=1

] · det
[
I +U2;t=1

] ·
(
1 + o(1)

)
. (5.7)
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Proof —
Let t be such that

detΓ([a ;b])
[
id +Uk;t

]
, 0 for k = 1, 2 . (5.8)

Then, the Riemann–Hilbert analysis ensures that, uniformly away from [a ; b], the solutionχ can be represented
as

χ(λ) =
(
I2 ⊗ id + Π̂

)
·
(
β1(λ) 0

0 β2(λ)

)
. (5.9)

whereΠ̂ is an integral operator onL2(
R
+, ds

) ⊕ L2(
R
+, ds

)
that, furthermore, satisfies to the bounds

(
Π̂ak · βk

)(
λ | s, s′) ≤ Ce−

c
4(s+s′)

x1−ε(1+ |λ|) with ε = max{εa, εb} (5.10)

for λ ∈ C \ K, with K a small compact such that Int(K) ⊃ ΣΠ, and anys, s′ ∈ R+.
As a consequence, one gets that

∂t ln det
[
I + Vt] =

∮

Γ(ΣΠ)

tr
[
∂zβ1(z) · s · β−1

1 (z) − ∂zβ2(z) · s · β−1
2 (z)

]
· zdz

2π
+ O

( 1
x1−ε

)
(5.11)

where the remainder O(xε−1) is in respect to thex→ +∞ limit. Thus, by using the representation

βk(λ) = id − C
[
τkρk ⊗ κk

]
(λ) where ρk(µ)(s) = ρk(µ; s) (5.12)

we are led to:

∂t ln det
[
I + Vt] =

2∑

k=1

ǫk

b∫

a

dµ
2π
τk(µ) · κk(µ)

[
sρk(µ)

]
+ O(xε−1) (5.13)

where we remind that the functionρk(µ; s) is defined by

ρk(µ; s) =
(
I +Kk;t

)−1[
wk(∗; s)

]
(µ) where wk(λ; s) = αk;+(λ)

∮

Γ([a ;b])

√
c · e− c

2 s−itǫkµs

αk(µ) · (µ − λ)
· dµ

2iπ
. (5.14)

Note that, above, the operator
(
I +Kk;t

)−1
acts on the∗ variable of its argument. As a consequence,

∂t ln det
[
I + Vt] = −

2∑

k=1

ǫk

b∫

a

τk(µ) ·
(
I +Kk;t

)−1[
κk(µ)

[
swk(∗; •)

]]
(µ) · dµ

2π
+ O(xε−1) . (5.15)

where the∗ indicates the variable on which
(
I +Kk;t

)−1
acts whereas the• variable refers to the one on which the
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one-formκk(µ) acts. Observe that

ǫkτk(µ)κk(µ)
[
swk(ν; •)

]
= cǫkτk(µ)αk;+(ν)

∮

Γ([a ;b])

dλ
2iπ

α−1
k (λ)

λ − ν

+∞∫

0

dsse−cs+itǫk(µ−λ)s

= cǫkτk(µ)αk;+(ν)
∂

∂t

{ ∮

Γ([a ;b])

dλ

2i2π

α−1
k (λ)

(λ − ν)ǫk(µ − λ)

+∞∫

0

dse−cs+itǫk(µ−λ)s
}

= cǫkτk(µ)αk;+(ν)
∂

∂t

{ ∮

Γ([a ;b])

α−1
k (λ)

(λ − ν)(µ − λ)(t(µ − λ) + iǫkc
) · dλ

2iπ

}

= − ∂
∂t

{αk;+(ν)

αk;+(µ)
· αk;−(µ) − αk;+(µ)

αk(µ + iǫkc/t)
· t

i
(
t(µ − ν) + iǫkc

)
}
= −2π · ∂t

(
Kk;t(ν, µ)

)
. (5.16)

Therefore, we get that

∂t ln det
[
I + Vt] = −

2∑

k=1

b∫

a

((
I +Kk;t

)−1 · ∂tKk;t

)
(µ, µ) · dµ + O

(
xε−1)

= − ∂
∂t

ln
{
det

[
I +K1;t

] · det
[
I +K2;t

]}
+ O

(
xε−1)

= − ∂
∂t

ln
{
detΓ([a ;b])

[
I +U1;t

] · detΓ([a ;b])
[
I +U2;t

]}
+ O

(
xε−1) . (5.17)

Now, observe that there existsδ > 0 such that

t 7→ detΓ([a ;b])
[
I +Uk;t

]
k = 1, 2 , (5.18)

are holomorphic functions on{t ∈ C : |ℜ(t)| < 2 and |ℑ(t)| < δ} that furthermore do not vanish att = 0 and
t = 1. As a consequence, it has a finite amount of zeroes located in{t ∈ C : |ℜ(t)| < 1.5 and|ℑ(t)| < δ/2}. Thus,
there exists a smooth curveC joining 0 to 1, located in the region|ℑ(t)| < δ/2 and such that

detΓ([a ;b])
[
I +Uk;t

]
, 0 for anyt ∈ C and k = 1, 2 . (5.19)

As a consequence, the formula (5.17) holds for anyt ∈ C . Thence, integrating both sides of (5.17) alongC leads
to the claim upon taking the exponent. Note that different choices of the curveC could lead to different values
of the integral. However, any two such integrals will differ by integer multiples of 2iπ, hence leading to the same
value of the exponents.
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A Some properties of confluent hypergeometric function

For generic parameters(a, c) the Tricomi confluent hypergeometric functionΨ (a, c; z) is one of the solutions to
the differential equation

zy′′ + (c− z) y′ − ay= 0 . (A.1)

It enjoys the monodromy properties

Ψ(a, 1;ze2iπ) = Ψ(a, 1;z)e−2iπa +
2πie−iπa+z

Γ2(a)
Ψ(1− a, 1; eiπz) , (A.2)

Ψ(a, 1;ze−2iπ) = Ψ(a, 1;z)e2iπa − 2πieiπa+z

Γ2(a)
Ψ(1− a, 1; e−iπz) , (A.3)

and has the asymptotic expansion:

Ψ(a, c; z) ∼
∞∑

n=0

(−1)n
(a)n(a− c+ 1)n

n!
z−a−n, z→ ∞, −3π

2
< arg(z) <

3π
2
, (A.4)

with (a)n = Γ(a+ n)/Γ(a).

References

[1] R. Beals and R.R. Coifman,"Scattering and inverse scattering for first order systems.", Comm. Pure Appl.
Math 37 (1984), 39–90.

[2] P.A. Deift and D. Gioev,"Universality at the edge of the spectrum for unitary, orthogonal and symplectic
ensembles of random matrices.", Comm. Pure Appl. Math.60 (2007), 867–910.

[3] P.A. Deift, T. Kriecherbauer, K.T.-R. McLaughlin, S. Venakides, and X. Zhou,"Strong asymptotics of or-
thogonal polynomials with respect to exponential weights.", Comm. Pure Appl. Math52 (1999), 1491–1552.

[4] M. Gaudin,"Sur la loi limite de l’espacement des valeurs propres d’unematrice alatoire.", Nucl. Phys.25
(1961), 447–458.

[5] I. Gohberg, S. Goldberg, and N. Krupnik,"Traces and determinants of linear operators", Operator theory
advances and applications116, Birkhäuser, 2000.

[6] V.E. Korepin H .Frahm, A.R. Its,"An operator-valued Riemann-Hilbert problem associated with the XXX
model.", Proc. Work. "Symmetries and integrability of differential equations, Estered, Canada" (1995).

[7] A.R. Its, A.G. Izergin, V.E. Korepin, and N.A. Slavnov,"Differential equations for quantum correlation
functions.", Int. J. Mod. PhysicsB4 (1990), 1003–1037.

[8] A.R. Its and K. K. Kozlowski,"On determinants of integrable operators with shifts.", Int. Math. Res. Not.
(2013), DOI: 10.1093/imrn/rnt191.

[9] A.R. Its and N.A. Slavnov,"On the Riemann-Hilbert approach to the asymptotic analysis of the correlation
functions of the Quantum Nonlinear Schrödinger equation. Non-free fermion case.", Theor. Math. Phys.
119:2 (1990), 541–593.

24



[10] N. Kitanine, K.K. Kozlowski, J.-M. Maillet, N.A. Slavnov, and V. Terras,"The Riemann-Hilbert approach
to a generalized sine kernel and applications.", Comm. Math. Phys.291 :3(2009), 691–761.

[11] T. Kojima, V. E. Korepin, and N. A. Slavnov,"Completely integrable equation for the quantum correlation
functions of non-linear Schrödinger equation.", Comm. Math. Phys.189(1997), 709–728.

[12] T. Kojima, V.E. Korepin, and N.A. Slavnov,"Determinant representation for dynamical correlation functions
of the quantum nonlinear Schrdinger equation.", Comm. Math. Phys.188(1997), 657–689.

[13] V. E. Korepin and N. A. Slavnov,"Correlation function of currents in a one-dimensional Bose gas.", Theor.
Math. Phys.68 (1986), 955–960.

[14] , "The Riemann–Hilbert problem associated with the quantum Nonlinear Schrödinger equation.",
J.Phys.A30 (1997), 8241–8255.

[15] V.E. Korepin and N.A. Slavnov,"The time dependent correlation function of an impenetrable Bose gas as a
Fredholm minor I.", Comm. Math.Phys.129(1990), 103–113.

[16] N. I. Muskhelishvili, "Singular Integral Equations: Boundary problems of functions theory and their appli-
cations to mathematical physics.", Wolters-Noordhoff publishing, Groninger, The Netherlands, 1958.

[17] N. A. Slavnov,"Differential equations for multipoint correlation functions in a one-dimensional impenetra-
ble Bose gas.", Theor. Math. Phys.106(1996), 131–142.

25


	1 Introduction
	2 The initial Riemann–Hilbert problem
	2.1 A few definitions
	2.2 The operator-valued Riemann–Hilbert problem

	3 Towards the implementation of the non-linear steepest descent method
	3.1 Auxiliary operator-valued scalar Riemann–Hilbert problems
	3.2 A regularity lemma
	3.3 Asymptotic resolution of the Riemann–Hilbert problem for 

	4 The parametrices
	4.1 Parametrix around a
	4.2 Parametrix around b
	4.3 The last transformation

	5 The asymptotic behaviour of the determinant
	5.1 A determinant identity
	5.2 The asymptotic evaluation of the determinant

	A Some properties of confluent hypergeometric function

