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ABSTRACT 

 

Chad Daniel Walls 

 

FUNCTIONAL INSIGHTS INTO ONCOGENIC PROTEIN TYROSINE 

PHOSPHATASES BY MASS SPECTROMETRY 

 

Phosphatase of Regenerating Liver 3 (PRL3) is suspected to be a causative factor 

toward cellular metastasis when overexpressed.  To date, the molecular basis for PRL3 

function remains an enigma, justifying the use of ‘shot-gun’-style phosphoproteomic 

strategies to define the PRL3-mediated signaling network.  On the basis of aberrant Src 

tyrosine kinase activation following ectopic PRL3 expression, phosphoproteomic data 

reveal a signal transduction network downstream of a mitogenic and chemotactic PDGF 

(α and β), Eph (A2, B3, B4), and Integrin (β1 and β5) receptor array known to be utilized 

by migratory mesenchymal cells during development and acute wound healing in the 

adult animal.  Tyrosine phosphorylation is present on a multitude of signaling effectors 

responsible for Rho-family GTPase, PI3K-Akt, Jak-STAT3, and Ras-ERK1/2 pathway 

activation, linking observations made by the field as a whole under Src as a primary 

signal transducer.  Our phosphoproteomic data paint the most comprehensive picture to 

date of how PRL3 drives pro-metastatic molecular events through Src activation.   

 The Src-homology 2 (SH2) domain-containing tyrosine phosphatase 2 (SHP2), 

encoded by the Ptpn11 gene, is a bona-fide proto-oncogene responsible for the activation 

of the Ras/ERK1/2 pathway following mitogen stimulation.  The molecular basis for 

SHP2 function is pTyr-ligand-mediated alleviation of intramolecular autoinhibition by 
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the N-terminal SH2 domain (N-SH2 domain) upon the PTP catalytic domain.  Pathogenic 

mutations that reside within the interface region between the N-SH2 and PTP domains 

are postulated to weaken the autoinhibitory interaction leading to SHP2 catalytic 

activation in the open conformation.  Conversely, a subset of mutations resides within the 

catalytic active site and cause catalytic impairment.  These catalytically impaired SHP2 

mutants potentiate the pathogenesis of LEOPARD-syndrome (LS), a neuro-cardio-facial-

cutaneous (NCFC) syndrome with very similar clinical presentation to related Noonan 

syndrome (NS), which is known to be caused by gain-of-function (GOF) SHP2 mutants. 

Here we apply hydrogen-deuterium exchange mass spectrometry (H/DX-MS) to 

provide direct evidence that LS-associated SHP2 mutations which cause catalytic 

impairment also weaken the autoinhibitory interaction that the N-SH2 domain makes 

with the PTP domain.  Our H/DX-MS study shows that LS-SHP2 mutants possess a 

biophysical property that is absolutely required for GOF-effects to be realized, in-vivo. 

 
Zhong-Yin Zhang, Ph.D., Chair 
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CHAPTER 1:  INTRODUCTION 

1.1 Tyrosine Phosphorylation 

1.1.1 Tyrosine phosphorylation; a historical perspective 

 A seminal observation made over 30 years ago by Walter Eckhart, Mary Anne 

Hutchinson, Bart Sefton, and Tony Hunter during their studies of polyomavirus middle T 

(PyMT) and v-Src associated kinase activities led to the discovery of tyrosine 

phosphorylation as a new type of protein modification (1-3).  At this time, modification 

of tyrosine by phosphorylation was not only unprecedented, but in the feverish study of 

the cellular effects of both the polyomavirus tumor (T)-antigens and pp60src (v-Src), the 

transforming gene of the Rous sarcoma virus, gave cancer researchers critical insight that 

this modification could be intimately linked with cellular transformation.  By this time, 

protein phosphorylation was a well-established principle for reversible regulation of 

protein activity and it immediately suggested that viral-mediated cellular transformation 

was governed by phosphotyrosine-modifications to a set of target proteins, thus altering 

their activity.  Seminal studies on protein phosphorylation would give precedent to the 

importance of tyrosine phosphorylation as a genuine physiological process.  Importantly, 

in conjunction with reports documenting tyrosine phosphorylation being associated with 

the activities of retroviral oncoproteins like v-Src and the Abelson murine leukemia virus 

protein (v-Abl) (4), an additional report surfaced that documented tyrosine 

phosphorylation being associated with the activity of the cellular epidermal growth factor 

receptor kinase (EGFR) (5).  The critical link that would be established between v-Src 

and v-Abl and the EGF receptor gave way to a notion that neoplastic cell transformation 

by viral protein-tyrosine kinases might involve activation of signaling pathways 
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stimulated by cellular growth factor receptors.  By 1982 the research community knew of 

three retroviral transforming tyrosine kinases (v-Src, v-Abl, and v-Fes) and three cellular 

receptor tyrosine kinases (RTKs) (EGFR, insulin receptor-IR, and the platelet-derived 

growth factor receptor-PDGFR).  Ironically, a year later, Sara Courtneidge and Alan 

Smith revealed that the tyrosine phosphorylation associated with the PyMT was actually 

due to its association with (pp60sarc; c-Src), the cellular homolog of v-Src (6).  The viral 

homologs of cellular protein tyrosine kinases, most specifically v-Src and its cellular 

homolog c-Src, would allow cancer researchers of the day to establish a critical link 

between cellular transformation and aberrant tyrosine phosphorylation.  To date, we now 

understand that the human genome encodes 90 distinct tyrosine kinases and that over half 

of them have been implicated in the genesis of at least one type of cancer (7). 

 Ten years after the identification of the first tyrosine kinase, groups headed by Ed 

Fischer, Nick Tonks, and Jack Dixon, purified/characterized and subsequently cloned the 

first cystolic protein tyrosine phosphatase (PTP), the human placental phosphatase, 

PTP1B (8-11).  PTP1B and concurrently characterized receptor-linked PTP, CD45 (the 

leukocyte common antigen) (12), represented prototypes to a new class of 

phosphohydrolases capable of counteracting the activities of their PTK counterparts.  

Though at the advent of their discovery PTPs were generally assumed to be ‘suppressors’ 

of the oncogenic activities of their PTK counterparts, evidence to date supports PTPs 

playing specific and active, even dominant, roles in setting the levels of tyrosine 

phosphorylation in cells and in the regulation of many physiological processes (13-18).  

In 2004, Andres Alonso and Thomas Mustelin documented the presence of 107 PTPs 

within the human genome and estimated that only 81 are catalytically active (19), putting 
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the ratio of active PTKs (85) and active PTPs (81) ~1:1.  It is widely appreciated that the 

reciprocal regulation of tyrosine phosphorylation by the concerted actions of both PTKs 

and PTPs controls a myriad of processes essential to eukaryotic life.  Soon after the 

discovery and characterization of the first PTPs, critical questions regarding the tight 

regulation of this post-translational modification and how it is used by the cell to govern 

biological function would begin to be answered. 

 By the mid-1990s a resolved picture was emerging about how tyrosine 

phosphorylation was translated into biological function.  Work by Tony Pawson’s group 

in the mid-80s elucidated a domain in the oncogenic v-Fps/Fes PTK that was N-terminal 

to the kinase domain, but modified both kinase activity and substrate recognition and was 

necessary for cellular transformation (20-21).  The domain was given the name Src 

homology 2 (SH2)-domain as a stretch of ~100 amino acids was shown to be conserved 

in c-Src and c-Abl and similarly positioned adjacent to the kinase (SH1) domain.  This 

discovery gave way to data in support of a notion that specificity in signaling by tyrosine 

kinases requires protein-protein interactions that are mediated by a dedicated noncatalytic 

domain (21-24).  By the early 1990s the SH2 domain was shown to specifically associate 

with phosphotyrosine residues of RTKs and intracellular docking proteins following 

growth factor stimulation, through experiments involving isolated SH2 domains of 

aggressively studied signaling effectors of the day including:  PLCγ1, RasGAP, and Src 

(25-30).  In fact, effectors such as PLCγ1 and RasGAP were shown to be RTK substrates, 

giving way to tyrosine phosphorylation being an element of substrate recruitment and 

signal pathway organization (31-35).  Since the discovery of the SH2 domain, a unifying 

concept of cellular organization has emerged in which modular protein-protein 
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interactions provide an underlying framework through which signaling 

pathways/networks are assembled and controlled.   

In full circle, it was now clear how the activity of one viral oncoprotein, v-Src, 

could act in a pleiotropic fashion to affect cell shape, adhesion, motility, growth, 

proliferation, gene expression, metabolism, and survival towards cellular transformation.  

The answer to the question of why this protein modification must be tightly regulated is 

precisely that it represents the ‘key’ that unlocks a cell’s response to its environment.  

The cardinal discovery that v-Src and c-Src were tyrosine kinases would lead to a 

revolution in our understanding of how the regulation of tyrosine phosphorylation 

governs biological function both in normal and in pathological contexts. 

1.1.2 Tyrosine phosphorylation; molecular biochemistry and cellular physiology 

 Protein tyrosine phosphorylation is now well-recognized to be regulated by the 

reciprocal enzymatic activities of both protein tyrosine kinases (PTKs) and protein 

tyrosine phosphatases (PTPs).  Opposing the action of the 90 PTKs encoded by the 

human genome, are 107 PTPs that can remove phosphate from the phosphotyrosyl-

residues in proteins (19).  As mentioned previously, the ratio of active PTKs (85) and 

active PTPs (81) is ~1:1, owing to the physiological importance of the reciprocal 

relationship between these two enzyme families.  Despite the large amount of tyrosine 

kinases encoded by the human genome, tyrosine phosphorylation accounts for <<1% of 

phosphate esterified to proteins (pSer, pThr, and pTyr) in non-transformed cells, moving 

closer to ~1% in cells transformed by the v-Src oncoprotein (2).  The most prominent 

reasons for the disparity between pSer (~90%), pThr (~10%), and pTyr (<1%) are:  

unlike pSer/pThr, pTyr rarely plays a structural role in proteins and primarily represents a 
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regulatory modification, most tyrosine kinases are tightly negatively regulated and only 

become active under specific conditions, and PTPs have a very high turnover rate and in 

consequence pTyr-residues have a very short half-life unless protected by binding to src-

homology 2 (SH2) or phosphotyrosine-binding (PTB) domains that would protect them 

from dephosphorylation.  Tyrosine phosphorylation is therefore unique with regard to 

how it is utilized and regulated within the cell. 

 Of the 90 PTKs, there are 58 RTKs and 32 non-receptor tyrosine kinases with 4 of 

the RTKs predicted to lack catalytic activity (e.g. ErbB3) (36).  In general, PTKs initiate 

the tyrosine phosphorylation reaction by catalyzing phosphate transfer from the gamma 

(terminal)-phosphate of ATP to the substrate tyrosine phenolic oxygen.  This reaction 

forms the basis of signal transduction in all metazoans and is regulated to govern all 

aspects of multicellular life including:  cell-cycle control/mitogenesis, cell adhesion, cell 

migration, metabolism, transcriptional activation, and neural transmission.  The first 

insight into the structural basis of signal transduction by tyrosine phosphorylation came 

from the study by Hiroshi Ushiro and Stanley Cohen documenting tyrosine 

phosphorylation by the EGFR following EGF-stimulation of human A431 epidermoid 

carcinoma cells (5).  In short order, the EGFR, IR, and PDGFR would become the 

cornerstones of a body of research that would demonstrate that RTK signaling is 

important for the normal cellular response to mitogenic and metabolic hormones, and the 

pathological activation of such signaling pathways could provoke a cancerous phenotype 

(37-42).  Subsequently, work by Ora Rosen, Tony Pawson, and Joseph Schlessinger 

would demonstrate that tyrosine kinases become activated by transphosphorylation of 

their catalytic domains (43-45).  On the basis that the RTK was the most abundant 
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tyrosine phosphorylated protein within growth factor stimulated cells, it was postulated 

that tyrosine phosphorylation may have unidentified biochemical functions including the 

ability to recruit target proteins/substrates to the tyrosine kinases.  This time in history 

would set the precedent for the molecular biochemistry and cellular physiology 

associated with tyrosine phosphorylation. 

 Receptor tyrosine kinases (RTKs) will be used here as prominent examples 

highlighting the cellular effects of tyrosine phosphorylation both in normal and in 

pathological contexts.  In non-pathogenic states, tyrosine phosphorylation is initiated by 

extracellular derived bivalent ligands (growth factors/mitogens) binding to the 

extracellular regions of inactive monomeric/oligomeric RTKs and inducing/stabilizing 

intracellular dimeric/oligomeric conformations (hereafter referred to as dimerization) that 

then activate their tyrosine kinase domains through various mechanisms (46).  Each RTK 

tyrosine kinase domain (TKD) is uniquely cis-autoinhibited by a set of specific 

intramolecular interactions.  Release of cis-autoinhibition, following ligand-induced 

receptor dimerization, is the key event that triggers RTK activation.  As a prominent 

example, the insulin receptor (IR) Tyr1162 residue within the activation loop of the TKD 

physically occludes the active site (cis-autoinhibition), thus blocking access of both ATP 

and protein substrates.  When insulin activates the receptor, Tyr1162 in one TKD within 

the resulting dimer becomes phosphorylated by its partner (along with two additional 

tyrosine residues; Tyr1152 and 1163) (trans-autophosphorylation; autophosphorylation) 

resulting in the disruption of the cis-autoinhibitory interaction made between Tyr1162 

and the catalytic active site (47).  Upon phosphorylation the activation loop of the TKD is 

competent to adopt the ‘active’ conformation seen in all other activated TKDs (48-49).  
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Collectively, RTKs are relieved of cis-autoinhibition by autophosphorylation of tyrosines 

within the activation loop, the juxtamembrane segment, and/or the C-terminal region.  

The ‘first phase’ of receptor autophosphorylation is generally the kinase activation event 

or the event that generates a maximally efficient catalytic active site for substrate 

recognition and subsequent phosphate-transfer.  The ‘second phase’ of receptor 

autophosphorylation generates the phospho-recognition motifs for Src homology-2 (SH2) 

or phosphotyrosine-binding (PTB) domain-containing cytoplasmic signaling effectors 

(50-52).  These signaling effectors may be either recruited to the multi-phosphorylated 

RTKs or to multi-phosphorylated docking proteins that physically associate with and 

become phosphorylated by the RTKs.  Additional specificity and complexity is derived 

from recruited SH2 or PTB domain-containing effectors also containing phospholipid 

(PH, PX, C1, C2, FYVE) and/or protein·protein (SH3, WW, PDZ) interaction modules.  

The well-studied lipase, phospholipase C-γ1 (PLCγ1) represents a perfect example 

illustrating the above point.  PLCγ1 contains two SH2 domains, two PH domains, one C2 

domain, and one SH3 domain that participate in multivalent signal-dependent targeting of 

PLCγ to its site of action at the membrane.  PLCγ1 uses its SH2 domains to target to 

activated/tyrosine phosphorylated RTKs/docking proteins; the PH domain to bind 

membrane phosphoinositides (including the PI 3-kinase product PtdIns(3,4,5)P3 (PIP3)); 

the C2 domain to bind additional membrane phospholipids; and the SH3 domain to 

associate with signaling complex-recruited Cbl (Casitas B-lineage lymphoma).  PLCγ1 is 

said to permit ‘coincidence detection’ as it is capable of integrating multiple signal inputs 

through a combination of recognition modules (53).  Figure 1 represents a model 

illustration of how the multiple domains of signaling effectors recruited to activated 
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RTKs can coordinate the assembly of multiprotein complexes toward network 

branching/generation (54).  Thus, the tyrosine phosphorylated RTK represents a node 

within a complex signaling network capable transmitting extracellular signals to a 

multitude of intracellular signaling effectors designed to integrate multiple signal inputs 

to drive a diverse array of biological functions.  Figure 2 represents a model illustration 

of the signaling networks activated by the EGFR using the concepts described in Figure 1 

(54).  The vast majority of this illustration is accurate within the context of many 

canonical RTK-mediated signaling networks and provides a point of reference for the 

complexity of signal integration generated following an initial tyrosine phosphorylation 

event that activates the RTK. 

From the above description of the molecular biochemistry and cellular physiology 

associated with tyrosine phosphorylation, specifically through the RTK as a major 

conduit of tyrosine phosphorylation, it can be appreciated that aberrant regulation of RTK 

function results in pathological conditions such as cancer.  In fact, it was recognized in 

the mid-1960s that virally transformed cells rely less on exogenous growth factors for 

cell proliferation than their normal cell counterparts (55), suggesting that aberrant growth 

factor signaling might play a key role in cell transformation.  Nearly twenty years later it 

was recognized that the v-sis oncogene (p28sis) from simian sarcoma virus was actually a 

virally transduced PDGF gene (PDGF-B ligand) (41-42) capable of promoting cellular 

transformation by activating the PDGFR in an autocrine fashion.  Subsequently, the 

product of the v-erbB oncogene from avian erythroblastosis virus was found to 

correspond to a truncated and constitutively activated form of EGFR (39).  From these 

insights, came forth data in support of the human gene encoding the EGFR experiencing 
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aberrant amplification as well as mutation in brain tumors, leading to a proto-oncogenic 

RTK that was both overexpressed and constitutively active in tumor tissues (56).  To 

date, a large body of evidence implicates deregulated and dysfunctional RTKs in a 

variety of human diseases.  With respect to RTKs, aberrant activation of these kinases in 

human cancer is well-recognized to be mediated by six principal mechanisms:  autocrine 

activation, chromosomal translocation, RTK overexpression, gain-of-function mutations, 

loss of suppressor kinase activity, or aberrant PTP activity. 

The dynamic regulation of tyrosine phosphorylation within cells represents 

arguably the most critical biomolecular process that governs multicellular life.  Just a 

single tyrosine phosphorylation event to an RTK can induce the localization and 

subsequent activation of a myriad of signaling effectors responsible for driving a diverse 

array of biological functions.  This single biomolecular process, when aberrantly 

regulated, can also represent the causative factor responsible for the death of the entire 

organism. 

1.2 Protein tyrosine phosphatases (PTPs) and disease 

1.2.1 Class I cysteine-based PTPs 

 As described in the previous section, tyrosine phosphorylation represents a 

governing dynamic of multicellular life.  Tyrosine phosphorylation is used as an intra-

/inter-cellular communication mechanism to drive complex body formation during 

development and to maintain tissue/organ homeostasis in the adult organism.  At the 

cellular level, tyrosine phosphorylation drives decisions to proliferate or differentiate, 

alter adhesion and shape to set tissue barriers or to migrate, and survive or die based upon 

intra/extra-cellular biochemical cues.  In a deregulated, aberrant state, tyrosine 
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phosphorylation potentiates the pathogenesis of many inherited and acquired human 

diseases including metabolic abnormalities, immune deficiencies, and cancer. 

The human genome encodes 107 protein tyrosine phosphatases (PTPs) (19) that 

govern the dynamic state of tyrosine phosphorylation within the cell by catalyzing the 

phosphate hydrolysis reaction on substrate phosphate esters.  Of the 107 PTP genes, 11 

are catalytically inactive, 2 dephosphorylate mRNA, and 13 dephosphorylate inositol 

phospholipids.  Thus, 81 PTPs are bona-fide protein phosphatases capable of 

dephosphorylating phosphotyrosine.  PTPs are classified based upon the amino acid 

sequences of their catalytic domains.  Using this designation, PTPs are grouped into four 

separate families, each with a range of substrate specificities.  Class I cysteine-based 

PTPs comprise the largest family and contain the 38 well-recognized “classical” PTPs 

(57), which are strictly tyrosine specific and all have mouse orthologs, and the 65 VH1-

like, “dual-specific” protein phosphatases (DSPs), which represents the most diverse 

group in terms of substrate specificity.  Class II PTPs are structurally related to bacterial 

arsenate reductases, with a single cysteine-based member, the tyrosine-specific low (Mr) 

enzyme (LMPTP).  Class III cysteine-based PTPs are tyrosine/threonine-specific 

phosphatases, solely represented by the p80Cdc25 cell cycle regulators.  Conversely, class 

IV PTPs use a different catalytic mechanism with a key aspartic acid and dependence 

upon a metal cation.  Due to the limited scope of this discussion, only Class I cysteine-

based PTPs will be discussed further. 

The catalytic domain of Class I “classical” cysteine-based PTPs comprise ~280 

residues and are defined by the active site signature motif (HCX5R), in which the 

cysteine residue functions as the catalytic nucleophile and is essential for the general 
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acid-base-dependent phosphate-ester hydrolysis reaction first characterized by Zhong-

Yin Zhang and Jack Dixon using the pathogenic PTP of Yersinia enterocolitica (YopH) 

in 1994 (58-59).  Of the 38 “classical” PTPs, 21 are designated transmembrane receptor-

like PTPs (RPTPs) that regulate tyrosine dephosphorylation through ligand-mediated 

association to their extracellular regions.  The extracellular domains of RPTPs possess 

molecular features akin to cell-adhesion molecules, thus implicating these PTPs in 

control of cell·cell and cell·matrix interactions.  More than half (12) of the RPTPs have 

tandem PTP domains in the intracellular segments.  While just the membrane proximal 

catalytic domain is functional, generally both are important for the activity, specificity, 

and stability of the RPTP as a whole (60-61).  The remaining 17 PTPs are non-

transmembrane, cytoplasmic enzymes that are characterized by distinct regulatory 

sequences that surround the catalytic domain.  Regulatory domains, such as SH2 

domains, act as molecular switches; negatively regulating enzymatic activity in a latent 

state, while promoting enzymatic activation upon stimulation.  SH2 domains target 

physiological pTyr-motifs and thus control the subcellular distribution of the phosphatase 

and as a consequence control substrate access/specificity.  One of the most prominent 

examples of a regulatory domain controlling multiple aspects of enzymatic function 

comes from the proto-oncogenic Src homology-2 (SH2) domain-containing protein 

tyrosine phosphatase-2 (SHP2).  SHP2 possess two tandemly arranged SH2 domains (N-

SH2 and C-SH2) N-terminal to its catalytic PTP domain.  The N-SH2 domain acts as an 

elegant molecular switch.  In a latent state, the N-SH2 domain inhibits catalytic function 

by inserting an autoinhibitory loop directly into the active site, thus physically occluding 

substrate access.  Upon stimulation of tyrosine phosphorylation by mitogenic ligands or 



12 
 

through aberrantly activated PTKs, the N-SH2 domain binds resulting phosphotyrosyl-

motifs on physiological interacting proteins, which weakens the inhibitory interaction 

that it makes with the PTP domain, thus activating and directing this PTP to its substrates 

in one concerted action (62-63).  Other regulatory domains/motifs direct cytoplasmic 

PTPs to their physiological substrates, such as the proline-rich motif (335PPPKPPR) of 

PTP-PEST (Ptpn12) that control access to the SH3 domain of p130Cas (64) and the 

kinase-interaction motif (KIM) of and STEP (Ptpn5) that drives interaction with the 

MAPKs, ERK1/2 (65).  

The 65 VH1-like, “dual-specific” protein phosphatases (DSPs), display the most 

diversity with regard to substrate specificity within the PTP-superfamily.  The DSPs are 

less well conserved than their “classical” PTP counterparts and display little sequence 

similarity beyond the cysteine-containing signature motif.  They also have smaller 

catalytic domains than the classical PTPs.  Though they share the same catalytic 

mechanism, the DSP active site can accommodate phosphoserine (pSer), 

phosphothreonine (pThr), and phosphotyrosine (pTyr).  These phosphatases also contain 

a diverse array of non-catalytic protein·protein/protein·lipid interaction motifs/domains 

that are known to serve regulatory functions.  Mitogen-activated protein kinase 

phosphatases (MKPs) specifically attenuate the activities of members of the MAPK-

family of Ser/Thr-kinases including ERK1/2, JNK1, and p38-MAPK (66-68).  Specificity 

for MAPKs arises through a kinase interaction domain with the consensus sequence 

(ψψXRRψXXG; where ψ represents a hydrophobic residue and X represents any amino 

acid) at the N-terminus and an acidic domain at the C-terminus (69-73), flanked by two 

Cdc25-homology domains (74).  Phosphatase and tensin-homolog deleted on 
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chromosome 10 (PTEN) facilitates membrane association using a C2-phospholipid-

binding domain to position its catalytic domain in the vicinity of its phospholipid 

substrate, phosphoinositide (PtdIns(3,4,5)P3; PIP3) (75).  PTEN also contains a PDZ 

protein·protein interaction domain that it uses to facilitate interactions with members of 

the membrane-associated guanylate kinase family with multiple PDZ domains called 

MAGI (membrane-associated guanylate kinase inverted), localized to epithelial tight 

junctions (76-77).  The dephosphorylation of PIP3 by PTEN counteracts the activity of 

the proto-oncogene PI-3K toward PIP3-mediated signal transduction including Akt 

activation (78).  Additionally, members of the phosphatase of regenerating liver family 

(PRLs) contain C-terminal membrane-targeting poly-basic and -CAAX prenylation 

motifs that are essential to their biological function.  Though the substrate(s) of the PRLs 

remain an enigma, these phosphatases represent bona-fide oncogenes within the PTP 

superfamily (79).  Finally, the glucan phosphatase laforin is the only phosphatase 

documented that possesses a carbohydrate binding domain (CBD) of which it uses to 

selectively bind glycogen and dephosphorylate glucose (C2/C3) phosphomonoesters (80-

81).  Figure 3 represents the modular organization of Class I cysteine-based PTPs 

including the 38 “classical” PTPs and the 65 VH1-like DSPs (82). 

1.2.2 PTPs and disease 

 Our modern understanding of the reciprocal regulation of tyrosine 

phosphorylation by PTKs and PTPs is heavily curbed toward the activities of PTKs for a 

variety of reasons.  Apart from the fact that a multitude of PTKs were identified and 

characterized more than 10 years before the discovery of the first PTP, the activities of 

PTKs are in general ‘activating’ toward cellular signal transduction and therefore, when 
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aberrantly regulated, PTKs have the potential to be pathogenic.  As it pertains to cancer, 

we now understand that the human genome encodes 90 distinct tyrosine kinases and that 

over half of them have been implicated in the genesis of at least one type of cancer (7).  

In fact, the regulation of protein tyrosine phosphorylation is controlled by the opposing 

activities of PTKs and PTPs and thus, the aberrant regulation of this modification links 

both PTKs and PTPs to pathological conditions.  At the advent of their discovery, PTPs 

were not anticipated to be as exciting as their oncogenic PTK counterparts; simply 

playing ‘house-keeping’/‘tumor suppressor’ roles.  Contrary to this assumption, research 

to date recognizes that PTPs play specific and active, even dominant, roles in setting the 

levels of tyrosine phosphorylation in cells and in the regulation of many physiological 

processes (13-18). 

 Arguably the most prominent example of a “classical” PTP associated with a 

variety of pathological conditions is the SHP2 tyrosine phosphatase, the proto-oncogenic 

product of the Ptpn11 gene.  Both biochemical and genetic data support SHP2 inducing 

the full activation of the Ras/MAPK (ERK1/2; ERK) pathway following mitogenic RTK 

and cytokine receptor activation through various mechanisms (63).  SHP2 localization 

and activation are regulated by its two tandemly arranged N- and C-SH2 domains.  In a 

latent state, the catalytic PTP domain of SHP2 is physically occluded by the 

autoinhibitory loop of the N-SH2 domain (62).  Following GF-stimulation, SHP2 binds 

directly to tyrosine phosphorylated motifs present on GF-receptors as well as scaffolding 

proteins.  These binding interactions guide SHP2 subcellular localization to its 

physiological substrates.  Additionally, engagement of the N-SH2 domain to these 

docking sites is also suggested to diminish its inhibitory interaction with the PTP domain, 
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leading to SHP2 catalytic activation in the open conformation.  A multitude of germ-line 

as well as somatic mutations are well-recognized to litter the Ptpn11 gene, leading to 

SHP2 pathogenic mutant enzymes responsible for the genesis of a pair of ‘neuro-cardio-

facial-cutaneous’ (NFCFC) developmental disorders or ‘RASopathies’ (e.g. Noonan 

syndrome (NS) and LEOPARD syndrome (LS) (83-85) as well as a number of 

hematological malignancies (e.g. juvenile myelomonocytic leukemia and acute myeloid 

leukemia) (86) and solid tumors (e.g. breast, lung, gastric, and neuroblastoma) (87).  

Neoplasm- as well as NS-associated SHP2 mutations predominately reside within the N-

SH2 domain and induce catalytic activation in the open conformation by strongly 

disrupting the inhibitory interface created by the N-SH2 and PTP domains in the latent 

state.  The biophysical consequence of this aberrant autoinhibitory relief is the ability to 

bind pTyr-motifs present on physiological interacting proteins preferentially over the 

wild-type enzyme and to do so under much less pronounced stimulatory conditions, thus 

lowering the threshold for and sustaining Ras/ERK pathway activation.  Aberrant 

regulation/activation of the Ras/ERK pathway is a ‘hall-mark’ of cellular transformation 

as ERK/MAPK acts as an integration point for multiple biochemical signals, and is 

involved in a wide variety of cellular processes such as proliferation, differentiation, 

transcription regulation and development. 

The phosphatase of regenerating liver (PRL)-family of phosphatases are 

becoming respected as bona-fide oncogenes within the PTP-family.  To date, a putative 

substrate(s) is not well-recognized for any of the PRLs (1, 2, 3) making efforts at 

understanding the nature by which they augment tumorigenesis very difficult.  

Regardless, the PRLs have been implicated as causative factors of tumorigenesis and 
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metastasis when aberrantly overexpressed.  Specifically, PRL3 (Ptp4a3) has been shown 

to be overexpressed in a multitude of advanced neoplasms and metastases originating 

from physiologically distinct tissues, suggesting a fundamental role for this phosphatase 

in driving cellular behaviors that are necessary to gain selective advantage toward 

metastatic dissemination when in excess.  At the molecular level, PRL3 is capable of 

inducing an epithelial-to-mesenchymal transition (EMT) and activate members of the 

Rho-family GTPases, PI3K-Akt, Ras-ERK, and Src, albeit through a yet enigmatic direct 

mechanism. 

 Apart from aberrant activation of proto-oncogenic PTPs, selection against PTP 

tumor suppressors represents a prominent factor in a multitude of human cancers.  PTEN, 

through dephosphorylation of the 3-position in the sugar head group of inositol 

phospholipids (e.g. PtdIns(3,4,5)P3, PIP3), negatively regulates phosphatidylinositol 3-

kinase (PI-3K)-dependent signaling pathways that are associated with cell survival (88).  

Through its lipid phosphatase activity, PTEN is able to predominately regulate the 

PI3K/AKT/mTOR pathway responsible for driving survival, proliferation, energy 

metabolism, and cellular architecture signals.  As a consequence, PTEN is the most 

frequently mutated and deleted tumor suppressor, next to p53, in human cancer.  Apart 

from genetic loss or mutation, PTEN expression and stability are also deregulated in 

cancer through transcriptional/post-transcriptional (interfering RNA) mechanisms, post-

translational modification, and protein·protein interactions (89).  Additional PTP tumor 

suppressors selected against in the pathogenesis of human cancer include:  colon cancer-

associated receptor/non-receptor ((DEP1; (PTPRJ), PTPρ; (PTPRT), LAR; (PTPRF), 
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PTPγ; (PTPRG), PTPH1; (PTPN3), PTPBAS; (PTPN13), and PTPD2; (PTPN14)), and 

PTPκ; (PTPRK) in primary central nervous system lymphomas (82). 

 Apart from cancer, aberrant regulation of PTPs also plays a fundamental role in 

other diseases.  The lymphoid-specific PTP (Lyp), encoded by the Ptpn22 gene, is a 

negative regulator of T and B cell receptor activation.  A single nucleotide polymorphism 

(SNP) in the Ptpn22 gene generates an R620W mutant Lyp enzyme that has been 

identified as a putative risk factor in human autoimmunity, including type I diabetes (90), 

Graves’ disease (91), rheumatoid arthritis (92-93), and systemic Lupus erythematosus 

(94).  The R620W mutation has been shown to disrupt an SH3 domain-mediated 

interaction with the C-terminal Src kinase (Csk), a major negative regulator of the Src 

tyrosine kinase (90).  This mutation has been shown to impart gain-of-function (GOF) 

properties to Lyp that may cause a pre-disposition to autoimmune disease either by 

failure to delete autoreactive T cells or due to insufficient activity of regulatory T cells 

(95). 

 Finally, the glucan phosphatase Laforin has been postulated to be a glycogen 

repair enzyme due to its role in dephosphorylating the aberrant C2/C3 

phosphomonoesters present in glycogen during glycogen biosynthesis via glycogen 

synthase (96).  Abnormal glycogen phosphorylation is associated with Lafora disease, an 

autosomal recessive progressive myoclonus epilepsy of which ~50% of patients harbor 

loss-of-function (LOF) mutations in the Epm2a gene that encodes laforin (97-98). 

1.3 Research Objectives 

The objective of this research is to use mass spectrometry as a tool to provide 

functional insights into the molecular biochemistry and cellular physiology associated 
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with two oncogenic PTPs, the phosphatase of regenerating liver 3 (PRL3) and the Src 

homology-2 (SH2) domain-containing tyrosine phosphatase 2 (SHP2). 

1.3.1 Phosphatase of Regenerating Liver 3 (PRL3) 

The PRL (Phosphatase of Regenerating Liver) phosphatases represent a unique 

sub-family of non-classical protein tyrosine phosphatases (PTPs) that are targeted to 

endomembranes by poly-basic and prenylation motifs at their C-terminus.  Available 

gross-anatomical and biochemical data support these phosphatases being bona-fide proto-

oncogenes when aberrantly overexpressed, a designation that is rare within the PTP 

super-family.  Unfortunately, since the discovery that PRL1 was an immediate early gene 

induced during the regeneration period of the rat liver following resection more than two 

decades ago (99-100), no widely accepted substrate of any of the PRLs (1, 2, or 3) exists 

to date, making efforts at distilling a concerted mechanism by which these phosphatases 

potentiate tumorigenesis extremely difficult.   

PRL3 represents the ‘poster child’ of the PRLs due to a large body of research 

implicating it as a causative factor of metastasis following an initial discovery that its 

transcript was consistently and massively overexpressed in colorectal carcinoma (CRC) 

metastases found in the liver, while its expression in non-metastatic primary tumors and 

normal colorectal epithelium was undetectable (101).  In attempts at elucidating the 

biological function of PRL3, various groups have turned to overexpression studies in a 

variey of cell culture models.  Collectively, data support that the overexpression of PRL3 

induces many hallmarks of tumorigenesis in cell culture including:  induction of 

morphological alterations consistent with an epithelial-to-mesenchymal transition (EMT), 

enhanced proliferative capacity, enhanced migratory/invasive capacity, ability to grow to 
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heightened densities, and increased capacity to maintain anchorage-independent growth; 

providing evidence validating the use of this methodology as a plausible avenue towards 

elucidating the molecular basis for PRL3 function (79).  However, data in support of the 

molecular basis for PRL3 function remains enigmatic and controversial with various 

proto-oncogenic signaling effectors/modules being implicated in augmenting PRL3-

induced tumorigenesis/metastasis including:  Integrin receptors, Rho-family GTPases, 

PI3K-Akt, Ras/ERK, and the Src tyrosine kinase (102-107). 

Our group has uncovered that ectopic PRL3 expression in epithelial-HEK293 

cells induces the downregulation of Csk (C-terminal Src kinase), a negative regulator of 

the Src tyrosine kinase, leading to Src-dependent tumorigenic and metastatic bio-

functional properties (106).  At the molecular level, this aberrant Src activation leads to 

enhanced ‘global’ tyrosine phosphorylation including activating phosphotyrosyl-

modifications to the extracellular signal-regulated protein kinase 1 and 2 (ERK1/2), 

signal transducer and activator of transcription 3 (STAT3), and the Crk-associated 

substrate (p130Cas).  We postulated that an aberrantly activated Src kinase has the ability 

to pleiotropically potentiate the many distinct oncogenic bio-functional properties 

previously mentioned and by following the tyrosine phosphorylation ‘profile’ we would 

gain critical insight into the PRL3-mediated signaling network. 

Here, we present the application of a novel phosphoproteomic strategy predicated 

upon a tandem phosphotyrosine-peptide enrichment using ‘pan’ pTyr-antibody 

immunoprecipitation and polymer-based metal ion affinity capture (PolyMAC) with 

titanium (Ti)-functionalized soluble nanopolymers/polyamidoamine-dendrimers (108).  

We hypothesized that this strategy would allow us the opportunity to define increased 
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tyrosine phosphorylation initiated from the aberrant activation of an endogenous tyrosine 

kinase population, amongst an overwhelming population of pSer/pThr-containing and 

non-phosphorylated proteins.  Identification of the complete repertoire of proteins 

experiencing enhanced levels of tyrosine phosphorylation in the PRL3 expressing cells is 

postulated to help us paint the most comprehensive picture to date of how PRL3 drives 

pro-metastatic molecular events through Src activation.  The overarching goal of this 

research is to provide critical insight to future investigations aimed at defining a putative 

substrate(s) of PRL3 within the context of this network. 

1.3.2 Src homology-2 (SH2) domain-containing tyrosine phosphatase 2 (SHP2) 

The Src-homology 2 (SH2) domain-containing tyrosine phosphatase 2 (SHP2), 

encoded by the Ptpn11 gene, is a bona-fide proto-oncogene in the PTP super-family 

responsible for the full activation of the Ras/extracellular signal-regulated kinase 1/2 

(ERK1/2) pathway following mitogenic receptor tyrosine kinase (RTK) and cytokine 

receptor activation through various mechanisms (63).  SHP2 localization and activation 

are regulated by its two tandemly arranged N- and C-SH2 domains.  In a latent state, the 

catalytic PTP domain of SHP2 is physically occluded by the autoinhibitory loop of the N-

SH2 domain (62).  Following growth factor (GF)-stimulation, SHP2 binds directly to 

tyrosine phosphorylated motifs present on GF-receptors as well as scaffolding proteins.  

These binding interactions guide SHP2 subcellular localization to its physiological 

substrates.  Additionally, engagement of the N-SH2 domain to these docking sites is also 

suggested to diminish its inhibitory interaction with the PTP domain, leading to SHP2 

catalytic activation in the open conformation. 
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 A multitude of germ-line and somatic missense mutations litter the Ptpn11 gene 

resulting in aberrantly regulated SHP2 mutant enzymes that potentiate the pathogenesis 

of the autosomal dominant neuro-cardio-facio-cutaneous (NCFC) developmental 

disorders, Noonan- and LEOPARD (an acronym for its clinical features of multiple 

Lentigines, ECG abnormalities, Ocular hypertelorism, Pulmonic stenosis, Abnormal 

genitalia, Retardation of growth and Deafness)-syndromes (NS and LS) as well as 

various hematological malignancies and solid tumors (83-84, 86-87).  Available 

biochemical evidence supports NS- and neoplasia-associated SHP2 mutations, which 

predominately reside within the interface region between the N-SH2 and PTP domains, 

engendering gain-of-function (GOF) effects through weakening the interaction that these 

two domains make in the autoinhibited closed state (109-113).  On the other hand, LS-

associated SHP2 mutations that reside within the catalytic site and induce catalytic 

impairment create mutant enzymes responsible for the pathogenesis of a syndrome that 

shares many clinical features with NS, a disease that manifests from the activity of GOF-

SHP2 mutants (113-115).  How do mutations that provoke opposite effects on SHP2 

phosphatase activity cause phenotypically similar disorders?  We hypothesized that LS-

SHP2 pathogenic mutations, which create catalytically impaired SHP2 mutant enzymes, 

also perturb the molecular switching mechanism, leading to mutant enzymes with 

increased propensity to adopt the ‘open·active’ conformation.  As a result, LS-SHP2 

mutants bind upstream activators preferentially and stay longer with the scaffolding 

adaptors thus prolonging specific substrate turnover, which compensate for the reduced 

phosphatase activity.  Thus, catalyically impaired LS-SHP2 mutants may engener GOF 

phenotypes. 
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Here we apply hydrogen-deuterium exchange mass spectrometry (H/DX-MS) as a 

methodology capable of defining how the various SHP2 pathogenic mutations perturb the 

natural solution-phase dynamic conformational alterations observed to take place in the 

wild-type enzyme.  Our goal is to provide the first direct evidence that LS-associated 

SHP2 mutations which induce catalytic impairment also weaken the autoinhibitory 

interaction that the N-SH2 domain makes with the PTP catalytic domain, an absolute 

requirement for GOF-effects to be realized in-vivo.  Our H/DX-MS data, in addition to 

data generated at the structural, biochemical, and cellular levels, will provide critical 

insight to the relationship that LS-SHP2 mutants have with their GOF NS/neoplasia-

mutant counterparts toward engendering pathological GOF-effects, in-vivo. 
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CHAPTER 2:  MATERIALS AND METHODS 

2.1 Phosphatase of Regenerating Liver 3 (PRL3) drives pro-metastatic molecular events 

through a Src-dependent aberrant tyrosine phosphoproteome. 

2.1.1 Materials 

Dulbecco’s Modification of Eagles Medium (DMEM) with 4.5g/L glucose, L-

glutamine, sodium pyruvate, and penicillin-streptomycin (5,000 I.U/mL penicillin; 5,000 

μ/mL streptomycin) were from Mediatech, Inc. (Manassas, VA, USA).  Fetal Bovine 

Serum (FBS) was from Hyclone (Logan, UT, USA).  SILAC-DMEM media minus L-

Lysine and L-Arginine with 4.5g/L glucose, L-glutamine, and sodium pyruvate was from 

Thermo-Fisher Scientific (Rockford, IL, USA).  Dialyzed Fetal Bovine Serum for 

SILAC, L-Lysine monohydrochloride, L-Arginine monohydrochloride, L-Lysine 13C 

hydrochloride, L-Arginine 13C hydrochloride, agarose-conjugated anti-phosphotyrosine 

monoclonal antibody PT66, Dithiothreitol (DTT), Iodoacetamide, and Trypsin were from 

Sigma-Aldrich (St. Louis, MO, USA).  Anti-phosphotyrosine (PY100), β-Actin, ERK1/2, 

pERK1/2 (Thr202/Tyr204), STAT3, pSTAT3 (Tyr705), PLCγ1, pPLCγ1 (Tyr783), 

PDGFRα, and PDGFRβ monoclonal antibodies were from Cell Signaling Technology 

(Beverly, MA, USA).  Protein A/G-Plus agarose was from Santa Cruz Biotechnology 

(Santa Cruz, CA, USA).  Trizol reagent was from Invitrogen (Grand Island, NY, USA).  

Src inhibitor SU6656 was from Calbiochem/EMD Biosciences (La Jolla, CA, USA).   

2.1.2 Cell culture and stable clone selection 

HEK293 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS), penicillin (50 units/mL), and 

streptomycin (50μg/mL) under a humidified atmosphere containing 5% CO2.  Human 
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PRL3 was inserted into pCDNA3 (106) and v207 expression vectors (v207 as described 

in (116)).  Transfection and stable clone selection for pCDNA3 as described in (106).  

HEK293 cells were seeded so that 40-50% confluence would be achieved following an 

over-night incubation period.  v207-PRL3 constructs were transfected into HEK293 cells 

maintained in antibiotic-free medium using Poly(ethylenimine) (PEI).  24 h after 

transfection, Puromycin (1μg/mL) was added to the culture medium to initiate stable 

clone selection.  Stable clones were picked after 2 weeks of selection under Puromycin. 

2.1.3 mRNA extraction and RT-PCR 

mRNA from experimental cell lines was prepared using Trizol reagent.  mRNA 

was treated with DNase and quantified by absorbance at 260 and 280nm following an 

RNA clean-up using an RNeasy Mini Kit (Qiagen).  RT-PCR was performed using the 

Invitrogen SuperScript one-step RT-PCR kit.  Reverse transcription was done at 50 °C 

for 30min, and cDNA was amplified by PCR for 36 cycles (94 °C, 30s; 55 °C, 30sec; 68 

°C, 1min).  The sequences of specific primers were as follows:  PRL3 sense, 5’-

CTTCCTCATCACCCACAACC-3’ and PRL3 anti-sense, 5’-GTCTTGTGCG 

TGTGTGTGGGTC-3’; 18 S ribosome sense, 5’-CGCCGCTAGAGGTGAAATTC-3’ 

and 18 S anti-sense: 5’-TTGGCAAATGCTTTCGCTC-3’.  The PCR products were 

separated by 2% agarose gel and visualized by staining with ethidium bromide. 

2.1.4 Immunoblotting and immunoprecipitation 

Cells were grown in DMEM supplemented with 10% FBS, penicillin (50 

units/mL), and streptomycin (50μg/mL) under a humidified atmosphere containing 5% 

CO2 to 70-80% confluency, washed with ice-cold phosphate-buffered saline (PBS), and 

lysed on ice for 30 min in 500μL-1mL of lysis buffer (100mM Tris-HCl, pH 7.5, 150mM 
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NaCl, 1% Triton X-100, 5% Glycerol, PhosSTOP phosphatase inhibitor cocktail tablet 

(Roche), and a Complete EDTA-free protease inhibitor cocktail tablet (Roche)).  Cell 

lysates were cleared by centrifugation at 15,000 rpm for 15 min.  Lysate protein 

concentration was assayed using the BCA protein assay kit (Pierce) (measurements for 

the standard series and experimental groups were kept under 5% coefficient of variation-

CV).  For immunoprecipitation, 10μg antibody was added to 1mg protein lysate and 

incubated at 4 °C for 4h to over-night by end-over-end rotation.  20μL of protein A/G-

plus agarose beads was then added and incubated with sample for an additional 2 h at 4 

°C using end-over-end rotation.  After extensive washing, protein complex was boiled 

with Laemmli (SDS)-sample buffer, separated by SDS-PAGE, transferred 

electrophoretically to a nitrocellulose membrane, and immunoblotted with appropriate 

antibodies followed by incubation with horseradish peroxidase-conjugated secondary 

antibodies.  The blots were developed by the enhanced chemiluminescence technique 

using the SuperSignal West Pico Chemiluminescent substrate (Pierce).  Data shown is a 

representation of multiple repeat experiments. 

2.1.5 Imaging 

Stable RFP-PRL3-WT and RFP-vector HEK293 cells were grown to sub-

confluence and RFP was visualized by confocal microscopy from live cells.  Confocal 

images were acquired on Zeiss Axio ObserverZ1 as structured light via an Apotome and 

processed with Axiovision 4.7. 

2.1.6 Label-free quantitative mass spectrometry 

Stable PRL3-HEK293 cells and their vector control HEK293 cell counterparts 

were grown to 80% confluency in DMEM supplemented with 10% FBS, penicillin (50 
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units/mL), and streptomycin (50μg/mL) at 37 °C under a humidified atmosphere 

containing 5% CO2.  This study was comprised of 2 groups with 7 biological replicates 

per group allowing for 14 randomized HPLC injections.  A detailed account of the label-

free LC/MS-based protein quantification method used in this study, including MS-data 

acquisition and analysis can be viewed in (117-119). 

2.1.7 Stable Isotope Labeling of Amino acids in Cell culture (SILAC)-based quantitative 

mass spectrometry 

SILAC (Stable Isotope Labeling of Amino acids in Cell culture) DMEM without 

L-Lysine or L-Arginine was supplemented with 7.5% dialyzed FBS and 2.5% undialyzed 

FBS, penicillin (50 units/mL), streptomycin (50μg/mL), and either (12C6 – L-Lysine 

monohydrochloride; 12C6 – L-Arginine monohydrochloride) or (13C6 – L-Lysine 

monohydrochloride; 13C6 – L-Arginine monohydrochloride) to create SILAC-‘Light’ or 

SILAC-‘Heavy’ media, respectively.  PRL3-HEK293 and their vector-control HEK293 

counterparts were grown in both SILAC-‘Heavy’ and SILAC-‘Light’ media, 

respectively, for a total of 5 passages prior to testing the labeling efficiency of the 

SILAC-‘Heavy’ media.  Tryptic-peptides from the ‘Heavy-labeled’ PRL3-HEK293 cell 

lysate were prepared as documented below in the Phosphopeptide enrichment using 

phosphotyrosine-immunoprecipitation and PolyMAC-Ti reagents section.  Data for 2,725 

tryptic-peptides were acquired following a single-dimension reverse phase HPLC 

separation.  Of the 2,725 total peptides, 2,613 peptides were completely labeled with 

13C6-Lysine and/or 13C6-Arginine, while just 112 peptides contained no labeled amino 

acids (96% labeling efficiency).  This degree of labeling efficiency was deemed sufficient 

for quantitative mass spectrometry to be carried out.  Quantitative data analysis was 
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carried out by Proteome Discoverer V1.3.  See the Mass spectrometry (LTQ-Orbitrap) 

analysis and phosphopeptide data acquisition and analysis sections for methodology 

following cell culture. 

2.1.8 Phosphopeptide enrichment using phosphotyrosine-immunoprecipitation and 

PolyMAC-Ti reagents 

PRL3-HEK293 and vector-control HEK293 cells were grown in either normal 

DMEM supplemented with 10% FBS for qualitative analysis or SILAC-‘Heavy’/SILAC-

‘Light’ DMEM supplemented with 7.5% dialyzed FBS/2.5% undialyzed FBS for 

quantitative analysis.  Upon reaching 80% confluence cells were lysed in ice cold lysis 

buffer (100mM Tris-HCl, pH 7.5, 150mM NaCl, 1% Triton X-100, 5% glycerol, 

PhosSTOP phosphatase inhibitor cocktail (Roche), and Complete EDTA-free protease 

inhibitor cocktail (Roche)).  Lysate protein concentration was quantified using the BCA 

assay (measurements for the standard series and experimental groups were kept under 5% 

coefficient of variation-CV).  2.5mg lysate protein/experimental group were used for 

subsequent steps (at this point if SILAC-based quantitation was performed, the PRL3 and 

vector-control lysates were consolidated to a single master lysate) (for qualitative 

assessment lysate protein from both experimental groups was held at an equivalent 

concentration and total volume).  Lysate protein was denatured using 0.1% RapiGest 

surfactant (Waters) in 50mM trimethylammonium hydrogen carbonate (bicarbonate) 

(TMAB).  Protein disulfides were reduced using 10mM dithiothreitol (DTT) in a 30 min 

incubation at 50 °C.  Reduced sulfhydryls were then alkylated using 20mM 

iodoacetamide (IAA) in a 1 h incubation at ambient temperature.  The pH was adjusted to 

8.0 using 1M TMAB prior to the trypsin digestion reaction.  Proteins were then subjected 
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to an over-night (12 h) digestion at 37 °C by the trypsin endoproteinase (Sigma) at a ratio 

of 1:100 (trypsin:lysate protein).  RapiGest was removed by reducing the pH to <3.0 

using 1M HCl (final concentration 100-120mM in the sample) and incubating the sample 

at 37 °C using a water bath for 40 min.  The supernatant was transferred to a new non-

stick/low-binding OmniSeal tube (Life Science Products, Inc.).  The pH was adjusted to 

7.5 using 1M Tris and 100μL of the anti-pTyr-antibody PT66-agarose conjugate slurry 

(Sigma) was added to the sample.  Phospho-tyrosyl tryptic peptides were 

immunoprecipitated using the ‘pan’ anti-pTyr-PT66 antibody over-night (12 h) at 4 °C by 

end-over-end rotation.  The PT66-agarose beads were extensively washed using ice cold 

lysis buffer and H2O.  The phosphopeptides were eluted from the PT66-agarose beads 

using a series of elution steps with 0.1% trifluoroacetic acid (TFA), 0.1% TFA/50% 

acetonitrile, and 100mM glycine pH 2.5.  The consolidated eluent was dried down using 

vacuum centrifugation.  The dried down product was solvated in 150mM HEPES, pH 

6.8.  A secondary-phosphopeptide enrichment was then performed using a PolyMAC-Ti 

reagent as per the protocol documented in (108).  A complete documentation regarding 

the above methodology can be viewed in (108). 

2.1.9 Mass spectrometry (LTQ-Orbitrap) analysis 

Peptide samples were solvated in 8μL of 0.1% formic acid and injected into an 

Agilent nanoflow 1100 HPLC system.  The reverse phase C18-based chromatography was 

performed using an in-house C18-capillary column packed with 5-μm C18 Magic bead 

resin (Michrom; 75μm inner-diameter and 12-cm bed length) on an 1100 Agilent HPLC 

system (120).  The mobile phase buffer consisted of 0.1% HCOOH in ultrapure water 

with the eluting buffer of 100% CH3CN run over a shallow linear gradient over 60 min 
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with a flow rate of 0.3μL/min.  The electrospray ionization emitter tip was generated on 

the pre-packed column with a laser puller (Model P-2000, Sutter Instrument Co.).  The 

Agilent 1100 HPLC system was coupled on line with a high resolution hybrid linear ion 

trap orbitrap mass spectrometer (LTQ-Orbitrap XL, Thermo Fisher Scientific).  The mass 

spectrometer was operated in the data-dependent mode in which a full MS scan (from m/z 

300 to 1700 with a resolution of 30,000 at m/z 400) was followed by four MS/MS scans 

of the most abundant ions meeting a 1000 signal threshold count mark.  Ions with a 

charge state of 1+ were excluded.  The mass exclusion time was 180s. 

2.1.10 Phosphopeptide data acquisition and analysis 

LTQ-Orbitrap raw files were searched directly against a Homo-sapiens database 

with no redundant entries (67,250 entries; human International Protein Index (IPI) 

version 3.83) using the SEQUEST and Mascot algorithms as part of Proteome Discoverer 

software V1.3 (Thermoelectron, San Jose, CA, USA).  Peptide mass tolerance was set at 

10 ppm, and MS/MS tolerance was set at 0.8 Da. Search criteria included a static 

modification of cysteine residues of +57.0214 Da, variable modifications of +15.9949 Da 

to include potential oxidation of methionine residues, and a modification of +79.996 Da 

on tyrosines for identification of phosphorylation. Searches were performed with full 

tryptic digestion and allowed a maximum of two missed cleavages on the peptides 

analyzed from the sequence database. The parameters for FDR were set for 1% for each 

analysis. Proteome Discoverer software generated a reverse “decoy” database from the 

chosen database, and any peptides passing the initial filtering parameters that were 

derived from this decoy database are defined as false positive identifications. The 

minimum cross-correlation factor (Xcorr) filter was then re-adjusted for each individual 
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charge state separately in order to optimally meet the predetermined target FDR of 1% 

based on the number of random false-positive matches from the reversed “decoy” 

database. Thus, each dataset had its own passing parameters. The Percolator semi-

supervised machine learning algorithm, as part of the Proteome Discoverer V1.3 software 

package, was used to assist in the generation of the 1% FDR threshold (results for each 

PSM were given as q-values in the data analysis).  The most likely phosphorylation site 

localization from CID mass spectra was determined by PhosphoRS algorithm within the 

Proteome Discoverer 1.3 software.  The number of unique phosphopeptides and 

nonphosphopeptides identified were then counted and compared. SILAC quantitation was 

carried out using Proteome Discoverer software V1.3, which uses the MS peak areas of 

the “light” and “heavy” peptides and reports “light/heavy” (L/H) ratios.  The significance 

threshold for quantitation parameters were determined by Proteome Discoverer V1.3 

internal statistical algorithm, resulting in at least 2-fold passing significance ratio for L/H 

ratio after the removal of outliers.  Search criteria included variable modifications of 

(13C6)-Lys and -Arg residues of +6.02Da.  Quantification method was (SILAC 2plex 

(Arg6, Ly6) (Custom).  RT tolerance of isotope pattern multiplets was set to 0.2min. 

2.1.11 Ingenuity Pathway Analysis (IPA) 

All proteins from the PRL3 and vector-control datasets that possess a tyrosine-

phosphorylated peptide(s) and their corresponding SILAC-based quantification values 

(1% FDR data following Sequest and Mascot searches of the IPI human v3.83 database) 

were uploaded to Ingenuity Pathway Analysis (IPA) software (Ingenuity Systems, Inc.).  

A new core analysis was created that included:  Ingenuity knowledge base (genes only) 

reference set, direct and indirect relationships to target proteins, and a filter summary 
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which included: (species: human, confidence: experimentally observed, data sources: 

Ingenuity expert findings).  The top scoring network (Network 1) and top 10 predicted 

canonical paths and biofunctions (using a B-H (Benjamini-Hochberg) p-value 

adjustment) were used to represent the current dataset. 

2.2 Functional insights into LEOPARD syndrome-associated SHP2 mutations 

2.2.1 Materials 

The expression plasmid pET-21a (+) was obtained from Novagen (Milwaukee, 

WI). The Escherichia coli strain BL21 (DE3) pLysS and QuikChange site-directed 

mutagenesis kit were purchased from Stratagene (La Jolla, CA). Nickel-nitrilotriacetic 

acid-agarose (Ni-NTA) beads were purchased from Qiagen (Basel, Switzerland). All 

other reagents were purchased from Fisher (Fair Lawn, NJ).  Pepsin endoproteinase was 

obtained from Sigma.  Mass spectrometry grade H2O and acetonitrile was obtained from 

Burdick and Jackson.  Deuterium oxide (D2O; 99.9 atom % D) was from Aldrich. 

2.2.2 Plasmid construction and mutagenesis 

The sequence coding for SHP2 (residues 1-528) were amplified from the full 

length construct by PCR-based strategy using primers (Table 7).  The PCR products were 

gel purified, digested with Nde I and Xho I restriction enzymes and the resulting 

fragment was inserted into the pET-21a (+) plasmid with a C-terminus polyhistidine tag, 

which was previously digested with the same restriction enzymes. The resulting plasmid 

was designated pET-21a (+)/SHP2 (1-528). All mutants of SHP2 (1-528) were prepared 

using the QuikChange site-directed mutagenesis kit for generating the single point 

mutants from the plasmid pET-21a (+)/SHP2 (1-528). All recombinant plasmids 
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containing wild-type truncations and mutations were verified by DNA sequencing and 

transformed into E. coli strain BL21 (DE3) pLysS competent cells for expression.  

2.2.3 Expression and purification of recombinant proteins 

SHP2 proteins with C-terminus polyhistidine tag (SHP2 C-6His) were expressed 

in BL21 (DE3) pLysS cells and grown at 37 °C in Luria broth (LB) containing 100 

μg/mL ampicillin for 4 h to an absorbance of 0.6 at 600 nm and then induced for protein 

production with 0.4 mM IPTG overnight at 22 °C. Cells were harvested by centrifugation 

(6000 rpm for 15 min at 4 °C), and the cell pellets from 1.5 L LB medium were 

suspended in 30 mL of ice-cold lysis buffer (5 mM imidazole, 500 mM NaCl, 20 mM 

Tris-HCl (pH 7.9), 0.05 mg/mL trypsin inhibitor, 5mM β-mercaptoethanol, and 0.1 mM 

PMSF). The suspensions were passed twice through a French press at 1200 psi, and the 

cell lysates were centrifuged at 4 °C for 45 min at 15 000 rpm. The supernatants were 

mixed with 2 mL of Ni-NTA Agarose at 4 °C for 50 min, washed with 100 mL of lysis 

buffer.  After washing with lysis buffer containing 20 mM imidazole, the proteins were 

eluted with 20 mL lysis buffer containing 200 mM imidazole then dialyzed with buffer 

(20 mM Tris-HCl, pH 7.8, 150mM NaCl, 1 mM EDTA, 2 mM Dithiothreitol (DTT)) at 

4 °C to remove imidazole and then stored at -80 °C until use. Fractions were analyzed by 

sodium dodecyl sulfate (SDS)-10% polyacrylamide gel electrophoresis (PAGE).  (1-528 

constructs):  WT (37.8mg/mL; 613μM), D61Y (43.1mg/mL; 698μM), E76K 

(31.8mg/mL; 516μM), Y279C (35.1mg/mL; 570μM), A461T (40.9mg/mL; 663μM), 

G464A (29.8mg/mL; 483μM), T468M (28.4mg/mL; 460μM), R498L (31.8mg/mL; 

516μM), Q506P (28mg/mL; 454μM), Q510E (31.1mg/mL; 504μM), and T507K 
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(26.1mg/mL; 423μM).  Table 7 shows the general purity of all LS-SHP2 mutants by way 

of a coomassie-stained gel. 

2.2.4 Kinetic analysis of SHP2 catalyzed reaction 

 Initial rate measurements for the enzyme-catalyzed hydrolysis of pNPP were 

conducted at 25C in a pH 7.0 buffer of 50mM 3,3-dimethylglutarate, containing 1mM 

DTT and 1mM EDTA, with an ionic strength of 0.15M, adjusted by addition of NaCl.  

Assay mixtures of 200μl in total volume were set up in a 96-well plate.  A substrate 

concentration range from 0.2~5 Km was used to determine the kcat and Km.  Reactions 

were started by the addition of an appropriate amount of wild-type or mutant SHP2.  The 

reaction mixtures were quenched with 50µl of 5M sodium hydroxide, and the absorbance 

at 405nm was read using a plate reader.  The steady state kinetic parameters were 

determined from a direct fit of the data to the Michaelis-Menten equation using 

SigmaPlot. 

2.2.5 Inhibition of the SHP2 PTP domain by the N-SH2 domain 

 PTP activity was assayed using p-nitrophenyl phosphate (pNPP) as a substrate in 

a pH 7.0 buffer containing 50mM 3,3-dimethylglutarate, 1mM EDTA, 150mM NaCl at 

25°C.  The assays were performed in 96-well plates with final reaction volume of 0.2mL.  

The reaction was initiated by the addition of enzyme (catalytic domain of wild-type 

SHP2 or Y279C) to a reaction mixture containing pNPP (2mM for the wild-type or 

10mM for Y279C) with various concentrations of the N-SH2 domain.  For Ki 

determination, pNPP concentration was varied while the N-SH2 domain was fixed at 3 

different concentrations.  The reaction rate was measured using a SpectraMax Plus 384 
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Microplate Spectrophotometer (Molecular Devices).  Data fitting was performed using 

SigmaPlot Kinetics module. 

2.2.6 Making the deuterium buffer 

Deuterium oxide (2H2O; D2O) (99.99%) (Sigma) was used to make a 2H2O-based 

20mM Tris·HCl, 50mM NaCl, 2mM DTT, 1mM EDTA buffer stock solution at pD8.0.  

The D2O buffer components were weighed as dry material and solvated in pure D2O 

(99.99%).  To remove residual 1H2O contained within the dry buffer materials, the D2O 

was evaporated by vacuum centrifugation and the left over dry material was again 

solvated in pure D2O (99.99%).  This process was repeated two times.  The pD was 

adjusted to 8.0 with very small microliter amounts of 12N HCl so as to not compromise 

the high purity of the D2O solution during pD adjustment.   

2.2.7 Intact (native) protein preparation and data acquisition  

SHP2 (WT or mutant) stock was diluted 30x (1.5μL to 43.5μL) in either the H2O- 

or D2O-based 50mM Tris·HCl, 50mM NaCl, 2mM DTT, 1mM EDTA buffers, pH(D)8.0 

(note:  Protein stock solutions  were held on ice for the entirety of investigation.  Prior to 

dilution, the 1.5μL aliquot was held at ambient temperature for 1min and then introduced 

into either the H2O- or D2O-based buffers held at 37°C by way of a water bath).  The 

deuterium-labeling reactions were ‘quenched’ using a (1:1 ; v:v) ratio or (45μL) 100mM 

Sodium phosphate buffer pH2.3 held on ice (note:  final pH of the solution after 

quenching was confirmed to be ~2.3) at various time points from 5sec-1hr. (5s, 10s, 30s, 

1m, 10, 30m, 1hr.).  The no-label control samples were treated in the same manner as the 

deuterium-labeled samples except for protein stock dilution was done in a H2O-based 

buffer instead of a D2O-based buffer.  (10μg) of intact protein, following the quenching 
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step, was loaded by a Finnigan Surveyor autosampler onto a Zorbax SB-C8 1.0x50mm 

3.5μm column (Agilent).  Sample intact protein was washed (85% H2O/15% ACN/0.1% 

Formic acid) and then eluted isocratically from the column (65% H2O/35% ACN/0.1% 

Formic acid) in 7min. at 150μL/min. (note:  full gradient conditions:  0min. (85/15); 

0.1min. (65/35); 7min. (65/35); 8min. (40/60); 11min. (40/60); 12min. (85/15); 15min. 

(85/15)).  The eluted sample was electrosprayed into a Finnigan LTQ mass spectrometer 

at a flow rate of 150μL/min.  Data was collected in a 600-1200m/z range.  ESI source 

settings:  Spray voltage (4.79kV), Spray current (1.69μA), Sheath gas flow rate (28.01), 

Aux gas flow rate (0.02), Sweep gas flow rate (0.21), Capillary voltage (26.96V), 

Capillary temperature (224.93 °C), Tube lens voltage (120.11V). 

2.2.8 Peptic peptide preparation and data acquisition 

The same procedure was performed for peptide analysis as was performed for 

intact protein analysis except that the 100mM Sodium phosphate buffer pH2.3 contained 

solvated Pepsin endoproteinase (Sigma) at a (1:1 ; w:w) ratio with the experimental 

SHP2 protein (note:  (1:1 ; w:w ratio) and a (~1 : 1.75 concentration ratio; SHP2 : 

Pepsin).  Pepsin-mediated digestion was allowed to proceed on ice for 3min.  (20μg) of 

peptic peptides, following the quenching step, were loaded by a Finnigan Surveyor 

autosampler onto a XBridge C18 2.0x50mm 2.5μm column (Waters).  Sample peptic 

peptides were washed then eluted in 8min. by a shallow gradient (10% ACN/0.1% 

Formic acid35% ACN/0.1% Formic acid) at 200μL/min. (note:  full gradient 

conditions:  0min. (98/2), 0.1min. (90/10), 8min. (65/35), 10min. (20/80), 10.1min. 

(20/80), 12min. (20/80), 12.1min. (98/2), 15min. (98/2)).  The eluted sample was 

electrosprayed into a Finnigan LTQ mass spectrometer at a flow rate of 200μL/min.  ESI 
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source settings:  Spray voltage (4.79kV), Spray current (1.69μA), Sheath gas flow rate 

(28.01), Aux gas flow rate (0.02), Sweep gas flow rate (0.21), Capillary voltage 

(26.96V), Capillary temperature (224.93 °C), Tube lens voltage (120.11V).  Peptide data 

was acquired first in data-dependent (MS/MS) mode using the following parameters 

(400-1800m/z range):  Isolation width (2.0 m/z), Normalized collision energy (35), 

Default charge state (+2), Minimum signal threshold counts (500), Activation Q (0.25), 

Activation time (30ms), Ion time (50ms), MSMS2 on the 5 most intense ions from each 

parent ion scan.  Peptide data was also collected in single MS fashion for weighted 

average mass (WAM) value generation in an enhanced scan rate setting and in profile 

mode. 

2.2.9 Data analysis and presentation 

All no-label and deuterium labeling intact (native)- and peptide-based 

experiments were done by hand and in triplicate so that comparisons could be made via 

averages and significance could be established based upon standard deviations per time 

point.  For intact mass analysis, data deconvolution and mass interpretation was 

performed with aid from ESIprot1.0 software (121).  Data presented in the intact protein 

section is in the format (mutant relative to wild-type) and thus the experimental data 

points taken per time point for each mutant are deemed significant relative to wild-type 

based upon a comparison of two means via a paired t-test (p-value significance marked 

per time point per criteria documented).  Peptide-based data was acquired both in MS 

scan mode and in MSMS2 (MS/MS) mode per analysis intention.  As the SHP2 

proteins were purified from E.coli, SHP2 peptic peptides were identified based upon a 

database query of the entire E.coli proteome with the SHP2 (WT or mutant; 1-528) 
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sequence embedded, using the Sequest algorithm as part of the Proteome Discoverer 

platform (Thermo).  For further analysis of purity and confidence in identification, the 

same query was performed using the entire human proteome.  All searches were 

performed using a decoy database for further aid in confidence in identification (with 

FDR set at 1-5%).  The databases were queried using the general criteria for data coming 

from an LTQ mass spectrometer:  average parent ion (  1.0Da) and daughter ion (  

0.8Da) mass tolerance at charge states (+1, +2 and +3).  Due to the general promiscuity 

of pepsin ‘no enzyme’ was chosen for the database query.  High quality parent ion 

isotopic (no-label) and deuterium-labeling envelopes were acquired in single MS 

(enhanced) scan mode so that the highest quality spectrums could be used to generated 

WAM (weighted average mass) measurements following deuterium labeling.  Peptides 

were assigned to representative parent ions in the MS-scan based upon their m/z, charge 

state, and retention time information generated following database query using MSMS2 

data.  Deuterium incorporation versus time plots were generated based upon plotting 

average WAM values per time point relative to an average ‘zero’ point generated from 

no-label data.  Unbiased WAM values were generated with aid from HX-Express 

software (122).  As all proteins were handled in the same manner experimentally, 

deuterium levels were not corrected for back-exchange and are therefore reported as 

relative (123).  In this work, peptide-based deuterium exchange data is presented in the 

format (mutant relative to wild-type) and significance in exchange is documented based 

upon differences in average measurements per time point where an average must be at 

least (0.4Da) and 2σ (standard deviations) from its counterpart.  This significance criteria 
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must be maintained in at least 2 consecutive time points for the peptide under comparison 

to be colored based upon the significance legend provided in each figure. 
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CHAPTER 3:  PHOSPHATASE OF REGENERATING LIVER 3 (PRL3) DRIVES 

PRO-METASTATIC MOLECULAR EVENTS THROUGH A SRC-DEPENDENT 

ABERRANT TYROSINE PHOSPHOPROTEOME 

3.1 Introduction 

Protein-tyrosine phosphatases (PTPs) play critical regulatory roles during signal 

transduction and when deregulated cause aberrant tyrosine phosphorylation that lies at 

the heart of many human diseases, including cancer (19, 124-125).  The PRL 

(Phosphatase of Regenerating Liver) phosphatases represent a unique sub-family of 

prenylated PTPs comprised of three members (PRL1, 2, and 3) that share (>75%) of 

amino acid sequence identity (100, 126-127).  A ground-breaking observation that PRL1 

was an immediate early gene induced prior to the regeneration period of the rat liver 

following resection brought attention to the PRL-family as potential proto-oncogenes 

(99).  Over more than two decades, research at the gross anatomical and molecular levels 

continues to provide evidence that the PRLs may play causative roles in tumorigenic and 

metastatic processes when aberrantly overexpressed (79). 

PRL3 (Ptp4a3) was first cast into the spotlight as a potential causative factor of 

metastasis when its transcript was found to be consistently and massively overexpressed 

in colorectal carcinoma (CRC) metastases found in the liver, while its expression in non-

metastatic primary tumors and normal colorectal epithelium was undetectable (100).  

Subsequently, PRL3 transcript was found to be elevated in all metastatic lesions derived 

from CRC, regardless of the site of metastasis (liver, lung, brain, or ovary) (128-129).  In 

addition, PRL3 transcript as well as protein has been found to be overexpressed in a 

variety of advanced neoplasms or metastases originating from a multitude of 
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physiologically distinct tissues (79, 130-131), suggesting a fundamental role for this 

phosphatase in driving cellular behaviors that are necessary to gain selective advantage 

toward metastatic dissemination when in excess.   

To date, biochemical research has focused on overexpression studies in a variety 

of cell culture models in an effort to decipher the mechanism by which PRL3 drives the 

acquisition of cellular properties associated with tumorigenesis and metastasis.  In-vivo, 

cells stably expressing PRL3 exhibit enhanced motility and invasive activity and are able 

to induce metastatic tumor formation in mice (132-133), while knockdown of 

endogenous PRL3 in tumor cells expressing high levels of this phosphatase using small-

interfering RNA abrogates cell motility and the ability to metastasize in a mouse model 

(134-136).  Importantly, stable ectopic expression of PRL3 has been shown to induce an 

epithelial-to-mesenchymal transition (EMT) (102-103, 106, 132-133), an essential 

process that precedes metastatic dissemination (137).  Additionally, stable ectopic 

expression of PRL3 induces many hallmarks of tumorigenesis that have been shown to be 

dependent upon its phosphatase activity including:  enhanced proliferative capacity, 

anchorage-independent growth, ability to grow to increased densities, enhanced wound 

healing capacity, and enhanced migration/invasion potential (79, 130).  This data provide 

evidence validating the use of this methodology as a plausible avenue towards elucidating 

the molecular basis for PRL3 function.  Through a variety of candidate approaches 

investigators have been successful in documenting molecular evidence supporting the 

activation of key regulators of transformation and pro-metastatic molecular events 

following PRL3 expression including:  Integrin receptors (104-105, 138), Rho-family 

GTPases (102), PI3K-Akt (103), Ras-ERK (104, 106), and the Src tyrosine kinase (106-
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107).  Collectively, these signaling effectors/modules are canonically activated following 

extracellular ligand-mediated stimulation of tyrosine phosphorylation.  How does the 

overexpression of a phosphatase ‘tilt’ the natural regulation of tyrosine phosphorylation 

toward a stimulus that would support the sustained activation of these effectors?  

Additionally, what transmembrane receptors and molecular adaptors are tyrosine 

phosphorylated/activated to integrate this pleiotropic response?  To date, the molecular 

basis for PRL3 function remains an enigma, predominately due to a complete lack of 

knowledge regarding a putative substrate, making efforts at distilling a concerted 

mechanism that would potentiate metastatic dissemination very difficult. 

We have previously documented that stable ectopic expression of PRL3 drives 

aberrant Src tyrosine kinase activation by downregulating Csk (C-terminal Src kinase), a 

major negative regulator of Src, in epithelial-HEK293 cells (106).  It was shown that this 

aberrant Src activation leads to enhanced ‘global’ tyrosine phosphorylation including 

activating phosphotyrosyl-modifications to the extracellular signal-regulated protein 

kinase 1 and 2 (ERK1/2), signal transducer and activator of transcription 3 (STAT3), and 

the Crk-associated substrate (p130Cas).  We postulated that an aberrantly activated Src 

kinase has the ability to pleiotropically potentiate the many distinct oncogenic bio-

functional properties previously mentioned and by following the tyrosine 

phosphorylation ‘profile’ we would gain critical insight into the PRL3-mediated signaling 

network.  Furthermore, we hypothesized that the identities of the complete repertoire of 

proteins experiencing enhanced levels of tyrosine phosphorylation in the PRL3 

expressing cells would help us paint the most comprehensive picture to date of how 

PRL3 drives pro-metastatic molecular events through Src activation. 
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Here, we present the application of a novel phosphoproteomic strategy predicated 

upon a tandem phosphotyrosine-peptide enrichment using ‘pan’ pTyr-antibody 

immunoprecipitation and polymer-based metal ion affinity capture (PolyMAC) with 

titanium (Ti)-functionalized soluble nanopolymers/polyamidoamine-dendrimers (108).  

Phosphoproteomic data derived from the PRL3 cells provide strong evidence in support 

of aberrant Src kinase activation and afford insight into the context by which Src drives 

pro-metastatic molecular events upon PRL3 expression.  Interestingly, we have 

uncovered a rich signal transduction network downstream of a mitogenic and chemotactic 

PDGF (α and β), Eph (A2, B3, B4) and Integrin (β1 and β5) transmembrane receptor 

array known to be utilized by migratory mesenchymal cells during development as well 

as during acute wound healing in the adult animal.  Furthermore, tyrosine 

phosphorylation is present on a multitude of signaling effectors responsible for Rho-

family GTPase, PI3K-Akt, Jak-STAT3, and Ras-ERK1/2 pathway activation, linking 

observations made by the field as a whole under Src as a primary signal transducer.  We 

present the most extensive and comprehensive model to date of how PRL3 potentiates 

pro-metastatic molecular events through Src activation and provide precedence to future 

work aimed toward defining a putative substrate(s) within the context of this network. 

3.2 Ectopic expression of PRL3 induces enhanced ‘global’ tyrosine phosphorylation 

To begin to investigate the tyrosine phosphoproteome following stable ectopic 

PRL3 expression, we employed epithelial-human embryonic kidney 293 (HEK293) cells.  

In addition to the PRL3-WT expressing clone (WT1) used in our previous study 

(Liang2007), we also generated a second stable PRL3-WT expressing HEK293 cell clone 

(WT2) with similar morphological and molecular characteristics.  Importantly, the second 
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clone was generated following selection with a different cytotoxic agent and has PRL3 

expression being driven from a different promoter to limit the chance of false 

interpretations being made from a single clonal population.  We documented the 3.9-fold 

overexpression of PRL3 transcript in PRL3-WT1 by quantitative real-time PCR (qRT-

PCR) in our previous study (106).  Here, we corroborate this data by showing the 

significantly enhanced PRL3 transcript in the PRL3-WT (1 and 2) and -C104S cells, 

relative to endogenous levels of PRL3 transcript observed in vector counterparts by RT-

PCR using the same reagents/methodology (Figure 4A).  Furthermore, using 

methodology described in this work, HEK293 cells harboring a stably expressed RFP 

(Red Fluorescent Protein)-tagged PRL3-WT fusion protein were generated to validate the 

expression and proper localization of PRL3 on endomembranes (Figure 4A).  PRL3-WT 

cells have a ‘spindle-like’ fibroblast/mesenchymal cell morphology as compared to the 

‘squamous-like’ epithelial morphology of their PRL3-C104S ‘phosphatase-dead’ and 

vector counterparts, consistent with an EMT occurring upon PRL3-WT expression in 

these cells (Figure 4B).  PRL3-WT cells have enhanced ‘global’ tyrosine 

phosphorylation, a markedly less latent pTyr527-Src population, and constitutively 

phosphorylated/activated ERK1/2 and STAT3, relative to vector counterparts (Figure 

4C).  This data validate our previous findings and establish a framework that can be built 

upon to more extensively define the PRL3-mediated signaling network activated in these 

cells.  

PRL3-WT (WT1) and its vector (Vec1) HEK293 counterpart, used in our 

previous study, were used to provide material for our phosphoproteomic investigation.  

The sample handling and analysis flow-chart that was used to acquire both qualitative 
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and SILAC (stable-isotope labeling of amino acids in cell culture)-based quantitative 

phosphoproteomic data from these cell lines can be seen in (Figure 5).  Qualitative and 

SILAC-based quantitative data are additive in this work and used to represent the entire 

PRL3 and vector phosphoproteomic datasets.  Briefly, normalized total protein from the 

two experimental groups was either processed separately (qualitative assessment) or 

consolidated to one master sample (quantitative assessment).  Tyrosine phosphorylated 

tryptic peptides were enriched using a tandem enrichment strategy based upon a primary 

‘pan’-pTyr-antibody immunoprecipitation followed by a secondary enrichment using a 

novel soluble nanopolymer multi-functionalized with Titanium (Ti) (108) and 

subsequently electrosprayed into an LTQ-Orbitrap mass spectrometer for high 

resolution/high mass accuracy mass analysis.  Quantitative data representing tryptic 

peptides from the ‘house-keeping’ genes β-Actin (7SYELPDGQVITIGNER) and β-

Tubulin (63AILVDLEPGTMDSVR), show a ~1:1 mixing ratio between the SILAC-

‘Light’ (12C6-Lys/12C6-Arg) and SILAC-‘Heavy’ (13C6-Lys/13C6-Arg) protein lysates 

prior to sample processing (Figure 6). 

Using this approach, we were able to validate our immunoblot findings that 

proteins from the PRL3 cells experience enhanced levels of tyrosine phosphorylation by 

qualitatively identifying 172 phosphotyrosyl-residues on 123 tyrosine phosphorylated 

proteins from the PRL3 cells and 78 phosphotyrosyl-residues on 61 tyrosine 

phosphorylated proteins from vector cells with an overlap of 32 phosphotyrosine-

containing proteins between the two datasets.  Using SILAC, we were able to quantify 

the relative abundance of 121 of 169 and 66 of 77 phosphotyrosine-peptides observed 

from the qualitative analysis of phosphoproteins acquired from the PRL3 and vector 
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cells, respectively.  The entire curated phosphoproteomic dataset organized into 

biofunctional categories can be seen in (Table 1).  Out of the 250 total phosphotyrosyl-

residues identified in this study 226 (90%) have been previously identified by studies 

aimed at identifying tyrosine phosphorylation events downstream of tyrosine kinase 

activation, a strong testament to the quality and credibility of the data presented in this 

work.  Raw mass spectra depicting phosphotyrosine-peptides representing pTyr187 of 

ERK2 (173VADPDHDHTGFLTEY[PO3
2-]VATR), pTyr705 of STAT3 

(686YCRPESQEHPEADPGSAAPY[PO3
2-]LK), and pTyr417 of PAG1 (414ENDY[PO3

2-

]ESISDLQQGR) were chosen based upon relevance to Src-mediated signal transduction 

and validation of data presented in our previous study to represent the general quality of 

spectra used for SILAC-based quantitative assessment of tyrosine phosphorylation in this 

study (Figure 7).  Additionally, raw mass spectra depicting phosphotyrosine-peptides 

representing pTyr187 of ERK2 (173VADPDHDHTGFLTEY[PO3
2-]VATR) and pTyr783 

of PLCγ1 (779NPGFY[PO3
2-]VEANPMPTFK) were chosen to represent the general 

quality of spectra used for qualitative assessment of tyrosine phosphorylation in this 

study (Figure 8). 

3.3 Src kinase activation is a prominent consequence of PRL3 expression 

A primary observation made from the PRL3 phosphoproteomic dataset is the 

exclusive or increased presence of phosphopeptides representing 10 putative Src 

substrates including:  pTyr100 (92VFDKDGNGY[PO3
2-]ISAAELR) of calmodulin, 

pTyr14 (6YVDSEGHLY[PO3
2-]TVPIR) of caveolin-1, pTyr397 (386THAVSVSETDD 

Y[PO3
2-]AEIIDEEDTYTMPSTR) of focal adhesion kinase (FAK), pTyr44 

(33AAVPSGASTGIY[PO3
2-]EALELR) of γ-enolase, pTyr783 (775WDTGENPIY[PO3

2-
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]K) of integrin-β1, pTyr774 (766YEMASNPLY[PO3
2-]R) of integrin-β5, pTyr783 

(779NPGFY[PO3
2-]VEANPMPTFK) and pTyr1253 (1253Y[PO3

2-]QQPFEDFR) of 

phospholipase C gamma-1 (PLCγ1), pTyr798 (787VVQEYIDAFSDY[PO3
2-]ANFK) of 

receptor protein tyrosine phosphatase-alpha (RPTPα), pTyr705 

(686YCRPESQEHPEADPGSAAPY[PO3
2-]LK) of signal transducer and activator of 

transcription-3 (STAT3), and pTyr699 (695AVDGY[PO3
2-]VKPQIK) of STAT5B as 

assessed through both phosphosite.org and manual literature review.  Among these, 

RPTPα is known to be a direct positive regulator of Src-family kinase (SFK) signaling 

through dephosphorylating the inhibitory phosphotyrosine-residues of these enzymes 

(139-140).  Phosphorylation of Tyr798 has been shown to be SFK-FAK-dependent and 

be an activating event to this phosphatase attributed to the potentiation of cellular 

migration (141). 

Intriguingly, while analyzing phosphoproteins exclusively present in the vector 

datasets, we consistently came across Csk-binding protein-phosphoprotein associated 

with glycosphingolipid microdomains (Cbp-PAG1), a tumor suppressor known to 

negatively regulate Src activity by both Csk-dependent and -independent mechanisms 

(142-144).  Absence of 6 phosphotyrosyl residues including the pTyr317 Csk binding site 

of PAG1 provides strong evidence, next to the previously documented downregulation of 

Csk in our previous study (106), of the endogenous Src population existing in an 

activated state in the PRL3 cells.  Though PAG1 is the most attractive candidate with 

regard to our current model of Src activation to be a substrate of PRL3, the absence of 6 

disparate tyrosine phosphorylation motifs, suggests that this phosphoprotein is most 
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likely downregulated and not dephosphorylated by a single phosphatase in the PRL3 

cells.   

To generate a larger scope with regard to the penetrance of Src kinase activity 

within our PRL3 phosphoproteomic dataset we compared our dataset to extensive 

phosphoproteomic datasets generated by Rush et al. (145) and Luo et al. (146) while 

following the global impact of constitutively active SrcY529F overexpression in murine 

embryonic fibroblasts (MEFs), relative to their parental MEF counterparts.  This 

comparative analysis (Table 2) revealed that our PRL3 dataset has notable overlap with 

the SrcY529F dataset concerning a variety of phosphoproteins known to regulate 

cytoskeletal dynamics and mitogenic signal transduction including:  PLCγ1 (pTyr771, 

783), annexin A2 (pTyr334, 335), ephrin receptor A2 (pTyr594, 772), FAK (pTyr397), 

neural Wiskott-Aldrich Sydrome protein (N-WASP; pTyr256), talin 1 (pTyr70, 71), and 

STAT3 (pTyr705).  Additionally, a significant overlap exists between phosphoproteins 

shown to have exclusive or increased presence in the PRL3 dataset and phosphoproteins 

associated with the parental MEF dataset, providing the first phosphoproteomic evidence 

in support of fibroblast/mesenchymal-like signal transduction taking place in cells 

following PRL3 expression (Table 2).  Interestingly, the PRL3 phosphoproteomic dataset 

is largely unique with ~67% of phosphoproteins (74; 101 pTyr-residues) not present in 

either of the SrcY529F-MEF or parental MEF datasets (Table 2).  While an argument 

could be made regarding a comparative analysis being done using two disparate cell 

types, this analysis suggests that the phosphoproteomic “finger print” from PRL3-

mediated Src activation is distinct from that of constitutive Src activation. 
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Collectively, these data provide strong evidence in support of the aberrant 

activation of the Src kinase being a major driving force behind pro-metastatic molecular 

events observed in the PRL3 cells.  Furthermore, data support Src driving a 

phosphoproteome that is mesenchymal in nature and unique to PRL3 expression. 

3.4 Src kinase activates a signal transduction network associated with a mitogenic and 

chemotactic PDGF, Eph, and Integrin receptor array in PRL3 expressing cells 

In our previous study (106), we attributed the significantly increased Src-

dependent proliferative and migratory/invasive capacities of PRL3 expressing HEK293 

cells to the constitutive activation of key regulators of mitogenic and chemotactic signal 

transduction including ERK1/2, STAT3, and p130Cas.  We hypothesized that the identities 

of the complete repertoire of proteins shown to experience enhanced levels of tyrosine 

phosphorylation in the PRL3 cells would help us paint the most comprehensive picture to 

date of how PRL3 drives pro-metastatic molecular events through Src activation. 

As a primary method of data analysis we organized the entire phosphoproteomic 

dataset (Table 1) into biofunctional categories and created a summary of the comparative 

analysis between the PRL3 and vector datasets (Figure 9A).  Data show that while a 

larger representation of phosphoproteins exists for all biofunctional ‘bins’ from the PRL3 

dataset, a trend known to be associated with aberrant Src kinase activation, the ‘Cellular 

Communication and Signal Transduction’ bin encompassing:  protein kinases, protein 

phosphatases, adaptor/scaffolds, G-proteins, and lipases shows the most prominent 

difference with regard to the number of phosphoproteins between the two datasets.  

Strikingly, within this group of phosphoproteins, 75% (92 of 123) of the 

phosphotyrosine-containing proteins identified in the PRL3 cells are unique from those 
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observed from vector.  This observation provides strong evidence that PRL3 expression 

has significantly altered the regulation of a variety of enzymes responsible for 

propagating signal transduction through aberrant Src kinase activation.  Additionally, we 

took an unbiased approach towards understanding how our data best fit into canonical 

signaling networks by employing Ingenuity Pathway Analysis (IPA).  We queried the 

Ingenuity Knowledge Base using proteins from our entire phosphoproteomic dataset 

including corresponding quantitative information.  The top 10 biofunctions and canonical 

pathways predicted to be significantly represented from our dataset can be seen in (Figure 

9B).  Biofunctions with (-log(B-H p-values) ~ 7.5) along with a top scoring network from 

this analysis encompass cellular growth and proliferation, cellular assembly and 

organization, and cellular movement.  These biofunctions are currently accepted in the 

field as significantly associated with the biology of PRL3 and aid in establishing 

credibility toward our dataset.  IPA also predicted canonical signaling networks from 

phosphoproteins represented in our dataset that are well known to govern the above 

processes as well as to be intimately regulated by Src kinase activity including:  

p21/Cdc42/Rac1-activated kinase (PAK) and Cytokine signaling with (-log(B-H p-

values) ~ 15) and Integrin, PDGF, and Ephrin (Eph) receptor signaling with -log(B-H p-

values) ~ 12.5).  Data analysis by IPA highlights prominent signal transduction 

experimentally observed to be coordinated downstream of the aforementioned 

transmembrane receptor classes with consistent representation by FAK-Src, Jak-

STAT3/5, N-WASP-Arp2/3, Nck2, PI3K, PLCγ1, Ras-ERK1/2, JNK1, and the Rho-

family GTPases, Cdc42 and Rac1.  Importantly, the aforementioned transmembrane 
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receptors and signaling effectors are well recognized regulators of both mitogenic and 

chemotactic bioprocesses.   

Data from a variety of candidate approaches suggest that PRL3 drives the 

acquisition of cellular properties associated with tumorigenesis and metastasis through 

the activation of a number of signaling pathways, including the Rho-family of small 

GTPases, PI3K, ERK1/2, and Src (102-107).  Conclusions made from these approaches 

have naturally been limited in scope towards not only defining how these effectors 

become activated, but how they can become collectively activated within a PRL3-

mediated signaling network.  Manual interpretation of our phosphoproteomic dataset, 

along with aid from IPA, has allowed us to establish a more thorough and comprehensive 

model of this signaling network.  We postulate that the Src kinase activates a signal 

transduction network associated with a mitogenic and chemotactic PDGF (α and β), Eph 

(A2, B3, B4), and Integrin (β1 and β5) receptor array in the PRL3 expressing cells.  A 

subset of data selected from the total dataset represented in (Table 1) that provides 

significant evidence in support of this hypothesis is represented in (Table 3).  A graphical 

model, derived from data in (Table 1), depicting how signal transduction governing 

mitogenesis, chemotaxis, and survival is propagated in the PRL3 expressing cells is 

presented in (Figure 10).  This figure will be used in the subsequent sections to highlight 

the molecular relationships that define this signal transduction.  Our model is based upon 

an experimentally derived understanding that the PRL3 expressing cells display 

significant insensitivity to serum-derived factors, presumably due to an ‘oncogenic 

addiction’ to sustained intracellular activation of the aforementioned signaling network 
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by the Src kinase.  In light of this, we provide the most comprehensive model to date of 

how PRL3 drives pro-metastatic molecular events through aberrant Src activation. 

3.5 Src induces the tyrosine phosphorylation of key regulators of cytoskeletal re-

organization and Rho-family GTPase activation in PRL3 expressing cells 

Enhanced cellular migration and tissue invasion potential are key biofunctional 

characteristics acquired by disseminating metastatic tumor cells (147).  These processes 

are driven by heterodimeric integrin receptors that translate a mechanical force, through 

their physical association with components of the extracellular matrix (ECM), to an 

intracellular response that culminates in the dynamic re-organization and stabilization of 

actin filaments (148).  Tyrosine phosphorylation of integrin receptor complexes is a 

biomarker of their activation as structural rearrangements of their cytoplasmic domains, 

following dynamic ECM engagement, stimulates the localization and activation of the 

FAK·Src kinase signal transducer as a primary step towards the initiation of intracellular 

‘outside-in’ signal propagation from these receptors (149).  Phosphoproteomic data 

provide strong evidence in support of integrin receptor complex activation in our PRL3 

expressing cells.  Phosphopeptides representing the Src substrates, pTyr783 

(775WDTGENPIY[PO3
2-]K) of integrin-β1 and pTyr774 (766YEMASNPLY[PO3

2-]R) of 

integrin-β5 are shown by SILAC to be exclusively present and up 15-fold in the PRL3 

cells, respectively.  Phosphopeptides representing pTyr70 (67ALDY[PO3
2-]YMLR) and 

pTyr71 (67ALDYY[PO3
2-]MLR) of talin-1, a key molecular scaffold and activator of 

integrin receptors that provides a critical link between these receptors and the actin 

cytoskeleton (150), are shown to be up 14-fold in the PRL3 cells.  Phosphopeptides 

representing the activating pTyr397 (386THAVSVSETDDY[PO3
2-
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]AEIIDEEDTYTMPSTR) modification of FAK as well as pTyr570 (570Y[PO3
2-

]MEDSTYYK) are shown to be up 12-fold and exclusively present in the PRL3 cells, 

respectively.  Phosphorylation of FAK on Tyr397 is a biomarker for the establishment of 

the FAK-Src kinase complex that propagates signal transduction responsible for dynamic 

disassembly of integrin complexes during productive cellular migration (151).  A 

phosphopeptide representing pTyr798 (787VVQEYIDAFSDY[PO3
2-]ANFK; orthologous 

to Tyr789 of isoform 2) of RPTPα is shown to be up 2-fold in the PRL3 cells, a 

modification known to be associated with Src activation and the potentiation of cellular 

migration downstream of active integrin receptors and the Src-FAK complex.   

A major substrate immediately downstream of the FAK-Src complex is the Crk-

associated substrate p130Cas (Cas), a hyperphosphorylated molecular scaffold that 

integrates both integrin- and RTK-mediated signals toward Rho-family GTPase and 

MAPK activation (152-154).  Phosphoproteomic data confirm our previous finding that 

Cas is hyperphosphorylated in PRL3 expressing cells (106), and provide strong evidence 

in support of a Rac1-GTPase activation signal known to be coordinated from Cas.   The 

Src-mediated phosphorylation of the substrate domain of Cas promotes the SH2 domain-

dependent association of Crk and its constitutively bound effector, dedicator of 

cytokinesis-180 (DOCK180; DOCK1) Rac1-GEF required for localized Rac activation 

and lamellipodia extension during cellular migration (154-157).  A phosphopeptide 

representing pTyr522 of DOCK7 (511IDISPAPENPHY[PO3
2-]CLTPELLQVK), a 

member of the DOCK180-family of Rac1-GEFs expressed at high levels in the brain and 

heart, is shown to be exclusively present in the PRL3 cells.  The presence of a 

phosphopeptide representing DOCK7 is interesting in light of the fact that PRL3 
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expression is known to be limited to a few organs, with the brain and heart showing 

significant PRL3 expression in-vivo (79 and our unpublished data).  This data provide 

evidence of a possible PRL3 ‘mark’ on a signaling network otherwise dominated by 

ubiquitous canonical signaling effectors as it is unique to our phosphoproteomic dataset.  

Phosphopeptides representing pTyr246 of Shb (240VTIADDY[PO3
2-]SDPFDAK) 

and pTyr50 of Nck2 (Grb4) (48TGY[PO3
2-]VPSNYVER) are shown to be exclusively 

present and up 17-fold in the PRL3 cells.  The SH2 and PTB domain-containing adaptor 

protein Shb is known to bind the SH3 domain of Src via its N-terminal poly-proline motif 

and become phosphorylated in a Src-dependent manner.  Phosphorylated Shb binds FAK 

via its central PTB domain and induces increased phosphorylation/activation of FAK 

ultimately leading to increased cell spreading (158).  Phosphorylated Shb has also been 

shown to bind the SH2 domain of Crk (159), providing additional evidence in support of 

the assembly of a Cas-Crk-DOCK module toward Rac1 activation downstream of the 

active FAK-Src complex in the PRL3 cells. Nck2, like Shb, is a pleiotropic adaptor 

protein that plays a major role in driving cytoskeletal re-organization and cell movement 

following chemotactic-RTK activation.  The proto-oncogene Nck2 binds phosphotyrosyl-

motifs on stimulated RTKs via its SH2 domain and subsequently recruits proline-rich 

effector proteins via its SH3 domain to mediate localized interactions between these 

receptors and regulators of actin cytoskeletal dynamics (160-161).  Nck2 is known to be 

tyrosine phosphorylated following growth factor stimulation and in Src transformed cells 

(162).  This phospho-adaptor protein binds the substrate domain of Cas via its SH2 

domain and DOCK180 and the p21/Cdc42/Rac1-activated protein kinase (Pak1) via its 

‘mid’ and ‘C-term’-SH3 domains (161, 163), providing further precedent for Cas-
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mediated Rac1 activation in the PRL3 cells.  Additionally, the ephrin receptor-A2 

(EphA2) RTK is phosphorylated exclusively on Tyr588 (587TY[PO3
2-

]VDPHTYEDPNQAVLK) and Tyr594 (587TYVDPHTY[PO3
2-]EDPNQAVLK), 

phosphorylation sites known to coordinate the Nck adaptor proteins as well as Vav2/3 

Rac1-GEFs via their SH2 domains (164-165), in the PRL3 cells.  Additional 

phosphopeptides representing pTyr772 (763VLEDDPEATY[PO3
2-]TTSGGKIPIR; up 77-

fold) and pTyr960 (958IAY[PO3
2-]SLLGLK) of EphA2 as well as pTyr792 

(782FLEDDPSDPTY[PO3
2-]TSSLGGK) of EphB3 and pTyr774 (764FLEENSSDPT 

Y[PO3
2-]TSSLGGK) of EphB4, are shown to be exclusively present in the PRL3 cells.  

Phosphorylated B-type Eph-receptors also mediate Nck2 association toward cytoskeletal 

re-organization associated with ephrinB reverse signaling (163-164).  Important to this 

investigation, EphB-receptors have also been paramount to a discussion about Src (SFKs) 

in the signaling downstream of Eph-receptors as these cytoplasmic tyrosine kinases are 

well known to bind these receptors and be a positive regulators of their phosphorylation 

(164-167). 

Finally, evidence suggesting Rac1 activation comes from 

phosphorylation/activation of the c-Jun N-terminal kinase (JNK1) on Tyr185 

(175TAGTSFMMTPY[PO3
2-]VVTR) exclusively in the PRL3 cells.  JNK1 activation is 

well documented downstream of Cas-Crk-mediated Rac1 activation via an Nck-mediated 

Rac1-Pak1 interaction most notably to prevent anoikis, a major challenge associated with 

cellular dissemination/metastasis.  The JNK1 cascade is also critical to cellular 

transformation induced by hyperphosphorylated Cas, most notably driven by v-Src or v-

Crk oncogenes (154, 161, 168-170). 
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Evidence in support of the activation of Cdc42, another member of the Rho-

family GTPases which is responsible for filapodia extension during cellular migration, is 

present in our phosphoproteomic dataset.  A phosphopeptide representing pTyr827 

(827Y[PO3
2-]ATPQVIQAPGPR) of the Activated Cdc42 Kinase-1 (ACK1) is shown to be 

up 4-fold by SILAC in the PRL3 cells.  ACK1 acts downstream of a multitude of 

transmembrane receptors following its activation by SFKs (most notably Src) with the 

predominant role of keeping Cdc42 in an active GTP-bound form (170-172).  

Furthermore, evidence in support of ACK1 activation and a strong biomarker of dynamic 

actin-cytoskeletal re-organization comes from the phosphorylation/activation of the 

putative ACK1 substrate, neural-Wiskott-Aldrich syndrome protein (WASL/N-WASP) 

on Tyr256 (254VIY[PO3
2-]DFIEK) shown to be up 9-fold in the PRL3 cells.  N-WASP is 

fundamental to filamentous actin growth and stabilization through its association with 

both the Arp2/3 actin nucleation complex and activated members of the Rho-family 

GTPases, which provide critical positional information for cellular extensions such as 

filapodia and lamellipodia (174-175). 

Finally, a phosphopeptide representing the putative Src substrate, pTyr100 

(92VFDKDGNGY[PO3
2-]ISAAELR) of calmodulin is shown to be exclusively present in 

the PRL3 cells.  Ca2+-bound calmodulin is known to be required for the activation of the 

myosin light chain kinase (MLCK), a critical component to the MLCK-myosin light 

chain phosphatase (MLCP) regulatory loop that drives acto-myosin contraction/relaxation 

cycles underlying cellular migration (176-178). 

Collectively, phosphoproteomic data provide strong evidence in support of Src 

inducing the tyrosine phosphorylation of key regulators of cytoskeletal re-organization 
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and Rho-family GTPase activation in the PRL3 expressing cells.  Data suggest that a 

prominent signaling network is being coordinated and activated downstream of the 

integrin-β1 and -β5 fibronectin receptors and the Eph (A2, B3, B4) RTKs.  Importantly, 

Src kinase activity is well-recognized to be critical to the biology downstream of these 

receptors towards cellular migration/chemotaxis. 

3.6 Src induces the tyrosine phosphorylation of key regulators of ERK, PI3K, and STAT 

activation in PRL3 expressing cells 

Migrating mesenchymal cells utilize mitogenic and chemotactic RTKs that are 

intimately linked through an underlying interconnected signal transduction network to the 

machinery that drives cellular migration so that efficient cellular migration/chemotaxis 

can occur.  One of the most extensively studied mitogenic and chemotactic RTKs is the 

platelet-derived growth factor receptor (PDGFR).  Canonically, PDGF-ligands are 

recognized by PDGFR-expressing cells of mesodermal origin that are critical for the 

normal development of the kidney, brain, cardiovascular and respiratory systems; while 

being essential to the wound healing response in the adult animal following laceration, 

myocardial infarction, and ischemic stroke (179-185).  The Src kinase has been 

recognized to be intimately involved in PDGF receptor-mediated signal transduction for 

more than two decades.  Src is known to associate with ligand-activated PDGFβ-

receptors via its SH2 domain and subsequently become phosphorylated/activated by 

receptor-dependent and -independent mechanisms (186-191).  Following its activation, 

Src is also known to phosphorylate the PDGFβ-receptor on Tyr934 and activate the 

tyrosine kinase c-Abl toward PDGF-mediated mitogenic and chemotactic responses (191-

194).  Though our phosphoproteomic dataset does not show any evidence of 
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phosphorylation on Tyr934, a phosphopeptide representing pTyr970 (970Y[PO3
2-

]QQVDEEFLR) of the PDGFβ-receptor, a known c-Abl phosphorylation site (195), 

suggests Src-mediated c-Abl activation towards PDGFRβ-receptor regulation in the 

PRL3 cells.  Furthermore, phosphoproteomic data show that the PDGFα-receptor is 

phosphorylated on Tyr613 (607VVEGTAY[PO3
2-]GLSR), -720 (719SY[PO3

2-

]VILSFENNGDYMDMK), -731 (719SYVILSFENNGDY[PO3
2-]MDMK), -742 

(736QADTTQY[PO3
2-]VPMLER), and -988 (982VDSDNAY[PO3

2-]IGVTYK), while the 

PDGFβ-receptor is phosphorylated on Tyr683 (674GGPIYIITEY[PO3
2-]CR), -692 

(686YGDLVDY[PO3
2-]LHR), -857 (850DIMRDSNY[PO3

2-]ISK), and -970 (970Y[PO3
2-

]QQVDEEFLR) in the PRL3 cells with no presence of phosphorylation on either of the 

receptors in vector cells.  PDGFα-receptor pTyr720 has been shown to coordinate Grb2, 

Shb, and Shp2 (196-198), pTyr731 and 742 have been shown to coordinate the p85 

regulatory subunit of phosphatidylinositol-3 kinase (PI3K) (199), and pTyr988 has been 

shown to be an autophosphorylation site and to coordinate phospholipase-C gamma 1 

(PLCγ1) (200).  Intra-/inter-molecular regulation by the observed PDGFβ-receptor pTyr-

residues remain enigmatic to date, with exception to the c-Abl phosphorylation site 

described earlier. 

Surprisingly, the PDGF(α/β)-receptors are unique to the PRL3 phosphoproteomic 

dataset.  Due to the importance of the PDGF-receptors in regulating both mitogenic and 

chemotactic signal transduction including the prominent role that Src plays in PDGFR-

mediated signal transduction, we chose to validate the tyrosine phosphorylation state of 

these receptors using PDGFα- and β-receptor antibody-specific immunoprecipitation 

followed by ‘pan’-pTyr western blotting (Figure 11A).  In validation of our mass 
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spectrometry-based data, IP-western data show the constitutive tyrosine phosphorylation 

of both PDGF-α and -β receptors in the PRL3 expressing cells.  Surprisingly, while the 

levels of PDGFα-receptor are equivalent in both the PRL3 and vector cells, the PDGFβ-

receptor is selectively expressed and/or stabilized in the PRL3 cells.  Furthermore, 

treatment of these cells with the Src kinase chemical inhibitor (SU6656) at 2.5μM, a 

concentration shown to be selective for inhibition of Src kinase activity over the kinase 

activity of the PDGFR (201), revealed that the tyrosine phosphorylation of the α-receptor 

is independent of Src activity, while the tyrosine phosphorylation of the β-receptor is 

dependent upon Src activity as measured by this assay.  This data is in agreement with 

previous published results showing only PDGFβ-receptor phosphorylation by the Src 

kinase.  The most likely mechanism responsible for the constitutive phosphorylation of 

the PDGFα-receptor would be trans-autophosphorylation, due to a heightened sensitivity 

for serum-derived PDGF ligands driven by the significantly altered signal transduction 

present in the PRL3 cells, relative to vector counterparts.  Data showing the selective 

expression and/or stabilization of the PDGFβ-receptor in the PRL3 cells is interesting in 

that signaling from the PDGFβ-receptor has major implications in developmental neo-

vascularization and in tumor-angiogenesis, processes absolutely required for late stage 

tumorigenesis and the survival of disseminating metastatic cells (181).  Though the 

mechanism remains enigmatic, PRL3 has been previously implicated in promoting pro-

angiogenic events both in-vitro and in-vivo (128, 202-206).  Due to the importance of 

angiogenesis toward potentiating metastatic dissemination, the direct mechanism by 

which PRL3 induces the selective expression and/or stabilization of the PDGFβ-receptor 

is under investigation.  Central to PDGF-receptor activation, phosphoproteomic data 
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provide evidence in support of an extensive signaling network responsible for ERK1/2, 

PI3K, and STAT3 activation being prominent in the PRL3 expressing cells.   

Data corroborating previous immunoblot-derived data showing the constitutive 

phosphorylation/activation of ERK1/2, are phosphopeptides representing pTyr204 

(190IADPEHDHTGFLTEY[PO3
2-]VATR) of ERK1 and pTyr187 (173VADPDHDH 

TGFLTEY[PO3
2-]VATR) of ERK2 shown by SILAC to be up 4- and 5-fold in the PRL3 

cells.  ERK1/2 can be activated through both Ras-dependent and -independent 

mechanisms.  Phosphopeptides representing pTyr157 of both the highly transformative 

N- (150QGVEDAFY[PO3
2-]TLVR) and K- (150QGVDDAFY[PO3

2-]TLVR) Ras family 

members are shown to be up 22-fold and exclusively present in the PRL3 cells, 

respectively.  Though the physiological relevance of pTyr157 remains unclear, this 

residue is part of the membrane-binding ‘switch’ region that is postulated to govern 

activation state-dependent membrane engagement of this G-protein.  Furthermore, 

mutation of the highly conserved Phe156 residue, immediately adjacent to Tyr157, is 

shown to significantly increase Ras-GTP levels as well as Ras transforming activity, in-

vivo (207), suggesting that modification of Tyr157 would engender similar gain-of-

function consequences.  This data puts N/K-Ras prominently in the discussion regarding 

Ras-dependent ERK1/2 activation in the PRL3 cells.  In addition, exclusive 

representation of phosphopeptides encompassing pTyr246 (240VTIADDY[PO3
2-

]SDPFDAK) of Shb and an activating modification to Tyr542 (538KGHEY[PO3
2-]TNIK) 

of the proto-oncogenic Shp2 tyrosine phosphatase, provide further evidence in support of 

a Ras-dependent mechanism of ERK1/2 activation in the PRL3 cells.  The pleiotropic 

adaptor protein Shb described in the previous section to bind the SH3 domain of Src via 
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its N-terminal poly-proline motif and become phosphorylated in a Src-dependent manner 

is also known to associate specifically with the PDGFβ-receptor via its SH2 domain 

(208).  Shb is also known to bind Grb2 via an SH3 domain-mediated interaction (209-

210), a well-recognized adaptor protein known to localize the Ras-GEF, SOS1, for direct 

Ras activation.  Towards indirect Ras activation, Shp2 attenuates the activities and/or 

localization of negative regulators of Ras activation by various mechanisms (63).  

Relevant to a discussion about the role of the PDGF-receptors in mediating ERK1/2 

activation, Tyr720 of the PDGFα-receptor, described earlier to be exclusively 

phosphorylated in the PRL3 cells, has been documented to coordinate Grb2, Shb, and 

Grb2-bound Shp2 (196-198).  Furthermore, the association of both Shb and Shp2 to 

PDGF-receptor biology was first documented from studies involving the PDGFβ-

receptor, with phosphorylation of the latter on Tyr542 linking the β-receptor to Ras 

activation (208, 211). 

Phosphoproteomic data also provide strong evidence in support of Ras-

independent ERK1/2 activation most specifically mediated through Raf1 in the PRL3 

cells.  Phosphopeptides representing pTyr771 (764IGTAEPDY[PO3
2-]GALYEGR), 

pTyr977 (975ACY[PO3
2-]RDMSSFPETK), and pTyr1253 (1253Y[PO3

2-]QQPFEDFR) of 

the proto-oncogenic PLCγ1 are shown to be exclusively present, while a phosphopeptide 

representing pTyr783 (779NPGFY[PO3
2-]VEANPMPTFK) of this enzyme is shown to be 

up 10-fold by SILAC in the PRL3 cells.  While the PDGFα-receptor has been shown to 

coordinate an SH2 domain-mediated interaction with PLCγ1 via its pTyr988 site 

following PDGF stimulation, PLCγ1 only attains maximal activation through 

phosphorylation of its Tyr771, Tyr783, and Tyr1253 sites when in the presence of the 
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PDGFβ-receptor (200, 212).  Through the hydrolysis of PI(4,5)P2 (PIP2), PLCγ1 drives 

the activation of ‘classic’ (c) and ‘novel’ (n)-type PKC-family members (212-216).  c-

PKC (α, β, γ)-induced activation of ERK1/2 occurs through the 

phosphorylation/activation of Raf1 on Ser259 and Ser499 (217-218). 

Due to the importance of PLCγ1 in the biology downstream of the PDGF-

receptors including the activation of proto-oncogenic PKC enzymes through the 

hydrolysis of PIP2, a phosphoinositide that has relevance towards being regulated by 

PRL3 both in-vitro and in-vivo (103, 219), we chose to validate our mass spectrometry 

data with regards to the activation state of this enzyme.  Through phospho-specific 

immunoblotting, we show that PLCγ1 is exclusively phosphorylated on Tyr783, an event 

essential for lipase activation, in the PRL3 cells (Figure 11B).  Additionally, the 

phosphorylation of Tyr783 is shown to be completely dependent upon Src activity by 

treatment of the PRL3 cells with the Src kinase inhibitor, SU6656.  This data provide 

insight into a possible mechanism by which PLCγ1 becomes fully activated by Src 

through the PDGFβ-receptor.  Raw mass spectral data showing the extensive coverage of 

the pTyr783 (779NPGFY[PO3
2-]VEANPMPTFK) phosphopeptide as well as SILAC-data 

showing the 10-fold increase in abundance of this phosphopeptide in the PRL3 cells 

relative to its abundance in the vector counterparts, can been seen in (Figure 11C).  

Additionally, plekstrin-homology (PH) domain-mediated targeting of PLCγ1 to 

PI(3,4,5)P3 (PIP3) has been shown to be important for full activation of this enzyme 

towards its putative substrate, PIP2 (220-221).  Phosphopeptides representing pTyr73 

(67GDFPGTY[PO3
2-]VEYIGR), pTyr150 (143GLECSTLY[PO3

2-]R; exclusively present), 

and pTyr580 (578DQY[PO3
2-]LMWLTQK; up 31-fold) of the p85 regulatory subunit of 
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PI3K, provide evidence in support of PI3K activation toward PIP3 production and full 

PLCγ1 activation in the PRL3 cells.  Though the biological function of these pTyr-

residues is unknown, p85 has been shown to be phosphorylated in response to a variety of 

stimuli including being phosphorylated by SFKs, an event that relieves the SH2 domain-

mediated inhibitory interaction that p85 makes with the p110 catalytic domain of PI3K in 

a latent state, leading to PI3K activation (222).  As previously mentioned, 

phosphoproteomic data also support the proper localization of p85 to the phosphorylated 

Tyr731 and Tyr742 residues of the PDGFα-receptor, an event that would augment PI3K 

activation via the same mechanism.  Phosphoproteomic data in support of PI3K 

activation corroborates previously published evidence regarding the activation of PI3K, 

by a yet undefined mechanism, leading to the phosphorylation/activation of Akt on 

Ser473 following ectopic PRL3 expression (103). 

Finally, evidence in support of Ras-independent ERK1/2 activation that is highly 

relevant with respect to the phosphoproteomic data present in our model is the Pak1 and 

Src-mediated phosphorylation/activation of Raf1 on Ser338 and Tyr340/341, respectively 

(223-224).  

Signal transducer and activator of transcription (STAT) proteins are latent 

cytoplasmic transcription factors that transduce signals from the cell membrane to the 

nucleus upon activation by tyrosine phosphorylation and subsequent dimerization 

induced by a variety of transmembrane cytokine receptors and RTKs (225-226).  

Important to this investigation, the Src-dependent activation of STAT3 downstream of 

PDGF-stimulation and PDGFβ-receptor association is well-recognized (201, 227-229).  

Following membrane localization, STATs are activated by Src-mediated Jak-dependent/-
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independent mechanisms, including the constitutive tyrosine phosphorylation and 

activation of STAT3 as well as Jak1 in v-src transformed cells (226, 230-237).  

Phosphoproteomic data support the phosphorylation/activation of Jak1 as well as two 

STAT-family members STAT3 and 5B through phosphopeptides representing pTyr1034 

(1027AIETDKEY[PO3
2-]YTVK) of Jak1 as well as pTyr705 (686YCRPESQEH 

PEADPGSAAPY[PO3
2-]LK) of STAT3 and pTyr699 (695AVDGY[PO3

2-]VKPQIK) of 

STAT5B shown to be up 6-fold and exclusively present by SILAC in the PRL3 cells, 

respectively.  Constitutive STAT3 activation is associated with various human cancers 

and commonly suggests poor prognosis as it induces:  pro-proliferative, pro-angiogenic, 

pro-metastatic, pro-inflammatory, and anti-apoptotic effects including being required for 

oncogenic Src-induced transformation (236-241). 

3.7 Discussion/Summary 

Despite a large amount of descriptive evidence at the gross-anatomical level 

implicating PRL3 as a causative factor toward cellular metastasis when overexpressed, 

mechanistic evidence is lacking at the molecular level in describing a putative signaling 

network that could be responsible for governing pro-metastatic molecular events 

downstream of PRL3.  Data from the field support the overexpression of PRL3 in a 

variety of cell culture models inducing the activation of numerous proto-oncogenic 

signaling effectors/modules including:  Integrin receptors, Rho-family GTPases, PI3K-

Akt, Ras/ERK, and the Src tyrosine kinase.  Collectively, these signaling 

effectors/modules are canonically activated following extracellular ligand-mediated 

stimulation of tyrosine phosphorylation.  How does the overexpression of a phosphatase 

‘tilt’ the natural regulation of tyrosine phosphorylation toward a stimulus that would 



64 
 

support the sustained activation of these effectors?  Additionally, what transmembrane 

receptors and molecular adaptors are tyrosine phosphorylated/activated to integrate this 

pleiotropic response? 

We expand upon a previously published observation that PRL3 is able to induce 

the aberrant activation of the Src tyrosine kinase when ectopically expressed in epithelial-

derived HEK293 cells (106).  In that report we present data in support of a sustained 

ligand-independent ‘global’ increase in tyrosine phosphorylation that we postulated 

would allow us a unique opportunity to extensively define the PRL3-mediated signaling 

network.  We chose to employ a novel phosphoproteomic strategy predicated upon a 

tandem phosphotyrosine-peptide enrichment using ‘pan’ pTyr-antibody 

immunoprecipitation and polymer-based metal ion affinity capture (PolyMAC) with 

titanium (Ti)-functionalized soluble nanopolymers/polyamidoamine-dendrimers (108).  

Through phosphotyrosine-peptide enrichment and tandem mass spectrometry we provide 

strong evidence in support of PRL3 driving aberrant Src kinase activation.  In addition to 

the presence of a multitude of putative Src substrates within the PRL3 phosphoproteomic 

dataset, a comparative analysis revealed that our PRL3 dataset has notable overlap with 

SrcY529F-MEF phosphoproteomic datasets generated by Rush (145) and Luo (146) 

concerning a variety of phosphoproteins known to regulate cytoskeletal dynamics and 

mitogenic signal transduction.  Additionally, significant overlap also exists between 

phosphoproteins shown to have exclusive or increased presence in the PRL3 dataset and 

phosphoproteins associated with the parental MEF dataset, providing the first 

phosphoproteomic evidence in support of fibroblast/mesenchymal-like signal 

transduction taking place in cells following PRL3 expression.  Additional proteomic data 
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support the mesenchymal state including the exclusive presence of a phosphopeptide 

representing pTyr117 (114FANY[PO3
2-]IDKVR) of the mesenchymal marker, vimentin as 

well as an increased abundance of vimentin and related intermediate filament proteins 

including:  peripherin (+3.35-fold), desmin (+2.64-fold), alpha-internexin (+2.64-fold), 

glial fibrillary acidic protein (+2.64-fold), and vimentin (+2.0-fold) as assessed by a 

‘label-free’ quantitative tandem mass spectrometry approach (117-119), in the PRL3 cells 

(data not shown).  Data show that while Src activity has significant penetrance within the 

PRL3 phosphoproteomic dataset, the phosphoproteome induced following PRL3 

expression is largely unique with ~67% of phosphoproteins (74; 101 pTyr-residues) not 

present in either of the Src529F-MEF/MEF datasets.  One of the most significant 

‘unique’ phosphoproteins within this study is PAG1, a tumor suppressor and Src negative 

regulator shown to consistently have 6 phosphotyrosyl-residues exclusively present 

within the vector control datasets.  PAG1 represents the most attractive candidate within 

our model of Src activation to be either a substrate of PRL3 or an immediate indirect 

target of PRL3 activity.  Interestingly, both the phosphorylation state and the 

expression/stability of PAG1 have been shown to be attenuated in Src-transformed cells 

as well as in the metastatic progression of colorectal cancer (CRC), a cancer type where 

aberrant Src activity is prominent and the expression of PRL3 has been shown to be 

highly correlative with cancer grade and prognosis (79, 144, 242).  The magnitude of 

unique phosphotyrosyl-proteins within the PRL3 dataset suggests that the 

phosphoproteomic “finger print” from PRL3-mediated Src activation is distinct from that 

of constitutive Src activation. 
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Our phosphoproteomic investigation has allowed us to uncover a rich signal 

transduction network downstream of a mitogenic and chemotactic PDGF (α and β), Eph 

(A2, B3, B4), and Integrin (β1 and β5) receptor array.  Collectively, these receptors are 

highly significant to the biology of migratory mesenchymal cells during development as 

well as during acute wound healing in the adult animal (148, 164, 181).  Our model is 

based upon an experimentally-derived hypothesis that these receptors act predominately 

as signal coordinators rather than signal initiators, augmenting the Src-dependent 

intracellular activation of critical effectors including:  FAK-Src, Rho-family GTPases 

(i.e. Rac1 and Cdc42), Ras-ERK1/2, JNK1, PLCγ1, PI3K, and Jak-STAT3 proteins 

toward pro-metastatic bioprocesses.   

Surprisingly, we found that the PDGFβ-receptor displays constitutive Src-

dependent tyrosine phosphorylation and is selectively expressed and/or stabilized in the 

PRL3 cells.  This data puts the PDGFβ-receptor prominently in a discussion regarding 

significant molecular responses associated with PRL3 expression for a variety of reasons 

including:  (i) signaling from the PDGFβ-receptor has major implications in 

developmental neo-vascularization and in tumor-angiogenesis (181), (ii) signaling 

effectors coordinated by the PDGFα-receptor, such as Shp2 and PLCγ1, only exert their 

maximum biological effect when a heterodimer is formed with the PDGFβ-receptor (198, 

200), and (iii) in multiple ‘global’ phosphoproteomic investigations documenting the 

phosphoproteomes of mesenchymal-MEF cells stably expressing the constitutively active 

SrcY529F mutant (145-146), no phosphorylation is observed on either of the PDGF-

receptors, suggesting a unique role for these receptors within our model of PRL3-induced 

aberrant Src activation.   
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Finally, the constitutive Src-dependent phosphorylation/activation of PLCγ1 at 

Tyr783 in the PRL3 cells makes this lipase a new and important figure in the discussion 

regarding significant molecular responses associated with PRL3 expression.  Importantly, 

through the hydrolysis of PIP2, a phosphoinositide that has relevance towards being 

regulated by PRL3 both in-vitro and in-vivo (103, 219), PLCγ1 induces the activation of 

the proto-oncogenic PKC-family of serine/threonine-kinases that drive pro-tumorigenic 

and pro-metastatic signals through various signaling effectors including ERK1/2, 

glycogen synthase kinase-3 beta (Gsk-3β), nuclear factor kappa beta (NFκβ), and P-

glycoprotein (216).  PKC activity is historically associated with tumor promotion 

following an initial DNA damaging initiating event, through studies using phorbol 12-

myristate 13-acetate (PMA), a DAG mimetic that induces prolonged PKC activation.  

Our model supports the activation of classical (c)- and novel (n)-type PKC isoenzymes, 

those that require Ca2+ and DAG (classical) or simply DAG (novel) for their activation.  

In general, sustained activation of c-PKC isoenzymes through the aberrant activity of 

various oncogenic signaling effectors such as the effectors present in the PRL3 cells leads 

to increased proliferation, inhibition of apoptosis, invasion, inhibition of cell junctions, 

and multi-drug resistance.   

Our unbiased phosphoproteomic approach has afforded us the ability to document 

how PRL3-mediated Src kinase activation results in the cumulative activation of effectors 

shown by the field through a variety of candidate approaches to be associated with the 

biology of PRL3.  The vast majority of publications in the PRL3 field highlight PRL3 

transcript as well as protein being overexpressed in a variety of advanced neoplasms or 

metastases originating from a multitude of physiologically distinct tissues (79, 130-131), 
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suggesting a fundamental role for this phosphatase in driving cellular behaviors that are 

necessary to gain selective advantage toward metastatic dissemination when in excess.  

The PRL3-mediated signaling network documented in this investigation highlights how 

aberrant Src kinase activation can pleiotropically affect a multitude of disparate cellular 

behaviors that would be necessary to augment the metastatic dissemination of neoplasms 

derived from many physiologically distinct tissues.  Ongoing efforts are devoted to 

identifying a putative substrate(s) of PRL3 so that our model can be further refined within 

the context of this substrate(s). 
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CHAPTER 4:  FUNCTIONAL INSIGHTS INTO LEOPARD SYNDROME-

ASSOCIATED SHP2 MUTATIONS 

4.1 Introduction 

The Src homology-2 (SH2) domain-containing protein tyrosine phosphatase 

(SHP2), encoded by the Ptpn11 gene, is a critical signal transducer downstream of 

growth factor and cytokine receptors (63).  Biochemical and genetic evidence have 

characterized SHP2 as an upstream activator of Ras, a key enzyme in the regulatory 

network that underlies growth factor/cytokine-induced cell proliferation and survival.  

Importantly, the phosphatase activity of SHP2 is required for full activation of the Ras-

extracellular signal-regulated kinase (ERK1/2) cascade (63).  Numerous germ-line as 

well as somatic mutations have been discovered to arise within the Ptpn11 gene, leading 

to aberrant SHP2 mutant enzymes which contribute to the pathogenesis of several human 

diseases.  Mutations that arise within the germ-line Ptpn11 gene, lead to SHP2 mutant 

enzymes that drive the pathogenesis of a pair of neuro-cardio-facio-cutaneous (NCFC) 

sydromes termed Noonan syndrome (NS) and LEOPARD (an acronym for its clinical 

features of multiple Lentigines, ECG conduction abnormalities, Ocular hypertelorism, 

Pulmonic stenosis, Abnormal genitalia, Retardation of growth and Deafness) syndrome 

(LS).  NS is a relatively common autosomal dominant disorder that afflicts ~1 in 1000 

live births, while LS is a much more rare autosomal dominant disorder that shares many 

clinical phenotypic features with NS (83-84, 243).  In addition to being very difficult to 

diagnostically distinguish during childhood, NS and LS share many common features in 

adulthood including:  short stature, facial dysmorphism, heart defects and a 

predisposition to hematological malignancies including juvenile myelomonocytic 
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leukemia.  Additionally, somatic mutations arising within the Ptpn11 gene, lead to SHP2 

mutants that primarily drive the pathogenesis of various leukemias (86, 244-247) as well 

as solid tumors (87, 248). 

SHP2 is a ubiquitously expressed cytoplasmic protein tyrosine phosphatase (PTP) 

with two tandem SH2 domains positioned at its amino-terminal end (249).  The most N-

terminal SH2 domain (N-SH2 domain), is currently understood to be critical to both 

catalytic activation and catalytic inhibition.  In a latent state, SHP2 exists in a ‘closed’ 

autoinhibited conformation due to the N-SH2 domain physically occluding the active site 

of the PTP domain (62, 250-252).  Upon mitogenic stimulation, SHP2 binds directly to 

tyrosine-phosphorylated motifs, via its SH2 domains, present in growth factor receptors 

and associated adaptor/scaffolding proteins.  This action concomitantly targets SHP2 to 

its physiological substrates and allows the active site to become catalytically competent 

(250-251, 253). 

The most extensive assessment of the regulatory interaction that the N-SH2 

domain makes with the PTP domain was documented following the analysis of the first 

crystal-based structure of SHP2 (residues 1-527) lacking the final 66-residues making up 

the C-terminal end of the PTP domain (62).  The SHP2 crystal structure shows the 

inactive ‘closed’ form of this enzyme, where the N-SH2 domain makes extensive 

intramolecular interactions with the PTP domain while physically occluding the active 

site.  A structural comparison of an isolated N-SH2 domain, both in the absence of and in 

complex with a pTyr-peptide shows that this domain binds pTyr-ligands on the opposite 

face with respect to the face that binds the PTP domain.  Conformational alterations 

observed upon pTyr-ligand binding reveal that the N-SH2 domain may act as an 
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allosteric ‘switch’ and it was postulated that the N-SH2 domain’s interaction with the 

PTP domain in a latent state and its interaction with pTyr-ligands in an active state are 

mutually exclusive, thus communicating with negative cooperativity (62). 

Although SHP2 mutations are associated with a number of developmental and 

neoplastic disorders, the precise mechanism by which mutations in SHP2 cause disease 

remains poorly understood.  The complete spectrum of NS and neoplasia-associated 

SHP2 mutations cluster within the interface region created by the N-SH2 and PTP 

domains.  Evidence, generated from both in-vitro and in-vivo experimentation, reveal that 

these mutations confer gain-of-function (GOF) effects to SHP2, presumably by 

alleviating the autoinhibitory effect of the N-SH2 domain upon the catalytic active site 

(109-113).  Interestingly, SHP2 mutations associated with NS and various neoplasias are 

common with regard to the site of mutation, but differ in the amino acid substitution with 

neoplasia-associated mutations being more activating to SHP2’s apparent catalytic 

function.  This evidence suggests that, with regard to SHP2 function, NS and neoplasia 

are ‘spectrum’ disorders.  Alternatively, LS-associated SHP2 mutations cluster in and 

around the catalytic active site of the PTP domain and result in mutant enzymes with 

impaired catalytic abilities, relative to wild-type.  It is currently unknown whether LS-

associated SHP2 mutations compromise the interaction made between the N-SH2 and 

PTP domains, a property inherent to GOF mutants.  These genetic and biochemical 

findings generate a conundrum specifically between NS and LS.  How do mutations that 

provoke opposite effects to the catalytic function of SHP2 cause phenotypically similar 

disorders? 
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To address this question, we hypothesized that LS-associated SHP2 mutations 

alter not only SHP2 phosphatase activity but also its molecular switching mechanism to 

drive disease outcomes.  Our results concerning two of the most recurrent LS-associated 

SHP2 mutants, Y279C and T468M, reveal that although LS-SHP2 mutants are 

catalytically impaired and adopt a ‘closed’ conformation, they have an increased 

propensity for the ‘open’ conformation.  As a result, these LS-SHP2 mutants bind 

upstream activators preferentially and stay longer with scaffolding adaptors.  The ability 

to loiter for longer periods of time would give these mutants the ability to prolong 

specific substrate turnover, which would compensate for their reduced phosphatase 

activity.  The ability to outcompete the WT enzyme for phosphotyrosyl-binding motifs 

due to a compromised ability of the N-SH2 domain to uphold intramolecular 

autoinhibition, is postulated to be a general property associated with all SHP2 pathogenic 

mutants and essential for GOF biological effects to be realized, in-vivo. 

Our data support a notion that the totality of catalytically impaired LS-SHP2 

mutants may have the capacity to engender GOF phenotypes, similar to their 

NS/neoplasm-SHP2 mutant counterparts.  Interestingly we also provide evidence that 

supports LS being a ‘spectrum’ disorder that, along with NS and various neoplasias, is 

caused by SHP2 pathogenic mutants with differential capacities for catalysis and 

intramolecular autoinhibition. 

4.2 LS-associated SHP2 mutants are catalytically impaired 

 As a preface to the work presented in this document, we determined kinetic 

parameters for the hydrolysis of para-nitrophenyl phosphate (pNPP) by the full-length 

(FL, residues 1-528) and catalytic domain (CD, residues 246-547) of wild-type SHP2, the 
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most representative GOF mutants D61Y and E76K, and two of the most recurrent LS 

mutants Y279C and T468M.  Table 4A shows biochemical data in support of the full-

length wild-type SHP2 enzyme being in an autoinhibited closed conformation as the 

specific activity of the full-length enzyme is just 5% of the isolated catalytic domain.  

Supporting the expectation that GOF mutants exist in an open, activated state, full-length 

D61Y and E76K display catalytic parameters that are no different than the isolated wild-

type catalytic domain.  Conversely, the catalytic parameters for the isolated catalytic 

domains of the Y279C and T468M LS-SHP2 mutants show that the catalytic activities 

are 26- and 46-fold lower than that of the wild-type counterpart, providing evidence of 

their catalytic impairment.  Furthermore, the kcat values for the full-length Y279C and 

T468M enzymes are still 5- and 13-fold lower than those of their corresponding catalytic 

domains.  This data suggest that full-length Y279C and T468M exist in a closed, 

autoinhibited conformation.  A comparison between the kcat values for the FL-enzymes 

and their CD couterparts reveals that the Y279C and T468M FL-enzymes are 4.2- and 

1.6-fold less inhibited than the FL-WT enzyme.  Data show that these LS-SHP2 mutants 

have N-SH2 domains that are less able to uphold intramolecular autoinhibtion, relative to 

the WT enzyme.  In support of these mutants existing in a closed, autoinhibited 

conformation, full activity is restored to the Y279C enzyme when Glu76 is replaced by a 

Lys residue, which likely disrupts the autoinhibitory mechanism. 

 In an additional set of kinetic experiments performed using newly purified 

constructs, the catalytic parameters for the hydrolysis of para-nitrophenyl phosphate 

(pNPP) by the full-length (FL, residues 1-528) and catalytic domain (CD, residues 246-

547) of wild-type SHP2, the most representative GOF mutants D61Y and E76K, a 
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neoplasia-associated catalytic domain-directed mutant T507K, and all seven documented 

LS-SHP2 mutants (Y279C, A461T, G464A, T468M, R498L, Q506P, and Q510E) were 

measured.  Table 4B shows biochemical data in support of all seven LS-SHP2 mutants 

having a wide range of impaired catalytic abilities relative to the WT-enzyme.  As it 

pertains to the isolated catalytic domain, all seven LS-SHP2 mutants show catalytic 

activities that are:  14- (Y279C), 42- (Q506P), 60- (T468M), 211- (G464A), 221- 

(R498L), 423- (Q510E), and 2180- (A461T) fold lower than WT, suggesting that each 

mutation uniquely perturbs the catalytic chemistry inherent to the WT-enzyme.  Cysteine-

dependent phosphatases (CDPs) utilize three structural elements to coordinate the 

chemistry necessary to efficiently carry out the phosphate monoester hydrolysis reaction, 

the pTyr-loop (DB-loop), P-loop (MG-loop), and Q-loop (HI-loop).  The pTyr-

recognition loop is critical to substrate phosphotyrosine docking/positioning with the 

critical and highly conserved Tyr279 residue setting the depth of the catalytic cleft and its 

side chain π-π stacks with the benzene ring of pTyr to assist substrate recognition and 

dephosphorylation (Figure 12), similar to its cognate Tyr46 of PTP1B (254).  The P-loop 

(phosphate-binding loop) contains the active site signature motif (458HCSAGIGR) with 

the catalytic cysteine (Cys459) responsible for nucleophilic attack of the substrate 

phosphorus atom to create a covalent phospho-cysteine-intermediate.  The Q-loop forms 

the backside of the active site and coordinates the chemistry of Gln506 (specifically the 

side chain amide) to position a water molecule for active site regeneration (e.g. 

nucleophilic attack, following deprotanation by Asp425 of the ‘WPD’-(LF)-loop, to 

hydrolyze the phospho-cysteine-intermediate and recreate the Cys459 nucleophile).  All 

seven LS-SHP2 mutations are directed in and around these structural elements (pTyr-
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loop-directed; Y279C) (P-loop-directed; A461T, G464A, T468M) (Q-loop-directed; 

R498L, Q506P, Q510E) and are postulated to uniquely perturb the coordinate chemistry 

leading to catalytic inefficiency.  Interestingly, when the catalytic activity of each 

mutant’s isolated catalytic domain is compared with the catalytic activity displayed by 

the corresponding full-length construct a disparity emerges where the two most recurrent 

LS-SHP2 mutants Y279C and T468M are further inhibited by 14- and 26-fold, 

respectively, suggesting that full-length Y279C and T468M exist in a closed, 

autoinhibited conformation, while all of the other catalytically impaired LS-SHP2 

mutants are not further inhibited, suggesting that they do not exist in a closed, 

autoinhibited conformation, relative to their more recurrent counterparts or to the WT-

enzyme.  A fastidious exception can be made regarding the autoinhibitory competency of 

the Q506P mutant’s N-SH2 domain (kcat (CD/FL) ~3-fold).  Biochemical data support a 

trend in which LS-SHP2 enzymes with the most severe impairment to the catalytic 

mechanism display the least degree of catalytic autoinhibition.  As it pertains to 

catalytically impaired LS-SHP2 mutants, linking catalytic competency to the 

autoregulatory ‘switching’ mechanism would make catalytic activity relevant to a 

discussion about disease pathogenesis. 

4.3 LS-SHP2 mutants exhibit increased propensity for the open conformation 

4.3.1 The N-SH2 domain is an inefficient competitive inhibitor to LS-SHP2 mutant 

catalytic domains 

 As a preface to the work presented in this document, we determined the first 

crystal-based structure of a pathogenic SHP2 mutant, the LS-SHP2 Y279C mutant.  

Though the crystal structure showed the Y279C mutant in a closed, autoinhibited 
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conformation, similar to the WT-enzyme, analysis of the molecular interactions present 

within this structure, revealed that the Y279C mutation perturbs both catalytic activity 

and the ability of the autoinhibitory (D’E)-loop of the N-SH2 domain to effectively 

interact with and occlude the catalytic active site of the PTP domain (Figure 12).  

Specifically, Y279C alters the substrate recognition surface constituted by Tyr279, 

Lys364, and Lys366.  Substitution of Tyr279 with Cys abrogates the interaction of the 

phenol side chain with Asp61 and Tyr62 in the D’E loop of the N-SH2 domain.  The 

substitution also affects the positioning of several nearby residues (Lys364, Lys366, 

Arg362, and His426) involved in binding the N-SH2 domain.  Our kinetic parameters 

also support this in that the catalytic activity displayed by the wild-type full-length 

construct is 40-fold less than the wild-type isolated catalytic domain, while the catalytic 

activity displayed by the Y279C full-length construct is 14-fold less than the Y279C 

isolated catalytic domain.  The full-length constructs (1-528) used in these biochemical 

experiments encompass both the N-SH2 and C-SH2 domains through the 1-245 range 

preceding what is used for the catalytic domain (246-547).  Corroborating previously 

published results showing that the N-SH2 domain is predominately responsible for 

catalytic autoinhibition (62), the Y279C crystal structure reveals, for the first time, that 

naturally occurring pathogenic mutations target the N-SH2/PTP domain interaction 

toward alleviating intramolecular autoinhibition.  Both structural and biochemical data 

support the Y279C mutant having an increased propensity for the open conformation 

when in the context of relevant biological stimulation. 

 To provide additional evidence in support of a decreased intermolecular 

interaction between the N-SH2 and PTP domains of SHP2 pathogenic mutants, we 
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measured the ability of isolated WT N-SH2 domain (4-103) to inhibit the phosphatase 

activity of each of the LS-SHP2 mutant catalytic domains (224-528).  Biochemical data 

suggest that the E76K N-SH2 domain is incompetent towards inhibiting the catalytic 

active site of the PTP domain, therefore the isolated E76K N-SH2 domain was used as a 

positive control for ‘no inhibition’ against the isolated wild-type PTP domain in these 

inhibitor experiments.  As expected from our current knowledge of the structure and 

function of the SHP2 enzyme, the isolated N-SH2 domain acts as a competitive inhibitor 

of the SHP2 catalytic domain-catalyzed pNPP hydrolysis (data not shown).  Table 5 

shows biochemical data in support of the isolated WT N-SH2 domain being a very weak 

if not completely inefficient competitive inhibitor to each of the LS-SHP2 mutant isolated 

catalytic domains.  It is to note that the A461T mutant remains designated 

‘Undetermined/No Inhibition’.  This designation is due to the fact that because the 

A461T mutant displays an almost undetectable catalytic signature when pNPP is used as 

a substrate, it makes determining the Ki with a measure of consistency very difficult.  

Biochemical data show that the wild-type N-SH2 domain inhibits the Y279C catalytic 

domain with a Ki (11.3 ± 0.3μM) that is 10-fold higher, the G464A catalytic domain with 

a Ki (74.8 ± 4.3μM) that is 58-fold higher, the T468M catalytic domain with a Ki (2.6 ± 

0.1μM) that is 2-fold higher, the Q506P catalytic domain with a Ki (41.9 ± 1.3μM) that is 

32-fold higher, and the Q510E catalytic domain with a Ki (128 ± 3.7μM) that is 98-fold 

higher than the inhibition of the WT catalytic domain Ki (1.3 ± 0.05μM).  The R498L 

catalytic domain shows no inhibition out to 200μM by the WT N-SH2 domain.  These 

observations support the kinetic data presented earlier in that LS-SHP2 mutants have 

either an increased propensity for the open conformation (e.g. Q510E > G464A > Q506P 
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> Y279C > T468M; (A461T)) or generally exist in an ‘unstimulated’ open conformation 

(e.g. R498L (A461T)) similar to the GOF E76K mutant.  The catalytically-competent 

T507K PTP domain is inhibited ~32-fold less than the WT PTP domain by the WT N-

SH2 domain, providing further evidence that Q-loop-directed mutations disrupt the 

autoregulatory mechanism governing SHP2 function. 

4.3.2 The N-SH2/PTP domain interaction is exploited by pathogenic mutations afflicting 

intact SHP2 enzymes towards alleviation of intramolecular autoinhibition 

4.3.2a The LS-associated SHP2-Y279C mutant experiences compromised intramolecular 

autoinhibition as a consequence of mutation 

 As a preface to the work presented in this document, we used hydrogen-deuterium 

exchange mass spectrometry (H/DX-MS) as a tool to directly measure both the tendency 

of SHP2 pathogenic mutants to adopt an ‘open·active’ conformation in solution and the 

location where the pathogenic mutations are most affecting the natural intramolecular 

interactions present in the WT enzyme toward this open·active state.  Data derived from 

this technique is necessary as to date, our Y279C crystal structure shows no evidence of 

an open·active conformation and only indirect biochemical evidence supporting 

pathogenic SHP2 mutants adopting open·active states is available in the field.  H/DX-MS 

is uniquely suited for the task of monitoring the differential solution-phase dynamic 

conformational alterations inherent to the various SHP2 pathogenic mutants, relative to 

the WT-enzyme.  Briefly, when intact/native SHP2 enzymes are incubated with 

deuterium oxide (D2O; 2H2O) detectable hydrogen·deuterium exchange (hereafter 

referred to as hydrogen exchange) will occur at the backbone amide bond with rates 

proportional to the degree by which each amide hydrogen is exposed to the bulk solvent.  
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Amide hydrogen atoms that are not protected from the bulk solvent by physical occlusion 

or intramolecular interaction will be quickly exchanged with deuterium atoms, while 

those amide hydrogens that experience a degree of protection remain unaffected by 

hydrogen exchange.  Each hydrogen exchange that occurs, accounts for a 1 Da increase 

in physical mass of the enzyme that can be monitored by mass spectrometry.  In 

experimental H/DX-MS a time course is chosen (e.g. 5s-5h) so that hydrogen exchange 

over time can be plotted and assessments of the degree by which physical regions of 

intact proteins are protected from exchange can be made.  In comparative analyses, this 

methodology can provide insight into protein structure and function and reveal enigmatic 

regulatory mechanisms not readily observed with other techniques.  Reviews of H/DX-

MS theory and methodology can be found in (123, 255).  Documentation of the H/DX-

MS methods used in this work can be found in the methods section.  Figure 13 is a flow 

chart of both the native/intact and peptide-based H/DX-MS experimental methodology 

used in this investigation. 

Structural, biochemical, and physiological data put the interdomain region created 

by the intramolecular interaction made between the N-SH2 domain and the catalytic PTP 

domain as the most significant location that would experience exposure to the 

surrounding solvent under stimulatory or mutational circumstances.  H/DX-MS has the 

capacity to monitor the magnitude by which this interdomain region becomes exposed to 

bulk solvent as a consequence of mutation and was chosen to provide additional support 

to our initial investigation of the LS-SHP2 Y279C mutant exhibiting increased propensity 

for the open conformation, while existing in a closed, autoinhibited state.  We used 

peptide-based H/DX-MS to provide direct evidence of both the increased propensity of 
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the Y279C mutant to adopt an open·active conformation and where the most significant 

alteration to the tertiary structure is taking place due to mutation.  The GOF E76K mutant 

is used in this investigation as a reference for hydrogen exchange magnitude and location 

experienced in a ‘true’ SHP2 open enzyme state.  Figure 14 shows that in comparison 

with the wild-type enzyme, a number of peptides in E76K, located in the interface 

between the N-SH2 domain and the PTP domain, display significant increase in 

deuterium incorporation.  Within the N-SH2 domain, these peptides reside in the D’E 

loop and adjacent B, C, D, D’, E and F β strands, structural elements known to participate 

in binding the PTP domain.  Within the PTP domain, these peptides represent the 

catalytic loops at the active site, including the P-loop, the pTyr-recognition loop, loop-

βF-loop, and the Q-loop.  Given the lack of inhibition of the PTP domain by N-

SH2/E76K, the observed increase in deuterium uptake surrounding the N-SH2 and PTP 

binding site suggests that the binding interface is solvent exposed, providing the first 

direct evidence that E76K exists in an open·active conformation.  Hydrogen exchange 

data show that Y279C also displays enhanced deuterium uptake in the interface region 

between the N-SH2/PTP domains, albeit to a lesser degree to the peptides observed in 

E76K.  This result indicates that the Tyr279 to Cys mutation causes dynamic 

perturbations and increased conformational flexibility to residues in the N-SH2/PTP 

binding interface and supports our finding that the N-SH2 domain of Y279C has a lower 

affinity for its PTP domain.  Moreover, the result also validates our hypothesis that the 

Y279C mutant has an increased tendency to adopt the open conformation. 

Prior to the initial Y279C H/DX-MS study it was unknown whether LS-

associated SHP2 mutants that cause catalytic impairment result in mutant enzymes with 
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compromised affinity between their N-SH2 and PTP domains, a property inherent to 

GOF NS/neoplasia-associated SHP2 mutants.  The H/DX-MS data provide the first direct 

evidence that pathogenic SHP2 mutations exploit the autoinhibitory mechanism leading 

to an increased propensity for SHP2 pathogenic mutants to adopt an open enzyme state.  

Biochemical data show that the degree by which the catalytic domain is inhibited by the 

N-SH2 domain varies widely across LS-SHP2 pathogenic mutants, while also showing a 

trend in which LS-SHP2 enzymes with the most severe impairment to the catalytic 

mechanism display the least degree of catalytic autoinhibition, thus linking catalytic 

competency to the autoregulatory ‘switching’ mechanism.  As an extension to the initial 

Y279C investigation, we were interested in the hydrogen exchange properties of all 

naturally occurring catalytically impaired LS-SHP2 mutants with a hypothesis that all 

LS-SHP2 mutations which cause catalytic impairment also alleviate intramolecular 

autoinhibition.  This property could then be regarded as a general trend associated with 

LS-SHP2 mutants, thus linking them to their GOF NS/neoplasia-SHP2 mutant 

counterparts through a property that is absolutely required for GOF biological effects to 

be realized, in-vivo. 

4.3.2b H/D-exchange within intact/native LS-SHP2 mutant enzymes reveals a disparity 

between mutants with pTyr-/P-loop-directed mutations and those with ‘Q’-loop-directed 

mutations 

We chose to commence our investigation by monitoring differential hydrogen 

exchange within intact/native SHP2 enzymes to get a general sense of the degree by 

which each enzyme’s PTP domain experiences N-SH2 domain-mediated autoinhibition.  

While little information can be gained regarding the ‘hot-spots’ of differential hydrogen 
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exchange observed between the mutant and WT enzymes, hydrogen exchange at the 

native protein level can be used in a comparative analysis to assess the overall impact that 

mutation has upon the inherent dynamic conformational flexibility observed in the WT 

enzyme.  The Y279C study has already provided us with data in support of increased 

hydrogen exchange occurring within the interface region present between the N-SH2 and 

PTP domains, thus any increase/decrease in deuterium labeling to SHP2 pathogenic 

mutants, relative to WT, at the native level can be assumed to be taking place within this 

region.  Complete documentation of the native H/DX-MS methods used in this 

investigation can be found in the methods section.  Briefly, native WT and mutant SHP2 

enzymes were exposed to D2O (2H2O) for various periods of time ranging from 5sec to 

1h to establish net hydrogen exchange over time that will be used in comparative 

analyses.  Upon quenching the reaction at low pH and at cold temperatures, native 

enzymes were immediately loaded onto a reverse phase (RP) analytical column, eluted 

isocratically, and subsequently electrosprayed into a linear ion trap mass spectrometer for 

mass analysis.  Figure 15 shows the general quality of data used in this investigation, 

including representative raw mass spectra showing hydrogen exchange over time to a 

native SHP2 enzyme.  Following deconvolution of the enzyme’s multi-charge (m/z) 

envelope, average total mass was plotted to generate a deuterium incorporation over time 

plot.  We measured hydrogen exchange in all reported native LS-associated SHP2 (1-

528) mutant enzymes:  Y279C, A461T, G464A, T468M, R498L, Q506P and Q510E.  To 

generate points of reference, we measured hydrogen exchange to native SHP2-WT, GOF 

Leukemia/NS-associated (-D61Y and -E76K) and solid tumor-associated -T507K mutant 

enzymes.  Both D61Y and  E76K mutations are N-SH2 domain-directed and are known 
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from both in-vitro and in-vivo experimentation to induce catalytic activation, presumably 

through compromising the regulatory interaction made between their corresponding N-

SH2 and PTP domains.  Conversely, the T507K mutation is PTP domain-directed and sits 

directly between the LS-associated SHP2 mutations Q506P and Q510E on the catalytic 

structure known as the ‘Q’(HI)-loop.  Unlike the LS-associated SHP2 mutations, which 

are also PTP domain-directed, the T507K mutation does not disturb catalytic function 

(248 as well as our data), making it relevant to a discussion regarding the possibility that 

PTP domain-directed pathogenic mutations that cause catalytic impairment also cause 

compromised affinity between the regulatory N-SH2 domain and the catalytic PTP 

domain.  Figure 16 shows a bar-chart representation of the complete H/DX-MS results 

for all SHP2 enzymes under investigation.  Data show that at the native protein level the 

LS-associated SHP2 mutants:  G464A, R498L, Q506P and Q510E take in a significant 

net positive deuterium over time, while the exchange observed in the remaining mutants:  

Y279C, A461T and T468M is net zero, relative to the WT enzyme.  Corroborating the 

biochemical data presented in (Table 5) regarding the ability of the isolated WT N-SH2 

domain to competitively inhibit each LS-SHP2 mutant PTP domain, hydrogen exchange 

data reveal a similar trend in that those mutants which experience the largest magnitude 

of hydrogen exchange are the same mutant PTP domains that are weakly inhibited by the 

WT N-SH2 domain (H/DX:  RL > QP~QE > GA > YC ~TM > AT) (Ki:  RL > QE > GA 

> QP > YC > TM, (AT - undetermined). 

In summary, hydrogen exchange data to native SHP2 enzymes reveals:  (i) like 

GOF D61Y and E76K mutants, PTP domain-directed, and more specifically ‘Q’-(HI) 

loop-directed mutations (R498L, Q506P, Q510E and T507K) create mutant enzymes that 
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take in significant net positive amounts of deuterium over-time, relative to WT, (ii) with 

the exception of the G464A mutation which resides within the αG-helix, PTP domain-

directed mutations that reside further away from the ‘Q’-loop (Y279C; DB-loop) or 

deeper within the active-site pocket (A461T; MG-loop, T468M; αG-helix) create mutant 

enzymes that take in net zero amounts of deuterium over-time, relative to WT, and (iii) 

unlike the D61Y and E76K mutants, all of the net positive exchanging mutants with PTP 

domain-directed mutations take longer times to accumulate net positive deuterium 

amounts, suggesting that N-SH2 domain-directed mutations cause much more significant 

alterations to the conformational flexibility of the native SHP2 structure in solution.  

Interestingly, both biochemical and H/DX data show that the most recurrent LS-SHP2 

mutants Y279C and T468M take in the least amount of deuterium over time, suggesting 

that they experience the most significant intramolecular autoinhibition of all LS-SHP2 

mutants.  Conversely, data suggest that the catalytic ‘Q’-loop could be an ‘Achilles’ heel’ 

with regard to mutational-disruption of N-SH2 domain-mediated intramolecular 

autoinhibition.  Why is there such a disparity between the LS-SHP2 mutants with regard 

to catalytic inefficiency and the inherent defect in the capacity for intramolecular 

autoinhibition by the N-SH2 domain? 

4.3.2c H/D-exchange analysis at the peptide-level reveals that the catalytic ‘Q’-loop is an 

‘Achilles’ heel’ with regard to mutational-disruption of N-SH2 domain-mediated 

intramolecular autoinhibition 

Deuterium exchange to native SHP2 enzymes provides insight into the notion that 

LS-associated SHP2 mutations that cause catalytic impairment also induce significant 

alterations to the dynamic conformational flexibility inherent to the native SHP2 structure 
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in solution.  A subset or ‘class’ of these mutants display conformational flexibilities that 

are similar in magnitude to those inherent to GOF SHP2 mutants.  In light of the 

intramolecular negative regulatory mechanism associated with SHP2 function described 

earlier, further insight into the hydrogen exchange properties of these mutants might 

uncover regions that are predominately exploited by pathogenic mutations in efforts to 

disturb the N-SH2/PTP domain interaction leading to an increased propensity for the 

enzyme to become ‘opened’ in the presence of competing pTyr-ligands, in-vivo.  

Hydrogen exchange at the peptide level will afford a more resolved understanding of this 

notion and provide more insight into particular regions that experience increased or 

decreased dynamic conformational flexibility in solution due to mutation, relative to WT. 

In order to address the question of whether LS-associated SHP2 mutations cause a 

weakening of the interaction the N-SH2 domain makes with the PTP domain, leading to 

an ‘open’ enzyme state, we chose to monitor hydrogen exchange at the peptide level to 

get a more resolved understanding of where ‘regional’ exchange differences occur, 

relative to WT.  We measured the hydrogen exchange properties of the GOF 

Leukemia/NS-associated SHP2-E76K and -D61Y mutants to establish points-of-

reference for known ‘open·active’ states to be used in comparative analyses with LS-

associated SHP2 mutants.  Complete documentation of the relevant peptide-based H/DX-

MS methods used in this work can be found in the methods section.  Briefly, native WT 

and mutant SHP2 enzymes were exposed to D2O (2H2O) for various periods of time 

ranging from 5sec to 1h to establish net hydrogen exchange over time that will be used in 

comparative analyses.  Following native enzyme deuterium labeling, peptic peptides were 

generated at low pH and at cold temperatures using the pepsin endoproteinase during the 
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reaction quenching step.  Peptides were immediately loaded onto a reverse phase (RP) 

analytical column, chromatographically separated in-time using a steep gradient of 

acetonitrile, and subsequently electrosprayed into a mass spectrometer for mass analysis.  

Figure 17 shows the general quality of the peptide data including representative mass 

spectra of parent ions experiencing deuterium incorporation over time and the unbiased 

processing steps used to convert the raw spectra into weighted average mass (WAM) 

values for deuterium incorporation over time plot construction.  A total of 46 peptic 

peptides, across all experimental groups, representing ~95% of the SHP2 (1-528) 

sequence, were used to generate the data for this analysis.  Figure 18 shows a two-

dimensional (2-D) plot of the location of all 46 peptic peptides within the primary amino 

acid sequence of SHP2 (1-528).  Corresponding 2º-structures are labeled and color-coded 

based upon domain arrangement so that each peptide can be associated with a relevant 2º-

structure present within the three-dimensional (3-D) enzyme.  In this investigation, 

enzymes are compared based upon significant differences in hydrogen exchange over 

time to equivalent peptides as documented per figure presented.  Table 6 represents a 

comprehensive ‘heat-map’ representation of the hydrogen exchange differences observed 

in all SHP2 pathogenic mutant enzymes under investigation, relative to WT.  In this 

view, hydrogen exchange to peptides derived from the WT enzyme per time is considered 

‘base-line or zero’ (where WT is all ‘grey’).  Based upon the legend provided, significant 

differences (both positive and negative) in hydrogen exchange over time to peptides 

derived from SHP2 mutant enzymes are color-coded based upon magnitude of difference, 

relative to corresponding WT peptides.  A color designation is only provided for mutant 

peptides that maintain a significant difference over their WT counterpart for at least two 
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successive time points to limit false positives due to technical variability.  Additionally, 

each (WAM) value presented is an average of a triplicate measurement per time point.  A 

mutant peptide exchange difference that achieves (+0.4-0.7 Da; green) over the 

corresponding WT peptide is at marginal significance in hydrogen exchange and is 

regarded as having slight exposure to the bulk solvent.  All other values between +0.7 

and >2.0 (yellow, orange, and red) are regarded as very significant and are within regions 

experiencing considerable exposure to the bulk solvent, relative to corresponding WT 

regions.  Figures 19-28 represent the data present in Table 6 as 3-D ‘heat-map’ plots for 

all SHP2 pathogenic mutants under investigation.  The N-SH2, C-SH2, and PTP domains 

as well as corresponding 2º-structural elements are labeled in the primary (5s) time point.  

The catalytic Cys459 is labeled for active site orientation. 

SHP2 is understood to exist predominately in two states:  a ‘closed’ inhibited state 

in which the regulatory N-SH2 domain physically occludes the active site while making 

extensive intramolecular interactions with the catalytic PTP domain (62, 250-252) and an 

‘open’ active state in which the regulatory N-SH2 domain associates with 

phosphotyrosyl-ligands (pTyr-ligands), thus freeing the PTP domain’s active site from 

intramolecular autoinhibition (62-63, 250-252).  The N-SH2 domain’s D’E (auto-

inhibition)-loop (58NTGDY62) represents the most significant structure of the 

intramolecular negative regulatory network present between the N-SH2 and PTP 

domains, due to its role in occluding the active site of the enzyme and making extensive 

contacts with residues associated with key mechanistic structures in the ‘closed-inhibited’ 

state including:  the catalytic cleft proper (MGloop-αG) (S460, A461, I463, G464, R465), 

substrate coordination loops:  ‘pTyr’(DB)-loop (Y279, I282) and FH-loop (R362, K364, 
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K366), ‘WPD’(LF)-loop (D425, H426, G427) and the ‘Q’(HI)-loop (Q506, T507, Q510).  

The N-SH2 domain is said to act as an ‘allosteric’ switch, in that key structures must shift 

their position to accommodate a pTyr-ligand and in so doing lose complementarity with 

PTP domain structures to which they were previously bound, a postulation known as 

‘negative cooperativity’ (62).  Specifically, the position of the αB-helix and secondary 

sheet (βD’, βE, βF), change with respect to the αA-helix and central sheet (βB, βC, βD) 

which remain fixed.  Significant movement of the βE-EFloop-βF structure, with the EF-

loop as a key ‘gate-keeper’ structure towards pTyr-ligand association, would act to 

completely displace the D’E-loop from allosteric occlusion of the enzyme’s active site. 

As the interdomain region present between the N-SH2 and PTP domains is to be 

solvent exposed following SH2 domain association with pTyr-ligands or by mutational 

consequence, H/DX-MS represents a relevant technique to monitor this conformational 

state transition.  Here, H/DX-MS data provide the first direct evidence of a common 

mechanism employed by N-SH2 domain-directed GOF E76K and D61Y mutations to 

generate an ‘open’ enzyme state in solution.  Due to the sheer magnitude of dynamic 

conformational alterations caused by the E76K mutation, relative to those caused by the 

D61Y mutation, we chose to use the hydrogen exchange profiles of the E76K mutant to 

highlight the common mechanism by which an ‘open’ enzyme state is achieved.  Data 

presented in (Figure 19) as well as (29A and 29C) show that the net positive hydrogen 

exchange observed within the native E76K mutant focuses within the interface region 

formed between the N-SH2 and PTP domains, providing further credibility to the 

currently accepted regulatory mechanism associated with SHP2 function.  Within the 

PTP domain, the (451-469) peptide representing the catalytic cleft proper (FMloop-βM-
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MGloop-αG) as well as the (496-504) and (505-511) peptides representing the 

catalytically essential ‘Q’-loop structure (αH-‘Q’(HI)-loop-αI) at the back-side of the 

active site exchange significantly more hydrogen by early time points, providing 

evidence that the active site could be constitutively open and free from occlusion by the 

N-SH2 domain’s D’E-loop, relative to WT.  The interface region between the N-SH2 and 

PTP domains goes as far back as the αB helix of the PTP domain, a distance of ~20Å 

from the ‘gate-keeper’ D’E-loop of the N-SH2 domain.  The (252-261) peptide 

representing the αB helix exchanges significantly more hydrogen by early time points in 

E76K, relative to WT.  The time and magnitude by which significant exchange is 

observed within the active site as well as to the distant αB helix provides conclusive 

evidence that the entire interdomain region is solvent exposed in the E76K mutant, 

relative to WT.  This is further supported by earlier biochemical evidence showing that 

the Lys76 mutant N-SH2 domain inhibits the WT PTP domain at least 200-fold weaker 

than the WT N-SH2 domain inhibits the WT PTP domain.  In continued support that the 

N-SH2 domain’s D’E-loop is completely displaced from occluding the active site, key 

mechanistic structures mentioned earlier that make critical intramolecular contacts with 

the D’E-loop in the ‘closed-inhibited’ enzyme state, including the substrate coordination 

loops:  ‘pTyr’(DB)-loop region represented by the (262-292) peptide and associated (βC-

CDloop-βD) region represented by the (304-308 and 315-334) peptides as well as the 

FH-loop region represented by the (356-374) peptide, also exchange significantly more 

hydrogen in the E76K mutant, signifying that the intramolecular interactions they make 

with the D’E-loop are significantly weakened, making their conformations highly 

dynamic, relative to WT.  It is relevant to note that the Km for substrate has not changed 
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for the E76K mutant, revealing that the structures that coordinate substrate are 

conformationally ‘sound’, but exist in a highly dynamic ‘active’ state. 

In light of the fact that H/DX-MS data show that the native E76K mutant 

exchanges much more hydrogen by early time points than the native WT enzyme and that 

this exchange difference has been shown by peptide analysis to be localized largely to the 

interface region formed between the N-SH2 and PTP domains, it would not be surprising 

that the E76K N-SH2 domain would exist in an ‘open’ state in solution, relative to the 

WT N-SH2 domain.  In fact, we believe that our H/DX-MS data show direct evidence of 

the ‘negative cooperativity’ postulation towards an ‘open’ N-SH2 domain state (62, 256), 

being supported in the E76K mutant.  It is important to note that because H/DX-MS 

monitors backbone amide hydrogen exchange, it is difficult to decipher to what face of 

the N-SH2 domain exchange differences are actually occurring, relative to WT.  Taking 

into consideration that H/DX-MS data show that backbone amide hydrogen atoms of the 

PTP domain are completely solvent exposed and assuming that the ‘negative 

cooperativity’ postulation is indeed true, differences in exchange to the E76K N-SH2 

domain are occurring to both faces and revealing a state that is ‘free’ from interdomain 

regulation.  Figure 19 as well as (29B and 29C) show that significantly increased 

hydrogen exchange by the earliest time points, penetrates into structures of the E76K N-

SH2 domain consistent with the conformational alterations documented to take place 

within this domain upon pTyr-ligand association.  Specifically, the (44-62) and (63-71) 

peptides representing the N-SH2 domain’s D’E-loop and the secondary sheet structure 

(βE-EFloop-βF) respectively, exchange significantly more hydrogen by early time points 

in the E76K mutant, relative to WT.  This data provide evidence that the ‘gate-keeper’ 
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auto-inhibitory D’E- and pTyr-ligand-binding EF-loops are pulled away from the active 

site, a key observation previously documented while describing the significant 

conformational alterations that take place within the N-SH2 domain when it is in a pTyr-

ligand-bound ‘active’ state (62, 256-257).  These ‘initiating’ conformational alterations to 

an ‘open’ N-SH2 domain state, allow for further increased exchange to be seen within the 

(αA-ABloop) region represented by the (19-29) peptide, which leads to the central sheet 

(βB-BCloop-βC) region, represented by the peptides (30-43) and (44-62).  Importantly, 

these regions, along with the secondary sheet (βE-EFloop-βF) and BG-loop ‘gate-keeper’ 

regions form a ‘groove’ for pTyr-ligand association.  Increased exchange observed within 

the pTyr-ligand ‘groove’ signifies that this region is in a conformation that resembles an 

‘open-active’ ‘pTyr-ligand-bound’ state.  Additionally, the (30-43) peptide contains the 

BC-loop structure that represents an apparent regulatory loop whose function is to either 

block or allows access to the essential Arg32 residue that makes coordinate contact with 

the pTyr-residue of the bound pTyr-ligand, depending upon the conformational state of 

the N-SH2 domain.  Significantly increased hydrogen exchange to the (βB-BCloop) 

region shows that it is conformationally more dynamic and provides evidence that the 

essential Arg32 residue is exposed, a mark that the E76K N-SH2 domain is in an ‘open’ 

state, relative to the WT N-SH2 domain.  Figure 29D shows the hydrogen exchange 

‘heat-map’ for the E76K N-SH2 domain at the 1 min. time point of deuterium labeling 

modeled on the (A-state) phosphotyrosyl-peptide-bound N-SH2 domain as documented 

by (256; PDB: 1AYA).  The color-coded 1AYA structure is superimposed upon our WT 

(3OLR) structure (grey) in order to show that increased hydrogen exchange is occurring 

to the exact regions that are shown to undergo conformational alterations upon 
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phosphopeptide-binding, suggesting that the E76K N-SH2 domain is in an ‘open·active’ 

conformation in solution due to the magnitude by which interaction with the PTP domain 

has been compromised because of mutation. 

The Glu76 residue resides within the N-SH2 domain’s αB-helix, an essential 

structure located between the critical EF- and BG-loops previously documented to be 

‘gate-keepers’ toward pTyr-ligand association (62).  Glu76 predominately associates with 

Arg265 of the PTP domain’s αC-helix through an electrostatic interaction (a water-

mediated hydrogen bond).  Upon mutation to Lys76, a significant repulsive force 

between Lys76 and Arg265 causes interdomain instability at the immediate sites of the 

N-SH2 domain’s αB-helix and the PTP domain’s αC-helix.  Within the N-SH2 domain, 

this loss of conformational integrity translates immediately to the secondary sheet 

structure (βE-EFloop-βF) which includes the ‘gate-keeper’ EF-loop, leading immediately 

to the autoinhibitory D’E-loop.  H/DX-MS elegantly shows the magnitude of 

conformational disturbance created within the immediate region surrounding the Lys76 

mutation.  As observed in (Figures 19 and 29), peptides representing the N-SH2 domain’s 

EF-loop (63-71; βE-EFloop-βF) and D’E-loop (44-62; βC-CDloop-βDβD’-D’Eloop) and 

the PTP domain’s αC-helix (262-292; BCloop-αC-CDloop-αD-DBloop-βB) exchange 

significantly more hydrogen at early time points, relative to WT.  These significant 

conformational alterations transfer immediately to the N-SH2 domain’s auto-inhibitory 

D’E-loop causing it to be significantly displaced from occluding the active site. 

This mechanism is common to the D61Y mutant as well, albeit with hydrogen 

exchange differences occurring with smaller magnitudes and at longer times than those 

observed between E76K and WT as can be seen in (Table 6).  An AspTyr mutation 
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within the D’E-loop would alter the strength of interactions that Asp61 makes with the 

FH-loop residues Arg362 and Lys366 and the αG-helix residue Arg465, changing 

electrostatic interactions to weaker H-bonds.  Interestingly, the destabilizing force to the 

D’E-loop is not as complete as that created by the E76K mutation as observed by the 

(356-374) peptide, which contains the FH-loop residues Arg362 and Lys366, showing no 

appreciable difference in exchange, relative to WT.  The conformational aberration 

created by the D61Y mutation is directed more toward the (βE-EFloop-βF) region most 

likely by significantly disturbing the conformation of the DB-loop and the π-π stacking 

interaction made by the DB-loop’s Tyr279 residue with the D’E-loop’s Tyr62 residue.  

H/DX-MS data show that the D61Y mutation causes immediate conformational 

disturbance to the final residue (Y62) of the much longer peptide (44-62) shown in E76K 

to experience significant hydrogen exchange over its entire length.  This aberration 

continues to the (βE-EFloop-βF) region represented by the (63-71) peptide, but to slightly 

less magnitude in exchange as compared to the corresponding peptide in E76K.  Due to 

the D61Y mutation causing a conformational disturbance to the D’E-loop that is slightly 

smaller in magnitude than that caused by the E76K mutation, a concomitant smaller 

degree of exchange to the active site is also observed, relative to E76K.  Furthermore, no 

exchange significance can be observed to the distant αB-helix of the PTP domain, 

signifying that the entire interdomain region is not completely solvent exposed as it is in 

the E76K mutant.  Additionally, a smaller in magnitude change to the dynamics of other 

critical regions of the N-SH2 domain associated with pTyr-ligand binding is also 

observed in the D61Y mutant, signifying that the D61Y N-SH2 domain has not adopted 

an ‘open’ state as pronounced as the E76K N-SH2 domain. 
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Our group has in manuscript a thorough investigation describing the biochemical, 

biophysical and biological properties of the LS-SHP2-Y279C pathogenic mutant.  In this 

report we proposed a mechanism by which the Y279C mutation causes both 

compromised catalytic ability as well as a loss of interaction potential between the N-

SH2 and PTP domains leading to an N-SH2 domain that is more easily displaced by 

competing pTyr-ligands, in-vivo.  We postulated that the observations made in studying 

the Y279C mutant could be carried over as general phenomenon to all LS-associated 

SHP2 pathogenic mutants.  It is our hypothesis that all seven documented LS-associated 

SHP2 mutations (Y279C, A461T, G464A, T468M, R498L, Q506P and Q510E) are 

‘selected-for’ in contributing to the pathogenesis of LS due to their ability to 

concomitantly cause both compromised catalytic ability as well as cause a loss of 

interaction potential between the N-SH2 and PTP domains leading to an ‘open’ enzyme 

state.  Additionally, based upon H/DX-MS results generated from exchange to native 

SHP2 enzymes in solution, it is our hypothesis that the magnitude by which each LS-

associated SHP2 mutations causes a loss of interaction potential between the N-SH2 and 

PTP domains is dependent upon the specific site of the mutation with two specific 

‘classes’ emerging:  those mutations that exist shallower into the interdomain region, 

specifically in and around the catalytic cleft proper (pTyr-/P-loops) (Y279C, A461T, 

G464A and T468M) and those mutations that exist deeper into the interdomain region, 

specifically in and around the ‘Q’(HI)-loop (R498L, Q506P and Q510E). 

To our amazement, H/DX-MS performed at the native level to all LS-SHP2 

mutants revealed that there exists class of ‘exchangers’ that display similar exchange 

magnitudes in solution to the known GOF ‘open-active’ SHP2 mutants (E76K and 
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D61Y) under investigation.  Surprisingly, these mutants (R498L, Q506P and Q510E) all 

harbor mutations that are directed to the mechanistically/catalytically critical ‘Q’(HI)-

loop region (αH-‘Q’(HI)loop-αI).  As the catalytically impaired LS-SHP2 mutant R498L 

represents the most significant hydrogen exchanger with exchange magnitudes similar to 

the GOF E76K mutant, we chose to use R498L to explain how ‘Q’-loop-directed 

mutations cause both compromised catalytic ability as well as an ‘open’ enzyme state in 

solution.  We believe our data show that LS-SHP2 mutations that are able to impart 

significant conformational challenges to both the ‘Q’-loop and catalytic cleft proper are 

able to significantly affect the conformation of the N-SH2 domain’s D’E-loop.  

Alternatively, LS-SHP2 mutations that impart much weaker challenges to these regions 

are not able to induce a strong conformational disturbance to the D’E-loop resulting in 

apparent affinities between the N-SH2 and PTP domains that are similar to WT.  We 

have included a solid tumor-associated pathogenic SHP2 mutant (T507K) in this analysis 

as it is ‘Q’-loop-directed, but does not have any effect upon the apparent catalytic 

function of the enzyme, to corroborate data associated with the ‘Q’-loop-directed LS-

SHP2 mutants.  Our data support the catalytically essential ‘Q’ (HI)-loop being an 

‘Achilles’ heel’ with regard to mutational-disruption of N-SH2 domain-mediated 

intramolecular autoinhibition.   

The Arg498 residue, as part of the PTP domain’s αH-helix, inserts itself directly 

between the PTP domain’s ‘Q’(HI)-loop and αB-helix and acts to stabilize the 

conformational positions of these two structures by simultaneously forming multiple 

interactions including:  H-bonds with the main-chain carbonyl oxygen of the ‘Q’-loop 

residues (Gly503, Met504, Val505 and Gln506) and the side-chain primary amines of the 
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αB-helix residue Gln255 and the αH-helix residue Gln495.  Additionally, Arg498 makes 

a strong electrostatic interaction with Glu257 of the αB-helix.  H/DX-MS reveals both the 

local and far-reaching consequences that mutation to Leu498 imparts upon the 

conformational dynamics of this enzyme in solution.  Though the overall magnitude of 

hydrogen exchange is similar to the E76K mutant at the native level, exchange at the 

peptide level reveals that the mechanism by which the R498L mutation affects the N-SH2 

domain’s D’E-loop is relatively more indirect.  Exchange at the native level confirms 

this, as the major difference between exchange in the E76K mutant and the R498L 

mutant is at the very early time points, signifying that the perturbation imparted to the 

D’E-loop by the E76K mutation is more direct than that imparted by the R498L mutation.  

Figure 25 as well as (29A and 29C) show data depicting how the R498L mutation 

imparts both local and far-reaching consequences to the catalytic function of the enzyme 

and to the stability of the N-SH2/PTP domain interaction.  In contrast to the mechanism 

by which E76K alleviates intramolecular autoinhibition explained earlier, the contact lost 

between Arg498 and the residues of the ‘Q’(HI)-loop and αB-helix upon mutation, causes 

significantly increased conformational dynamics to the (βN-NHloop-αH) region 

represented by the (486-496) peptide and the (αG-GNloop) region represented by the 

(470-485) peptide that ultimately lead into and form the αG-helix, where residues of the 

catalytic signature motif (HCSAG463IGR465) reside.  Furthermore, the PTP domain-

directed dynamic conformational alterations caused by the R498L mutation are larger in 

magnitude than the same alterations observed while following exchange in the E76K 

mutant.  Specifically, (Figure 29A) shows that peptides representing the catalytic cleft 

proper (451-469; FMloop-βM-MGloop-αG), ‘Q’(HI)-loop (496-504; αH-HIloop) (505-
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511; HIloop-αI), substrate-coordination (356-374; βE-EFloop-βF-FHloop) region and 

associated (315-334; CDloop-βD-DEloop) exchange more hydrogen over time in the 

R498L mutant than do the corresponding peptides in the E76K mutant.  It is interesting to 

note that between the two substrate coordination loops known to make critical 

interactions with the D’E-loop, the FH-loop represented by the (356-374) peptide is 

significantly more dynamic in the R498L mutant, but the DB-loop represented by the 

(262-292) peptide is significantly more dynamic in the E76K mutant, especially by early 

time points.  It is evident that the repulsive force that the E76K mutation has upon the 

Arg265 residue of αC-helix, which precedes the DB-loop, creates a very significant 

destabilizing force to the D’E-loop that translates in magnitude further into the N-SH2 

domain.  Conversely, the magnitude of conformational instability caused by the distant 

R498L mutation to the substrate coordination FH-loop, containing the Arg362 and 

Lys366 residues that make two important electrostatic interactions with the D’E-loop’s 

Asp61 residue, is much more significant as it further translates down through the (βH, βI, 

βJ) sheet.  The conformational alterations mentioned above caused by the R498L 

mutation have profound consequences on the ability of the N-SH2 domain’s D’E-loop to 

interact and physically occlude the active site, but due to the more indirect route that the 

R498L mutation takes relative to E76K mutation, the magnitude of exchange differences 

observed in the N-SH2 domain is smaller in the R498L mutant, relative to the E76K 

mutant.  Figures 25, 29B, and 29C shows that the far-reaching effects of the R498L 

mutation to the structures of the N-SH2 domain are weaker in magnitude than those 

caused by the E76K mutation.  Specifically, the functionally critical regions of the N-

SH2 domain associated with pTyr-ligand association mentioned earlier including:  the 
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(44-62) and (63-71) peptides representing the N-SH2 domain’s auto-inhibition (D’E)-

loop and the secondary sheet structure (βE-EFloop-βF) as well as the (19-29) peptide 

representing the (αA-ABloop) region leading to the central sheet (βB-BCloop-βC), 

represented by the peptide (30-43), show significant hydrogen exchange in the R498L 

mutant, but the exchange takes longer to be detected and is smaller in magnitude than that 

observed to all comparative peptides from the E76K mutant.  H/DX-MS data at the native 

and peptide levels reveal that both E76K and R498L exist in an ‘open’ enzyme state in 

solution, but achieve this ‘open’ enzyme state by two distinct mechanisms:  E76K 

influences the conformation of the D’E-loop through perturbing N-SH2 domain 

structures more directly and strongly, while the R498L mutation influences the D’E-loop 

more indirectly through perturbing PTP domain structures associated forming the active 

site, which also explains the compromised catalytic function associated with this mutant.  

Figure 29D shows the hydrogen exchange ‘heat-maps’ for the R498L and E76K N-SH2 

domains at the 1 min. time point of deuterium labeling modeled on the (A-state) 

phosphotyrosyl-peptide-bound N-SH2 domain as documented by (256; PDB: 1AYA).  

The color-coded 1AYA structure is superimposed upon our WT (3OLR) structure (grey) 

in order to show that increased hydrogen exchange is occurring to the exact regions that 

are shown to undergo conformational alterations upon phosphopeptide-binding, 

suggesting that the E76K N-SH2 domain is in an ‘open·active’ conformation in solution 

due to the magnitude by which interaction with the PTP domain has been compromised 

because of mutation. 

Similar in mechanism to the conformational perturbations caused by the R498L 

mutation, the other ‘Q’-loop-directed mutations, Q506P and Q510E, also compromise the 
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interaction made between the D’E-loop and the enzymes active site, but in a more subtle 

manner.  Similar to the R498L mutant, the Q506P mutant experiences significant, albeit 

smaller in magnitude, exchange to the βN-NHloop-αH (486-496) and the αG-GNloop 

(470-485) regions.  It is to note experimentally that, unlike all other mutants under 

investigation, both the (496-504) and (505-511) peptides representing the critical 

‘Q’(HI)-loop region (αH-HIloop-αI) were not identified following database query and 

were also not identified in the raw mass spectra during manual data processing for the 

Q506P mutant.  It could be reasoned that the Q506P mutation within the (505-511) 

peptide could lead to a very poor ion signal, but the missing (496-504) peptide signal 

suggests that the conformation of the ‘Q’(HI)-loop (αH-HIloop-αI) region is such that 

efficient digestion by pepsin is not possible.  A profound conformational alteration to the 

‘Q’(HI)-loop (αH-HIloop-αI) region caused by the Q506P mutation could lead to similar 

consequences as those observed in the R498L mutant, but hydrogen exchange data reveal 

that the magnitude of change is not as dramatic in the Q506P mutant, thus leading to 

more subtle changes to the catalytic cleft proper (451-469; FMloop-βM-MGloop-αG) as 

well as the substrate-coordination (356-374; βE-EFloop-βF-FHloop) region and 

associated (315-334; CDloop-βD-DEloop) region.  The weaker conformational 

alterations are further confirmed by much less pronounced exchange penetrating to the N-

SH2 domain as compared to that observed in the R498L mutant.   

Similar in nature and magnitude to the Q506P mutant, the Q510E mutant 

experiences increased exchange to the αG-GNloop (470-485) region, but not to the βN-

NHloop-αH region (486-496) as observed in R498L and Q506P signifying that the 

mutational consequences caused by the Glu510 mutation do not go through the βN-
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NHloop-αH region, but do significantly affect the conformation of the αG-helix leading 

to the catalytic cleft proper.  This could be explained in that the Gln510 side chain makes 

a polar interaction with Thr468 residue of the αG-helix, thus stabilizing the 

conformations of these two structures in the WT enzyme.  HDX-MS data within the αG-

GNloop (470-485) region suggest that the Q510E mutation, which has the potential to 

form a stronger H-bond interaction with the Thr468 hydroxyl group, does not adopt a 

favorable conformation for this interaction to take place possibly because the 

electronegative acid side chain of Glu510 is present within a hydrophobic pocket created 

by Trp423 and Val428 of the ‘WPD’(LF)-loop, Val505 of the ‘Q’(HI)-loop and Ile514 of 

the αI-helix.  Additionally, if the electronegative Glu510 residue did remain in the same 

relative conformation it would have a repulsive affect upon the N-SH2 domain’s D’E-

loop residue Asp61.  HDX-MS data supports the latter model as the (44-62) peptide 

representing the D’E-loop exchanges more deuterium and is therefore more 

conformationally dynamic in the Q510E mutant than the Q506P mutant.  This effect is 

further translated to the N-SH2 domain where slightly more significant penetrance of 

deuterium to other regions of the N-SH2 domain including peptides representing the βE-

EFloop-βF region (63-71) and the βB-BCloop-βC region (30-43) are observed in the 

Q510E mutant, relative to the Q506P mutant.  Biochemical data generated from using the 

free WT N-SH2 domain as an inhibitor to each LS-associated mutant PTP domain further 

confirms the magnitude by which the ‘Q’-loop-directed LS-SHP2 mutants exist in an 

‘open’ enzyme state in solution.  Specifically, the R498L mutant PTP domain is inhibited 

at least 200-fold weaker than the WT PTP domain, while the Q506P and Q510E mutant 
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PTP domains are inhibited at least 32- and 98-fold weaker than the WT PTP domain, 

respectively. 

Interestingly, the solid tumor-associated SHP2-T507K mutant shows the least 

dramatic exchange of all the ‘Q’-loop-directed pathogenic mutants.  Unlike the exchange 

observed to take place within the LS-SHP2 ‘Q’-loop-directed mutants described above, 

the T507K mutant does not show increased hydrogen exchange to peptides representing 

the βN-NHloop-αH (486-496) or αG-GNloop (470-485) regions and because of this it is 

postulated that the T507K mutation does not translate a strong effect through the ‘Q’-

loop and active site to destabilize the N-SH2 domain’s D’E-loop.  This is shown by 

significant exchange occurring within the T507K active site only after much longer times 

when compared to the other ‘Q’-loop-directed mutants.  Additionally, no significant 

exchange penetrates to structures of the N-SH2 domain worth mentioning in the T507K 

mutant.  Different from the other ‘Q’-loop-directed mutants, HDX-MS shows that the 

much weaker conformational disturbances to the ‘Q’-loop and catalytic cleft proper, 

caused by the T507K mutation, do not disrupt catalytic function, suggesting that this is 

the reason why T507K is not an LS-SHP2 mutation. 

The other LS-SHP2 mutant ‘class’ of exchangers noted earlier (Y279C, A461T, 

G464A and T468M) are all located very shallow within the interface region created by 

the N-SH2 and PTP domains with the Y279C mutation located on the surface of the 

enzyme within the DB-loop; a structure that is not contained within the interdomain 

region.  With the exception of the G464A mutant, the other three mutants show net zero 

hydrogen exchange at the native protein level, signifying that the conformational 

perturbations caused by these mutations are relatively minor when compared to WT.  



102 
 

Biochemical data shown earlier support that at least three of the LS-SHP2 mutants within 

this ‘class’ exist in an ‘open’ enzyme state in solution (i.e. have increased propensity for 

the open conformation).  A461T represents the only outlier within this group as it 

pertains to biochemical data agreeing with the magnitude by which each mutant 

exchanges net hydrogen.  This can be explained as crystallographic assessment of this 

mutant reveals that a new hydrogen bond has formed between the backbone carbonyl 

oxygen of the autoinhibition D’E-loop’s Asp61 residue and the hydroxyl group of the 

Thr461 mutation, thus apparently holding the N-SH2 domain’s D’E-loop down even 

tighter than that experienced in the WT enzyme.  Additionally, crystallographic 

assessment shows that the A461T mutation causes both the N-SH2 and C-SH2 domains 

to shift positions significantly about the PTP domain.  These shifted positions reveal that 

the A461T mutation has caused the PTP domain to be a poor topographical fit with the 

N-SH2 domain, thus leading to the very weak inhibitory capacity of the WT N-SH2 upon 

the A461T PTP domain observed during biochemical experiments.  HDX-MS data show 

that the new H-bond formed between Asp61 and Thr461 does indeed hold the D’E-loop 

down significantly more than that observed in WT as significantly less hydrogen is 

exchanged within the active site of the A461T mutant, relative to WT.  In fact, this is the 

only mutant that shows this effect in decreased exchange to the active site, relative to 

WT.  As the rate of deuterium penetrance into the active site is slowed due to the 

‘increased strength’ of the D’E-loop ‘gate’, further exchange significance to the 

interdomain region can’t be appreciated.  Though the complete interdomain region 

experiences no noticeable increase in hydrogen exchange relative to WT, three regions 

‘outside’ the interdomain region that are responsible for substrate coordination as well as 
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interaction with the autoinhibitory D’E-loop exchange significantly more hydrogen than 

WT (262-292; BCloop-αC-CDloop-αD-DBloop-βB) (284-303; DBloop-βB-BCloop-βC) 

(356-374; βE-EFloop-βF-FHloop).  Interestingly, these are the same regions shown to be 

significant to the disruption of intramolecular autoinhibition by the Y279C mutation of 

the LS-SHP2-Y279C mutant.   

Hydrogen exchange at the native level shows that the most significant exchange 

within this ‘class’ of exchangers occurs within the G464A mutant.  This seems to be due 

to the G464A mutation disrupting the conformation of the D’E-loop enough to allow for 

significantly increased exchange by early time points to be seen within the (451-469) 

peptide representing the catalytic cleft proper (FMloop-βM-MGloop-αG) and the (496-

504) peptide representing the ‘Q’-loop structure (αH-‘Q’(HI)-loop).  Significant 

exchange, but by later time points can be seen within the substrate coordination 

‘pTyr’(DB)-loop region (262-292) and associated βC-CDloop-βD region (304-308 and 

315-334), signifying that the destabilizing effect to the D’E-loop is not as significant as 

that seen within the E76K, D61Y, R498L, Q506P and Q510E mutants.  Interestingly, 

biochemical data show that the WT N-SH2 domain inhibits the G464A PTP domain 

almost 2-fold less than it inhibits the Q506P PTP domain.  Due to the Q506P mutation 

being a ‘Q’-loop-directed mutation, it would be postulated that the Q506P PTP domain 

would be less inhibited than the G464A PTP domain by the WT N-SH2 domain.  

Structurally, replacing a glycine residue with an alanine residue directly before the αG-

helix would suggest that the reason for this disparity could be due to the autoinhibitory 

D’E-loop being a poor topographical fit within the G464A active site.  H/DX data reveal 

that the (177-187) peptide representing the D’E-loop structure experience slightly 
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negative hydrogen exchange relative to WT, suggesting that in the intact mutant enzyme 

an aberrant interaction is present with the D’E-loop structure.   

As previously reported, the Y279C mutant incorporates significant deuterium into 

the active site (451-469; FMloop-βM-MGloop-αG) (496-504; αH-HIloop) as well as to 

the substrate coordination regions (262-292; BCloop-αC-CDloop-αD-DBloop-βB) (284-

303; DBloop-βB-BCloop-βC) that lie on the outside of the interdomain region, but by 

later time points, signifying that the destabilizing effect that the Y279C mutation imparts 

upon the D’E-loop is relatively weak compared to the ‘Q’-loop-directed LS-SHP2 

mutants or the G464A mutant from this ‘class’ of exchangers.   

Under the constraints of this methodology only marginal hydrogen exchange 

difference can be appreciated for the T468M mutant relative to WT.  The physical 

location of the Thr468 residue deep within the αG-helix makes it the most conservative 

location with respect to a mutation, such as methionine, to significantly perturb any 

secondary structural element that is critical to maintain the intramolecular autoinhibitory 

interaction.  The only significant interaction that Thr468 makes that could perturb 

catalytic function and create a marginal negative effect upon the autoinhibitory 

interaction when mutated to methionine, is a polar interaction with Gln510 of the ‘Q’-

loop region (HIloop-αI).  H/DX data show that a significant difference in hydrogen 

exchange can be appreciated to the substrate coordinating (356-374; βE-EFloop-βF-

FHloop) region, similar to many other SHP2 pathogenic mutants.  Biochemical data 

presented earlier support H/DX-MS data in showing the relatively minor effects the 

T468M mutation has upon the intramolecular autoinhibitory interaction.   
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It is worth noting that no exchange penetrance to the structures of the N-SH2 

domain can be observed for any mutant within this ‘class’ of exchangers, due to the much 

weaker ability of these specific mutations to cause dramatic conformational disturbances 

to the D’E-loop.  This evidence provides further credibility to the importance of the PTP 

domain’s ‘Q’-loop region (αH-‘Q’(HI)-loop-αI) as a major stabilizing force to the 

interactions that the PTP domain makes with the N-SH2 domain when the enzyme is in a 

‘closed-inhibited’ state.  LS-SHP2 mutations that are directed to the ‘Q’-loop region 

cause major instability to the autoinhibitory D’E-loop that is directed through both the 

‘Q’(HI)-loop and the αG-helix leading to the catalytic cleft proper.  Significant 

conformational disturbances directed to these regions are postulated to cause both 

compromised catalytic function as well as a compromised interaction between the N-SH2 

and PTP domains leading to mutants that predominately exist in an ‘open’ state, relative 

to the WT-enzyme.  Though other LS-SHP2 mutations that are not ‘Q’-loop-directed 

perturb catalytic function they predominately exist in a ‘closed-inhibited’ state, but are 

able to be more easily ‘opened’ by competing pTyr-ligands, relative to the WT-enzyme. 

4.4 Discussion/Summary 

 The molecular basis for SHP2 function is pTyr-ligand-induced alleviation of 

intramolecular autoinhibition of the catalytic active site by the N-SH2 domain following 

growth factor/cytokine stimulation of transmembrane receptors.  In a single action, the N-

SH2 domain induces catalytic activation by becoming free of intramolecular 

autoinhibition, while targeting this enzyme to the location of its putative substrates.  Due 

to this autoregulatory mechanism, the N-SH2 domain is said to be an elegant molecular 

‘switch’.  Consequently, the interaction that the N-SH2 domain makes with the catalytic 
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PTP domain in a latent state becomes exploited by a multitude of both germ-line and 

somatic mutations to drive disease pathogenesis.  The vast majority of these mutations 

impair the N-SH2 domain-mediated autoinhibitory mechanism without perturbing 

catalytic functionality, resulting in SHP2 pathogenic mutant enzymes that are capable of 

driving gain-of-function (GOF) biological effects in-vivo.  These GOF SHP2 mutants are 

known to be responsible for ~50% of documented Noonan syndrome (NS) cases as well 

as a variety of hematological malignancies and solid tumors.  Alternatively, a subset of 

mutations reside in and around the catalytic active site of the PTP domain and are known 

to cause catalytic impairment.  These catalytically impaired SHP2 mutants drive ~90% of 

documented LEOPARD syndrome (LS) cases, a rare autosomal dominant disorder that 

shares many clinical phenotypic features with NS as part of a family of neuro-cardio-

facio-cutaneous (NCFC) conditions known as ‘RASopathies’.  How do mutations which 

provoke opposite effects on SHP2 phosphatase activity cause phenotypically similar 

disorders? 

Prior to this investigation it was well understood that NS and LS-SHP2 mutants 

could be distinguished based upon catalytic competency, but what remained an enigma 

was whether LS-SHP2 mutants possessed incompetent autoinhibitory mechanisms, a 

general property associated with their GOF mutant counterparts.  In fact, a compromised 

autoinhibitory mechanism is the only biophysical property that creates a GOF SHP2 

mutant enzyme as these mutants possess wild-type catalytic domains.  Due to the fact that 

(i) LS-SHP2 mutations create catalytically ‘impaired’ enzymes, not catalytically ‘dead’ 

enzymes, (ii) no mutation afflicting the catalytic Cys459 residue has been documented to 

date (a mutation that would create a catalytically ‘dead’ enzyme), (iii) LS as well as NS 
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are heterozygous at the Ptpn11 locus and no haploinsufficient alleles have ever been 

documented (no nonsense mutations observed) in LS patients (83, 258), (iv) ubiquitous 

expression of LS-causing SHP2 alleles (Y279C and T468M) in Drosophila results in 

GOF phenotypes through increased EGFR-Ras-ERK1/2 signaling (259), which are 

similar to those of the NS-causing SHP2 mutant transgenic flies (260) (Importantly, the 

residual phosphatase activity of the LS mutants is required for the GOF developmental 

effects), (v) phosphorylation of MEK1, the upstream kinase of ERK1/2, and basal 

pERK1/2 levels are increased in induced pluripotent stem cells from LS patients (261), 

and (vi) LS-associated Raf1 GOF alleles have been discovered, providing more direct 

evidence that enhanced Ras-ERK1/2 signaling might be the cause of LS as well (262), we 

hypothesized that LS disease pathogenesis is augmented by catalytically impaired LS-

SHP2 mutant enzymes capable of engendering GOF phenotypes. 

 Using hydrogen-deuterium exchange mass spectrometry (H/DX-MS) we set out 

to provide direct evidence that the complete repertoire of catalytically impaired LS-

associated SHP2 mutant enzymes (Y279C, A461T, G464A, T468M, R498L, Q506P, and 

Q510E) experience incompetent autoinhibitory mechanisms, thus linking these mutants 

to their GOF SHP2 mutant counterparts through a property that is absolutely required for 

GOF biological effects to be realized, in-vivo.  The autoregulatory mechanism that 

governs SHP2 function relies upon an intramolecular interaction between the N-SH2 

domain and the catalytic PTP domain.  The interdomain region created by the N-

SH2/PTP domain-interaction is well-respected to become exposed to the bulk aqueous 

environment upon enzymatic activation via competing pTyr-ligands or mutation.  This 

dynamic conformational alteration can be exploited by a technique capable of labeling 
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the interdomain region upon alleviation of intramolecular autoinhibition.  As 1H2O is 

understood to naturally populate this region during enzymatic activation, 2H2O (D2O, 

deuterium oxide) can be effectively utilized as 1H2O-surrogate.  Natural hydrogen-

deuterium exchange within proteins is capable of being ‘trapped’ at the amide backbone 

position for mass-spectrometry analysis.  In deuterium buffer, amide hydrogen atoms 

become replaced by deuterium atoms when they are exposed to the bulk solvent and are 

not engaged in intramolecular interaction(s).  Each deuterium atom that becomes 

‘trapped’ accounts for a 1 Da addition to the mass of the protein that can be detected by 

mass spectrometry.  Deuterium labeling (hydrogen exchange) over time can provide a 

general sense of which regions of proteins are the least protected by physical occlusion or 

through intramolecular interactions.  With regard to the autoregulatory mechanism that 

governs SHP2 function, H/DX-MS is a technique capable of monitoring the magnitude 

by which pathogenic mutations induce catalytic activation by afflicting the natural 

intramolecular interaction that the N-SH2 domain makes with the PTP domain in the 

WT-enzyme. 

 As an essential and primary observation, H/DX-MS data show strong evidence in 

support of pathogenic SHP2 mutations afflicting the natural intramolecular interaction 

that the N-SH2 domain makes with the PTP domain in the WT-enzyme.  As a reference 

for what hydrogen exchange would ‘look like’ if a pathogenic mutation was capable of 

abrogating intramolecular autoinhibition, we used the well-recognized GOF 

Leukemia/NS-SHP2 mutant, E76K.  Through monitoring hydrogen exchange at both the 

native and ‘regional’ (peptide) levels, a comparative analysis of data derived from the 

E76K mutant and WT enzymes corroborated previously published structural, 



109 
 

biochemical, and physiological evidence that the N-SH2 domain is responsible for 

interacting with the catalytic PTP domain and upholding intramolecular autoinhibition.  

We set up this study to be a comparative analysis between the WT enzyme and LS-SHP2 

pathogenic mutant counterparts.  We postulated that if LS-SHP2 mutants are to be 

compared to their GOF SHP2 mutant counterparts, they should experience significant 

hydrogen exchange, relative to the WT enzyme, within regions that are in common with 

the GOF mutants.  In addition to the physical location of hydrogen exchange, H/DX-MS 

methodology provides the added dimensions of magnitude and time.  What did we learn 

about the enigmatic competency of intramolecular autoinhibition associated with the 

seven naturally occurring catalytically impaired LS-SHP2 mutant enzymes?  Our H/DX-

MS data provide strong evidence that 5 of the 7 LS-SHP2 mutants (Y279C, G464A, 

R498L, Q506P, and Q510E) have incompetent autoinhibitory mechanisms as they 

exchange significantly more hydrogen within the N-SH2/PTP domain interface region, 

relative to the WT enzyme.  Importantly, the peptides that experience significant 

deuterium incorporation, relative to the WT-enzyme, are the same peptides that 

experience significant deuterium incorporation in the GOF mutants (E76K and D61Y).  

Within the detection limits of this technique, an assessment cannot be made regarding the 

competency of intramolecular autoinhibition associated with the A461T and T468M LS-

SHP2 mutants.  It is to note, that our investigation of the mechanistic and biological 

properties associated with the Y279C LS-SHP2 mutant also included the T468M mutant.  

The T468M mutant was able to loiter for longer periods of time on the multi-tyrosine 

phosphorylated adaptor protein Gab-1 following EGF stimulation and in turn, induce 

prolonged activation of the Ras/ERK pathway, relative to the SHP2-WT enzyme (data 



110 
 

not shown).  Intriguingly, the marginal incompetency of the T468M mutant’s N-SH2 

domain to uphold intramolecular autoinhibition, as shown by both biochemical and 

H/DX-MS data, is sufficient to produce a significant biological effect, relative to the WT 

enzyme. 

 If the T468M mutant, which displays poor catalytic competency (~40-fold less 

than WT) as well as marginal incompetency of its N-SH2 domain to uphold 

intramolecular autoinhibition, is able to produce a significant GOF biological effect, why 

does such a disparity exist between all seven LS-SHP2 mutants with regard to the 

incompetency of their respective N-SH2 domains to uphold intramolecular 

autoinhibition?  In fact, H/DX-MS data reveal that LS-SHP2 mutants with mutations that 

are pTyr- or P-loop-directed experience significantly less hydrogen exchange within the 

N-SH2/PTP interdomain region than those mutants with mutations that are ‘Q’ (HI)-loop 

directed.  The LS-SHP2 R498L mutant experiences the most hydrogen exchange within 

the N-SH2/PTP interdomain region of all LS-SHP2 mutant enzymes.  Surprisingly, the 

R498L mutant exchanges hydrogen to a similar magnitude as the GOF E76K mutant; a 

biophysical phenomenon supported by both kinetic- and inhibitor-based biochemical 

data.  H/DX data derived from the R498L, Q506P, and Q510E mutants which possess 

‘Q’ (HI)-loop directed mutations suggest that the catalytic ‘Q’-loop is an ‘Achilles’ heel’ 

with regard to mutational-disruption of N-SH2 domain-mediated intramolecular 

autoinhibition.  It is of relevance to note that ‘Q’-loop-directed mutations are not 

exclusive to the LS-phenotype as various ‘Q’-loop-directed mutations have been 

associated with NS, NS/leukemia (NS/MGCLS, NS/JMML), and leukemia (JMML, 

ALL, AML, CMML, and MDS) phenotypes including:  R498W, R501K, S502(T,P,L), 



111 
 

G503(R,A), M504V, T507K, and Q510K (263).  Of these, we have acquired H/DX-MS 

data for the neoplasia-associated SHP2-T507K mutant and have documented that it, 

along with its ‘Q’-loop-directed LS-mutant counterparts, also experiences significantly 

impaired N-SH2 domain-mediated intramolecular autoinhibition (Table 6, Figures 16 and 

28).  There is currently no documented evidence of the catalytic competency or the 

ability of the N-SH2 domain to uphold intramolecular autoinhibition for any of the 

previously mentioned mutants, save for the T507K mutant which is known to maintain 

WT catalytic competency, but have a compromised autoregulatory mechanism (i.e. 

making T507K a true GOF mutant).  Of the three ‘Q’-loop-directed mutations associated 

with LS, the Q506P mutation raises interest in that, apart from its LS-designation, it also 

has been reported in NS and juvenile myelomonocytic leukemia (JMML) cases (263-

264).  Apart from its GOF SHP2 mutant counterparts that predominately drive the 

pathogenesis of NS and various hematological malignancies, including JMML, Q506P is 

undoubtedly catalytically impaired (e.g. against pNPP, Q506P-CD is 42-fold less active 

than WT-CD, while the Q506P-FL enzyme is 3-fold less active than WT-FL due to a 

marked inefficiency of its N-SH2 domain to uphold intramolecular autoinhibition).  

Additionally, Gln (Q)-506 is the residue that coordinates the H2O molecule that is 

essential to the final stage of the PTP catalytic mechanism in regenerating the catalytic 

active site to its original chemical orientation by potentiating the hydrolysis of the 

phospho-cysteine (thiophosphate) intermediate formed during substrate 

dephosphorylation.  Due to the recurrence of the Q506P mutation in multiple pathogenic 

conditions that are augmented by both catalytically impaired enzymes (i.e. LS) and GOF 

enzymes (i.e. NS and various neoplasias), it suggests that, with regard to SHP2 function, 
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LS, NS, and neoplasia (hematological malignancies and solid tumors) are on a 

‘spectrum’.  Figure 30 represents a hypothetical ‘spectrum’ of disease states and where 

the SHP2 pathogenic mutants that have been under investigation by our group would sit 

on this spectrum based upon their biophysical properties.  The order by which these 

mutants sit on this spectrum is based upon their in-vitro-derived kcat/Km value using pNPP 

as a substrate.  kcat/Km is used in enzyme kinetics to describe an enzyme catalytic 

efficiency, a property that depends upon, in the case of SHP2, the inherent catalytic 

competency as well as the ability of the substrate to be hydrolyzed (an action that is 

physically blocked by the N-SH2 domain’s autoinhibition (D’E)-loop, but do to mutation 

becomes incompetent towards upholding intramolecular autoinhibiton).  Q506P sits in 

the ‘grey area’ between LS and NS/neoplasia because, apart from its LS-SHP2 mutant 

counterparts, it retains significant catalytic activity while experiencing significantly 

impaired N-SH2 domain-mediated intramolecular autoinhibition.  Q506P provides 

evidence that catalytically impaired mutants are capable of giving rise to GOF 

phenotypes, based upon the extent by which they are catalytically impaired and 

experience perturbed N-SH2 domain-mediated intramolecular autoinhibition.  NS and LS 

are therefore ‘spectrum’ diseases potentiated by GOF SHP2 mutants that differ with 

respect to their inherent catalytic competencies, but are similar with respect to the 

compromised ability of the N-SH2 domain to uphold intramolecular autoinhibition. 

 The biochemical and H/DX-MS data presented in this investigation can only go 

so far in describing the biophysical properties of LS-SHP2 mutants as these experiments 

are designed to characterize isolated SHP2 enzymes.  Due to the fact that LS-SHP2 

mutants display a surprisingly wide range of compromised catalytic abilities and 
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autoregulatory mechanisms, it would be interesting to find out the different ‘LS disease 

states’ that each mutant potentiates and be able to trace these phenotypes back to each 

mutant’s inherent biophysical properties.  Additionally, we have to keep in mind that LS-

SHP2 mutant catalytic PTP domains are variants (mutants) of the WT PTP domain and 

thus have the potential to have altered substrate specificity.  Investigation is underway to 

understand the nature by which each of the seven documented LS-SHP2 mutants imparts 

GOF effects towards Ras/ERK signaling. 
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TABLES 

Table 1:  Vector·HEK293 Phosphoproteomic Dataset   

Protein ID 
(GI number) 

Protein Name 
(Gene symbol) 

pTyr-peptide (q-value; Mascot ion score; 
Sequest XCorr) 

PRL3/Vector 
Quant. Ratio 

(q-value; Mascot ion 
score; Sequest XCorr) 

Repro-
duced 

        

Cellular Communication and Signal Transduction 
        

Adaptor/Scaffold       

      

NP_066943 
(119943106) 

Disks Large Homolog 3 
(DLG3) 

R.RDNEVDGQDy673HFVVSR  4.29 (0; 31; 4.0) No 

NP_003740 
(38683860) 

Insulin Receptor 
Substrate 2 (IRS2) 

R.SSSSNLGADDGy653MPMTPGAALAGSGSGS
CR (0; 34) 

0.015 (0; 65; 4.28) Yes 

    R.SDDy675MPMSPASVSAPK (0; 32; 3.52) 
0.01 (0; 60; 3.46); Not in 
PRL3 

Yes 

    
R.SYKAPYTCGGDSDQy823VLMSSPVGR (0; 
34; 4.51) 

0.01 (0; 41; 3.97); Not in 
PRL3 

Yes 

    K.APYTCGGDSDQy823VLMSSPVGR  
0.01 (0; 73; 4.51); Not in 
PRL3 

No 

NP_006268 
(194294521) 

Intersectin-2 (ITSN2) R.EEPEALy968AAVNK (0; 29; 2.87)   No 

NP_071919 
(38570142) 

MAGUK p55 Subfamily 
Member 5 (MPP5) 

R.Vy243ESIGQYGGETVK 
0.01 (0; 33; 3.1); Not in 
PRL3 

No 

NP_003944 
(4506357) 

Myelin Protein Zero-like 
1 (MPZL1) 

K.SESVVy263ADIR (0; 31; 2.13) 0.213 (0; 44; 2.74) Yes 

    K.INKSESVVy263ADIR 3.80 (0; 60; 2.93) No 

NP_060910 
(63054864) 

Phosphoprotein 
Associated with 
Glycosphingolipid-
Enriched Microdomains 
1 (PAG1, CBP) 

R.SVDGDQGLGMEGPy163EVLK (0; 59; 4.53) 
0.01 (0; 59; 4.2); Not in 
PRL3 

Yes 

    K.AEFAEy227ASVDR (0; 58; 2.28) 
0.01 (0; 66; 2.68); Not in 
PRL3 

Yes 

    K.SREEDPTLTEEEISAMy317SSVNKPGQLVNK 
0.01 (0; 88; 4.99); Not in 
PRL3 

No 

    K.SGQSLTVPESTy341TSIQGDPQR (0; 73; 4.41) 
0.01 (0; 81; 4.61); Not in 
PRL3 

Yes 

    R.SPSSCNDLy359ATVK (0.029; 19; 2.8) 
0.01 (0; 64; 3.91); Not in 
PRL3 

Yes 

    K.ENDy417ESISDLQQGR (0; 67; 4.0) 
0.01 (0; 68; 3.61); Not in 
PRL3 

Yes 

NP_003019 
(106879210) 

SH2 Domain-containing 
Adaptor Protein B 
(SHB) 

K.VTIADDy246SDPFDAK (0; 34; 2.92) 
100 (0; 54; 3.59); Not in 
Vector 

Yes 

NP_892113 
(194239662) 

SHC-Transforming 
Protein 1 (SHC1) 

R.ELFDDPSy427VNVQNLDK 
0.01 (0; 75, 3.82); Not in 
PRL3 

No 

        

Adhesion; Adaptor/Scaffold     

      

NP_002850 
(170932516) 

Paxillin (PXN) R.VGEEEHVy118SFPNKQK (0; 34; 2.67)   Yes 

NP_006280 
(223029410) 

Talin-1 (TLN1) K.TMQFEPSTMVy26DACR 0.629 (0; 35; 2.46) No 

        

Cell Cycle Control Protein/Kinase     

      

NP_001777 
(4502709) 

Cyclin-Dependent 
Kinase 1 (CDK1) 

K.IEKIGEGTy15GVVYK (0; 32; 3.67) 0.574 (0; 51; 2.83) Yes 

    K.IEKIGEGTy15GVVYKGR (0; 32; 4.1)   Yes 

    K.IGEGTy15GVVYKGR (0; 45; 3.91) 7.30 (0; 60; 3.46) Yes 
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    K.IEKIGEGTy15GVVy19K  0.775 (0.015; 2.31) No 

NP_001789 
(16936528) 

Cyclin-Dependent 
Kinase 2 (CDK2) 

K.VEKIGEGTy15GVVYKAR (0; 53; 4.67) 0.01 (0; 2.72); Not in PRL3 Yes 

    K.VEKIGEGTy15GVVYK (0; 50; 3.36) 0.443 (0; 70; 3.22) Yes 

    K.IGEGTy15GVVYKAR (0; 36; 3.61)  
0.01 (0; 51; 3.69); Not in 
PRL3 

Yes 

    K.IGEGTy15GVVYK (0; 35; 3.17)   Yes 

NP_001249 
(4557439) 

Cyclin-Dependent 
Kinase 3 (CDK3) 

K.VEKIGEGTy15GVVYK  0.443 (0; 70; 3.22) No 

NP_004926 
(4826675) 

Cyclin-Dependent 
Kinase 5 (CDK5) 

K.IGEGTy15GTVFK (0.0135; 22; 2.16) 0.331 (0; 26; 1.77) No 

        

Protein Kinase       

      

NP_005772 
(56549666) 

Activated CDC42 
Kinase 1 (ACK1; TNK2) 

K.y827ATPQVIQAPGPR 3.82 (0; 39; 2.59) No 

NP_001387 
(18765758) 

Dual Specificity 
Tyrosine-
Phosphorylation-
Regulated Kinase 1A 
(DYRK1A) 

R.IYQy321IQSR (0; 28; 1.95) 0.290 (0; 39; 2.31) Yes 

NP_002084 
(21361340) 

Glycogen Synthase 
Kinase-3 beta (GSK3B) 

K.QLVRGEPNVSy216ICSR 0.799 (0; 32; 2.62) Yes 

    K.GEPNVSy216ICSR (0; 54; 3.0) 0.791 (0; 50; 2.51) Yes 

NP_073577 
(164420685) 

Homeodomain-
Interacting Protein 
Kinase 2 (HIPK2) 

K.AVCSTy361LQSR (0; 31; 1.39)   Yes 

NP_002736 
(66932916) 

Mitogen-Activated 
Protein Kinase 1 
(MAPK1, ERK2) 

R.VADPDHDHTGFLTEy187VATR (0; 31; 4.17) 5.32 (0; 54; 4.15) Yes 

NP_002737 
(91718899) 

Mitogen-Activated 
Protein Kinase 3 
(MAPK3, ERK1) 

R.IADPEHDHTGFLTEy204VATR (0; 27; 4.34) 3.50 (0; 65; 3.95) Yes 

NP_002960 
(48255970) 

Mitogen-Activated 
Protein Kinase 12 
(MAPK12, ERK3) 

R.QADSEMTGy185VVTR (0.012; 34) 
0.01 (0; 39; 1.76); Not in 
PRL3 

Yes 

NP_001306 
(4503069) 

Mitogen-Activated 
Protein Kinase 14 
(MAPK14, p38 Alpha) 

R.HTDDEMTGy182VATR (0; 56; 3.67) 4.37 (0; 64; 3.35) Yes 

NP_003322 
(187608615) 

Non-Receptor Tyrosine-
Protein Kinase TYK2 
(TYK2) 

R.LLAQAEGEPCy292IR (0; 46; 3.96) 
0.01 (0; 42; 2.98); Not in 
PRL3 

Yes 

NP_003904 
(89276756) 

Serine/Threonine-Protein 
Kinase PRP4 Homolog 
(PRPF4B) 

K.LCDFGSASHVADNDITPy849LVSR (0; 58; 
5.68) 

0.543 (0; 60; 4.95) Yes 

NP_005408 
(4885609), 
NP_002028 
(4503823), 
NP_005424 
(4885661) 

Tyrosine-Protein Kinase 
Src, Fyn, Yes (SRC, 
FYN, YES1) 

R.LIEDNEy419,420,426TAR (0; 45; 2.94) 
0.01 (0; 54; 3.20); Not in 
PRL3 

Yes 

NP_002028 
(4503823), 
NP_005424 
(4885661) 

Tyrosine-Protein Kinase 
Fyn, Yes (FYN, YES1) 

R.KLDNGGy213,222YITTR (0; 2.4) 
100 (0; 34; 2.12); Not in 
Vector 

No 

    R.KLDNGGYy214,223ITTR (0; 2.4)   No 

NP_002341 
(4505055) 

Tyrosine-Protein Kinase 
Lyn (LYN) 

R.VIEDNEy397TAR (0; 33)   No 

    R.VENCPDELy473DIMK 
0.01 (0; 36; 1.59); Not in 
PRL3 

No 

NP_001167638 
(293332585) 

Tyrosine-Protein Kinase 
Syk (SYK) 

R.QESTVSFNPy323EPELAPWAADKGPQR 
0.01 (0.012; 2.36); Not in 
PRL3 

No 

NP_004422 
(32967311) 

Ephrin type-A Receptor 
2 (EPHA2) 

R.VLEDDPEATy772TTSGGK (0; 35; 2.72)   No 
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NP_005224 
(21361241) 

Ephrin type-A Receptor 
3 (EPHA3) 

R.VLEDDPEAAy779TTR (0; 44; 3.04)   Yes 

NP_004430 
(221625401) 

Ephrin type-A Receptor 
5 (EPHA5) 

R.VLEDDPEAAy833TTR  
0.01 (0; 65; 3.04); Not in 
PRL3 

No 

NP_004431 
(4758282) 

Ephrin type-A Receptor 
7 (EPHA7) 

R.VIEDDPEAVy791TTTGGK (0; 49; 3.54)   No 

        

Protein Phosphatase       

      

NP_002825 
(33356177) 

Protein Tyrosine 
Phosphatase Non-
Receptor Type 11 
(PTPN11, SHP2) 

K.IQNTGDy62YDLYGGEK (0; 83; 4.8) 
0.01 (0; 78; 3.49); Not in 
PRL3 

Yes 

    K.IQNTGDYy63DLYGGEK (0; 83) 0.01 (0; 78); Not in PRL3 Yes 

NP_002827 
(4506303) 

Receptor-type Tyrosine-
Protein Phosphatase 
alpha (PTPRA) 

K.VVQEYIDAFSDy798ANFK 2.03 (0; 100; 4.97) No 

        

Lipase       

      

NP_002651 
(33598948) 

1-Phosphatidylinositol-
4,5-bisphosphate 
Phosphodiesterase 
Gamma-1 (PLCG1) 

K.IGTAEPDy771GALYEGR 6.17 (0; 16; 2.70) No 

    R.NPGFy783VEANPMPTFK 20 (0; 36; 3.94) No 

    R.y1253QQPFEDFR (0; 25) 5.81 (0; 31; 2.18) Yes 

        

G-Protein:  GTPase; GTPase Activating Protein (GAP); Guanine Nucleotide Exchange 
Factor (GEF); Small GTPase Effector Protein; G-Protein-Coupled Receptor  

   

NP_071319 
(40217831) 

G-Protein Coupled 
Receptor family C group 
5 member C (GPRC5C) 

K.VPSEGAy432DIILPR (0; 58; 3.1) 
0.01 (0; 58; 3.04); Not in 
PRL3 

Yes 

NP_001028740 
(75750480) 

Mitochondrial Rho 
GTPase 1 (RHOT1) 

K.SYYAINTVYVy465GQEK 
0.01 (0; 64; 4.34); Not in 
PRL3 

No 

NP_004482 
(150417981) 

Rho GTPase-Activating 
Protein 35 
(ARHGAP35) 

R.NEEENIy1105SVPHDSTQGK (0; 50; 4.49) 0.794 (0; 55; 4.24) Yes 

        

Signaling Other       

      

NP_001002858 
(50845388) 

Annexin A2 (ANXA2) K.LSLEGDHSTPPSAy42GSVK (0; 52; 3.66) 0.039 (0; 51; 4.16) Yes 

NP_001171725 
(296317244) 

Extended 
Synaptotagamin-1 
(ESYT1) 

K.HLSPy832ATLTVGDSSHK 0.01 (0; 2.13); Not in PRL3 No 

NP_002204 
(20127446) 

Integrin Beta-5 (ITGB5) R.YEMASNPLy774R 14.93 (0; 32; 1.62) No 

NP_006658 
(5729875) 

Membrane-associated 
Progesterone Receptor 
component 1 (PGRMC1) 

K.LLKEGEEPTVy180SDEEEPKDESAR (0.029; 
3.28) 

  
 

NP_005018 
(4826908) 

Phosphatidylinositol 3-
Kinase Regulatory 
Subunit beta (PIK3R2, 
p85) 

R.EYDGLy464EEYTR 0.632 (0; 29; 2.78) No 

NP_004595 
(20149560) 

Syntaxin-4 (STX4) K.NILSSADy251VER 14.08 (0; 37; 2.54) No 

        

Energy Metabolism 

Dehydrogenase; Hydratase; Methyltransferase     

      

NP_001966 
(5803011) 

Gamma-Enolase (ENO2) R.AAVPSGASTGIy44EALELR  1.18 (0; 66; 3.09) No 
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NP_005403 
(19923315) 

Serine 
Hydroxymethyltransfera
se (SHMT2) 

R.y105YGGAEVVDEIELLCQRR  
0.01 (0.025; 2.23); Not in 
PRL3 

No 

    R.Yy106GGAEVVDEIELLCQRR  
0.01 (0.026; 2.2); Not in 
PRL3 

No 

        

Protein Synthesis, Processing and Protein Fate 
        

NP_001393 
(4503471) 

Elongation Factor 1-
alpha 1 (EEF1A1) 

R.EHALLAy141TLGVK 0.626 (0; 23; 2.92) No 

NP_001021 
(4506711) 

40S Ribosomal Protein 
S27 (RPS27) 

R.LVQSPNSy31FMDVK 2.48 (0; 41; 2.84) No 

NP_001035998 
(110227619) 

MYC-induced Nuclear 
Antigen 1 (MINA) 

K.DFIMHRLPPy342SAGDGAELSTPGGK (0; 
1.97) 

  
 

NP_006214 
(38679892) 

Peptidyl-Prolyl cis-trans 
Isomerase NIMA-
Interacting 4 (PIN4) 

K.FGy147HIIMVEGR 16.67 (0.001; 34) No 

        

Nucleic Acid Synthesis and Processing 
        

DNA Binding Protein       

      

NP_004517 
(33356547) 

DNA Replication 
Licensing Factor MCM2 
(MCM2) 

R.GLLy137DSDEEDEERPAR (0; 2.66)    No 

        

Transcription Factor; Transcription Regulatory Protein     
 

      

NP_001156752 
(253970456) 

HIV Tat-Specific Factor 
1 (HTATSF1) 

K.VFDDESDEKEDEEy650ADEK (0; 2.77)   No 

NP_644805 
(21618340) 

Signal Transducer and 
Activator of 
Transcription 3 (STAT3) 

K.YCRPESQEHPEADPGSAAPy705LK (0; 2.24) 5.65 (0.046; 10) Yes 

        

Storage and Transport 
     

NP_000714 
(40804468) 

Voltage-dependent L-
type Calcium Channel 
Subunit beta-1 
(CACNB1) 

K.TSMSRGPy12PPSQEIPMEVFDPSPQGKy31SK 
(0.037; 1.56) 

  No 

     

Cellular Organization 

        

Structural Protein       

     

NP_060282 
(8923390) 

Coiled-Coil-Helix-
Coiled-Coil-Helix 
Domain-containing 
Protein 3, Mitochondrial 
(CHCHD3) 

R.YSGAy53GASVSDEELK 
0.01 (0; 39; 2.92); Not in 
PRL3 

No 

        

Unclassified 
     

NP_001157787 
(256222280) 

Ankyrin Repeat Domain-
containing Protein 36A 
(ANKRD36) 

K.KKANVNAIDy195LGR (0.038; 2.3) 
 

No 

NP_056526 
(163914392) 

Glioma Tumor 
Suppressor Candidate 
Region Gene 1 
(GLTSCR1) 

R.LLPYHVYQGALPSPSDy1130HK (0; 2.25) 
 

No 

NP_004330 
(4757886) 

Pituitary Tumor-
Transforming Gene 1 
Protein-Interacting 
Protein (PTTG1IP) 

K.YGLFKEENPy174AR 
0.01 (0; 37; 2.4); Not in 
PRL3 

No 
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NP_060844 
(40254893) 

Transmembrane Protein 
106B (TMEM106B) 

R.NGDVSQFPy50VEFTGR  1.90 (0; 43; 3.19) No 

NP_945352 
(259013211) 

UPF0574 Protein 
C9orf169 (C9orf169) 

K.NPy12AHISIPR 13.89 (0; 16; 2.09) No 

  
    

     

Table 1:  PRL3·HEK293 Phosphoproteomic Dataset   

Protein ID 
(GI number) 

Protein Name 
(Gene symbol) 

pTyr-peptide (q-value; Mascot ion score; 
Sequest XCorr) 

PRL3/Vector 
Quant. Ratio 

(q-value; Mascot ion 
score; Sequest XCorr) 

Repro-
duced 

        

Cellular Communication and Signal Transduction 
        

Adaptor/Scaffold       

     

NP_003572 
(52630423) 

Cytoplasmic Protein 
NCK2 (NCK2; GRB4) 

R.TGy50VPSNYVER (0; 32; 1.76) 17.24 (0; 41; 2.34) Yes 

NP_001091894 
(148539628) 

Disks Large Homolog 1 
(DLG1) 

K.NTSDFVy399LK 100 (0; 1.98); Not in Vector No 

NP_066943 
(119943106) 

Disks Large Homolog 3 
(DLG3) 

R.DNEVDGQDy673HFVVSR (0; 38; 3.6)   Yes 

    R.RDNEVDGQDy673HFVVSR  4.29 (0; 31; 2.57) Yes 

NP_004703 
(4758528) 

Hepatocyte Growth 
Factor-Regulated 
Tyrosine Kinase 
Substrate (HGS) 

K.YKVVQDTy132QIMK 
100 (0; 50; 3.47); Not in 
Vector 

No 

NP_060699 
(224451116) 

MHD Domain-
containing Death-
inducing Protein 
(MUDENG) 

R.KLISSDy472YIWNSKAPAPVTy485GSLLL 
(0.033; 1.9) 

  No 

NP_003944 
(4506357) 

Myelin Protein Zero-like 
Protein 1 (MPZL1) 

K.SESVVy263ADIR 0.343 (0; 58; 2.94) No 

    K.INKSESVVy263ADIR (0; 52, 3.57) 3.80 (0; 83; 4.09) Yes 

NP_003932 
(51702526) 

Neural Wiskott-Aldrich 
Syndrome Protein 
(WASL, N-WASP)  

K.VIy256DFIEK (0; 26; 1.74) 9.17 (0; 27; 2.2) Yes 

NP_060377 
(8923579) 

Regulator Complex 
Protein LAMTOR1 
(LAMTOR1) 

K.ALNGAEPNy40HSLPSAR (0; 2.87)   Yes 

NP_003019 
(106879210) 

SH2 Domain-containing 
Adaptor Protein B 
(SHB) 

K.VTIADDy246SDPFDAK (0; 30; 3.34) 
100 (0; 54; 3.59); Not in 
Vector 

Yes 

        

Adhesion; Adaptor/Scaffold     

     

NP_001032409 
(116805788) 

Cytoplasmic FMR1-
Interacting Protein 2 
(CYFIP2) 

R.AVGPSSTQLy559MVR (0; 24; 2.82)   No 

NP_060710 
(166295173) 

Kin of IRRE-like Protein 
1 (KIRREL) 

K.AIy572SSFKDDVDLK (0; 26; 2.97)   No 

    K.DPTNGy605YNVR (0; 21)   No 

    R.CDTIDTREEYEMKDPTNGy605YNVR 
100 (0; 64; 4.06); Not in 
Vector 

No 

    R.EEYEMKDPTNGy605YNVR (0; 37; 2.85)    Yes 

    R.EEYEMKDPTNGYy606NVR (0; 37; 2.91)   Yes 

    R.AVLy622ADYR 100 (0; 15); Not in Vector No 
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    R.LSHSSGy647AQLNTYSR (0; 24)   No 

    R.LSHSSGYAQLNTy653SR (0; 32; 3.28)   No 

    R.TPy721EAYDPIGK (0; 43; 3.04) 
100 (0; 48; 2.73); Not in 
Vector 

Yes 

    R.TPYEAy724DPIGK (0; 43; 2.48) 
100 (0; 40; 2.85); Not in 
Vector 

Yes 

NP_062565 
(21361831) 

Partitioning Defective 3 
(PARD3) 

R.ERDy1080AEIQDFHR  22.22 (0.002; 1.6) No 

NP_003619 
(53829374) 

Plakophilin- 4 (PKP4) K.STTNy1168VDFYSTK (0; 43) 
100 (0; 46; 2.69); Not in 
Vector 

Yes 

NP_057358 
(20149626) 

Pleckstrin Homology 
Domain-containing 
Family O Member 1 
(PLEKHO1) 

R.QTTPHSQy404R (0; 1.46)   
 

NP_065910 
(203098098) 

Protein Shroom 3 
(SHROOM3) 

R.EARASANGQGy344DKWSNIPR (0; 2.45)   
 

NP_002990 
(38201675) 

Syndecan-4 (SDC4) K.KAPTNEFy197A 
100 (0; 26; 1.72); Not in 
Vector 

No 

NP_006280 
(223029410) 

Talin-1 (TLN1) K.ALDy70YMLR (0; 39; 2.66) 13.51 (0; 29; 2.11) Yes 

    K.ALDYy71MLR (0; 30; 1.8) 13.51 (0.002; 1.99) Yes 

        

Cell Cycle Control Protein/Kinase     

     

NP_001777 
(4502709) 

Cyclin-Dependent 
Kinase 1 (CDK1) 

K.IEKIGEGTy15GVVYK (0; 45; 3.71) 0.574 (0; 70; 3.24) Yes 

    K.IEKIGEGTy15GVVYKGR (0; 55; 4.0) 4.78 (0; 1.69) Yes 

    K.IGEGTy15GVVYKGR (0; 51; 3.44) 7.30 (0; 55; 3.49) Yes 

    K.IEKIGEGTy15GVVy19K  0.8 (0.002; 2.20) No 

    K.IGEGTYGVVy19K (0.036; 1.96)   No 

NP_001789 
(16936528) 

Cyclin-Dependent 
Kinase 2 (CDK2) 

K.VEKIGEGTy15GVVYK  0.443 (0; 67; 2.84) Yes 

    K.IGEGTy15GVVYK 1.09 (0; 47; 2.94) Yes 

NP_001249 
(4557439) 

Cyclin-Dependent 
Kinase 3 (CDK3) 

K.VEKIGEGTy15GVVYK (0; 54; 2.18) 0.443 (0; 67; 2.84) Yes 

    K.IGEGTy15GVVYK (0; 34; 3.16) 1.09 (0; 47; 2.94) Yes 

    K.IGEGTy15GVVYKAK (0; 45; 3.94) 
100 (0; 58; 4.18); Not in 
Vector 

Yes 

    K.IGEGTYGVVy19KAK (0.036; 1.96)   No 

NP_004926 
(4826675) 

Cyclin-Dependent 
Kinase 5 (CDK5) 

K.IGEGTy15GTVFK (0; 2.13) 0.331 (0; 42; 2.18) Yes 

NP_006192 
(5453860) 

Cyclin-Dependent 
Kinase 16 (CDK16) 

K.LGEGTy176ATVYK 1.08 (0.002; 1.74) No 

NP_002586 
(37595545) 

Cyclin-Dependent 
Kinase 17 (CDK17) 

K.LGEGTy203ATVYKGR (0; 3.6)   No 

    K.LGEGTYATVy207K (0; 24)   No 

      

Protein Kinase       

      

NP_005772 
(56549666) 

Activated CDC42 
Kinase 1 (ACK1; TNK2) 

K.y827ATPQVIQAPGPR (0; 37; 2.8) 3.82 (0; 33; 3.82) Yes 

NP_001195 
(15451916) 

Bone Morphogenic 
Protein Receptor Type-2 
(BMPR2) 

K.IGPYPDy546SSSSYIEDSIHHTDSIVK 
100 (0.004; 2.88); Not in 
Vector 

No 

NP_001014796 
(62420886) 

Discoidin Domain-
containing Receptor 2 
(DDR2) 

R.IFPLRPDy481QEPSR (0; 28; 2.7) 
100 (0; 27; 2.19); Not in 
Vector 

Yes 
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NP_001387 
(18765758) 

Dual-Specificity 
Tyrosine-
Phosphorylation-
Regulated Kinase 1A 
(DYRK1A) 

R.IYQy321IQSR (0; 27; 2.01) 0.290 (0; 38; 2.40) Yes 

NP_958439 
(41327732) 

Epidermal Growth 
Factor Receptor, isoform 
b (EGFR) 

K.TCPAGVMGENNTLVWKYADAGHVCHLCH
PNCTy626GS (0; 2.9) 

  No 

NP_722560 
(24476013) 

Focal Adhesion Kinase 1 
(PTK2, FAK) 

R.THAVSVSETDDy397AEIIDEEDTYTMPSTR 
(0; 34; 3.84) 

11.76 (0; 56; 3.42) Yes 

    R.y570MEDSTYYK 
100 (0; 27; 2.17); Not in 
Vector 

No 

NP_002084 
(21361340) 

Glycogen Synthase 
Kinase-3 beta (GSK3B) 

K.QLVRGEPNVSy216ICSR (0; 31; 3.59) 0.799 (0; 45; 3.64) Yes 

    K.GEPNVSy216ICSR 0.792 (0; 48; 2.76) Yes 

NP_005725 
(114796624) 

Homeodomain-
Interacting Protein 
Kinase 3 (HIPK3) 

K.TVCSTy359LQSR (0; 27)   No 

NP_002736 
(66932916) 

Mitogen-Activated 
Protein Kinase 1 
(MAPK1, ERK2) 

R.VADPDHDHTGFLTEy187VATR (0; 58; 5.68) 5.32 (0; 77; 4.67) Yes 

NP_002737 
(91718899) 

Mitogen-Activated 
Protein Kinase 3 
(MAPK3, ERK1) 

R.IADPEHDHTGFLTEy204VATR (0; 53; 4.92) 3.50 (0; 80; 4.96) Yes 

NP_001306 
(4503069) 

Mitogen-Activated 
Protein Kinase 14 
(MAPK14, p38 Alpha) 

R.HTDDEMTGy182VATR (0; 60; 3.43) 4.37 (0; 73; 4.19) Yes 

NP_002741 
(4506095) 

Mitogen-Activated 
Protein Kinase 8 Isoform 
JNK1 Alpha 1 (MAPK8, 
JNK1) 

R.TAGTSFMMTPy185VVTR (0; 26; 3.25) 
100 (0; 43; 3.25); Not in 
Vector 

Yes 

NP_004825 
(22035602) 

Mitogen-Activated 
Protein Kinase Kinase 
Kinase Kinase 4 
(MAP4K4) 

R.SGGSSQVy1153FMTLGR (0; 3.44)   Yes 

NP_006197 
(5453870) 

Platelet-Derived Growth 
Factor Receptor alpha 
(PDGFRA) 

K.VVEGTAy613GLSR 
100 (0; 25; 1.85); Not in 
Vector 

No 

    R.Sy720VILSFENNGDYMDMK 
100 (0; 31; 3.59); Not in 
Vector 

No 

    R.SYVILSFENNGDy731MDMK 
100 (0; 44; 3.88); Not in 
Vector 

No 

    K.QADTTQy742VPMLER (0; 52; 3.03) 18.87 (0; 60; 2.98) Yes 

    R.VDSDNAy988IGVTYK (0; 37; 2.98)   No 

NP_002600 
(4505683) 

Platelet-Derived Growth 
Factor Receptor beta 
(PDGFRB) 

K.GGPIYIITEy683CR (0; 49; 2.86) 
100 (0; 40; 2.97); Not in 
Vector 

Yes 

    R.YGDLVDy692LHR (0; 27) 5.92 (0; 2.81) Yes 

    R.DIMRDSNy857ISK 
100 (0; 32; 2.54); Not in 
Vector 

No 

    K.y970QQVDEEFLR (0; 35; 2.43)   No 

NP_079052 
(148368962) 

Pseudopodium-Enriched 
Atypical Kinase 1 
(PEAK1) 

R.y531QEVWTSSTSPR (0; 39; 2.37)   Yes 

NP_003904 
(89276756) 

Serine/Threonine-Protein 
Kinase PRP4 Homolog 
(PRPF4B) 

K.LCDFGSASHVADNDITPy849LVSR (0; 54; 
5.5) 

0.543 (0; 86; 4.93) Yes 

NP_005408 
(4885609), 
NP_002028 
(4503823), 
NP_005424 
(4885661) 

Tyrosine-Protein Kinase 
Src, Fyn, Yes (SRC, 
FYN, YES1) 

R.LIEDNEy419,420,426TAR (0; 2.36) 
0.01 (0; 54; 3.20); Not in 
PRL3 

Yes 
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NP_002028 
(4503823), 
NP_005424 
(4885661) 

Tyrosine-Protein Kinase 
FYN, YES (FYN, 
YES1) 

R.KLDNGGy213,222YITTR 
100 (0.012; 23; 2.19); Not in 
Vector 

Yes 

    K.LDNGGy213,222YITTR (0; 27; 2.11)   No 

    K.LDNGGYy214,223ITTR (0; 27)   

NP_002218 
(102469034) 

Tyrosine-Protein Kinase 
JAK1 (JAK1) 

K.AIETDKEy1034YTVK (0; 29; 3.08)   No 

NP_004422 
(32967311) 

Ephrin type-A Receptor 
2 (EPHA2) 

K.Ty588VDPHTYEDPNQAVLK (0; 53; 3.78) 
100 (0; 53; 3.43); Not in 
Vector 

Yes 

    K.TYVDPHTy594EDPNQAVLK (0; 42; 3.92) 
100 (0; 66; 4.03); Not in 
Vector 

Yes 

    R.VLEDDPEATy772TTSGGKIPIR (0; 55; 3.71) 76.92 (0; 100; 4.44) Yes 

    R.IAy960SLLGLK (0.035; 16)   No 

NP_004434 
(17975768) 

Ephrin type-B Receptor 
3 (EPHB3) 

R.FLEDDPSDPTy792TSSLGGK (0; 59; 4.0)   Yes 

NP_004435 
(32528301) 

Ephrin type-B Receptor 
4 (EPHB4) 

R.FLEENSSDPTy774TSSLGGK (0; 82; 4.65) 
100 (0; 76; 4.11); Not in 
Vector 

Yes 

        

Protein Phosphatase       

      

NP_002825 
(33356177) 

Protein Tyrosine 
Phosphatase Non-
Receptor Type 11 
(PTPN11, SHP2) 

K.IQNTGDy62YDLYGGEK (0; 65; 4.02)   Yes 

    K.IQNTGDYy63DLYGGEK (0; 65; 3.82)   Yes 

    R.y279KNILPFDHTR 
100 (0; 42; 2.89); Not in 
Vector 

No 

    R.KGHEy542TNIK  
100 (0.013; 32); Not in 
Vector 

No 

NP_002827 
(4506303) 

Receptor-type Tyrosine-
Protein Phosphatase 
alpha (PTPRA) 

R.y271VNILPYDHSR (0; 43; 2.49)   Yes 

    K.VVQEYIDAFSDy798ANFK 2.03 (0; 83; 4.46) No 

        

Lipase       

      

NP_002651 
(33598948) 

1-Phosphatidylinositol-
4,5-bisphosphate 
Phosphodiesterase 
Gamma-1 (PLCG1) 

K.IGTAEPDy771GALYEGR (0; 37; 2.95) 
100 (0; 49; 3.28); Not in 
Vector 

Yes 

    R.NPGFy783VEANPMPTFK (0; 58; 4.63) 10.42 (0; 100, 3.91) Yes 

    R.ACy977RDMSSFPETK 
100 (0; 30; 2.67); Not in 
Vector 

No 

    K.y1253QQPFEDFR (0; 38; 2.01) 
100 (0; 40; 2.52); Not in 
Vector 

Yes 

NP_001026866 
(72534684) 

Phospholipase D4 
(PLD4) 

K.LMy7QELK 
100 (0.026; 2.33); Not in 
Vector  

No 

        

G-Protein:  GTPase; GTPase Activating Protein (GAP); Guanine Nucleotide Exchange Factor 
(GEF); Small GTPase Effector Protein 

  
 

      

NP_212132 
(54112429) 

Dedicator of 
Cytokenisis Protein 7 
(DOCK7) 

K.IDISPAPENPHy522CLTPELLQVK (0; 3.02) 100 (0; 3.08); Not in Vector Yes 

NP_037428 
(164519122) 

G-protein-Signaling 
Modulator 2 
(GPSM2) 

R.ALy146NLGNVYHAK (0; 23; 2.84)   Yes 

NP_002515 (4893) 
GTPase N-Ras 
(NRAS) 

R.QGVEDAFy157TLVR (0; 36; 2.34) 21.74 (0; 37; 2.39) Yes 

NP_004976 
(15718761) 

GTPase K-Ras 
Isoform B (KRAS) 

R.QGVDDAFy157TLVR (0; 41; 2.3) 
100 (0; 27; 2.48); Not in 
Vector 

Yes 
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NP_006316 
(5453555) 

GTP-Binding Nuclear 
Protein Ran (RAN) 

K.NLQy146YDISAK (0.036; 2.15) 
100 (0; 38; 2.24); Not in 
Vector 

Yes 

    K.NLQYy147DISAK 
100 (0.002; 2.2); Not in 
Vector 

No 

NP_031394 
(38201692) 

Ras GTPase-
Activating Protein 3 
(RASA3) 

K.SLCPFYGEDFy66CEIPR  
100 (0; 60; 3.56); Not in 
Vector 

No 

NP_004654 
(4758984) 

Ras-Related Protein 
Rab-11A (RAB11A) 

R.DDEy8DYLFK (0; 21; 2.49)   No 

NP_112243 
(13569962) 

Ras-Related Protein 
Rab-1B (RAB1B) 

R.FADDTy33TESYISTIGVDFK  100 (0; 26); Not in Vector No 

    R.FADDTYTESy37ISTIGVDFK  71.43 (0; 106; 4.55) No 

NP_002856 
(4506365) 

Ras-Related Protein 
Rab-2A (RAB2A) 

Ay3AYLFK (0; 40)   No 

NP_004482 
(150417981) 

Rho GTPase-
Activating Protein 35 
(ARHGAP35) 

R.NEEENIy1105SVPHDSTQGK (0; 28; 3.37) 0.794 (0; 66; 4.34) Yes 

NP_689645 
(221307575) 

Rho GTPase-
Activating protein 42 
(ARHGAP42)  

K.EPIy376TLPAIISK (0.042; 1.81)   No 

NP_056342 
(167614488) 

TBC1 Domain Family 
Member 10B 
(TBC1D10B) 

R.SCQGMy577ETMEQLR 
100 (0; 54; 2.77); Not in 
Vector 

No 

NP_776257 
(27777675) 

Vomeronasal type-1 
receptor 5 (VN1R5) 

R.VHGPLKRLHGDy241FIQTIR (0.014; 2.17)   No 

      

Signaling Other       

      

NP_001633 
(4502147) 

Amyloid-like Protein 
2 (APLP2) 

K.MQNHGYENPTy755KYLEQMQI 100 (0; 3.41); Not in Vector No 

    K.MQNHGYENPTYKy757LEQMQI 100 (0; 3.37); Not in Vector  No 

NP_001002858 
(50845388) 

Annexin A2 
(ANXA2) 

K.LSLEGDHSTPPSAy42GSVK (0; 44; 4.22)   Yes 

    R.AEDGSVIDy206ELIDQDAR (0; 63; 4.27) 9.62 (0; 82; 4.5) Yes 

    K.SLy334YYIQQDTK (0; 67; 3.3) 
100 (0; 65; 2.43); Not in 
Vector 

Yes 

    K.SLy334YYIQQDTKGDYQK  
100 (0; 65; 4.33); Not in 
Vector 

Yes 

    K.SLYy335YIQQDTK (0; 32; 3.3)   Yes 

    K.SLYy335YIQQDTKGDYQK 
100 (0; 62; 4.48); Not in 
Vector  

Yes 

    K.SLYYy336IQQDTK (0; 49; 3.23)   Yes 

    K.SLYYy336IQQDTKGDYQK 
100 (0; 47; 4.36); Not in 
Vector 

Yes 

NP_001145 
(4502107) 

Annexin A5 
(ANXA5) 

R.LYDAy94ELK (0; 25; 2.02) 6.33 (0.001; 32; 1.62) Yes 

NP_005175 
(58218968) 

Calmodulin (CALM3) R.VFDKDGNGy100ISAAELR (0; 69; 4.3) 
100 (0; 98; 4.46); Not in 
Vector 

Yes 

NP_001744 
(15451856) 

Caveolin-1 (CAV1) K.YVDSEGHLy14TVPIR (0; 25; 3.16)   Yes 

NP_003807 
(4501915) 

Disintegrin and 
Metalloproteinase 
Domain-Containing 
Protein 9 (ADAM9) 

R.EEMILLANy245LDSSYIMLNIR (0.048; 2.52)   No 

NP_002202 
(19743813) 

Integrin Beta-1 
(ITGB1) 

K.WDTGENPIy783K 
100 (0; 37; 2.55); Not in 
Vector 

No 

NP_002204 
(20127446) 

Integrin Beta-5 
(ITGB5) 

R.YEMASNPLy774R (0; 27; 2.0) 14.93 (0; 54; 2.79) Yes 

NP_000518 
(4504975) 

Low-Density 
Lipoprotein Receptor 
(LDLR) 

K.NINSINFDNPVy828QK (0; 72; 3.42)   No 
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NP_957718 
(41822562) 

Neuropilin-2, isoform 
1 (NRP2) 

R.SCTTLENy908NFELYDGLK 
100 (0; 77; 3.82); Not in 
Vector 

No 

NP_957719 
(41872567) 

Neuropilin-2, isoform 
5 (NRP2) 

K.TSHy877TNGAPLAVEPTLTIK 
100 (0.012; 1.93); Not in 
Vector  

No 

NP_852664 
(32455248) 

Phosphatidylinositol 
3-Kinase Regulatory 
Subunit alpha 
(PIK3R1, p85) 

R.GDFPGTy73VEYIGR (0; 40; 2.26)   No 

    R.GLECSTLy150R 
100 (0.021; 2.13); Not in 
Vector 

No 

    R.DQy580LMWLTQK (0; 31; 2.06)  31.25 (0; 56; 3.02) Yes 

NP_005018 
(4826908) 

Phosphatidylinositol 
3-Kinase Regulatory 
Subunit beta 
(PIK3R2, p85) 

R.EYDGLy464EEYTR 0.632 (0; 28; 1.6) No 

NP_115618 
(262118282) 

Plexin-A1 (PLXNA1) K.QTSAy1608NISNSSTFTK (0; 31) 13.70 (0; 56; 2.36) Yes 

NP_004595 
(20149560) 

Syntaxin-4 (STX4) K.NILSSADy251VER (0; 48; 3.37) 14.08 (0; 59; 3.18) Yes 

        

Energy Metabolism 
        

Hydrolase; Dehydrogenase; Synthetase     

      

NP_000687 
(115387104) 

Aldehyde 
Dehydrogenase 
(ALDH9A1) 

R.VTIEy500YSQLK (0.037; 2.1)   No 

NP_061820 
(11128019) 

Cytochrome C 
(CYCS) 

R.ADLIAy98LKK (0.006; 1.64)   No 

NP_001966 
(5803011) 

Gamma-Enolase 
(ENO2) 

R.GNPTVEVDLy25TAK (0; 32; 2.53) 
100 (0; 57, 3.43); Not in 
Vector 

Yes 

    R.AAVPSGASTGIy44EALELR  1.18 (0; 67; 4.33) No 

NP_006612 
(21361647) 

Putative 
Adenosylhomocystein
ase 2 (AHCYL1) 

K.y28SFMATVTK (0; 33; 2.42)   No 

NP_002645 
(33286418) 

Pyruvate Kinase 
Isozymes M1/M2 
(PKM2) 

K.ITLDNAy148MEK (0.041; 2.44)   No 

NP_036379 
(24797148) 

Selenide, Water 
Dikinase 1 (SEPHS1) 

K.y345GEGHQAWIIGIVEK 
100 (0; 79; 4.36); Not in 
Vector 

No 

NP_001687 
(4502317) 

V-type Proton 
ATPase Subunit E 1 
(ATP6V1E1) 

R.LKIMEy56YEK 
100 (0; 37; 2.64); Not in 
Vector 

No 

    R.LKIMEYy57EK 
100 (0; 22; 2.37); Not in 
Vector 

No 

        

Protein Synthesis, Processing and Protein Fate 
     

NP_001190174 
(322303127) 

40S Ribosomal 
Protein S10 (RPS10) 

R.IAIy12ELLFK 9.8 (0; 42; 2.56) No 

NP_001021 
(4506711) 

40S Ribosomal 
Protein S27 (RPS27) 

R.LVQSPNSy31FMDVK (0; 49; 3.45) 3.62 (0; 66; 3.24) Yes 

NP_001393 
(4503471) 

Elongation Factor 1-
alpha 1 (EEF1A1) 

R.EHALLAy141TLGVK 0.626 (0.001; 23; 1.83) No 

NP_005792 
(5032133) 

Eukaryotic 
Translation Initiation 
Factor 1 (EIF1) 

K.GDDLLPAGTEDy30IHIR (0; 31; 2.45)   No 
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NP_055093 
(31541941) 

Heat Shock 70 kDa 
protein 4L (HSPA4L)  

R.QLGQDLLNSy600IENEGKMIMQDK (0.019; 
2.3) 

  No 

NP_031381 
(20149594) 

Heat Shock Protein 
HSP 90-beta 
(HSP90AB1) 

K.SIy484YITGESK (0; 14; 1.97)   No 

NP_006588 
(5729877) 

Heat Shock Cognate 
71kDa Protein 
(HSPA8) 

R.TTPSy41VAFTDTER (0; 31; 2.03) 4.15 (0; 28; 2.10) Yes 

NP_002147 
(31542947) 

Heat Shock 60kDa 
protein, mitochondrial 
(HSPD1) 

R.GYISPy227FINTSK (0; 2.14)   No 

NP_008945 
(40806207) 

NEDD4-like E3 
Ubiquitin Protein 
Ligase WWP2 
(WWP2) 

R.INSy41VEVAVDGLPSETKK 
100 (0.016; 1.98); Not in 
Vector  

No 

NP_006214 
(38679892) 

Peptidyl-Prolyl cis-
trans Isomerase 
NIMA-Interacting 4 
(PIN4) 

K.FGy147HIIMVEGR (0; 37; 2.74) 16.67 (0; 66; 2.19) Yes 

NP_443197 
(24308390) 

tRNA-Splicing 
Endonuclease Subunit 
Sen15 (TSEN15) 

K.y46LEMMELDIGDATQVy61VAFLVYLDLME
SK (0.046; 2.82) 

  No 

     

Nucleic Acid Synthesis and Processing 
        

DNA Binding Protein       

      
NP_000937 
(4506051) 

Primase, DNA 
(PRIM1) 

K.y288GPWLEWEIMLQYCFPR (0; 1.52)   Yes 

        

Ribonucleoprotein       

      

NP_001524 
(52632383) 

Heterogeneous 
Nuclear 
Ribonucleoprotein L 
(HNRNPL) 

K.NPNGPy574PYTLK (0; 2.88)   No 

    K.NPNGPYPy576TLK (0; 2.76) 
100 (0.001; 25; 2.08); Not in 
Vector 

Yes 

      

RNA Binding Protein        

      
NP_005327 
(4885409) 

Vigilin (HDLBP) R.MDy437VEINIDHK (0; 19; 2.69) 
100 (0; 63; 2.76); Not in 
Vector  

Yes 

        

Transcription Factor; Transcription Regulatory Protein     

      

NP_005892 
(5174511) 

Mothers Against 
Decapentaplegic 
Homolog 2 (SMAD2) 

K.AIENCEy151AFNLK (0; 60; 3.1)   Yes 

NP_036364 
(42734430) 

Polymerase I and 
Transcript Release 
Factor (PTRF) 

K.SFTPDHVVy308AR (0; 27; 2.69)   Yes 

NP_644805 
(21618340) 

Signal Transducer and 
Activator of 
Transcription 3 
(STAT3) 

K.YCRPESQEHPEADPGSAAPy705LK (0.035; 
21) 

5.65 (0; 39; 3.37) Yes 

NP_036580 
(21618344) 

Signal Transducer and 
Activator of 
Transcription 5B 
(STAT5B) 

K.AVDGy699VKPQIK (0; 22; 1.77) 
100 (0; 48; 3.11); Not in 
Vector 

Yes 

        

Cellular Organization 
     

Cytoskeletal Protein       

      

NP_037391 
(56549135) 

Transgelin-3 
(TAGLN3) 

K.GASQAGMTGy192GMPR 
100 (0; 29; 1.75); Not in 
Vector 

No 
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NP_004990 
(92859701) 

Unconventional 
Myosin-VI (MYO6) 

K.SVTDy1147AQQNPAAQIPAR 
100 (0; 62; 2.93); Not in 
Vector 

No 

        

Structural Protein       

      

NP_115584 
(14149904) 

Anthrax Toxin 
Receptor 1 
(ANTXR1) 

R.VKMPEQEy425EFPEPR 
100 (0; 31; 3.24); Not in 
Vector 

No 

NP_003371 
(62414289) 

Vimentin (VIM) R.FANy117IDKVR (0; 27; 2.5) 
100 (0; 25; 2.11); Not in 
Vector 

Yes 

        

Storage and Transport 
     

NP_116035 
(53988385) 

Protein Tweety 
Homolog 2 (TTYH2) 

R.y494ENVPLIGR (0.008; 23)   
 

NP_005689 
(16445419) 

Secretory Carrier-
associated Membrane 
Protein 3 (SCAMP3) 

K.Ny83GSYSTQASAAAATAELLK 
100 (0; 31; 2.51); Not in 
Vector 

No 

    K.NYGSy86STQASAAAATAELLK 
100 (0; 110; 4.98); Not in 
Vector 

No 

NP_061849 
(21361602) 

Sodium-Coupled 
Neutral Amino Acid 
Transporter 2 
(SLC38A2) 

K.SHy41ADVDPENQNFLLESNLGK (0; 69; 5.91) 
100 (0; 70; 4.87); Not in 
Vector 

Yes 

    K.SHy41ADVDPENQNFLLESNLGKK 
100 (0; 76; 4.67 ); Not in 
Vector 

No 

    
R.FSISPDEDSSSy20SSNSDFNy28SYPTK (0; 
3.07) 

  No 

NP_005406 
(31543630) 

Sodium-Dependent 
Phosphate Transporter 
1 (SLC20A1) 

K.DSGLy388KELLHK 100 (0; 2.22); Not in Vector  No 

NP_001244109 
(380503859) 

Sodium-Dependent 
Phosphate Transporter 
2 (SLC20A2) 

K.DSGLy354KDLLHK 
100 (0.005; 23; 2.18); Not in 
Vector 

No 

NP_001121620 
(189458819) 

Transferrin Receptor 
Protein 1 (TFRC) 

R.SAFSNLFGGEPLSy20TR (0; 57; 4.64) 12.05 (0; 72; 4.27) Yes 

        

Unclassified 
     

NP_001478 
(315113895) 

Biogenesis of 
Lysosome-related 
Organelles Complex 1 
Subunit 1 (BLOC1S1) 

R.TIATALEy142VYKGQLQSAPS 100 (0; 3.22); Not in Vector No 

    R.TIATALEYVy144KGQLQSAPS 100 (0; 52); Not in Vector No 

NP_569057 
(18641360) 

Collectin-12 
(COLEC12) 

MKDDFAEEEEVQSFGy16K 
100 (0; 77, 4.43); Not in 
Vector 

No 

    MKDDFAEEEEVQSFGy16KR (0; 38; 4.63) 100 (0; 54); Not in Vector Yes 

NP_786883 
(50233787) 

Protein NUT 
(C15orf55) 

K.DDCGLQLRVSEDTCPLNVHSy928DPQGEGR
VDPDLSKPK (0; 2.72) 

  No 

NP_056151 
(103471993) 

Palmitoyltransferase 
ZDHHC17 
(ZDHHC17) 

K.Gy286DNPSFLR (0; 33; 2.22)   No 

NP_055952 
(154146218) 

Protein EFR3 
Homolog A (EFR3A) 

K.LTFy43AVSAPEK (0; 26; 2.09)   No 

NP_065191 
(110225358) 

Tetratricopeptide 
Repeat Protein 7A 
(TTC7A) 

R.DAISMYARAGIDDMSMENKPLy160QMR (0; 
1.96) 

  No 

NP_060844 
(40254893) 

Transmembrane 
Protein 106B 
(TMEM106B) 

R.NGDVSQFPy50VEFTGR (0; 58; 4.31) 1.90 (0; 57; 3.66) Yes 

NP_064584 
(9910278) 

Keratinocyte-
associated 
Transmembrane 
Protein 2 (C5orf15) 

K.TVEy243HRLDQNVNEAMPSLK 
100 (0; 44; 3.43); Not in 
Vector 

No 
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NP_945352 
(259013211) 

UPF0574 Protein 
C9orf169 (C9orf169) 

K.NPy12AHISIPR (0; 35; 2.58) 13.89 (0; 30; 2.55) Yes 

NP_001171953 
(297206817) 

Probable 
Palmitoyltransferase 
ZDHHC8 (ZDHHC8) 

R.ADEDEDKEDDFRAPLy91K (0.042; 1.98)   No 

NP_075560 
(190885491) 

Zinc finger SWIM 
Domain-containing 
Protein 4 (ZSWIM4) 

R.LEEETLTLy438PDSGPEKRK (0.047; 2.66)   No 

     

Table 1:  Phosphoproteomic study dataset.  The entire curated phosphoproteomic dataset 
generated from phosphotyrosyl-proteins harvested from stable ectopic PRL3 expressing- and 
vector control-HEK293 cell clones.  Statistics for phosphopeptide identification are provided in 
the format (q-value; Mascot ion score; Sequest XCorr) for both qualitative (pTyr-peptide column) 
and SILAC-based quantitative data.  Quantitation ratio is in the format (PRL3 vs. vector; 
PRL3/Vector).  pTyr-residue number designation is based upon documented (NP and GI 
numbers).  Unless otherwise specified the phosphoprotein documented is the primary isoform (1 
or A) as the phosphopeptide(s) identified are redundant amongst the isoforms. 
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Table 2: PRL3 phosphoproteomic data in common with Src-Y529F (MEF) data 
by Rush (145) and Luo (146) 

Protein ID 
(GI number) 

Protein Name 
(Gene symbol) 

pTyr-peptide (q-value; Mascot ion score; 
Sequest XCorr) 

PRL3/Vector 
Quant. Ratio 

(q-value; Mascot ion 
score; Sequest XCorr) 

Repro-
duced 

     

Cellular Communication and Signal Transduction 
     

NP_002651 
(33598948) 

1-Phosphatidylinositol-
4,5-bisphosphate 
Phosphodiesterase 
Gamma-1 (PLCG1) 

K.IGTAEPDy771GALYEGR (0; 37; 2.95) 
100 (0; 49; 3.28); Not in 
Vector 

Yes 

  R.NPGFy783VEANPMPTFK (0; 58; 4.63) 10.42 (0; 100, 3.91) Yes 

NP_001002858 
(50845388) 

Annexin A2 (ANXA2) K.SLy334YYIQQDTK (0; 67; 3.3) 
100 (0; 65; 2.43); Not in 
Vector 

Yes 

  K.SLy334YYIQQDTKGDYQK  
100 (0; 65; 4.33); Not in 
Vector 

Yes 

  K.SLYy335YIQQDTK (0; 32; 3.3) Yes 

  K.SLYy335YIQQDTKGDYQK 
100 (0; 62; 4.48); Not in 
Vector  

Yes 

NP_001744 
(15451856) 

Caveolin-1 (CAV1) K.YVDSEGHLy14TVPIR (0; 25; 3.16) 
 

Yes 

NP_004422 
(32967311) 

Ephrin-type A Receptor 
2 (EPHA2) 

K.TYVDPHTy594EDPNQAVLK (0; 42; 3.92) 
100 (0; 66; 4.03); Not in 
Vector 

Yes 

  R.VLEDDPEATy772TTSGGKIPIR (0; 55; 3.71) 76.92 (0; 100; 4.44) Yes 

NP_722560 
(24476013) 

Focal Adhesion Kinase 
1 (PTK2, FAK) 

R.THAVSVSETDDy397AEIIDEEDTYTMPSTR (0; 
34; 3.84) 

11.76 (0; 56; 3.42) Yes 

NP_006316 
(5453555) 

GTP-Binding Nuclear 
Protein Ran (RAN) 

K.NLQy146YDISAK (0.036; 2.15) 
100 (0; 38; 2.24); Not in 
Vector 

Yes 

  K.NLQYy147DISAK 
100 (0.002; 2.2); Not in 
Vector 

No 

NP_060710 
(166295173) 

Kin of IRRE-like 
Protein 1 (KIRREL) 

K.DPTNGy605YNVR (0; 21) 
 

No 

  R.CDTIDTREEYEMKDPTNGy605YNVR 
100 (0; 64; 4.06); Not in 
Vector 

No 

  R.EEYEMKDPTNGy605YNVR (0; 37; 2.85)  Yes 

  R.TPy721EAYDPIGK (0; 43; 3.04) 
100 (0; 48; 2.73); Not in 
Vector 

Yes 

  R.TPYEAy724DPIGK (0; 43; 2.48) 
100 (0; 40; 2.85); Not in 
Vector 

Yes 

NP_003932 
(51702526) 

Neural Wiskott-Aldrich 
Syndrome Protein 
(WASL; N-WASP)  

K.VIy256DFIEK (0; 26; 1.74) 9.17 (0; 27; 2.2) Yes 

NP_002990 
(38201675) 

Syndecan-4 (SDC4) K.KAPTNEFy197A 
100 (0; 26; 1.72); Not in 
Vector 

No 

NP_006280 
(223029410) 

Talin-1 (TLN1) K.ALDy70YMLR (0; 39; 2.66) 13.51 (0; 29; 2.11) Yes 

  K.ALDYy71MLR (0; 30; 1.8) 13.51 (0.002; 1.99) Yes 

     

Energy Metabolism 
     

NP_001966 
(5803011) 

Gamma-Enolase 
(ENO2) 

R.GNPTVEVDLy25TAK (0; 32; 2.53) 
100 (0; 57, 3.43); Not in 
Vector 

Yes 

NP_002645 
(33286418) 

Pyruvate Kinase 
Isozymes M1/M2 
(PKM2) 

K.ITLDNAy148MEK (0.041; 2.44) 
 

No 

     

Protein Synthesis, Processing and Fate 
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NP_001190174 
(322303127) 

40S Ribosomal Protein 
S10 (RPS10) 

R.IAIy12ELLFK 9.8 (0; 42; 2.56) No 

NP_031381 
(20149594) 

Heat shock protein HSP 
90-beta (HSP90AB1) 

K.SIy484YITGESK (0; 14; 1.97) 
 

No 

     

Nucleic Acid Synthesis and Processing 
     

NP_036364 
(42734430) 

Polymerase I and 
Transcript Release 
Factor (PTRF) 

K.SFTPDHVVy308AR (0; 27; 2.69) 
 

Yes 

NP_644805 
(21618340) 

Signal Transducer and 
Activator of 
Transcription 3 
(STAT3) 

K.YCRPESQEHPEADPGSAAPy705LK (0.035; 21) 5.65 (0; 39; 3.37) Yes 

     

     

Table 2:  Unique phosphoproteomic data to the PRL3 dataset in comparison to 
Src-Y529F (MEF) data 

Protein ID 
(GI number) 

Protein Name 
(Gene symbol) 
# - Common w/ 

Non-transformed 
MEF 

pTyr-peptide (q-value; Mascot ion score; 
Sequest XCorr); # - Common with Non-

transformed MEF 

PRL3/Vector 
Quant. Ratio 

(q-value; Mascot ion 
score; Sequest XCorr) 

Repro-
duced 

     

Cellular Communication and Signal Transduction 
     

NP_003572 
(52630423) 

Cytoplasmic Protein 
NCK2 (NCK2; GRB4) 

R.TGy50VPSNYVER (0; 32; 1.76) 17.24 (0; 41; 2.34) Yes 

NP_001091894 
(148539628) 

Disks Large Homolog 1 
(DLG1) 

K.NTSDFVy399LK 100 (0; 1.98); Not in Vector No 

NP_066943 
(119943106) 

#Disks Large Homolog 
3 (DLG3) 

#R.DNEVDGQDy673HFVVSR (0; 38; 3.6) 
 

Yes 

  #R.RDNEVDGQDy673HFVVSR  4.29 (0; 31; 2.57) Yes 

NP_004703 
(4758528) 

Hepatocyte Growth 
Factor-Regulated 
Tyrosine Kinase 
Substrate (HGS) 

K.YKVVQDTy132QIMK 
100 (0; 50; 3.47); Not in 
Vector 

No 

NP_060699 
(224451116) 

MHD Domain-
containing Death-
inducing Protein 
(MUDENG) 

R.KLISSDy472YIWNSKAPAPVTy485GSLLL 
(0.033; 1.9) 

 No 

NP_060377 
(8923579) 

Regulator Complex 
Protein LAMTOR1 
(LAMTOR1) 

K.ALNGAEPNy40HSLPSAR (0; 2.87) 
 

Yes 

NP_003019 
(106879210) 

#SH2 Domain-
containing Adaptor 
Protein B (SHB) 

#K.VTIADDy246SDPFDAK (0; 30; 3.34) 
100 (0; 54; 3.59); Not in 
Vector 

Yes 

NP_001032409 
(116805788) 

Cytoplasmic FMR1-
Interacting Protein 2 
(CYFIP2) 

R.AVGPSSTQLy559MVR (0; 24; 2.82)  No 

NP_060710 
(166295173) 

#Kin of IRRE-like 
Protein 1 (KIRREL) 

#K.AIy572SSFKDDVDLK (0; 26; 2.97) 
 

No 

  #R.AVLy622ADYR 100 (0; 15); Not in Vector No 

  R.LSHSSGy647AQLNTYSR (0; 24)  No 

  R.LSHSSGYAQLNTy653SR (0; 32; 3.28)  No 

NP_062565 
(21361831) 

#Partitioning Defective 
3 (PARD3) 

#R.ERDy1080AEIQDFHR  22.22 (0.002; 1.6) No 
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NP_003619 
(53829374) 

Plakophilin- 4 (PKP4) K.STTNy1168VDFYSTK (0; 43) 
100 (0; 46; 2.69); Not in 
Vector 

Yes 

NP_057358 
(20149626) 

Pleckstrin Homology 
Domain-containing 
Family O Member 1 
(PLEKHO1) 

R.QTTPHSQy404R (0; 1.46)   

NP_065910 
(203098098) 

Protein Shroom 3 
(SHROOM3) 

R.EARASANGQGy344DKWSNIPR (0; 2.45)   

NP_005772 
(56549666) 

#Activated CDC42 
Kinase 1 (ACK1; 
TNK2) 

#K.y827ATPQVIQAPGPR (0; 37; 2.8) 3.82 (0; 33; 3.82) Yes 

NP_001195 
(15451916) 

Bone Morphogenic 
Protein Receptor Type-
2 (BMPR2) 

K.IGPYPDy546SSSSYIEDSIHHTDSIVK 
100 (0.004; 2.88); Not in 
Vector 

No 

NP_001014796 
(62420886) 

#Discoidin Domain-
containing Receptor 2 
(DDR2) 

#R.IFPLRPDy481QEPSR (0; 28; 2.7) 
100 (0; 27; 2.19); Not in 
Vector 

Yes 

NP_958439 
(41327732) 

Epidermal Growth 
Factor Receptor, 
isoform b (EGFR) 

K.TCPAGVMGENNTLVWKYADAGHVCHLCHPN
CTy626GS (0; 2.9)  

No 

NP_722560 
(24476013) 

Focal Adhesion Kinase 
1 (PTK2, FAK) 

R.y570MEDSTYYK 
100 (0; 27; 2.17); Not in 
Vector 

No 

NP_005725 
(114796624) 

#Homeodomain-
Interacting Protein 
Kinase 3 (HIPK3) 

#K.TVCSTy359LQSR (0; 27) 
 

No 

NP_002736 
(66932916) 

#Mitogen-Activated 
Protein Kinase 1 
(MAPK1, ERK2) 

#R.VADPDHDHTGFLTEy187VATR (0; 58; 5.68) 5.32 (0; 77; 4.67) Yes 

NP_002737 
(91718899) 

#Mitogen-Activated 
Protein Kinase 3 
(MAPK3, ERK1) 

#R.IADPEHDHTGFLTEy204VATR (0; 53; 4.92) 3.50 (0; 80; 4.96) Yes 

NP_001306 
(4503069) 

#Mitogen-Activated 
Protein Kinase 14 
(MAPK14, p38 Alpha) 

#R.HTDDEMTGy182VATR (0; 60; 3.43) 4.37 (0; 73; 4.19) Yes 

NP_002741 
(4506095) 

#Mitogen-Activated 
Protein Kinase 8 
Isoform JNK1 Alpha 1 
(MAPK8, JNK1) 

#R.TAGTSFMMTPy185VVTR (0; 26; 3.25) 
100 (0; 43; 3.25); Not in 
Vector 

Yes 

NP_004825 
(22035602) 

Mitogen-Activated 
Protein Kinase Kinase 
Kinase Kinase 4 
(MAP4K4) 

R.SGGSSQVy1153FMTLGR (0; 3.44) 
 

Yes 

NP_006197 
(5453870) 

Platelet-Derived 
Growth Factor Receptor 
alpha (PDGFRA) 

K.VVEGTAy613GLSR 
100 (0; 25; 1.85); Not in 
Vector 

No 

  R.Sy720VILSFENNGDYMDMK 
100 (0; 31; 3.59); Not in 
Vector 

No 

  R.SYVILSFENNGDy731MDMK 
100 (0; 44; 3.88); Not in 
Vector 

No 

  K.QADTTQy742VPMLER (0; 52; 3.03) 18.87 (0; 60; 2.98) Yes 

  R.VDSDNAy988IGVTYK (0; 37; 2.98)  No 

NP_002600 
(4505683) 

Platelet-Derived 
Growth Factor Receptor 
beta (PDGFRB) 

K.GGPIYIITEy683CR (0; 49; 2.86) 
100 (0; 40; 2.97); Not in 
Vector 

Yes 

  R.YGDLVDy692LHR (0; 27) 5.92 (0; 2.81) Yes 

  R.DIMRDSNy857ISK 
100 (0; 32; 2.54); Not in 
Vector 

No 

  K.y970QQVDEEFLR (0; 35; 2.43)  No 

NP_079052 
(148368962) 

Pseudopodium-
Enriched Atypical 
Kinase 1 (PEAK1) 

R.y531QEVWTSSTSPR (0; 39; 2.37)  Yes 

NP_002028 
(4503823), 
NP_005424 
(4885661) 

#Tyrosine-Protein 
Kinase FYN, YES 
(FYN, YES1) 

#R.KLDNGGy213,222YITTR 
100 (0.012; 23; 2.19); Not 
in Vector 

Yes 

  #K.LDNGGy213,222YITTR (0; 27; 2.11) No 

  K.LDNGGYy214,223ITTR (0; 27)   
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NP_002218 
(102469034) 

#Tyrosine-Protein 
Kinase JAK1 (JAK1) 

#K.AIETDKEy1034YTVK (0; 29; 3.08) 
 

No 

NP_004422 
(32967311) 

#Ephrin type-A 
Receptor 2 (EPHA2) 

#K.Ty588VDPHTYEDPNQAVLK (0; 53; 3.78) 
100 (0; 53; 3.43); Not in 
Vector 

Yes 

  R.IAy960SLLGLK (0.035; 16)  No 

NP_004434 
(17975768) 

#Ephrin type-B 
Receptor 3 (EPHB3) 

#R.FLEDDPSDPTy792TSSLGGK (0; 59; 4.0)  Yes 

NP_004435 
(32528301) 

#Ephrin type-B 
Receptor 4 (EPHB4) 

#R.FLEENSSDPTy774TSSLGGK (0; 82; 4.65) 
100 (0; 76; 4.11); Not in 
Vector 

Yes 

NP_002825 
(33356177) 

Protein Tyrosine 
Phosphatase Non-
Receptor Type 11 
(PTPN11, SHP2) 

R.y279KNILPFDHTR 
100 (0; 42; 2.89); Not in 
Vector 

No 

  R.KGHEy542TNIK  
100 (0.013; 32); Not in 
Vector 

No 

NP_002827 
(4506303) 

#Receptor-type 
Tyrosine-Protein 
Phosphatase alpha 
(PTPRA) 

R.y271VNILPYDHSR (0; 43; 2.49)  Yes 

  #K.VVQEYIDAFSDy798ANFK 2.03 (0; 83; 4.46) No 

NP_002651 
(33598948) 

1-Phosphatidylinositol-
4,5-bisphosphate 
Phosphodiesterase 
Gamma-1 (PLCG1) 

R.ACy977RDMSSFPETK 
100 (0; 30; 2.67); Not in 
Vector 

No 

  K.y1253QQPFEDFR (0; 38; 2.01) 
100 (0; 40; 2.52); Not in 
Vector 

Yes 

NP_001026866 
(72534684) 

Phospholipase D4 
(PLD4) 

K.LMy7QELK 
100 (0.026; 2.33); Not in 
Vector  

No 

NP_212132 
(54112429) 

Dedicator of 
Cytokenisis Protein 7 
(DOCK7) 

K.IDISPAPENPHy522CLTPELLQVK (0; 3.02) 100 (0; 3.08); Not in Vector Yes 

NP_037428 
(164519122) 

G-protein-Signaling 
Modulator 2 (GPSM2) 

R.ALy146NLGNVYHAK (0; 23; 2.84)  Yes 

NP_002515 
(4893) 

GTPase N-Ras (NRAS) R.QGVEDAFy157TLVR (0; 36; 2.34) 21.74 (0; 37; 2.39) Yes 

NP_004976 
(15718761) 

GTPase K-Ras Isoform 
B (KRAS) 

R.QGVDDAFy157TLVR (0; 41; 2.3) 
100 (0; 27; 2.48); Not in 
Vector 

Yes 

NP_031394 
(38201692) 

Ras GTPase-Activating 
Protein 3 (RASA3) 

K.SLCPFYGEDFy66CEIPR  
100 (0; 60; 3.56); Not in 
Vector 

No 

NP_004654 
(4758984) 

Ras-Related Protein 
Rab-11A (RAB11A) 

R.DDEy8DYLFK (0; 21; 2.49)  No 

NP_112243 
(13569962) 

Ras-Related Protein 
Rab-1B (RAB1B) 

R.FADDTYTESy37ISTIGVDFK  71.43 (0; 106; 4.55) No 

  R.FADDTy33TESYISTIGVDFK  100 (0; 26); Not in Vector No 

NP_002856 
(4506365) 

Ras-Related Protein 
Rab-2A (RAB2A) 

Ay3AYLFK (0; 40)  No 

NP_689645 
(221307575) 

Rho GTPase-Activating 
protein 42 
(ARHGAP42)  

K.EPIy376TLPAIISK (0.042; 1.81) 
 

No 

NP_056342 
(167614488) 

TBC1 Domain Family 
Member 10B 
(TBC1D10B) 

R.SCQGMy577ETMEQLR 
100 (0; 54; 2.77); Not in 
Vector 

No 

NP_776257 
(27777675) 

Vomeronasal type-1 
receptor 5 (VN1R5) 

R.VHGPLKRLHGDy241FIQTIR (0.014; 2.17)   No 

NP_001633 
(4502147) 

Amyloid-like Protein 2 
(APLP2) 

K.MQNHGYENPTy755KYLEQMQI 100 (0; 3.41); Not in Vector No 

  K.MQNHGYENPTYKy757LEQMQI 100 (0; 3.37); Not in Vector  No 

NP_001002858 
(50845388) 

Annexin A2 (ANXA2) R.AEDGSVIDy206ELIDQDAR (0; 63; 4.27) 9.62 (0; 82; 4.5) Yes 

  K.SLYYy336IQQDTK (0; 49; 3.23)  Yes 
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  K.SLYYy336IQQDTKGDYQK 
100 (0; 47; 4.36); Not in 
Vector 

Yes 

NP_001145 
(4502107) 

Annexin A5 (ANXA5) R.LYDAy94ELK (0; 25; 2.02) 6.33 (0.001; 32; 1.62) Yes 

NP_005175 
(58218968) 

#Calmodulin (CALM3) #R.VFDKDGNGy100ISAAELR (0; 69; 4.3) 
100 (0; 98; 4.46); Not in 
Vector 

Yes 

NP_003807 
(4501915) 

Disintegrin and 
Metalloproteinase 
Domain-Containing 
Protein 9 (ADAM9) 

R.EEMILLANy245LDSSYIMLNIR (0.048; 2.52) 
 

No 

NP_002202 
(19743813) 

#Integrin Beta-1 
(ITGB1) 

#K.WDTGENPIy783K 
100 (0; 37; 2.55); Not in 
Vector 

No 

NP_002204 
(20127446) 

Integrin Beta-5 
(ITGB5) 

R.YEMASNPLy774R (0; 27; 2.0) 14.93 (0; 54; 2.79) Yes 

NP_000518 
(4504975) 

#Low-Density 
Lipoprotein Receptor 
(LDLR) 

#K.NINSINFDNPVy828QK (0; 72; 3.42)  No 

NP_957718 
(41822562) 

Neuropilin-2, isoform 1 
(NRP2) 

R.SCTTLENy908NFELYDGLK 
100 (0; 77; 3.82); Not in 
Vector 

No 

NP_957719 
(41872567) 

Neuropilin-2, isoform 5 
(NRP2) 

K.TSHy877TNGAPLAVEPTLTIK 
100 (0.012; 1.93); Not in 
Vector  

No 

NP_852664 
(32455248) 

#Phosphatidylinositol 
3-Kinase Regulatory 
Subunit alpha (PIK3R1, 
p85) 

R.GDFPGTy73VEYIGR (0; 40; 2.26)  No 

  R.GLECSTLy150R 
100 (0.021; 2.13); Not in 
Vector 

No 

  #R.DQy580LMWLTQK (0; 31; 2.06)  31.25 (0; 56; 3.02) Yes 

NP_115618 
(262118282) 

Plexin-A1 (PLXNA1) K.QTSAy1608NISNSSTFTK (0; 31) 13.70 (0; 56; 2.36) Yes 

NP_004595 
(20149560) 

Syntaxin-4 (STX4) K.NILSSADy251VER (0; 48; 3.37) 14.08 (0; 59; 3.18) Yes 

     

Energy Metabolism 
     

NP_000687 
(115387104) 

Aldehyde 
Dehydrogenase 
(ALDH9A1) 

R.VTIEy500YSQLK (0.037; 2.1)  No 

NP_061820 
(11128019) 

Cytochrome C (CYCS) R.ADLIAy98LKK (0.006; 1.64)  No 

NP_006612 
(21361647) 

Putative 
Adenosylhomocysteina
se 2 (AHCYL1) 

K.y28SFMATVTK (0; 33; 2.42)  No 

NP_036379 
(24797148) 

Selenide, Water 
Dikinase 1 (SEPHS1) 

K.y345GEGHQAWIIGIVEK 
100 (0; 79; 4.36); Not in 
Vector 

No 

NP_001687 
(4502317) 

V-type Proton ATPase 
Subunit E 1 
(ATP6V1E1) 

R.LKIMEy56YEK 
100 (0; 37; 2.64); Not in 
Vector 

No 

  R.LKIMEYy57EK 
100 (0; 22; 2.37); Not in 
Vector 

No 

     

Protein Synthesis, Processing and Protein Fate 
     

NP_001021 
(4506711) 

40S Ribosomal Protein 
S27 (RPS27) 

R.LVQSPNSy31FMDVK (0; 49; 3.45) 3.62 (0; 66; 3.24) Yes 

NP_005792 
(5032133) 

Eukaryotic Translation 
Initiation Factor 1 
(EIF1) 

K.GDDLLPAGTEDy30IHIR (0; 31; 2.45)  No 

NP_055093 
(31541941) 

Heat Shock 70 kDa 
protein 4L (HSPA4L)  

R.QLGQDLLNSy600IENEGKMIMQDK (0.019; 2.3)  No 

NP_006588 
(5729877) 

Heat Shock Cognate 
71kDa Protein 
(HSPA8) 

R.TTPSy41VAFTDTER (0; 31; 2.03) 4.15 (0; 28; 2.10) Yes 
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NP_002147 
(31542947) 

Heat Shock 60kDa 
protein, mitochondrial 
(HSPD1) 

R.GYISPy227FINTSK (0; 2.14)  No 

NP_008945 
(40806207) 

NEDD4-like E3 
Ubiquitin Protein 
Ligase WWP2 (WWP2) 

R.INSy41VEVAVDGLPSETKK 
100 (0.016; 1.98); Not in 
Vector  

No 

NP_006214 
(38679892) 

Peptidyl-Prolyl cis-
trans Isomerase NIMA-
Interacting 4 (PIN4) 

K.FGy147HIIMVEGR (0; 37; 2.74) 16.67 (0; 66; 2.19) Yes 

NP_443197 
(24308390) 

tRNA-Splicing 
Endonuclease Subunit 
Sen15 (TSEN15) 

K.y46LEMMELDIGDATQVy61VAFLVYLDLMESK 
(0.046; 2.82) 

 No 

     

Nucleic Acid Synthesis and Processing 
     

NP_000937 
(4506051) 

Primase, DNA 
(PRIM1) 

K.y288GPWLEWEIMLQYCFPR (0; 1.52)  Yes 

NP_001524 
(52632383) 

Heterogeneous Nuclear 
Ribonucleoprotein L 
(HNRNPL) 

K.NPNGPy574PYTLK (0; 2.88)  No 

  K.NPNGPYPy576TLK (0; 2.76) 
100 (0.001; 25; 2.08); Not 
in Vector 

Yes 

NP_005327 
(4885409) 

Vigilin (HDLBP) R.MDy437VEINIDHK (0; 19; 2.69) 
100 (0; 63; 2.76); Not in 
Vector  

Yes 

NP_005892 
(5174511) 

Mothers Against 
Decapentaplegic 
Homolog 2 (SMAD2) 

K.AIENCEy151AFNLK (0; 60; 3.1)  Yes 

NP_036580 
(21618344) 

#Signal Transducer and 
Activator of 
Transcription 5B 
(STAT5B) 

#K.AVDGy699VKPQIK (0; 22; 1.77) 
100 (0; 48; 3.11); Not in 
Vector 

Yes 

     

Cellular Organization 
     

NP_037391 
(56549135) 

Transgelin-3 
(TAGLN3) 

K.GASQAGMTGy192GMPR 
100 (0; 29; 1.75); Not in 
Vector 

No 

NP_004990 
(92859701) 

Unconventional 
Myosin-VI (MYO6) 

K.SVTDy1147AQQNPAAQIPAR 
100 (0; 62; 2.93); Not in 
Vector 

No 

NP_115584 
(14149904) 

Anthrax Toxin 
Receptor 1 (ANTXR1) 

R.VKMPEQEy425EFPEPR 
100 (0; 31; 3.24); Not in 
Vector 

No 

NP_003371 
(62414289) 

#Vimentin (VIM) #R.FANy117IDKVR (0; 27; 2.5) 
100 (0; 25; 2.11); Not in 
Vector 

Yes 

     

Storage and Transport 
     

NP_116035 
(53988385) 

Protein Tweety 
Homolog 2 (TTYH2) 

R.y494ENVPLIGR (0.008; 23)   

NP_005689 
(16445419) 

Secretory Carrier-
associated Membrane 
Protein 3 (SCAMP3) 

K.Ny83GSYSTQASAAAATAELLK 
100 (0; 31; 2.51); Not in 
Vector 

No 

  K.NYGSy86STQASAAAATAELLK 
100 (0; 110; 4.98); Not in 
Vector 

No 

NP_061849 
(21361602) 

#Sodium-Coupled 
Neutral Amino Acid 
Transporter 2 
(SLC38A2) 

R.FSISPDEDSSSy20SSNSDFNy28SYPTK (0; 3.07)  No 

  #K.SHy41ADVDPENQNFLLESNLGK (0; 69; 5.91) 
100 (0; 70; 4.87); Not in 
Vector 

Yes 

  #K.SHy41ADVDPENQNFLLESNLGKK 
100 (0; 76; 4.67 ); Not in 
Vector 

No 

NP_005406 
(31543630) 

Sodium-Dependent 
Phosphate Transporter 
1 (SLC20A1) 

K.DSGLy388KELLHK 100 (0; 2.22); Not in Vector  No 

NP_001244109 
(380503859) 

Sodium-Dependent 
Phosphate Transporter 
2 (SLC20A2) 

K.DSGLy354KDLLHK 
100 (0.005; 23; 2.18); Not 
in Vector 

No 
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NP_001121620 
(189458819) 

#Transferrin Receptor 
Protein 1 (TFRC) 

#R.SAFSNLFGGEPLSy20TR (0; 57; 4.64) 12.05 (0; 72; 4.27) Yes 

     

Unclassified 
     

NP_001478 
(315113895) 

Biogenesis of 
Lysosome-related 
Organelles Complex 1 
Subunit 1 (BLOC1S1) 

R.TIATALEy142VYKGQLQSAPS 100 (0; 3.22); Not in Vector No 

  R.TIATALEYVy144KGQLQSAPS 100 (0; 52); Not in Vector No 

NP_569057 
(18641360) 

Collectin-12 
(COLEC12) 

MKDDFAEEEEVQSFGy16K 
100 (0; 77, 4.43); Not in 
Vector 

No 

  MKDDFAEEEEVQSFGy16KR (0; 38; 4.63) 100 (0; 54); Not in Vector Yes 

NP_786883 
(50233787) 

Protein NUT 
(C15orf55) 

K.DDCGLQLRVSEDTCPLNVHSy928DPQGEGRVD
PDLSKPK (0; 2.72) 

 No 

NP_056151 
(103471993) 

Palmitoyltransferase 
ZDHHC17 
(ZDHHC17) 

K.Gy286DNPSFLR (0; 33; 2.22)  No 

NP_055952 
(154146218) 

Protein EFR3 Homolog 
A (EFR3A) 

K.LTFy43AVSAPEK (0; 26; 2.09)  No 

NP_065191 
(110225358) 

Tetratricopeptide 
Repeat Protein 7A 
(TTC7A) 

R.DAISMYARAGIDDMSMENKPLy160QMR (0; 
1.96)  

No 

NP_060844 
(40254893) 

Transmembrane Protein 
106B (TMEM106B) 

R.NGDVSQFPy50VEFTGR (0; 58; 4.31) 1.90 (0; 57; 3.66) Yes 

NP_064584 
(9910278) 

Keratinocyte-associated 
Transmembrane Protein 
2 (C5orf15) 

K.TVEy243HRLDQNVNEAMPSLK 
100 (0; 44; 3.43); Not in 
Vector 

No 

NP_945352 
(259013211) 

UPF0574 Protein 
C9orf169 (C9orf169) 

K.NPy12AHISIPR (0; 35; 2.58) 13.89 (0; 30; 2.55) Yes 

NP_001171953 
(297206817) 

Probable 
Palmitoyltransferase 
ZDHHC8 (ZDHHC8) 

R.ADEDEDKEDDFRAPLy91K (0.042; 1.98) 
 

No 

NP_075560 
(190885491) 

Zinc finger SWIM 
Domain-containing 
Protein 4 (ZSWIM4) 

R.LEEETLTLy438PDSGPEKRK (0.047; 2.66) 
 

No 

     

Table 2:  Comparative analysis with phosphoproteomic datasets generated from SrcY529F-
expressing MEFs.  A comparative analysis to phosphoproteomic datasets generated from 
SrcY529F-expressing MEFs and parental MEF control counterparts by Rush (145) and Luo 
(146).  The PRL3 phosphoproteomic dataset has notable overlap with the SrcY529F dataset 
concerning regulators of cytoskeletal dynamics and mitogenic signal transduction.  
Phosphoproteomic data also has significant overlap with parental MEF data, providing the first 
phosphoproteomic evidence in support of fibroblast/mesenchymal-like signal transduction taking 
place in cells following PRL3 expression.  The PRL3 phosphoproteomic dataset is largely unique 
(~67%) when compared with these SrcY529F- and MEF-cell datasets.  (#)-represents 
phosphoproteins/pTyr-residues that are in common with phosphoproteomic data from the non-
transformed-MEF dataset.  Statistics for phosphopeptide identification are provided in the format 
(q-value; Mascot ion score; Sequest XCorr) for both qualitative (pTyr-peptide column) and 
SILAC-based quantitative data.  Quantitation ratio is in the format (PRL3 vs. Vector; 
PRL/Vector).  pTyr-residue number designation is based upon documented (NP and GI numbers).  
Unless otherwise specified the phosphoprotein documented is the primary isoform (1 or A) as the 
phosphopeptide(s) identified are redundant amongst the isoforms. 
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Table 3: Select phosphoproteomic data supporting a pro-metastatic molecular signature 
in the PRL3-expressing HEK293 cells 

Protein ID 
(GI number) 

Protein Name 
(Gene symbol) 

pTyr-peptide (q-value; Mascot ion 
score; Sequest XCorr) 

PRL3/Vector 
Quant. Ratio 

(q-value; Mascot ion 
score; Sequest XCorr) 

Reprod
-uced 

Cellular Communication and Signal Transduction 

Adaptor/Scaffold  

NP_003572 
(52630423) 

Cytoplasmic Protein NCK2 
(NCK2, GRB4) 

R.TGy50VPSNYVER (0; 32; 1.76) 17.24 (0; 41; 2.34) Yes 

NP_001091894 
(148539628) 

Disks Large Homolog 1 
(DLG1) 

K.NTSDFVy399LK 100 (0; 1.98); Not in Vector No 

NP_066943 
(119943106) 

Disks Large Homolog 3 
(DLG3) 

R.DNEVDGQDy673HFVVSR (0; 38; 3.6)   Yes 

    R.RDNEVDGQDy673HFVVSR  4.29 (0; 31; 2.57) Yes 

NP_003932 
(51702526) 

Neural Wiskott-Aldrich 
Syndrome Protein (WASL, 
N-WASP) 

K.VIy256DFIEK (0; 26; 1.74) 9.17 (0; 27; 2.2) Yes 

NP_060910 
(63054864) 

Phosphoprotein Associated 
with Glycosphingolipid-
Enriched Microdomains 1 
(PAG1, CBP) 

R.SVDGDQGLGMEGPy163EVLK (0; 59; 
4.53) 

0.01 (0; 59; 4.2); Not in 
PRL3 

Yes 

  
K.AEFAEy227ASVDR (0; 58; 2.28) 

0.01 (0; 66; 2.68); Not in 
PRL3 

Yes 

  
K.SREEDPTLTEEEISAMy317SSVNKPGQL
VNK 

0.01 (0; 88; 4.99); Not in 
PRL3 

No 

  
K.SGQSLTVPESTy341TSIQGDPQR (0; 73; 
4.41) 

0.01 (0; 81; 4.61); Not in 
PRL3 

Yes 

  
R.SPSSCNDLy359ATVK (0.029; 19; 2.8) 

0.01 (0; 64; 3.91); Not in 
PRL3 

Yes 

  
K.ENDy417ESISDLQQGR (0; 67; 4.0) 

0.01 (0; 68; 3.61); Not in 
PRL3 

Yes 

NP_003019 
(106879210) 

SH2 Domain-containing 
Adaptor Protein B (SHB) 

K.VTIADDy246SDPFDAK (0; 34; 2.92) 
100 (0; 54; 3.59); Not in 
Vector 

Yes 

NP_892113 
(194239662) 

SHC-Transforming Protein 1 
(SHC1) 

R.ELFDDPSy427VNVQNLDK 
0.01 (0; 75, 3.82); Not in 
PRL3 

No 

Adhesion; Adaptor/Scaffold 

NP_062565 
(21361831) 

Partitioning Defective 3 
(PARD3) 

R.ERDy1080AEIQDFHR  22.22 (0.002; 1.6) No 

NP_006280 
(223029410) 

Talin-1 (TLN1) K.ALDy70YMLR (0; 39; 2.66) 13.51 (0; 29; 2.11) Yes 

  
K.ALDYy71MLR (0; 30; 1.8) 13.51 (0.002; 1.99) Yes 

Protein Kinase 

NP_005772 
(56549666) 

Activated CDC42 Kinase 1 
(ACK1, TNK2) 

K.y827ATPQVIQAPGPR (0; 37; 2.8) 3.82 (0; 33; 3.82) Yes 

NP_722560 
(24476013) 

Focal Adhesion Kinase 1 
(PTK2, FAK) 

R.THAVSVSETDDy397AEIIDEEDTYTMPS
TR (0; 34; 3.84) 

11.76 (0; 56; 3.42) Yes 

  
R.y570MEDSTYYK 

100 (0; 27; 2.17); Not in 
Vector 

No 

NP_002736 
(66932916) 

Mitogen-Activated Protein 
Kinase 1 (MAPK1, ERK2) 

R.VADPDHDHTGFLTEy187VATR (0; 58; 
5.68) 

5.32 (0; 77; 4.67) Yes 

NP_002737 
(91718899) 

Mitogen-Activated Protein 
Kinase 3 (MAPK3, ERK1) 

R.IADPEHDHTGFLTEy204VATR (0; 53; 
4.92) 

3.50 (0; 80; 4.96) Yes 

NP_001306 
(4503069) 

Mitogen-Activated Protein 
Kinase 14 (MAPK14, p38 
Alpha) 

R.HTDDEMTGy182VATR (0; 60; 3.43) 4.37 (0; 73; 4.19) Yes 
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NP_002741 
(4506095) 

Mitogen-Activated Protein 
Kinase 8 Isoform JNK1 
Alpha 1 (MAPK8, JNK1) 

R.TAGTSFMMTPy185VVTR (0; 26; 3.25) 
100 (0; 43; 3.25); Not in 
Vector 

Yes 

NP_006197 
(5453870) 

Platelet-Derived Growth 
Factor Receptor alpha 
(PDGFRA) 

K.VVEGTAy613GLSR 
100 (0; 25; 1.85); Not in 
Vector 

No 

  
R.Sy720VILSFENNGDYMDMK 

100 (0; 31; 3.59); Not in 
Vector 

No 

  
R.SYVILSFENNGDy731MDMK 

100 (0; 44; 3.88); Not in 
Vector 

No 

  
K.QADTTQy742VPMLER (0; 52; 3.03) 18.87 (0; 60; 2.98) Yes 

  
R.VDSDNAy988IGVTYK (0; 37; 2.98) No 

NP_002600 
(4505683) 

Platelet-Derived Growth 
Factor Receptor beta 
(PDGFRB) 

K.GGPIYIITEy683CR (0; 49; 2.86) 
100 (0; 40; 2.97); Not in 
Vector 

Yes 

  
R.YGDLVDy692LHR (0; 27) 5.92 (0; 2.81) Yes 

  
R.DIMRDSNy857ISK 

100 (0; 32; 2.54); Not in 
Vector 

No 

  
K.y970QQVDEEFLR (0; 35; 2.43) No 

NP_002218 
(102469034) 

Tyrosine-Protein Kinase 
JAK1 (JAK1) 

K.AIETDKEy1034YTVK (0; 29; 3.08) 
 

No 

NP_004422 
(32967311) 

Ephrin-type A Receptor 2 
(EPHA2) 

K.Ty588VDPHTYEDPNQAVLK (0; 53; 3.78) 
100 (0; 53; 3.43); Not in 
Vector 

Yes 

  
K.TYVDPHTy594EDPNQAVLK (0; 42; 3.92) 

100 (0; 66; 4.03); Not in 
Vector 

Yes 

  
R.VLEDDPEATy772TTSGGKIPIR (0; 55; 
3.71) 

76.92 (0; 100; 4.44) Yes 

  
R.IAy960SLLGLK (0.035; 16) No 

NP_004434 
(17975768) 

Ephrin type-B Receptor 3 
(EPHB3) 

R.FLEDDPSDPTy792TSSLGGK (0; 59; 4.0) 
 

Yes 

NP_004435 
(32528301) 

Ephrin type-B Receptor 4 
(EPHB4) 

R.FLEENSSDPTy774TSSLGGK (0; 82; 4.65) 
100 (0; 76; 4.11); Not in 
Vector 

Yes 

Protein Phosphatase 

NP_002825 
(33356177) 

Protein Tyrosine Phosphatase 
Non-Receptor Type 11 
(PTPN11, SHP2) 

K.IQNTGDy62YDLYGGEK (0; 83; 4.8) 
0.01 (0; 78; 3.49); Not in 
PRL3 

Yes 

  
K.IQNTGDYy63DLYGGEK (0; 83) 0.01 (0; 78); Not in PRL3 Yes 

  
R.y279KNILPFDHTR 

100 (0; 42; 2.89); Not in 
Vector 

No 

  
R.KGHEy542TNIK 

100 (0.013; 32); Not in 
Vector 

No 

NP_002827 
(4506303) 

Receptor-type Tyrosine-
Protein Phosphatase alpha 
(PTPRA) 

R.y271VNILPYDHSR (0; 43; 2.49) 
 

Yes 

  
K.VVQEYIDAFSDy798ANFK 2.03 (0; 83; 4.46) No 

Lipase 

NP_002651 
(33598948) 

1-Phosphatidylinositol-4,5-
bisphosphate 
Phosphodiesterase Gamma-1 
(PLCG1) 

K.IGTAEPDy771GALYEGR (0; 37; 2.95) 
100 (0; 49; 3.28); Not in 
Vector 

Yes 

  
R.NPGFy783VEANPMPTFK (0; 58; 4.63) 10.42 (0; 100, 3.91) Yes 

  
R.ACy977RDMSSFPETK 

100 (0; 30; 2.67); Not in 
Vector 

No 

  
K.y1253QQPFEDFR (0; 38; 2.01) 

100 (0; 40; 2.52); Not in 
Vector 

Yes 

G-Protein:  GTPase; GTPase Activating Protein (GAP); Guanine Nucleotide Exchange Factor 
(GEF); Small GTPase Effector Protein   

NP_212132 
(54112429) 

Dedicator of Cytokenisis 
Protein 7 (DOCK7) 

K.IDISPAPENPHy522CLTPELLQVK (0; 
3.02) 

100 (0; 3.08); Not in Vector Yes 
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NP_002515 
(4893) 

GTPase N-Ras (NRAS) R.QGVEDAFy157TLVR (0; 36; 2.34) 21.74 (0; 37; 2.39) Yes 

NP_004976 
(15718761) 

GTPase K-Ras Isoform B 
(KRAS) 

R.QGVDDAFy157TLVR (0; 41; 2.3) 
100 (0; 27; 2.48); Not in 
Vector 

Yes 

Signaling Other 

NP_005175 
(58218968) 

Calmodulin (CALM3) R.VFDKDGNGy100ISAAELR (0; 69; 4.3) 
100 (0; 98; 4.46); Not in 
Vector 

Yes 

NP_001744 
(15451856) 

Caveolin-1 (CAV1) K.YVDSEGHLy14TVPIR (0; 25; 3.16) 
 

Yes 

NP_002202 
(19743813) 

Integrin Beta-1 (ITGB1) K.WDTGENPIy783K 
100 (0; 37; 2.55); Not in 
Vector 

No 

NP_002204 
(20127446) 

Integrin Beta-5 (ITGB5) R.YEMASNPLy774R (0; 27; 2.0) 14.93 (0; 54; 2.79) Yes 

NP_000518 
(4504975) 

Low-Density Lipoprotein 
Receptor (LDLR) 

K.NINSINFDNPVy828QK (0; 72; 3.42) 
 

No 

NP_852664 
(32455248) 

Phosphatidylinositol 3-Kinase 
Regulatory Subunit alpha 
(PIK3R1, p85) 

R.GDFPGTy73VEYIGR (0; 40; 2.26) 
 

No 

  
R.GLECSTLy150R 

100 (0.021; 2.13); Not in 
Vector 

No 

  
R.DQy580LMWLTQK (0; 31; 2.06) 31.25 (0; 56; 3.02) Yes 

NP_004595 
(20149560) 

Syntaxin-4 (STX4) K.NILSSADy251VER (0; 48; 3.37) 14.08 (0; 59; 3.18) Yes 

Nucleic Acid Synthesis and Processing 

Transcription Factor; Transcription Regulatory Protein 
   

NP_644805 
(21618340) 

Signal Transducer and 
Activator of Transcription 3 
(STAT3) 

K.YCRPESQEHPEADPGSAAPy705LK 
(0.035; 21) 

5.65 (0; 39; 3.37) Yes 

NP_036580 
(21618344) 

Signal Transducer and 
Activator of Transcription 5B 
(STAT5B) 

K.AVDGy699VKPQIK (0; 22; 1.77) 
100 (0; 48; 3.11); Not in 
Vector 

Yes 

Storage and Transport 

NP_061849 
(21361602) 

Sodium-Coupled Neutral 
Amino Acid Transporter 2 
(SLC38A2) 

R.FSISPDEDSSSy20SSNSDFNy28SYPTK 
(0; 3.07)  

No 

  
K.SHy41ADVDPENQNFLLESNLGK (0; 69; 
5.91) 

100 (0; 70; 4.87); Not in 
Vector 

Yes 

  
K.SHy41ADVDPENQNFLLESNLGKK 

100 (0; 76; 4.67 ); Not in 
Vector 

No 

NP_005406 
(31543630) 

Sodium-Dependent 
Phosphate Transporter 1 
(SLC20A1) 

K.DSGLy388KELLHK 100 (0; 2.22); Not in Vector No 

NP_001244109 
(380503859) 

Sodium-Dependent 
Phosphate Transporter 2 
(SLC20A2) 

K.DSGLy354KDLLHK 
100 (0.005; 23; 2.18); Not in 
Vector 

No 

NP_001121620 
(189458819) 

Transferrin Receptor Protein 
1 (TFRC) 

R.SAFSNLFGGEPLSy20TR (0; 57; 4.64) 12.05 (0; 72; 4.27) Yes 

     

Table 3:  Select phosphoproteomic data supporting a pro-metastatic molecular signature in 
the PRL3-expressing HEK293 cells.  Select data taken from the entire curated 
phosphoproteomic dataset (Table 1) providing evidence in support of signal transduction 
responsible for driving pro-metastatic molecular events following ectopic PRL3 expression.  A 
graphical model representing this data is presented in Figure 10.  pTyr-residue number 
designation is based upon documented (NP and GI numbers) from the primary isoform (1 or A). 
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Table 4:  Kinetic parameters (kcat and Km) of wild-type and SHP2 pathogenic mutants with 
pNPP as a substrate.  Full-length (FL, residues 1-528) and catalytic domain (CD, 246-547) were 
used to determine kinetic parameters (kcat and Km) for the hydrolysis of para-nitrophenyl 
phosphate (pNPP).  Rate measurements were conducted at 25ºC in a pH 7.0 buffer containing 
50mM 3.3-dimethylglutarate, 150mM NaCl, 1mM DTT, and 1mM EDTA.  (A) LS-SHP2 
mutants Y279C and T468M are catalytically impaired, but the additional (1-245) residues, 
encompassing both of the N-SH2 and C-SH2 domains are less able to inhibit pNPP hydrolysis 
than this corresponding region in the wild-type enzyme, suggesting an increase propensity for LS-
SHP2 mutants to adopt an open·active conformation.  (B) Kinetic analysis of all seven LS-SHP2 
mutants.  LS-SHP2 mutants show a wide range of catalytic impairment, relative to the wild-type 
enzyme, but a disparity emerges where the most recurrent LS-SHP2 mutants Y279C and T468M 
are further inhibited by the (1-245) residue range, while the other catalytically impaired mutants 
are not further inhibited by this residue range.  Data suggests that while the Y279C and T468M 
mutants may predominately exist in a closed, autoinhibited conformation, the other mutants do 
not experience this degree of intramolecular autoinhibition. 
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Table 5:  Inhibitor constants (Ki) for the isolated wild-type N-SH2 domain against isolated 
LS-SHP2 mutant PTP domains.  Using pNPP as a substrate, rate measurements were conducted 
at 25ºC in a pH 7.0 buffer containing 50mM 3.3-dimethylglutarate, 150mM NaCl, 1mM DTT, 
and 1mM EDTA.  For Ki determination, pNPP concentration was varied while the N-SH2 domain 
was fixed at 3 different concentrations.  Data show that the isolated N-SH2 domain (4-103) is a 
competitive inhibitor to the isolated catalytic PTP domain (224-528).  The wild-type N-SH2 
domain is a weak if not completely inefficient competitive inhibitor of the LS-SHP2 mutant PTP 
domains, providing evidence in support of LS-SHP2 mutations disrupting the inherent 
intramolecular interactions made between the N-SH2 and PTP domains in the wild-type enzyme.  
A wide range of inhibition values exist across the mutants suggesting that each mutation has a 
unique ability to disturb the various intramolecular interactions that are made between these two 
domains.  The E76K N-SH2 domain was used as a positive control for ‘No Inhibition’ against the 
WT-PTP domain.  Catalytically-competent T507K was used to show that pathogenic SHP2 
mutations that are Q-loop-directed disrupt the autoregulatory mechanism governing SHP2 
function.  

  



139 
 

 

  



140 
 

 
 

Table 7:  Primers used for LS-SHP2 pathogenic mutant generation and sample of purified 
LS-SHP2 mutant (1-528) constructs.  (A) Primers used during site-directed mutagenesis and 
PCR to generate the seven LS-associated SHP2 mutants used in this investigation.  PCR products 
were gel purified, digested with NdeI and XhoI and inserted into the pET-21a(+) plasmid with C-
terminal polyhistidine-tag.  Additional information is available in the methods section.  (B)  
Coomassie-stained gel showing the relative purity of LS-SHP2 mutant (1-528) constructs 
(Y279C, A461T, G464A, T468M, R498L, Q506P, and Q510E) following a double purification 
strategy using Ni-NTA agarose followed by gel-filtration chromatography.  Purity of the SHP2 
mutant enzymes, along with their WT and E76K mutant counterparts is >95%.  Additional 
information is available in the methods section. 
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FIGURES 
 
 

 
Figure 1:  Network branching and coincidence detection in RTK signaling.  (A) Organizing 
multiprotein complexes into a functional branched network following ligand-mediated receptor 
tyrosine kinase phosphorylation/activation.  The docking protein FGF receptor substrate-2 
(FRS2α) is recruited to activated fibroblast growth factor (FGF) or nerve growth factor (NGF) 
receptors via its phosphotyrosine-binding domain (PTB), and subsequently becomes 
phosphorylated on tyrosine residues by these receptors.  The phosphotyrosyl-residues become 
docking sites for multiple Grb2 and Shp2 molecules, which bring a second docking protein, 
Gab1, into the complex.  Gab1 is tyrosine phosphorylated and recruits additional signaling 
proteins, including phosphoinositide 3-kinase (PI-3K).  PI-3K initiates a positive feedback loop in 
which PtdIns(3,4,5)P3(PIP3), generated by PI-3K, recruits more Gab1, leading to further PI-3K 
activation.  (B) Phospholipase C-γ (PLCγ) represents a coincidence detector in that its multiple 
domains cooperate to integrate multiple signals at the plasma membrane.  The N-terminal SH2 
domain targets this lipase to phosphorylated/activated receptor tyrosine kinases (RTKs), while the 
C2 and PH domains cooperate with the SH2 domain to target this enzyme to the plasma 
membrane.  One or both of the PH domains may also specifically recognize products of RTK-
activated PI-3K. RTK-mediated tyrosine phosphorylation of PLCγ leads to intramolecular 
binding of the C-terminal SH2 domain to phosphotyrosine 783.  This stimulates enzymatic 
activity of PLCγ, leading to hydrolysis of PtdIns(4,5)P2 (PIP2), and consequently leads to the 
formation of Ins(1,4,5)P3 (IP3) and diacylglycerol (DAG). 
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Figure 2:  Intracellular signaling networks activated by EGFR.  (A) Following EGF-mediated 
activation of the EGF-receptor (EGFR), a multitude of diverse signals are integrated within a 
single network.  Within the integrated network, distinct pathways are brought together to 
contextually regulate the entire network.  Through a combination of stimulatory (black arrows) or 
inhibitory (red lines) signals, several key positive feedback loops (blue circular arrows) and 
negative feedback loops (red circular arrows) emerge in the network and exert significant 
influence on its behavior.  (B) A conceptual representation of a “bow tie” or “hourglass” network, 
as described by Kitano (2004).  Diverse input signals converge upon a conserved set of core 
processes that contextually drive the activation/inhibition of a large array of output events 
including transcriptional and cytoskeletal responses.  Like the EGFR-mediated signaling network 
to the left, the conserved core of processes regulates the input signals through both feed-forward 
and feed-back signals.  The output layer also regulates the conserved core through both feed-
forward and feed-back signals.  System control exists at every layer so that the network as a 
whole can be properly regulated in a context-dependent manner. 
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Figure 3:  Class I cysteine-based protein tyrosine phosphatases (PTPs).  The class I cysteine-
based protein tyrosine phosphatases (PTPs), defined by the active site signature motif (HCX5R), 
comprise the 38 “classical” PTPs (21 receptor-like and 17 non-receptor; non-transmembrane 
(NT)) and the 65 VH1-like dual-specificity phosphatases (DSPs). The DSPs are more structurally 
diverse than the classical PTPs and possess a small conserved catalytic domain. 
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Figure 4: Ectopic PRL3 expression induces aberrant regulation of tyrosine phosphorylation.  
(A) PRL3 transcript is significantly enhanced in the PRL3-WT and -C104S expressing HEK293 
clones, relative to endogenous levels of PRL3 transcript in vector counterparts as observed 
through RT-PCR using PRL3-specific oligonucleotides.  18S-rRNA used as control.  RFP (red 
fluorescent protein)-tagged PRL3-WT protein is localized on endomembranes following stable 
ectopic expression in HEK293 cells as assessed by confocal microscopy.  (B) PRL3-WT cells 
have an unmistakable ‘spindle-like’ fibroblast/mesenchymal morphology as compared to their 
‘squamous’ epithelial PRL3-C104S and vector counterparts.  (C) PRL3-WT clones have 
enhanced ‘global’ tyrosine phosphorylation (‘pan’ pTyr-α), a markedly less latent pTyr527-Src 
population, and constitutively phosphorylated/activated ERK1/2 (pThr202/pTyr204-α) and 
STAT3 (pTyr705-α), relative to vector counterparts as measured by phospho-specific 
immunoblotting. 
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Figure 5: Phosphoproteomic methodology.  Data acquisition and analysis flow-chart describing 
the sample preparation and analysis methodology for both qualitative and SILAC (stable isotope 
labeling of amino acids in cell culture)-based quantitative assessment of tyrosine phosphorylation. 
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Figure 6:  Proteins from the ectopic PRL3 expressing cells are effectively labeled with 
SILAC-‘Heavy’ Lys- and Arg-amino acids.  Data validation and spectral quality for the ‘house-
keeping’ genes β-Actin (K.7SYELPDGQVITIGNER) and β-Tubulin (R.63AILVDLEP 
GTMDSVR) showing a ~1:1 mixing ratio between SILAC-‘Light’ (vector) and SILAC-‘Heavy’ 
(PRL-3) protein lysates prior to sample preparation (a measure of the labeling efficiency of the 
SILAC-‘Heavy’ label):  Raw fragmentation ‘sequencing’ spectrums including parent ion 
abundances (SILAC-based quantitative spectra; SILAC-‘Light’ (vector; blue points); SILAC-
‘Heavy’ (PRL-3; red points)).  b-ion series is colored in ‘red’ and y-ion series in ‘blue’. 
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Figure 7:  Quality of mass spectra used for SILAC-based quantitative assessment of 
tyrosine phosphorylation.  Representative mass spectra for pTyr187 of ERK2 
(173VADPDHDHTGFLTEY[PO3

2-]VATR), pTyr705 of STAT3 (686YCRPESQEHPEAD 
PGSAAPY[PO3

2-]LK), and pTyr417 of PAG1 (414ENDY[PO3
2-]ESISDLQQGR) showing the 

quality of mass spectra used for SILAC-based quantitative assessment of tyrosine 
phosphorylation.  Raw fragmentation ‘sequencing’ spectra including parent ion abundances 
(SILAC-based quantitative spectra:  SILAC-‘Light’ (vector; blue points); SILAC-‘Heavy’ (PRL-
3; red points)).  b-ion series is colored in ‘red’ and y-ion series in ‘blue’. 
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Figure 8:  Quality of mass spectra used for qualitative assessment of tyrosine 
phosphorylation.  Representative mass spectra for pTyr187 of ERK2 (173VADPDHDH 
TGFLTEY[PO3

2-]VATR) and pTyr783 of PLCγ1 (779NPGFY[PO3
2-]VEANPMPTFK) showing 

the quality of mass spectra used for qualitative assessment of tyrosine phosphorylation.  Raw 
fragmentation ‘sequencing’ spectra including parent ion abundances (represented as 
normalization level (NL)).  Parent ion relative abundance for both phosphopeptides is in general 
agreement with what is observed from SILAC-based quantitative data.  b-ion series is colored 
in ‘red’ and y-ion series in ‘blue’. 
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Figure 9:  Ectopic PRL3 expression induces aberrant activation of mitogenic and 
chemotactic signal transduction.  (A) Phosphoproteomic study summary in pie-chart format 
(sub-categories comprising each biofunctional bin can be seen in the entire curated dataset 
represented in Table 1).  75% of phosphoproteins are unique to the PRL3 expressing cells and 
concentrate within ‘Cellular Communication and Signal Transduction’.  (B) Ingenuity Pathway 
Analysis (IPA) results showing the Top 10 biofunctions and canonical pathways predicted from 
the phosphoproteomic dataset.  Data significance is represented using a B-H (Benjamini-
Hochberg) p-value adjustment to the false-discovery-rate (FDR; q-value).  Phosphoproteomic 
data provide evidence in support of mitogenic and chemotactic signal transduction being 
prominently affected following ectopic PRL3 expression including significant representation of 
networks associated with p21/Cdc42/Rac1-activated kinase (PAK) and cytokine, integrin, PDGF, 
and Ephrin (Eph) receptor signaling. 
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Figure 10:  PRL3 potentiates pro-metastatic molecular events downstream of an aberrantly 
activated Src tyrosine kinase.  Graphical model depicting phosphoproteomic data present within 
the PRL3 dataset that supports how PRL3 potentiates pro-metastatic molecular events through an 
aberrantly activated Src tyrosine kinase.  Src kinase activates a signal transduction network 
associated with a mitogenic and chemotactic PDGF (α and β), Eph (A2, B3, B4), and Integrin (β1 
and β5) receptor array in the PRL3 expressing cells.  Proteins highlighted within green ovals 
represent phosphoproteins (red circles pTyr-residues) shown by both qualitative and SILAC-
based quantitative mass analysis to be either upregulated or exclusively present within the PRL3 
dataset.  As compared to phosphoproteomic datasets by Rush (X) and Luo (X), while following 
the global impact of constitutively active SrcY529F overexpression in murine embryonic 
fibroblasts (MEFs), relative to their parental MEF counterparts, PRL3 cells display a notable 
oncogenic Src signature as well as significant fibroblast/mesenchymal-like signal transduction.  
Ovals are color-coded based upon this comparative analysis (completely green; unique to the 
PRL3 dataset, half-green/half-orange; in common with Src529F-MEF dataset, and half-
green/half-grey; in common with MEF-control dataset).  Non-highlighted proteins represent 
members of canonical signal transduction pathways assumed to be activated based upon data 
present within the PRL3 phosphoproteomic dataset.  pTyr-residue number designation is based 
upon documented (NP and GI numbers) in Table 1. 
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Figure 11:  Ectopic PRL3 expression induces selective expression and/or stabilization of the 
PDGFβ-receptor and Src-dependent constitutive tyrosine phosphorylation of the PDGFβ-
receptor and PLCγ1.  (A) The PDGFβ-receptor is selectively expressed and/or stabilized and is 
constitutively phosphorylated in the PRL3 cells as assessed by PDGFRβ antibody-specific 
immunoprecipitation (IP) followed by ‘pan’-pTyr immunoblotting.  PDGFRβ phosphorylation is 
dependent upon the activity of the Src kinase as assessed by the use of the Src kinase chemical 
inhibitor (SU6656) at 2.5μM.  (B) Phospholipase-C gamma 1 (PLCγ1) is constitutively 
phosphorylated in the PRL3 cells as assessed by phosphotyrosine-specific immunoblotting 
against pTyr-783.  Phosphorylation of PLCγ1 on Tyr-783 is dependent upon the activity of the 
Src kinase.  The attenuation of ERK1/2 phosphorylation using SU6656 is used as a positive 
control for SU6656-mediated Src kinase inhibition based upon our previous published results.  
(C) Data validation and spectral quality for pTyr783-PLCγ1 (779NPGFY[PO3

2-]VEANPMPTFK):  
Raw fragmentation ‘sequencing’ spectra including parent ion abundances (SILAC-based 
quantitative spectra:  SILAC-‘Light’ (vector; blue points); SILAC-‘Heavy’ (PRL-3; red points)).  
b-ion series is colored in ‘red’ and y-ion series in ‘blue’. 
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Figure 12:  The crystal structures of the wild-type SHP2 and Y279C mutant.  (A) Schematic 
diagram of SHP2.  (B) The overall structure of the wild-type SHP2.  N-SH2, C-SH2 and PTP 
domain are respectively colored in yellow, green and light-blue.  The catalytic P-loop is 
highlighted in red and the other four important loops are highlighted in magenta.  The dash lines 
represent three undetermined disordered loop in the crystal structures.  (C) SHP2 Y279C mutant 
still poses the “closed” conformation with the D’E-loop (spheres) blocking the active site.  (D) 
2Fo-Fc map (contoured at -3σ, red) around Y279 show the mutation of Y279C.  These density 
maps were calculated after the refinement of wild-type structure using the diffraction data of 
Y279C mutant.  (E) Y279C mutation alters the substrate recognition surface constituted by Y279, 
K364 and K366, which is represented in mesh and solid surface respectively in wild-type and 
Y279C mutant.  The bound pTyr (shown in spheres) was modeled by superimposing the SHP1-
phosphopeptide complex (PDB#:  1FPR) onto the wild-type SHP2 structure.  (F) Y279C 
mutation decreases the interactions of N-SH2 with PTP domain.  Residues resulting in the 
decreased interactions are shown in stick (yellow for wild-type SHP2) and green for Y279C 
mutant). 

  



153 
 

 

Figure 13:  Hydrogen/Deuterium exchange mass spectrometry (H/DX-MS) methodology 
flow-chart.  Purified SHP2 (1-528) mutant and wild-type constructs are incubated in deuterium 
oxide (D2O; 2H2O) for various times over a 1hr. period, whereby the deuterium labeling reaction 
is quenched using a low pH buffer.  Labeled native/intact proteins are either directly analyzed by 
mass spectrometry or subjected to a pepsin-mediated digestion to generate peptic peptides that are 
then analyzed by mass spectrometry.  Mass analysis is carried out as protein/peptides leave 
reverse-phase (RP) liquid chromatography by electrospray. 
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Figure 14:  SHP2 mutants E76K and Y279C show increased conformational dynamic 
flexibility in solution within the interface region between the N-SH2 and PTP domains 
relative to the wild-type (WT) enzyme as assessed by hydrogen-deuterium exchange mass 
spectrometry (H/DX-MS).  (A) Representative comparative deuterium exchange plots for 
peptides within the E76K and Y279C N-SH2/PTP domain interface regions that attain significant 
exchange relative to WT. Secondary-structure elements are documented so that they can be 
located in (B).  (B) ‘Heat map’ showing significantly increased deuterium exchange for both the 
E76K and Y279C mutants relative to the WT enzyme at the 1 min time point of deuterium 
labeling modeled on the WT structure crystal (3OLR).  WT as all grey and mutants color coded 
based upon increased exchange relative to WT as described in the legend.  Peptides are colored 
when they attain exchange significance at two consecutive time points and at least 2σ (st.dev.) 
relative to WT values.  The catalytic cysteine (Cys459) is labeled for active site orientation. 
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Figure 15:  Native/Intact H/DX-MS data acquisition and analysis.  Quality of native/intact 
protein mass spectra used in this analysis.  The first panel represents the chromatography 
associated with the elution of the intact protein from the reverse-phase (RP) analytical column.  
Panels 2 and 3 represent the intact mass charge envelope for a purified SHP2 protein and the 
mass-to-charge (m/z) ratios of the monoisotopic peaks as they change over time relative to the 
degree by which deuterium labeling occurs.  Panel 4 represents a general deuterium incorporation 
over time plot following spectral deconvolution to acquire true mass from the convoluted raw 
mass spectrum. 
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Figure 16:  H/D-exchange to native/intact SHP2 (1-528) enzymes.  Hydrogen exchange was 
measured from 5s-1h (5s, 10s, 30s, 1m, 10m, 30m, 1h) and plotted in bar-chart format with error 
bars representing measurement standard deviation (triplicate measurement per time point).  
Measurement significance is provided as p-values generated from a comparison of two means via 
a paired t-test.  Relative to WT, gain-of-function (GOF) SHP2-D61Y and E76K show significant 
hydrogen exchange by the earliest time point that extends through the entire measurement period, 
suggesting that these mutants experience very minor N-SH2 domain-mediated autoinhibition.  
Conversely, a disparity exists in the magnitude of hydrogen exchange experienced by the LS-
SHP2 mutants, relative to WT.  Mutants with pTyr-/P-loop-directed mutations (e.g. Y279C, 
A461T, G464A, and T468M) experience markedly less hydrogen exchange than those mutants 
with ‘Q’ (HI)-loop-directed mutations (e.g. R498L, Q506P, and Q510E).  Hydrogen exchange 
observed within the non-LS-SHP2 mutant (T507K) with a Q-loop-directed mutation, further 
justifies the importance of the catalytic Q-loop structure as a major element responsible for 
upholding N-SH2 domain-mediated intramolecular autoinhibition in a latent state. 
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Figure 17:  Peptide H/DX-MS data acquisition and analysis.  Quality of peptic peptide mass 
spectra used in this analysis.  The first panel represents the chromatography associated with the 
elution of peptic peptides from the reverse-phase (RP) analytical column.  Panels 2 and 3 
represent the parent ion isotopic distribution of a single peptide as it increases in mass over time 
according to the extent of deuterium labeling  Unbiased peak envelope centroiding to get 
weighted average mass (WAM) values is done by HX-Express (Weiss2006).  Panel 4 represents a 
general deuterium incorporation over time plot following WAM value interpretation by HX-
Express. 
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Figure 18:  Peptide H/DX-MS 2-D sequence coverage map.  Linear primary amino acid 
sequence for SHP2 wild-type (WT) (1-528) with corresponding 2º-structures labeled.  Domain 
arrangement is color-coded (N-SH2, yellow), (C-SH2, green), and (PTP, blue).  The 46 peptic 
peptides used in the H/DX-MS analysis encompass ~95% of the (1-528) amino acid sequence.  
Peptides are represented in this figure under the primary amino acid sequence as black bars. 
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Figure 19:  Differential H/DX experienced by the GOF SHP2-E76K pathogenic mutant.  
Differential hydrogen exchange experienced by the gain-of-function (GOF) SHP2-E76K 
pathogenic mutant enzyme, relative to the wild-type (WT) enzyme.  Differential exchange data is 
modeled on the WT structure crystal (3OLR).  WT as all grey and mutants color coded based 
upon increased exchange relative to WT as described in the legend.  Peptides are colored when 
they attain exchange significance at two consecutive time points and at least 2σ (st.dev.) relative 
to WT values.  The N-SH2, C-SH2, and PTP domains as well as corresponding 2º-structural 
elements are labeled in the primary (5s) time point.  The catalytic cysteine (Cys459) is labeled for 
active site orientation. 
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Figure 20:  Differential H/DX experienced by the GOF SHP2-D61Y pathogenic mutant.  
Differential hydrogen exchange experienced by the gain-of-function (GOF) SHP2-D61Y 
pathogenic mutant enzyme, relative to the wild-type (WT) enzyme.  Differential exchange data is 
modeled on the WT structure crystal (3OLR).  WT as all grey and mutants color coded based 
upon increased exchange relative to WT as described in the legend.  Peptides are colored when 
they attain exchange significance at two consecutive time points and at least 2σ (st.dev.) relative 
to WT values.  The N-SH2, C-SH2, and PTP domains as well as corresponding 2º-structural 
elements are labeled in the primary (5s) time point.  The catalytic cysteine (Cys459) is labeled for 
active site orientation. 
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Figure 21:  Differential H/DX experienced by the LS-SHP2-Y279C pathogenic mutant.  
Differential hydrogen exchange experienced by the LS-SHP2-Y279C pathogenic mutant enzyme, 
relative to the wild-type (WT) enzyme.  Differential exchange data is modeled on the WT 
structure crystal (3OLR).  WT as all grey and mutants color coded based upon increased 
exchange relative to WT as described in the legend.  Peptides are colored when they attain 
exchange significance at two consecutive time points and at least 2σ (st.dev.) relative to WT 
values.  The N-SH2, C-SH2, and PTP domains as well as corresponding 2º-structural elements 
are labeled in the primary (5s) time point.  The catalytic cysteine (Cys459) is labeled for active 
site orientation. 
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Figure 22:  Differential H/DX experienced by the LS-SHP2-A461T pathogenic mutant.  
Differential hydrogen exchange experienced by the LS-SHP2-A461T pathogenic mutant enzyme, 
relative to the wild-type (WT) enzyme.  Differential exchange data is modeled on the WT 
structure crystal (3OLR).  WT as all grey and mutants color coded based upon increased 
exchange relative to WT as described in the legend.  Peptides are colored when they attain 
exchange significance at two consecutive time points and at least 2σ (st.dev.) relative to WT 
values.  The N-SH2, C-SH2, and PTP domains as well as corresponding 2º-structural elements 
are labeled in the primary (5s) time point.  The catalytic cysteine (Cys459) is labeled for active 
site orientation. 
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Figure 23:  Differential H/DX experienced by the LS-SHP2-G464A pathogenic mutant.  
Differential hydrogen exchange experienced by the LS-SHP2-G464A pathogenic mutant enzyme, 
relative to the wild-type (WT) enzyme.  Differential exchange data is modeled on the WT 
structure crystal (3OLR).  WT as all grey and mutants color coded based upon increased 
exchange relative to WT as described in the legend.  Peptides are colored when they attain 
exchange significance at two consecutive time points and at least 2σ (st.dev.) relative to WT 
values.  The N-SH2, C-SH2, and PTP domains as well as corresponding 2º-structural elements 
are labeled in the primary (5s) time point.  The catalytic cysteine (Cys459) is labeled for active 
site orientation. 
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Figure 24:  Differential H/DX experienced by the LS-SHP2-T468M pathogenic mutant.  
Differential hydrogen exchange experienced by the LS-SHP2-T468M pathogenic mutant enzyme, 
relative to the wild-type (WT) enzyme.  Differential exchange data is modeled on the WT 
structure crystal (3OLR).  WT as all grey and mutants color coded based upon increased 
exchange relative to WT as described in the legend.  Peptides are colored when they attain 
exchange significance at two consecutive time points and at least 2σ (st.dev.) relative to WT 
values.  The N-SH2, C-SH2, and PTP domains as well as corresponding 2º-structural elements 
are labeled in the primary (5s) time point.  The catalytic cysteine (Cys459) is labeled for active 
site orientation. 
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Figure 25:  Differential H/DX experienced by the LS-SHP2-R498L pathogenic mutant.  
Differential hydrogen exchange experienced by the LS-SHP2-R498L pathogenic mutant enzyme, 
relative to the wild-type (WT) enzyme.  Differential exchange data is modeled on the WT 
structure crystal (3OLR).  WT as all grey and mutants color coded based upon increased 
exchange relative to WT as described in the legend.  Peptides are colored when they attain 
exchange significance at two consecutive time points and at least 2σ (st.dev.) relative to WT 
values.  The N-SH2, C-SH2, and PTP domains as well as corresponding 2º-structural elements 
are labeled in the primary (5s) time point.  The catalytic cysteine (Cys459) is labeled for active 
site orientation. 
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Figure 26:  Differential H/DX experienced by the LS-SHP2-Q506P pathogenic mutant.  
Differential hydrogen exchange experienced by the LS-SHP2-Q506P pathogenic mutant enzyme, 
relative to the wild-type (WT) enzyme.  Differential exchange data is modeled on the WT 
structure crystal (3OLR).  WT as all grey and mutants color coded based upon increased 
exchange relative to WT as described in the legend.  Peptides are colored when they attain 
exchange significance at two consecutive time points and at least 2σ (st.dev.) relative to WT 
values.  The N-SH2, C-SH2, and PTP domains as well as corresponding 2º-structural elements 
are labeled in the primary (5s) time point.  The catalytic cysteine (Cys459) is labeled for active 
site orientation. 
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Figure 27:  Differential H/DX experienced by the LS-SHP2-Q510E pathogenic mutant.  
Differential hydrogen exchange experienced by the LS-SHP2-Q510E pathogenic mutant enzyme, 
relative to the wild-type (WT) enzyme.  Differential exchange data is modeled on the WT 
structure crystal (3OLR).  WT as all grey and mutants color coded based upon increased 
exchange relative to WT as described in the legend.  Peptides are colored when they attain 
exchange significance at two consecutive time points and at least 2σ (st.dev.) relative to WT 
values.  The N-SH2, C-SH2, and PTP domains as well as corresponding 2º-structural elements 
are labeled in the primary (5s) time point.  The catalytic cysteine (Cys459) is labeled for active 
site orientation. 
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Figure 28:  Differential H/DX experienced by the solid tumor-associated SHP2-T507K 
pathogenic mutant.  Differential hydrogen exchange experienced by the solid tumor-associated 
SHP2-T507K pathogenic mutant enzyme, relative to the wild-type (WT) enzyme.  Differential 
exchange data is modeled on the WT structure crystal (3OLR).  WT as all grey and mutants color 
coded based upon increased exchange relative to WT as described in the legend.  Peptides are 
colored when they attain exchange significance at two consecutive time points and at least 2σ 
(st.dev.) relative to WT values.  The N-SH2, C-SH2, and PTP domains as well as corresponding 
2º-structural elements are labeled in the primary (5s) time point.  The catalytic cysteine (Cys459) 
is labeled for active site orientation. 
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Figure 29 (A and B):  Comparative analysis of hydrogen exchange experienced by the GOF 
Leukemia/NS-SHP2 E76K and the LS-SHP2 R498L pathogenic mutants.  SHP2 mutants 
E76K and R498L show increased conformational dynamic flexibility in solution within the N-
SH2/PTP interdomain region, relative to the wild-type (WT) enzyme as assessed by (H/DX-MS).  
(A) Representative comparative hydrogen exchange plots for peptides within the PTP domain 
portion of the E76K and R498L N-SH2/PTP domain interface regions that attain significant 
exchange relative to WT.  2º-structure elements are documented so that they can be located in 
(C).  (B) Representative comparative hydrogen exchange plots for peptides within the N-SH2 
domain portion of the E76K and R498L N-SH2/PTP domain interface regions that attain 
significant exchange relative to WT. 
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Figure 29 (C and D):  Comparative analysis of hydrogen exchange experienced by the GOF 
Leukemia/NS-SHP2 E76K and the LS-SHP2 R498L pathogenic mutants.  SHP2 mutants 
E76K and R498L show increased conformational dynamic flexibility in solution within the N-
SH2/PTP interdomain region, relative to the wild-type (WT) enzyme as assessed by (H/DX-MS).  
(C) ‘Heat map’ showing significantly increased hydrogen exchange for both the E76K and 
R498L mutants relative to the WT enzyme at the 1 min time point of deuterium labeling modeled 
on the WT structure crystal (3OLR).  WT as all grey and mutants color coded based upon 
increased exchange relative to WT as described in the legend.  Peptides are colored when they 
attain exchange significance at two consecutive time points and at least 2σ (st.dev.) relative to 
WT values.  Arg498 is labeled for R498L mutation orientation.  The catalytic cysteine (Cys459) 
is labeled for active site orientation.  (D) ‘Heat map’ of the E76K and R498L N-SH2 domains at 
the 1 min time point modeled on the (A-state) phosphotyrosyl-peptide-bound N-SH2 domain as 
documented by (Lee et al., 1994; PDB: 1AYA).  The A-state (1AYA) structure (colored) is 
superimposed on the I-state (3OLR) WT structure (grey) (residues 3-103) using 
Phenix·superimpose to show significant conformational differences within the N-SH2 domain 
upon phosphopeptide-binding.  Phosphopeptide represented in ‘blue’ with corresponding pTyr-
residue in association with Arg32 of the βB-strand. 
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Figure 30:  Hypothetical disease spectrum associated with SHP2 pathogenic mutants.  A 
hypothetical disease spectrum associated with SHP2 pathogenic mutants was constructed based 
upon kcat/Km (s-1/mM) measurements (using pNPP as a substrate) and H/DX-MS observations.  
kcat/Km (s-1/mM) is used to sort the SHP2 pathogenic mutants as it is a measure of catalytic 
efficiency and, important to SHP2 function, it encompasses both catalytic competency as well as 
the ability of the N-SH2 domain to uphold intramolecular autoinhibition.  The disease spectrum 
encompasses LEOPARD syndrome (LS), Noonan syndrome (NS), and Neoplasia (Neo) 
(encompassing the various hematological malignancies and solid tumors that are potentiated by 
SHP2 pathogenic mutants).  Q506P represents a SHP2 pathogenic mutant documented in both LS 
and NS/Neoplasia cases and provides evidence that catalytically impaired mutants are capable of 
giving rise to GOF phenotypes, based upon the extent by which they are catalytically impaired 
and experience perturbed N-SH2 domain-mediated intramolecular autoinhibition.  NS and LS are 
therefore ‘spectrum’ diseases potentiated by GOF SHP2 mutants that differ with respect to their 
inherent catalytic competencies, but are similar with respect to the compromised ability of the N-
SH2 domain to uphold intramolecular autoinhibition. 
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