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ABSTRACT

Yang, Huanyi. M.S.E.C.E. , Purdue University, May 2013. Performance Analysis of
EM-MPM and K-means Clustering in 3D Ultrasound Breast Image Segmentation.
Major Professor: Lauren Christopher.

Mammographic density is an important risk factor for breast cancer, detecting

and screening at an early stage could help save lives. To analyze breast density dis-

tribution, a good segmentation algorithm is needed. In this thesis, we compared two

popularly used segmentation algorithms, EM-MPM and K-means Clustering. We ap-

plied them on twenty cases of synthetic phantom ultrasound tomography (UST), and

nine cases of clinical mammogram and UST images. From the synthetic phantom

segmentation comparison we found that EM-MPM performs better than K-means

Clustering on segmentation accuracy, because the segmentation result fits the ground

truth data very well (with superior Tanimoto Coefficient and Parenchyma Percent-

age). The EM-MPM is able to use a Bayesian prior assumption, which takes ad-

vantage of the 3D structure and finds a better localized segmentation. EM-MPM

performs significantly better for the highly dense tissue scattered within low den-

sity tissue and for volumes with low contrast between high and low density tissues.

For the clinical mammogram, image segmentation comparison shows again that EM-

MPM outperforms K-means Clustering since it identifies the dense tissue more clearly

and accurately than K-means. The superior EM-MPM results shown in this study

presents a promising future application to the density proportion and potential cancer

risk evaluation.



1

1. INTRODUCTION

Breast cancer is the most common cancer in women and a frequent cause of death

from cancer in most developed countries. Assessing a woman’s lifetime risk of breast

cancer at an early stage can help save lives by targeting screening and preventive

therapy to the at-risk population. Some studies have shown that a woman’s breast

density proportion is a strong risk factor for breast cancer risk; the higher the propor-

tion of dense tissue, she is 4-5 times more likely to develop breast cancer [1]. Thus,

mammographic density can be viewed as an intermediate phenotype for breast can-

cer. Among many popular methods used for analyzing mammographic density, recent

studies have demonstrated the effectiveness of Tomographic Ultrasound (UST) imag-

ing in detecting breast cancer, particularly for women with dense breasts [9] [11].

Since the density is automatically calibrated to water in this imaging mode, UST

could provide a more accurate measurement compared with some other detection

methods where the result may be affected by operating conditions. In addition, in

contrast to the 2-D projection in standard mammography, a 3-D model of the breast

density is available in tomographic ultrasound. In order to get a density map of the

data, the process of segmenting this tissue density data is needed. Therefore, this

study focuses on obtaining a repeatable measure of density proportion using 3-D Ul-

trasound Tomography. In our research, we apply two methods of segmentation for

both synthetic and clinical breast image. Then we compare, analyse and discuss the

performance of the segmentation accuracy.

To analyze breast density distribution, a good segmentation algorithm is needed.

Commonly used segmentation techniques such as filtering, region growing, thresh-

olding, and non-linear edge operations are not effective enough in UST data due

to the noise degradation in ultrasound. Here we choose two advanced robust algo-

rithms, EM-MPM and K-means Clustering to compare. First, the Bayesian algorithm
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combining Expectation Maximization with the Maximization of Posterior Marginals

(EM-MPM) is considered effective in many difficult segmentation tasks [2] [3] [4].

This algorithm classifies every pixel in an image by assigning a cost to the number of

misclassified pixels, and iteratively finds the best probabilistic solution to fit the data.

This method has the advantage of using a 3-D neighborhood of pixels as a statistical

Bayesian prior, and has the effect of grouping the data similar to the way the tissues

are structured. Second, K-means Clustering is another commonly used technique [5]

in medical image processing, especially in images with noisy data. This algorithm

takes n observations and segments them into k clusters in which each observation

belongs to the cluster with the nearest mean. The initialization of the k-means al-

gorithm can be critical, and in this case seeds were automatically placed randomly.

In the article written by Predrag R. Bakic [5], this K-means Clustering technique

is used to analyze the volumetric breast density, based on a set of synthetic images

generated with an anthropomorphic software breast phantom, which accurately sim-

ulates the arrangement of breast tissues according to the analysis of histological and

radiological images. The K-means Clustering segmentation result shows a high corre-

lation with the ground truth information about the simulated breast tissues provided

by the phantom, however still not perfect enough from medical perspective. In our

work described in this thesis, first we show EM-MPM provides a better result than

K-means Clustering on the synthetic UST, with superior Tanimoto Coefficient and

Parenchyma Percentage. Second, we apply both methods on clinical data, which again

shows EM-MPM has clearer subjective segmentation result than K-means Clustering.

In Chapter 2, the EM-MPM and K-means Clustering algorithms are introduced.

A global view and analysis of the algorithm helps on deep understanding of the

differences between these two methods. EM and MPM algorithms are discussed here,

also the relationship between them is explained. For the K-means Clustering, the

algorithm are reviewed step by step, accompanied with equations and examples.

In Chapter 3, the segmentation results from the two algorithms are compared

and discussed, using synthetic ultrasound tomography and clinical ultrasound im-
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age. First, the data developed from anthropomorphic software breast phantom is

reviewed. It is an accurate model containing the simulated information of different

density tissues within the breast tissue, which provides a convenient way to compare

the accuracy with the ground truth data. Then we follow by using two parame-

ters for measuring the segmentation accuracy, Tanimoto Coefficient and Parenchyma

Percentage. Tanimoto Coefficient measures the matching proportion between two

images. The Parenchyma Percentage applies to measuring the percentage of the

dense tissue compared with the whole tissue. Next we compare and discuss the seg-

mentation results of EM-MPM and K-means Clustering. EM-MPM shows promising

results with both superior Tanimoto Coefficient and Parenchyma Percentage. Finally,

we introduce the clinical image data. The clinical digital mammogram and clinical

ultrasound tomography are explained. Then we apply the two algorithms on the

ultrasound tomography images, and compare the result with the currently used stan-

dard, the commercial Cumulus software which is based on percent density [5]. Again,

we see that EM-MPM has a better segmentation result than K-means Clustering.

In Chapter 4, we conclude with the advantages of EM-MPM segmentation on

ultrasound tomography, it showed more accurate breast density analysis compared

with K-means Clustering. Also, we point out that the data sets used in our research

are limited, especially clinical data cases. More clinical ultrasound images are needed

for further analysis of the segmentation accuracy improvement.
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2. ALGORITHMS USED IN THE SEGMENTATION

In our study, we apply EM-MPM algorithm on both synthetic and clinical UST

images, then compare the EM-MPM segmentation result with the corresponding K-

means Clustering segmentation result, which comes from the previous work at Kar-

manos Cancer Institute. In this chapter a briefly review of the two algorithms is

presented.

2.1 EM-MPM

The EM-MPM algorithm consists of two parts: Expectation-Maximization (EM)

and Maximization of the Posterior Marginals (MPM) [2] [3]. The EM algorithm finds

the estimates for Gaussian mean and variance, while MPM classifies the pixels into

N class labels, using the estimated parameters from EM. The basic structure of the

image processing is a 3-D neighborhood of pixels. In the 3-D image research field, this

forms a mathematical structure called a Markov Random Field (MRF). The MRF is

useful because it guarantees local convergence in iterative algorithms which are based

on it. The 3-D 6-pixel neighborhood which we use is: right, left, above, below, front,

and back around a center pixel.

In the 3-D image, the source image gray level information is considered a 3-

D volume of random variables, Y. As medical images, the model assumes that Y

contains Gaussian noise due to the image processing, plus the true underlying tissue

characteristics. The segmentation result approximates the true tissues, denoted as

X, which does not contain noise or distortion. The class label is taken from a set of

N labels. Described here is the optimization process by which we classify the pixels

into the N labels.
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A random class label is initialized into every pixel in X at the beginning of the seg-

mentation process, with an evenly distributed vector of means and variances. Then,

the estimate of X is formed by iterating several times through the 3-D data. The

probability density function of a mixture of Gaussians, in which the random variable

Y is dependent on X, is modeled in following Equation [4]:

fY |X(y|x, θ) =
∏
sεS

1√
2πσ2

xs

exp

{
−(ys − μxs)

2

2σ2
xs

}
(2.1)

Where σ is the variance for each class, μ is the mean for each class, xs is the center

pixel, ys is the source image, θ is the vector of means and variances of each class, S

is the 3-D volume of pixels.

Since we are assuming Bayesian dependence, to find the probability mass function

of X|(Y, θ), we can use Equation 2.2 to iteratively solve for x̂:

pX|Y (x|y, θ) = 1

ZfY (y|θ)
∏
sεS

1√
2πσ2

xs

exp{−(ys − μxs)
2

2σ2
xs

−
∑
[r,s]εC

βt(xs, xr)} (2.2)

Where C is the neighborhood of X, β is the weighting factor for amount of spatial

interaction, and t (xr, xs) = 0 when xr = xs ,or t (xr, xs) = 1 when xr �=xs.

We take the log(pX|Y ) and ignore the terms that do not depend on x, such as

1
ZfY (y|θ) , then the result is the Equation 2.3 for optimization. It provides the optimized

segmentation result by choosing a class label for every pixel in the estimate ofX which

can maximize the marginal probability mass function:

argmax

⎧⎨
⎩−logσxs −

(ys − μxs)
2

2σ2
xs

−
∑

{r,s}εC
βt (xr, xs)

⎫⎬
⎭ (2.3)

The pX|Y (x|y, θ) is the posterior marginal distribution at a pixel location s, so in

this equation we are Maximizing the Posterior Marginals (MPM).

Expectation Maximization (EM) is an iterative procedure for estimation of the

mean and the variance of each segmentation classes. At each iteration, two steps

are performed: the expectation step and the maximization step. First maximization
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step is performed, then the segmentation is done in the expectation step, iterat-

ing to find the best log-likelihood of the probability that a particular pixel belongs

to one of the k classes. The means and variances are represented by the vector:

θ = (μ1, σ1, . . . , μk, σk). The MPM probability, pxs|Y (k|y, θ (w − 1)), where w is the

number of EM iteration, yielded the MPM loop, is directly applied in the EM update

Equations for μk, σ
2
k:

μ̂k (w) =
1

Nk (p)

∑
sεS

yspxs|Y (k|y, θ (w − 1)) (2.4)

σ̂k
2 =

1

Nk(w)

∑
sεS

(ys − μk(w))
2 pxs|Y (k|y, θ(w − 1)) (2.5)

Where N corresponds to the probability weighted number of pixels in a particular

class:

Nk (w) =
∑
sεS

pxs|Y (k|y, θ (w − 1)) (2.6)

2.2 K-means Clustering

K-means is a simple unsupervised segmentation algorithms that solve various

kinds of clustering problem [6]. It is a simple and easy way to classify a given object

through a certain number of clusters (assume k clusters), in which each observation

is classified to the cluster with the nearest mean, m.

Given a set of observations (x1, x2, ..., xp), the main idea is to define k centroids,

one for each cluster, then classifies the n observations into k sets S = {S1, S2, ..., Sk}.
Since different centroids location may produce the different result, so it is better to

place them as far away as possible from each other. in this study centroids were

automatically placed randomly. The next step is to take each point belonging to a

given data set and group it to the nearest centroid. When no point is pending, the

first step is completed and the first round segmentation is done. At this point we

need to re-calculate the k new centroids as centers of the clusters resulting from the
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first step. After these k new centroids are calculated, a new segmentation has to

be done between the same object data points and the nearest new centroid. In this

whole updating loop, the k centroids change their location gradually until no more

changes are found. In other words the centroids do not move any more. Finally, this

algorithm produces a separation of the objects into groups which can minimize the

distance between objects and centroids.

The algorithm is composed of the following steps:

(1) Place k points into the target space composed by the objects that need to be

clustered, which represent the initial centroids.

(2) Assign each object to the cluster that has the closest mean with the target cen-

troid, where each xp goes into exactly one Si
t.

Si
t = {xp : ||xp −mi

t|| ≤ ||xp −mj
t||,∨1 ≤ j ≤ k} (2.7)

(3) When all objects have been classified, calculate the new positions of the k cen-

troids.

mi
t+1 =

1

Si
t

∑
{xj}εSi

xj (2.8)

(4) Repeat Steps 2 and 3 until the centroids no longer move, which produces a seg-

mentation of the objects into groups with the minimized distance to the target cluster

centroid.
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3. RESULT AND DISCUSSIONS

In this section, we compare and analyze the segmentation result from EM-MPM and

K-means Clustering. First, we apply the algorithms on twenty sets of 3-D synthetic

breast ultrasound tomography (UST) with various densities. Then we compare their

volumetric breast density (VBD) result with the ground truth VBD values available

from the phantoms. Second, we apply the algorithms on nine sets of 3-D clinical UST

images, then compare their segmentation accuracy with the currently used standard,

percent density (PD) values which were estimated interactively by a clinical breast

radiologist using Cumulus software.

3.1 Result and Disscussions on Synthetic Breast UST

3.1.1 Synthetic Breast UST

Previously, some studies about breast density analysis based on clinical UST im-

ages has been conducted at the Karmanos Cancer Institute [5]. They showed a correla-

tion between volumetric breast density estimates from clinical ultrasound tomography

(UST) images and the Cumulus based percent density estimates from clinical digi-

tal mammogram images. Such studies have a practical limitation since UST images

represent a reconstructed 3-D image of the breast, while digital mammography rep-

resents a 2-D projection through the breast, in addition, no information is available

clinically about the ground truth breast density values. To overcome the limitation

of lacking the ground truth, we use the synthetic images generated with an anthro-

pomorphic software breast phantom, developed at the University of Pennsylvania [8].

The phantom is based upon a detailed analysis of breast anatomy visualization by

clinical images and sub-gross pathology, it simulates the arrangement of breast tissues



9

coming from the analysis of histological and radiological images. The ground truth

information about the simulated breast tissues provided by the phantom allows the

calculation of the absolute error in breast density measurements and potential sources

of that error.

Design of the anthropomorphic phantom used in this study allows for simulating

multimodality breast images. Examples of clinical digital mammogram, UST image,

phantom, simulated mammographic projection, and the corresponding UST images

are shown in Figure 3.1 and Figure 3.2. The phantom offers great flexibility in

simulating various breast size, glandularity, and internal composition. Starting from

a realistic skin surface, the phantom interior includes simulated tissue structures, as

adipose compartments, Coopers ligaments, and glandular tissue.

3.1.2 Tanimoto Coefficient

In order to measure the segmentation accuracy, we use the Tanimoto Coefficient

to measure of the overlap proportion of two images of a single segmentation class [7].

Given two images A and B ( as shown in Figure 3.3), each with n binary pixels. Let’s

say A is the original ground truth image, with binary pixel value equals 0 if it is

not in the class, or equals 1 if in the class. B is the partially correct segmentation

image based on A. As shown in Equation 3.1, the Tanimoto Coefficient is defined

as the proportion of the overlapping pixels divided by the whole union of total pixel

numbers in the target class. The perfect segmentation would be T=1.0. Normally

very good segmentations are above T=0.6, and can depend on the noise and distortion

presented in the images.

T =
N11

N01 +N10 +N11

(3.1)

Here we define:

(1) N11 represents the total number of pixels where A and B both have a value of 1,

which means the correct segmentation part in B.
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Clinical Mammogram Clinical UST

Fig. 3.1. Clinical images

Phantom Mammogram from Phantom UST from Phantom

Fig. 3.2. Phantom images
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(2) N01 represents the total number of pixels where the attribute of A is 0 and the

attribute of B is 1, which means the mis-segmentation part in B.

(3) N10 represents the total number of attributes where the pixel of A is 1 and the

pixel of B is 0, which means the missing segmentation part in B.

(4) N00 represents the total number of pixels where A and B both have a value of 0,

which means the not-in-class part in both A and B.

3.1.3 Parenchyma Percentage

The second measure of segmentation accuracy is Parenchyma Percentage, which

analyzes the volumetric breast density from UST images. We define the parenchyma

percentage by dividing the volume of high density tissue by the total volume of the

breast tissue (Equation 3.2). From the clinical perspective, the dense tissue means

the fibroglandular tissue, Coopers ligaments, and the tumor, which, in our synthetic

phantom they are represented by the relatively high brightness pixels compared with

the dark back ground, which is shown in Figure 3.4. In the UST slice we can see those

brighter areas, and the corresponding dense parts are identified by the segmentation

image with the highest gray level(s).

Parenchyma Percentage =
Vdense

Vtotal

(3.2)

3.1.4 Result and Discussions

In this section, the segmentation result from EM-MPM and K-means Clustering

are compared and discussed. A total of twenty sets of anthropomorphic phantom UST

are selected, which roughly follow the distribution clinically estimated from over 2800

women using digital mammograms and breast CT images.

First we apply our algorithms, EM-MPM on each slice separately of the 3-D re-

constructed phantom ultrasound tomography. Here we use three class option. For

K-means Clustering the two class option is used in the previous work at Karmonos
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Fig. 3.3. Tanimoto Coefficient



13

Software-generated UST Slice EM-MPM Segmentation Image

Fig. 3.4. Software-generated UST slice and the corresponding EM-
MPM segmentation image

Cancer Institute [5]. We calculate and compare the two methods’ segmentation ac-

curacy using 3-D volumetric Tanimoto Coefficient and Parenchyma Percentage. Tan-

imoto Coefficient is calculated by comparing the overlapping dense part between the

segmentation image and the corresponding ground truth image. The dense part de-

fined in the ground truth image are represented by higher gray levels 191, 202 and

223, corresponding to the edge (skin), the intersection lines (connective tissue) and

bright areas (dense tissues) within breast. Parenchyma Percentage is calculated as

dividing the dense tissue over the whole volume of the phantom. The dense tissue is

represented by the top class in segmentation image, or top three brightness pixels in

ground truth image.

A selection of phantom cases are shown in Figure 3.5 to Figure 3.10 (with remain-

ing cases in Appendix A), comparing the segmentation result between EM-MPM and

K-means Clustering. Phantom images presented here are some specific slices chosen
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out of the 3-D UST with various densities. In Figure 3.5 and Figure 3.6, where the

dense tissues clustered tightly and could be clearly identified from the less dense part,

EM-MPM and K-means Clustering performs almost the same, where both of them

can find the dense part out of the normal tissue. In addition, EM-MPM works a little

better on the edge (skin) detection, which picks thinner skin area compared with

K-means Clustering.

In Figure 3.7 and Figure 3.8, there are two cases of low density phantom slices,

which the dense tissue is small and sparsely scattered. Here we can see EM-MPM

performs better than K-means Clustering, it finds the tiny dense parts clearly, and

matches very well with the ground truth image. For K-means Clustering, instead of

concentrating on the small dense area, it tends to evenly spread the dense part within

the whole tissue, which is due to the updating centroids principle.

Figure 3.9 and Figure 3.10 show two cases of high density phantom slices, where

the dense tissue took over more than 50 percent of the whole tissue. Again EM-MPM

out performs K-means Clustering, which accurately segmented the dense part from

the background (compared with the ground truth data). On the contrary, K-means

Clustering tends to omit some dense parts, average it, and make it less dense.

Figure 3.11 illustrates the Tanimoto Coefficient comparison between EM-MPM

and K-means Clustering. As mentioned in previous section, Tanimoto Coefficient

is used to judge the similarity between two images, the higher value of Tanimoto

Coefficient, the higher similarity of the two images. In this study, the overlapping

points were accumulated slice by slice and the results were added up to yield a volume

based Tanimoto Coefficient. To show things more clearly, the twenty UST phantom

cases are arranged by ascending sequence of the density (according to the ground truth

data). In the chart we can see, from low density to high density case, EM-MPM always

has higher Tanimoto Coefficient than K-means Clustering (with improvement between

0.05-0.3), which means EM-MPM out performs K-means Clustering on segmentation

accuracy.
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. 3.5. Comparison between EM-MPM and K-means Clustering
on phantom UST, clearly clustered case #1. (Both EM-MPM and
K-means Clustering match with the ground truth image)
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. 3.6. Comparison between EM-MPM and K-means Clustering
on phantom UST, clearly clustered case #3. (Both EM-MPM and
K-means Clustering match with the ground truth image)
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. 3.7. Comparison between EM-MPM and K-means Clustering on
phantom UST, low density case #2. (EM-MPM performs better than
K-means Clustering)
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. 3.8. Comparison between EM-MPM and K-means Clustering on
phantom UST, low density case #20. (EM-MPM performs better
than K-means Clustering)
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. 3.9. Comparison between EM-MPM and K-means Clustering
on phantom UST, high density case #4. (EM-MPM performs better
than K-means Clustering)
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. 3.10. Comparison between EM-MPM and K-means Clustering
on phantom UST, high density case #19. (EM-MPM performs better
than K-means Clustering)
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Figure 3.11 shows that in low density cases, the EM-MPM Tanimoto Coefficients

are relatively low for both methods (around 0.1-0.2), it is because the the edge (skin)

and the intersection lines (connective tissue) parts are distorted in the UST slices. In

the EM-MPM segmentation result, it shows the edge (skin) part is thicker than origi-

nal phantom, but for the intersection lines (connective tissue) they are grouped to the

less dense class. So when the phantom has low density, these edge and intersection

lines mis-classification will greatly impact the Tanimoto Coefficient. However, for the

edge (skin) issue, its high gray level effect is primarily due to the finite data coverage

by the anthropomorphic simulation software mentioned in Section 3.1.1, which could

be avoided by simulating larger transducer array in the future [8]. The intersection

lines (connective tissue) should not be regarded as an issue, since our segmentation

is based on the software simulated UST slice, which has already averaged the inter-

section lines due to the adding noise and limited resolution. In high density cases,

the Tanimoto Coefficient of EM-MPM is much superior to K-means Clustering, and

reaches 0.5 to 0.6, representing a very good matching between the segmentation and

the ground truth. Therefore EM-MPM has high segmentation accuracy, especially

for the important high density cases. This could greatly help the dense proportion

and potential cancer risk evaluation in the clinical cases.

Parenchyma Percentage comparison is shown in Figure 3.12. As in the Tanimoto

Coefficient chart, the twenty cases are arranged by ascending sequence of the density.

The dense parts (the first class in the segmentation result) were accumulated slice

by slice then divided by the 3-D phantom volume to calculated the volume based

percent density. It clearly shows that from low dense to high dense cases, EM-

MPM segmentation result matches very well with the phantom percentage density,

which again shows that it accurately finds the dense tissue proportion as defined

in the original phantom picture (the three higher gray level parts). However, K-

means Clustering doesn’t track with the ground truth data, but tends to average the

percentage around 0.3 to 0.4 in all cases. This is because it tends to overestimate
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the low density parts in low dense cases but discard some dense part in high density

cases (as shown in Figure 3.7 to Figure 3.10).

3.2 Result and Discussions on Clinical Images

Previously we mentioned that breast density is an important risk factor for breast

cancer, early detection can help prevent the cancer at an early stage. In the previous

section we demonstrated that EM-MPM has higher segmentation accuracy than K-

means Clustering on the synthetic breast UST phantom. In the this section, we will

apply these two algorithms on the clinical images, 2-D digital mammogram and 3-D

ultrasound tomography.

3.2.1 Clinical Images

As a commonly used screening and diagnostic tool, mammography is the process

of using low-energy X-rays to examine the human breast. Like all X-rays, mammo-

grams use doses of ionizing radiation to create images. Radiologists then analyze the

images for any abnormal findings. The radiological appearance of breast tissue differs

between individuals because of variations in breast tissue composition, and differ-

ences in the X-ray attenuation properties of fat, epithelium, and stroma. Fat appears

dark on a mammogram, whereas epithelium and stroma appear light or white, an

appearance that we refer to as mammographic density.

As shown in Figure 3.13, for the denser or fibro-glandular breast, the mammogram

will look bright or cloudy; for the not dense or fatty breast, most of the fibrous tissue

is replaced with fatty tissue, so the mammogram tends to look black or gray.

Compared with the 2-D view of digital mammography image, the 3-D ultrasound

tomography could provide more detail and accurate map about the tissue architec-

ture. Images shown below (Figure 3.14) is the operator-independent whole-breast

ultrasound tomography prototype which is under clinical trails in Karmanos Cancer

Institute [9] [10]. A patient exam begins with the patient lying prone on the scan-
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Dense Not Dense

Fig. 3.13. Mammogram images of dense and not dense breast

ner table. The table consists of flexible sailcloth, which contours to the patient’s

body, thereby increasing access to the axillary regions of the breast and increasing

patient comfort. The breast is suspended in the imaging tank that lies below the

table, through a hole in the table. The imaging tank is filled with warm, clean water.

The ultrasound sensor (Figure 3.15), in the shape of a ring, surrounds the breast and

moves from the chest wall to the nipple region of the breast on a motorized gantry,

gathering data along the way.

As we know, sound speed images are based on the arrival times of acoustic signals.

Cancerous tumors have enhanced sound speed relative to normal breast tissue, a

characteristic which is used on differentiation of masses, normal tissue, and fat [11].

Figure 3.16 shows two UST image slice, comparing the dense breast with the not dense

one. In the first picture we can see the not dense breast looks smoothly dark gray
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Fig. 3.14. The breast UST clinical prototype [9]

Fig. 3.15. The UST ring detection [9]
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(fatty structure) in the tissue, only some sparse light spots (fibrous stroma) appears.

In the dense UST image, we can see light gray (parenchyma) or white (tumor) area.

Not Dense Dense

Fig. 3.16. UST clinical images of dense and not dense breast

3.2.2 Result and Discussions

To test the performance of the segmentation algorithms, the breast density is cal-

culated out of the 3-D UST segmentation result, then compared with the 2-D percent

density value from digital mammogram. This percent density value from digital mam-

mogram images is estimated by a clinical radiologist (with over 5 years of experience

in mammography) using Cumulus 4.0, an interactive software package developed at

the University of Toronto and validated in many studies [5]. Cumulus is based on

manual exclusion of the pectoral muscle and interactive selection of thresholds for

segmenting the breast outline and the regions of dense tissue. In our study, both vol-

umetric breast density from UST and percentage density from Cumulus estimation,

are computed as the ratio of the area corresponding to the dense tissue and the total

mammographic breast tissue.
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First, to see the algorithm performance on clinical data, we apply EM-MPM on

nine digital mammogram cases, and directly compare the 2-D mammogram percent-

age density between EM-MPM and Cumulus estimation. To provide more density

information within the breast, here we use four classes to describe the different den-

sity structures. The breast image cases involved in this study will vary based on

volume and thickness, so the same tissues may appear as different brightness in the

X-ray mammogram images. From the radiologist’s perspective, the dense tissue is

manually chosen and defined differently for breast mammogram images with different

background brightnesses. For example, if the whole breast looks dark in the mam-

mogram image (or say, it is small or thin), then any light brands or light gray area

(fibrous stroma or parenchyma) will appear with higher contrast with the normal

fatty tissues, and will be regarded as ’dense tissue’; If the breast is large and thick,

it will appear comparatively brighter even for the fat tissue, so only structures which

looking much brighter will be chosen as ’dense part’. Based on this consideration,

our contribution is to compensate the percentage density calculation with different

choice of the ’dense tissue’ for the 2-D mammogram images:

(1) For low brightness mammograms, whose fatty tissue brightness is less than 35,

we choose the top three EM-MPM bright classes as dense tissue.

(2) For middle brightness mammograms, whose fatty tissue brightness range within

35 and 50, we choose the top two EM-MPM bright classes as dense tissue.

(3) For high brightness mammograms, whose fatty tissue brightness is higher than

50, we choose the top one EM-MPM bright class as dense tissue.

Figure 3.17 illustrate a selection of mammogram images with different bright-

ness and their corresponding EM-MPM segmentation result (with remaining cases

in Appendix B). Here we can see, the EM-MPM segmentation image groups struc-

tures clearly according to their brightness (absolute density), which provide us clear

and adequate information about the scattered fibrous stroma, parenchyma, and the

tumor.
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Figure 3.18 shows the 2-D mammogram percentage density comparison result from

EM-MPM and Cumulus estimation. The nine mammogram cases are arranged by

descending sequence of the density (according to Cumulus estimation, the currently

used standard). Here we can see, EM-MPM taces the Cumulus estimation very well

in most of the cases, which means EM-MPM could provide good information about

the mammogram density.

Next, we apply both EM-MPM and K-means Clustering on the nine 3-D breast

UST cases, then compare the volumetric breast density calculated from the segmen-

tation result with the percentage density Cumulus estimation which is performed on

the corresponding 2-D mammogram images. In UST images the object density under

detection is automatically calibrated to water density, it means all cases are calibrated

with a common density standard. Therefore different breast size is no longer an issue.

The brightness is directly proportional to the true volume density.

Similar to the synthetic phantom Parenchyma Percentage calculation, here the

clinical UST dense part is accumulated slice by slice then divided by the 3-D breast

volume to yeild the volume based percent density. For K-means Clustering, since only

two classes segmentation is performed, so the top class was chosen as the dense part.

For EM-MPM segmentation, except two very dense cases (number 6 and number 7

only the top class is chosen) we choose the top two classes as the dense part.

Figure 3.19 presents the total nine cases percentage density comparison between

EM-MPM, K-means Clustering and Cumulus estimation. The cases are arranged by

descending sequence according to Cumulus estimation result. From the illustration

we can see, both EM-MPM and K-means have some points deviate away from the

Cumulus standard, which represents an inconclusive comparison result.

To shown things more clearly, we choose five cases out of nine (Figure 3.20 to

Figure 3.24) to show the detailed segmentation result comparison, with remaining

cases in Appendix C. Case #5 (Figure 3.20) and and #9 (Figure 3.21) are two cases

that both EM-MPM and K-means Clustering matches very well with the Cumulus

standard (judeged from Figure 3.19). But we can see EM-MPM clusters the dense
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tissue (tumor and the surrounding parenchyma structure) more clearly than K-means

Clustering. Figure 3.22 shows the case #1 which EM-MPM fits well with Cumulus but

K-means Clustering failed. We can see both of them find where the tumor appears,

but EM-MPM identified larger high density area compared with K-means. Figure

3.23 and Figure 3.24 are two cases, #6 and #7, who have whole-breast higher density

compared with others, which could be recognized by the brighter looked UST images.

In these two cases, the top two classes (tumor part and parenchyma structure) in

EM-MPM took over very large part of the tissue, but in K-means Clustering, since

only two classes are chose for segmentation, so only the tumor part is marked as the

dense tissue.
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Low Brightness Mammogram EM-MPM Segmentation result

Middle Brightness Mammogram EM-MPM Segmentation result

High Brightness Mammogram EM-MPM Segmentation result

Fig. 3.17. Mammogram images and the corresponding EM-MPM seg-
mentation result
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Clinical UST images

EM-MPM Segmentation, corresponding slices (brighter is denser)

K-means Segmentation, corresponding slices (brighter is denser)

Fig. 3.20. Comparison between EM-MPM and K-means Clustering
on clinical UST, case #5. (In this case both EM-MPM and K-means
Clustering match the Cumulus estimation)
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Clinical UST images

EM-MPM Segmentation, corresponding slices (brighter is denser)

K-means Segmentation, corresponding slices (darker is denser)

Fig. 3.21. Comparison between EM-MPM and K-means Clustering
on clinical UST, case #9. (In this case both EM-MPM and K-means
Clustering match the Cumulus estimation)
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Clinical UST images

EM-MPM Segmentation, corresponding slices (brighter is denser)

K-means Segmentation, corresponding slices (darker is denser)

Fig. 3.22. Comparison between EM-MPM and K-means Clustering
on clinical UST, case #1. (In this case EM-MPM matches very well
with Cumulus but K-means Clustering failed)
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Clinical UST images

EM-MPM Segmentation, corresponding slices (brighter is denser)

K-means Segmentation, corresponding slices (brighter is denser)

Fig. 3.23. Comparison between EM-MPM and K-means Clustering
on clinical UST, case #7. (High density case, EM-MPM failed to
match with Cumulus, but K-means Clustering does)
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Clinical UST images

EM-MPM Segmentation, corresponding slices (brighter is denser)

K-means Segmentation, corresponding slices (brighter is denser)

Fig. 3.24. Comparison between EM-MPM and K-means Clustering
on clinical UST, case #6. (High density case, both EM-MPM and
K-means Clustering failed to match with Cumulus)
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4. CONCLUSION AND FUTURE WORK

4.1 Conclusion

In this thesis, we compared two segmentation algorithms, EM-MPM and K-means

Clustering. They are tested on synthetic phantom UST data, clinical mammogram

data and UST image data. From the comparison of segmentation pictures we can

see, EM-MPM finds the dense tissues accurately regardless of the limited resolution

and scattered dense parts, which are clearly shown in the superior matching result

compared with the ground truth phantom and Cumulus estimation. However, K-

means Clustering could only handle the low density, clearly clustered cases as shown

in the phantom UST segmentation result, but failed on the cases with scattered high

dense or low dense cases. This is because the EM-MPM algorithm pays more attention

to the local neighborhood choices than K-means. EM-MPM classifies every pixel in

the image by assigning a cost to the number of misclassified pixels, and iteratively

finds the best probabilistic solution to fit the data. This has the advantage of using

a 3-D neighborhood of pixels as a statistical Bayesian prior, and it has the effect

of grouping the data similar to the way the tissues are structured. In contrast, K-

means focus on the cluster centroids. When the target classes are sparsely scattered

instead of tightly clustered, K-means tends to group pixels according to the geometric

centroid distances, without consideration about the local neighbors.

In Chapter 1, we introduced that breast density proportion is a strong risk factor

for breast cancer risk, the early detection of breast density would help prevent breast

cancer at an early stage. Among many popular methods used for analyzing mammo-

graphic density, we see that UST is an effective method which could provide accurate

3-D breast density map. In order to obtain a credible measure of density proportion

from Ultrasound Tomography, we choose two robust segmentation algorithms, EM-
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MPM and K-means Clustering, which, from previous studies, have been verified with

stable performance on medical images containing added noise and limited resolution.

In Chapter 2, we briefly reviewed the EM-MPM and K-means Clustering algo-

rithms. It presented a briefly analysis of the algorithms, and provides an understand-

ing of the differences between these two methods. EM-MPM algorithms are discussed

here, also the relationship between them is explained. For the K-means Clustering,

the algorithm are reviewed step by step, accompanied with equations and examples.

In Chapter 3, the segmentation results from the two algorithms are compared and

discussed. First we introduced the anthropomorphic software breast phantom which

is obtained from taking 3-D tomographic ultrasound. Then we compared the phantom

UST segmentation result of EM-MPM and K-means Clustering. EM-MPM performs

very well on various kinds of density cases, and the segmentation result matches

with the ground truth phantom (with Tanimoto Coefficient around 0.5 in the high

density cases, and Parenchyma Percentage fits very well with the ground truth data).

However K-means Clustering works on clustered dense cases, but does not perform

well on scattered dense cases. After testing algorithm performance on the synthetic

data, we applied them to clinical mammogram data. The clinical application of the

X-ray mammography and ultrasound tomography prototype are explained. Then we

compared the 3-D volumetric breast density from UST segmentation with the 2-D

digital mammogram percentage from Cumulus estimation. Both of them have some

mis-matched points compared to Cumulus. For this small sample, the comparison is

inconclusive. However, subjectively judged from the segmentation images, EM-MPM

shows more accurate dense tissue identification than K-means.

4.2 Future Work

Only twenty synthetic phantoms and nine clinical images have been tested. More

cases are needed to verify the segmentation performance, especially for the clinical

cases.
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At present the EM-MPM could only provide the segmentation information based

on the absolute gray level, but from radiologists’ perspective the dense part might

need to be considered according to the whole breast density. So our next step is to

work with Karmanos Cancer Institute on more clinical cases. The initial results are

promising, and the future work will be performing a statical distribution analysis to

see the internal relationship between breast density, 2-D mammogram Cumulus esti-

mation and 3-D UST EM-MPM segmentation. EM-MPM shows significant promise

in providing accurate volumetric percentage density.
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A. SEGMENTATION COMPARISON ON PHANTOM

UST IMAGES

In this section we present the remaining phantom UST cases segmentation between

EM-MPM and K-means Clustering. We use three class option for EM-MPM, and two

class option is used for K-means Clustering in the work of Karmonos Cancer Institute.

The top brightness class in the segmentation image is regarded as the dense tissue,

then we compare it with the original ground truth phantom. It shows clearly that

EM-MPM has better matching result than K-means Clustering. In various kind of

density cases, EM-MPM accurately finds the dense part within the phantom, and

match very well with the ground truth phantom. However, as mentioned in previous

Section 3.1.4, K-means Clustering result has higher density percentage in low density

cases, but lower density percentage in high density cases.
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. A.1. Comparison between EM-MPM and K-means Clustering on
phantom UST, case #5.
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. A.2. Comparison between EM-MPM and K-means Clustering on
phantom UST, case #6.
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. A.3. Comparison between EM-MPM and K-means Clustering on
phantom UST, case #7.
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. A.4. Comparison between EM-MPM and K-means Clustering on
phantom UST, case #8.
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. A.5. Comparison between EM-MPM and K-means Clustering on
phantom UST, case #9.



49

Phantom UST Slice

EM-MPM K-means Clustering

Fig. A.6. Comparison between EM-MPM and K-means Clustering on
phantom UST, case #10.
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. A.7. Comparison between EM-MPM and K-means Clustering on
phantom UST, case #11.
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. A.8. Comparison between EM-MPM and K-means Clustering on
phantom UST, case #12.
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. A.9. Comparison between EM-MPM and K-means Clustering on
phantom UST, case #13.
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. A.10. Comparison between EM-MPM and K-means Clustering
on phantom UST, case #14.
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. A.11. Comparison between EM-MPM and K-means Clustering
on phantom UST, case #15.
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. A.12. Comparison between EM-MPM and K-means Clustering
on phantom UST, case #16.
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. A.13. Comparison between EM-MPM and K-means Clustering
on phantom UST, case #17.
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Phantom UST Slice

EM-MPM K-means Clustering

Fig. A.14. Comparison between EM-MPM and K-means Clustering
on phantom UST, case #18.
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B. SEGMENTATION COMPARISON ON CLINICAL UST

IMAGES

In this section we present the remaining clinical images segmentation comparison.

Figure B.1 to Figure B.6 illustrate the 2-D mammogram images segmentation using

EM-MPM algorithm. We use four class option for EM-MPM. Within the breast

tissue, the brighter gray level areas (compared with the background fat tissue) are

regarded as dense tissue, then we compare it with the original mammogram image. It

shows clearly that EM-MPM correctly figures out the dense part based on the absolute

brightness value, and matches very well with the original mammogram image.

Figure B.7 to Figure B.10 present the remaining clinical 3-D UST cases segmen-

tation comparison between EM-MPM and K-means Clustering. We use four class

option for EM-MPM, and two class option is chosen for K-means Clustering in the

work of Karmonos Cancer Institute. The top brightness class (or darker class in sev-

eral cases of K-means Clustering) in the segmentation image is regarded as the dense

tissue. Then we compare the segmentation result with the original ground truth

clinical images. Again EM-MPM shows better segmentation result than K-means

Clustering, with clearer dense tissue segmentation and better match with the original

images. It clearly shows that EM-MPM has significant promise in providing accurate

volumetric percentage density.
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Mammogram EM-MPM Segmentation Result

Fig. B.1. Mammogram images and the EM-MPM segmentation result, case #2

Mammogram EM-MPM Segmentation Result

Fig. B.2. Mammogram images and the EM-MPM segmentation result, case #3
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Mammogram EM-MPM Segmentation Result

Fig. B.3. Mammogram images and the EM-MPM segmentation result, case #5

Mammogram EM-MPM Segmentation Result

Fig. B.4. Mammogram images and the EM-MPM segmentation result, case #6
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Mammogram EM-MPM Segmentation Result

Fig. B.5. Mammogram images and the EM-MPM segmentation result, case #7

Mammogram EM-MPM Segmentation Result

Fig. B.6. Mammogram images and the EM-MPM segmentation result, case #8
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Clinical UST images

EM-MPM Segmentation, corresponding slices (brighter is denser)

K-means Segmentation, corresponding slices (brighter is denser)

Fig. B.7. Comparison between EM-MPM and K-means Clustering on
clinical UST, case #2.
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Clinical UST images

EM-MPM Segmentation, corresponding slices (brighter is denser)

K-means Segmentation, corresponding slices (brighter is denser)

Fig. B.8. Comparison between EM-MPM and K-means Clustering on
clinical UST, case #3.
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Clinical UST images

EM-MPM Segmentation, corresponding slices (brighter is denser)

Fig. B.9. Comparison between EM-MPM and K-means Clustering on
clinical UST, case #4.
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Clinical UST images

EM-MPM Segmentation, corresponding slices (brighter is denser)

K-means Segmentation, corresponding slices (darker is denser)

Fig. B.10. Comparison between EM-MPM and K-means Clustering
on clinical UST, case #8.


