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Abstract—Semantic segmentation is an interesting task to
many deep learning researchers for scene understanding. How-
ever, recognizing details about object’s attributes can be more
informative and also helpful for a better scene understanding
in intelligent vehicle uses. This paper introduces a method for
simultaneous semantic segmentation and pedestrian attributes
recognition. A modified dataset built on top of the Cityscapes
dataset is created by adding attribute classes corresponding to
pedestrian orientation attributes. The proposed method extends
the SegNet model and is trained by using both the original
and the attribute-enriched datasets. Based on an experiment, the
proposed attribute-aware semantic segmentation approach shows
the ability to slightly improve the performance on the Cityscapes
dataset, which is capable of expanding its classes in this case
through additional data training.

I. INTRODUCTION

In recent years, computer vision by deep learning have
become popular for various complex tasks. One of the most
interesting topics is the semantic segmentation, which is a
more complex task compared to simple image segmentation.
Semantic segmentation can be addressed as pixel-wise labeling
and simultaneous classification of pixels in the input image
into predefined classes. Semantic segmentation with deep-
learning approaches have been widely utilized for the purposes
such as indoor and outdoor scene understanding as well as
applications like autonomous vehicle sensing [1] and robotics
navigation [2]. For instance, from a road scene, a model trained
for semantic segmentation can inform an autonomous vehicle
of the objects around before the vehicle determines its action.

Many studies on this task have been conducted so far. A
Fully Convolutional Network was introduced for the semantic
segmentation task as an end-to-end trained model [3]. Al-
most in the same period, SegNet with a different network
architecture was also published [1]. It was then modified into
Bayesian SegNet and obtained better performance by adding a
probabilistic element [4]. Later on, the Pyramid Scene Parsing
network (PSPNet) [5] outperformed other existing methods
and achieved a state-of-the-art performance in mean IoU score
for PASCAL VOC 2012 [6] and Cityscapes datasets [7]. Very
recently, Mask R-CNN presented a conceptual framework for
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instance-level segmentation, which combined object detection
and semantic segmentation tasks. The approach outperformed
some previous methods for several challenges [8]. Reference
[9] provides a summary of popular deep neural networks that
were adopted to solve the semantic segmentation.

However, the existing semantic segmentation methods only
recognize an object’s name as its class, e.g., road, building, car,
person, and so on, while for autonomous vehicles, additional
information describing a particular object in detail such as
its attributes could help the better understanding of scenes.
Therefore, this paper proposes an attribute-aware semantic
segmentation method, which is a more difficult challenge.
Yet we can obtain better evaluation results if the process is
successfully performed. With simultaneous recognition and
segmentation tasks, it can enhance environment perception
tasks in Intelligent Transportation Systems that need precision
such as parking, road following, pedestrian detection, action
identification, and localization.

Here we chose pedestrian as the target class, out of other
classes like vehicle and traffic signs, as it has many attributes
to be explored. Since a pedestrian is one of the most important
moving objects in a street scene, it should be useful for
assisting an autonomous vehicle. In this paper, we particularly
consider the body orientation of a pedestrian as the attribute
and divide it into a predefined number of classes. In the
autonomous vehicle system, being informed of pedestrian
orientations can be helpful in collision avoidance. Although
only the pedestrian body orientation was added as a new
semantic information, it can give hint and insight on other
object attributes when the method is extended.

The contributions of this paper are as follows:

1) We introduce a new concept of attribute-aware semantic
segmentation that is general and possible to be applied
to various tasks.

2) We design an attributes-dependent loss function that is
modified from original one for increasing the number of
classes regarding the attribute-aware concept.

3) We modify the annotation of Cityscapes dataset for the
attribute-aware semantic segmentation task.

4) By extending the Cityscapes to include additional at-
tribute classes, we achieved a better performance of
semantic segmentation.

The rest of paper will discuss more about related work in
Sec. II, our proposed idea and its implementation in Sec. III,
and our modified dataset annotation in Sec. IV. Experimental
results and discussions are presented in Sec. V followed with
conclusion.
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II. RELATED WORKS

Many methods in deep learning are trying to solve the
semantic segmentation task [1], [3]–[5], [8]. Among them,
SegNet was motivated mainly by road-scene understanding.
It is a deep neural network architecture consisting of convo-
lutional encoder-decoder layers as shown in Figure 1.

Meanwhile, studies related to the pedestrian attribute recog-
nition task have also been widely conducted. References [10]
and [11] introduced a new dataset and presented a benchmark
performance by an SVM-based method for pedestrian attribute
recognition in far-view surveillance scenes and proposed an
alternative approach for an improved attribute inference. To
improve real-time applications, the Richly Annotated Pedes-
trian (RAP) dataset was proposed in reference [12]. It reported
that attributes such as viewpoints, occlusions, and body parts
information could help recognize pedestrian attributes in real
applications.

Some related datasets with annotated images are publicly
available for the challenges of semantic segmentation with
various environments and lighting conditions. A number of
datasets are used in reference [9] for a review on deep-learning
techniques. Cityscapes is a benchmark suit and a large-scale
dataset to train and test methods for pixel-level and instance-
level semantic labeling. The dataset was highly motivated by
the need of semantic urban-scene understanding applications.
Images were collected to cover various street conditions in
a number of different cities. It was initially published as an
ongoing project in reference [13] and finally completed in
reference [7]. Many studies are addressed and challenged using
this dataset for comparison to other existing datasets. It is the
largest and the most diverse dataset of street scenes with high-
quality coarse annotations [7].

For standalone objects such as bicycles, riders, and traffic
signs, the network can be trained to pick up their unique
texture and local shape as the features for their identification.
These features through filtering at different layers are still
very stable to the final layer. For extending regions such as
road, tree, cars, and sidewalk, the network propagates more
position and shape information through linear combination
of coefficients and max-pooling mechanism in the network
according to tagged samples in the learning process. This
“propagation” of segment id stops at strong edges but may
fail to line out a uniformed region if there is no clear edge
cue; the segmented region is thus noisy.

Fig. 1. SegNet’s network architecture [1].

III. ATTRIBUTE-AWARE SEGNET

A. Introducing Attributes-grouping Loss Function

We propose an attribute-aware semantic segmentation con-
cept to improve the semantic segmentation task by simultane-
ously obtaining per-pixel class label as well as the attribute in-
formation of a particular object. Basically, it extends the clas-
sification from an object class to its sub-classes. For example,
in addition to classifying vegetation, car, and pedestrian, the
classifier should also distinguish between types of vegetation,
types of car, and even between male and female pedestrians.
We assume that some particular classes have disjoint sub-
classes divided according to some attributes. We introduce this
primary concept by modifying the neural network’s structure
and loss function so as to enrich the object understanding by
their attributes.

In the current work, we use SegNet as the baseline model
since it is a low-cost design in terms of memory usage and
computational time during inference [1], while maintaining a
better performance than several comparable methods. Regard-
ing the loss function, there are several forms for existing deep
neural network models; and particularly, SegNet uses a cross-
entropy loss function in its Softmax layer to produce the output
[1], which is defined as follows:

L(y, y′) = −
∑
i

yi log y
′
i, (1)

where y is the actual output of the network, and y′ is the
target output given in the dataset. N is the number of training
samples, so yi and y′i are the actual and the target outputs of
the i-th sample.

Considering that the attributed classes are actually derived
from an object class, we extend the class loss function by
adding a loss calculation unit for its attribute. The modified
loss function can be written as follows:

L′(y, y′) = Lc + La, (2)

Lc = −βc
∑
i

yic log y
′
ic , (3)

La = −βa
∑
i

yia log y
′
ia . (4)

βc + βa = 1. (5)
The class loss and attribute loss functions are denoted as Lc

and La, respectively. We furthermore introduce parameters
βc and βa as the weights for both class and attribute losses,
respectively. They are constant numbers ranging from 0 to
1 to determine the influence level of each loss score for the
combined loss function score. For classes with no attribute,
βc and βa are set to be 1 and 0, respectively. However,
determining those values between 0 and 1 is another issue
to optimized in the future.

B. Implementation of the Proposed Method

Weighting the class loss as well as the attribute loss with
appropriate values will efficiently solve this task. In addition,
setting different values for βc and βa will also affect the



network implementation, i.e. the network output units might
be constructed in some different levels. On the other hand,
assigning the parameters βc with 0 and βa with 1 implies that
in the network implementation, there will be additional sub-
classes in the same level of the output layer. This means the
attribute-aware semantic segmentation task will be represented
in a so-called ‘flat classifier’ instead of hierarchical one [19].

For example, let’s consider a set of classes C = {X,Y, Z}
and let class X have a set of subclasses AX = {x, y, z}
divided by attribute A; while classes Y and Z do not have any
attribute. Note that |C| is the number of classes, while |AX |
is the number of sub-classes determined by attributes. Thus,
the number of output units in the final connected layer will be
(|C|+ |AX |−1). In this sample case, there will be five output
units. By the proposed method, the network will be trained
using target classes of C ′ = C ∪AX . In the inference phase,
the output of the trained model can be either |C ′| number
of classes, consisting of object and attribute classes, in a flat
model, or just |C| by integrating the attribute classes into one
object class in a hierarchical model. In the sampling case,
the first model output will be {x, y, z, Y, Z} and the second
alternative output will be {X,Y, Z} after combining {x, y, z}
into class X . Figure 2 depicts this proposed concept for the
sample case compared to the basic concept.

In addition to the structure of network, typically for the
semantic segmentation, it is necessary to weight the losses
differently between classes, since the sample numbers of
classes (road, sidewalk, car, pedestrian, etc.) usually have a
large variance [1] in a training set. Therefore, class balancing
by calculating the loss weight for each class is needed,
including the attribute classes since they are treated as object
classes as well. The idea is to simply put more attention or
weight on to the classes with pixels appearing infrequently,
and give a smaller weight to a class that has a high pixel
frequency. We use a median frequency balancing strategy by
computing the pixel frequency of each class in the training set.
The balancing factor on each class, denoted by αc, is obtained
from the median of all class frequencies divided by its own
class frequency [14]. Here, αc is defined as follows:

αc =
median freq

freqc
(6)

where freqc is the number of pixels in class c divided by the
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Fig. 2. Network structure comparison of approaches. (a) Basic output units for
object level semantic segmentation; (b) Proposed concept for attribute-aware
semantic segmentation.

total number of pixels in images where class c is present, while
median freq is the median value of all freqc. This formula
implies that the more frequent a pixel class occurs in the
training set, the less loss weight it gains (the value is less
than 1).

IV. ATTRIBUTE-ENRICHED CITYSCAPES DATASET

A. Cityscapes Dataset and CityPersons

The Cityscapes dataset contains a total of 5,000 images,
recorded in streets from 50 different cities. It is divided
into 2,975 images for training, 500 for validation, and 1,525
for testing. It also provides fine annotations for training and
validation sets, while the test annotation is not publicly avail-
able for benchmarking purpose. There are also 20,000 extra
images with coarse annotations but not used in our current
work. The Cityscapes dataset is annotated with 34 different
class labels encoded by label_ID. However, since some
labels are objects such as border, ground, and so on, which
are unnecessary here and can be ignored, we use a simpler
encoding version, namely train_ID, that reduces the task
complexity into 19 class labels. The Cityscapes recommends
users to use train_ID instead of label_ID during the
training phase.

Our study also makes use of the CityPersons annotation
[15], which is a new set of person annotations with high quality
bounding boxes. It was built upon the Cityscapes dataset and
provides better data for improved pedestrian detection. The
CityPersons bounding box annotation is utilized in our work
to easily extract each pedestrian instance before conducting
pedestrian orientation annotation on the dataset.

The CityPersons dataset explains various conditions of a
pedestrian class based on the person types and occlusion
levels. Person types in this dataset consist of pedestrian, rider,
sitting person, and unusual posture; while the occlusion levels
range from 0.0 to 0.9. The occlusion level 0.0 indicates the
person has no occlusion, while 0.9 indicates he/she is almost
completely occluded by some objects. The bounding box
annotation is also well-aligned with the dimension ratio of
0.41. The dataset provides annotations for 19,654 persons in
the training set and 3,938 in the validation set [15]. In our
work, we extract only pedestrian-type person images with
occlusion level below 0.1.

B. Pedestrian Orientation Annotation

To add new annotations to each extracted Cityscapes pedes-
trian, we used the Pedestrian Direction Classification (PDC)
dataset from reference [6] as an image reference. We also
referred to reference [16] for the orientation rules. The anno-
tation process to modify Cityscapes dataset is as follows.

1) Extract single pedestrian images that are bounding boxes
from Cityscapes images; CityPersons annotation is used
to locate such single person pixels.

2) Filter the extracted persons considering the type and
the occlusion level; Here, the person type should be
pedestrian with a maximum occlusion level of 0.1.
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Fig. 4. New colored ground-truth examples with pedestrian orientations
compared to original ones.

3) The pedestrian image collection is then manually anno-
tated into orientation classes; The CityPersons annota-
tion is then modified by adding the attribute class labels
to the bounding boxes. We refer to references [6] and
[16] for this process.

4) Change the person label in Cityscapes into one of eight
person classes based on the orientation; This process
adds a new Cityscapes pixel annotation.

5) Because of the inaccurate location of bounding boxes
on pedestrians, we manually refine the drop-off regions
from the boxes (e.g., feet), and add-in regions to the
boxes from other pedestrians further.

The pedestrian orientation annotation process yielded 2,216
and 458 well-aligned pedestrian images for training and val-
idation images, respectively. Table I shows the number of
pedestrians annotated in each orientation class. We annotated
cropped pedestrian images one-by-one solidly. Our orientation
annotation is slightly different to that in reference [16], where
we used label ‘1’ to denote direction N, ‘2’ for NE, and so
on until ‘8’ for NW, respectively, as shown in Figure 3.

The class number was increased from 19 to 27 since we
replaced class ‘person’ with 9 attribute classes (8 orientation
classes and 1 class for unknown orientation). Figure 4 depicts
samples of new ground-truth images compared to the original
ones after additional annotations were applied. In the original
ground-truth, all pedestrians had the same color, while in the
modified ones, one pedestrian might have a different color
with another.

V. EXPERIMENTS AND DISCUSSION

A. Experiment Design and Implementation

The experiments are conducted to 1) train the proposed
model for attribute-aware semantic segmentation, 2) analyze

TABLE I
CLASS DISTRIBUTIONS OF ANNOTATED PEDESTRIAN ORIENTATIONS

Set 1 2 3 4 5 6 7 8
Training 466 131 327 126 545 115 334 172
Validation 98 28 66 49 79 30 81 27
Total 564 159 393 175 624 145 415 199

whether the attribute-aware concept can help increase the
semantic segmentation performance, and 3) compare the pro-
posed method with the original SegNet on the same dataset.

The original SegNet is built on Caffe [17] implementation1.
However, some adjustments are needed because it was built
for another dataset with less complexity. After some technical
modification on the code to satisfy the requirements of the
Cityscapes dataset, we trained models using the training set
and its annotations.

In this experiment, we compare two models: the origi-
nal SegNet trained using the 19_label_set and the pro-
posed attribute-aware SegNet trained using 27_label_set.
The 19_label_set is a set of annotations based on the
train_ID encoding scheme consisting of 19 labels to clas-
sify; while the 27_label_set is a set of annotation based
on the train_ID encoding scheme with additional eight new
labels for attribute annotated-person classes.

Training: We trained VGG 16 layers as the initial model
to build our models with 50,000 steps for each training phase.
Since we trained SegNet with a large dataset and image
dimension, it was necessary to decrease the computational load
to deal with the space complexity issue. The size of all images
was reduced into half of the original image during the training
phase, while the batch number was set to be 2 for smaller
memory usage.

Testing: To evaluate the trained models, we used
train_set and val_set images including their available
annotations to calculate the performance metrics and compare
the results. We also tested the original and the modified
models using test_set and then submitted the results to
the Cityscapes web site2 for benchmarking purpose. Before
submitting the results, all labels in output images should be
converted into the original labels and all output images were
resized into the original dimensions. Note that all pedestrian
classes (a pedestrian with additional eight orientation labels)
were combined into one pedestrian class label to comply
with the Cityscapes labels and to compare the performances
between the original SegNet and the proposed method.

B. Performance Metric on Segmented CityScapes

For internal comparison, we measured the performance of
the models using two common metrics, which are global
accuracy and mean Intersection over Union (IoU) [3], defined
as follows:

glob acc =
true predicted pixels
all predicted pixels

, (7)

1Publicly available at https://github.com/alexgkendall/caffe-segnet/.
2https://www.cityscapes-dataset.com/submit/.
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IoUc =
TPc

TPc + FPc + FNc
, (8)

mean IoU =
1

C

∑
c

IoUc. (9)

where IoUc is the IoU for class c and C is the number of
classes, while TP, FP, and FN respectively denote the number
of ‘true positive’, ‘false positive’, and ‘false negative’ pixels.

Based on Formulae 7, 8, and 9, we use a confusion matrix
in the implementation to calculate the global accuracy and
the mean IoU. Figure 5 illustrates the mechanism of the
calculation.

C. Results of Semantic Segmentation

Table II shows the evaluation results for both original
SegNet and proposed method. The original SegNet was trained
using the Cityscapes dataset, while the proposed method was
trained using our modified Cityscapes. We use the global accu-
racy (glob acc) and the mean of IoU (mean IoU) to measure
the performance of both methods for the validation set. We
also add the accuracy of pedestrian orientation (mean IoUor)
computed exclusively for the proposed method. Meanwhile,
Table III shows the per-class accuracy of our method on the
testing set, which is benchmarked for comparison between
existing methods for the Cityscapes dataset. The benchmarking
system uses the IoU metric for measuring the performance.
Besides, we can see the qualitative results of some output
samples in Figure 6 selected from the validation set.

It is observable that the segmentation accuracy measured
by IoU is still very low despite of the precise annotation
of objects. This can be observed in the output results where
boundaries of human, traffic sign, and so on are more close
to blobs. It implies that the loss function has not picked up
detailed differences on the boundary to teach the network
in the supervised learning. The network is more semantic
recognition than precise segmentation.

The time for segmentation after training is 1.7 frame per
second, while the off-line network training certainly takes
much more time lasting one day or so. The detection time
is short to be considered in use on a slow moving vehicle.

TABLE II
PERFORMANCE EVALUATION ON VALIDATION SET

Original SegNet Proposed Method
glob acc mean IoU glob acc mean IoU mean IoUor

84.4 42.3 86.3 50.3 27.8

We use Titan X GPU in our current study for training and
segmentation processes.

D. Discussion on Accuracy and Data
The experimental results show that the proposed method

outperforms the original SegNet slightly. For both global
accuracy and mean IoU, the detailed sub-classes identification
has gained higher values than the original SegNet on average.
This is achieved by the proposed concept and implementation
of the attribute-aware semantic segmentation.

Applying a conventional semantic segmentation to a number
of object classes usually implies in high deviation between
classes. It causes the difficulty in classifying each pixel into
a given set of labels, especially for a class with a low
ratio in the training set. Meanwhile, the proposed method
divides a particular class into some sub-classes that correspond
to its attribute classes. This proposed concept implies that
between-classes deviations are decreased. Accordingly, the
semantic segmentation becomes easier. Thus, the concept to
provide object attributes with additional semantic information
improves the semantic segmentation. The training process can
also start from an existing model to refine the detailed aspects
or attributes in a shorter time.

On the other hand, the number of annotated pedestrians
in this study is still limited. This can still be improved by
collecting more attributed-object samples from the Cityscapes
dataset. For example, adjusting the constraints of person type
or occlusion level is necessary to increase the number of well-
aligned pedestrian images for training and validation.

After the pedestrians are detected with orientation attributes,
it is important to pay more intention on the persons facing
road, because they are perhaps walking towards the vehicle
path and the vehicles may prepare a sudden breaking. In the
future, we will further target the motion information [18] in the
driving video to feed in the recognition of pedestrian walking
direction such that the segmentation of pedestrians can be
more certain and robust.

VI. CONCLUSION

We proposed a new approach as the attribute-aware semantic
segmentation to enrich recognition classes. A general concept
was introduced to modify a deep neural network model to
achieve this goal. We conducted an experiment using the
Cityscapes dataset and the modified SegNet resulting in better
performance as compared to the original one. We inserted the
pedestrian body orientation as additional semantic information
in the annotations to modify the Cityscapes dataset. This
has proved that the proposed method not only performed
an attribute recognition task but also enhanced the semantic
segmentation. The proposed concept should be able to handle
more object classes and attributes than pedestrians.
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TABLE III
EVALUATION RESULTS FOR THE TESTING SET SUBMITTED TO CITYSCAPES BENCHMARKING
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Original SegNet 44.25 85.78 51.78 75.48 23.36 26.46 26.22 33.48 35.30 83.85 48.66 86.93 57.37 29.35 76.61 5.30 27.15 0.03 19.68 47.99
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Input Image Ground Truth Original SegNet Proposed Method

Fig. 6. Qualitative results for four input images selected from the validation set; The leftmost column is the input image, the second column is the fine
ground-truth image from the Cityscapes dataset, the third column is the result from the SegNet model trained using the original dataset (19 classes), and the
rightmost one is the result from the proposed method which is trained using a modified dataset (27 classes) and contains information of pedestrian orientation.
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