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Abstract

Spinal muscular atrophy (SMA) is an intractable neurodegenerative disease afflicting 1 in
6—10,000 live births. One of the key functions of the SMN protein is regulation of spliceo-
some assembly. Reduced levels of the SMN protein that are observed in SMA have been
shown to result in aberrant mRNA splicing. SMN-dependent mis-spliced transcripts in
motor neurons may cause stresses that are particularly harmful and may serve as potential
targets for the treatment of motor neuron disease or as biomarkers in the SMA patient pop-
ulation. We performed deep RNA sequencing using motor neuron-like NSC-34 cells to
screen for SMN-dependent mMRNA processing changes that occur following acute depletion
of SMN. We identified SMN-dependent splicing changes, including an intron retention
event that results in the production of a truncated Rit1 transcript. This intron-retained tran-
script is stable and is mis-spliced in spinal cord from symptomatic SMA mice. Constitutively
active Rit1 ameliorated the neurite outgrowth defect in SMN depleted NSC-34 cells, while
expression of the truncated protein product of the mis-spliced Rit1 transcript inhibited neur-
ite extension. These results reveal new insights into the biological consequence of SMN-
dependent splicing in motor neuron-like cells.

Introduction

Spinal muscular atrophy (SMA) is a potentially fatal neurodegenerative disorder caused by the
systemic depletion of the ubiquitously expressed survival motor neuron (SMN) protein [1].
While not entirely exclusive, motor neurons appear particularly vulnerable to the reduction of
SMN, and emerging insights highlight the neuromuscular junction (NM]) as a site or pre-path-
ological vulnerability [2]. Experimental evidence suggests that maintenance of the interface
between nerve and muscle is particularly dependent upon the function of SMN within the
nerve [3]. Despite advances in understanding the physiological pathology of SMA, the underly-
ing mechanisms of motor neuron dysfunction resulting from SMN depletion remain elusive.
Two prevailing hypotheses contend that SMN depletion results in aberrant mRNA splicing via
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neuroblastoma x spinal cord; snRNP, small nuclear
ribonucleic protein; RBP, RNA binding protein;
NMJ, neuromuscular junction; rTta, reverse Tet-
transactivator.

a reduced capacity to assemble functional small nuclear ribonucleoproteins (snRNPs)[4], or
defective mRNA localization to the peripheral neurite [5, 6].

The SMN protein is well documented to organize the assembly of RNA polymerase I
derived small nuclear ribonucleic acids (snRNA) into a heptameric ring of Sm proteins fol-
lowed by nuclear import of the mature snRNP [7-9]. SnRNPs form components of the spliceo-
some and disruption of these processes within motor neurons has been proposed to lead to
alternative splicing of specific mRNAs essential to development and maturation of the neuro-
muscular junction [10].

An alternative hypothesis asserts that SMN is essential for transport and localization of
mRNA into the neurite and presumably the growth cone [11-13]. Ex vivo neuronal cultures
from SMA model mice show reduced presence of -actin mRNA throughout the axon and
growth cone as well as an inability to transport f-actin mRNA into the axon in response to
extracellular cues [14, 15]. Attenuation of SMA pathology has been observed in a zebrafish
model of SMA by over-expression of candidate plasticity-related gene 15 (cpgl5), an mRNA
known to be present in axons, which is found in complex with the neuronal RNA binding pro-
tein (RBP) HuD and SMN, suggesting that SMN-containing complexes are involved in translo-
cation of mRNA species required for the health and maintenance of motor neurons [16].
Coupled with SMN active transport within the neurites of various culture models, SMN and
the RNA binding protein hnRNP R have been visualized at the motor neuron synaptic terminal
in vivo, demonstrating that this distribution pattern is not merely an artifact of neuronal cul-
ture [11].

Defining the individual RNAs that are aberrantly processed by either failure of the spliceo-
some or altered subcellular localization is technically demanding. Cell type-specificisoform
expression patterns coupled with natural variation in splicing patterns during organismal
development confound the identification of pathologically processed RNA transcripts in vivo.
Likewise, processing and targeting of transcripts is likely to be equally diversified among the
motor neurons, Schwann cells and muscle that comprise the neuromuscular architecture. The
use of in vitro cultures provides the ability to accurately identify cell type specific alterations in
RNA processing during controlled growth conditions. As Staropoli and colleagues pointed out,
the majority of mRNA splicing changes within the spinal cord take place during normal devel-
opment (postnatal day 1 vs. postnatal day 5), rather than between unaffected mice and SMA
siblings at each age [17]. Cell-based systems remove this variable and allow for the study of the
most basic facets of SMN biology. Prior investigations have been reported in this direction by
the depletion of SMN in mouse fibroblasts and neuroblastoma cells [18, 19], however these
cells do not possess the unique cytological architecture of the motor neuron, and thus impor-
tant discrimination of subcellular compartments such as the developing neuronal processes is
not represented in this analysis.

We chose to evaluate the role of the SMN protein in splicing using NSC-34 cells [20]. As we
previously reported, these motor neuron-like mouse NSC-34 cells possess an SMA-like pheno-
type that can be restored to normal by expression of human SMN [21]. The advantage of this
approach is the use of a uniform, clonal cell culture that is acutely and synchronously depleted
of SMN protein. RNA-seq revealed transcriptome-wide abnormalities in splicing patterns fol-
lowing SMN depletion. Our analysis focused on differential splicing patterns and aberrant
splicing events with intron retention. A number of novel truncated and elongated isoforms
were identified following SMN depletion. Intron retention events were also evident following
SMN depletion in a limited number of RNAs, most commonly resulting in the insertion of pre-
mature stop codons. Our analysis reveals the complexity of RNA processing events that are
influenced by SMN levels in a cell type specific system and highlights the challenge of rescuing
these events as a compensatory therapeutic strategy outside of specific restoration of SMN.
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Results
SMN depletion reduces U snRNP biogenesis

RNA for transcriptome analyses was isolated from NSC-34 clone 4#56 [21] using serum starva-
tion to induce differentiation and neurite formation. Addition of doxycycline (2 pg/ml) for 72
hours induced expression of the SMN shRNA, which resulted in a ~70% reduction of the
murine SMN protein as determined by Western blot. No decrease in SMN protein levels was
seen following doxycycline treatment of NSC-34 clone #4 cells that express only the reverse
Tet-transactivator (rTta) without the SMN shRNA (Fig la and 1b). As has been previously
reported, SMN is involved in U snRNP biogenesis [22-24]. To determine if our NSC-34 system
displays a similar phenotype, we harvested total RNA from control and SMN-depleted cultures
followed by reverse transcription and quantitative PCR using previously described murine U
snRNP primers [18, 24]. Consistent with the results seen in SMN-depleted NIH-3T?3 cells, we
detected significantly altered U snRNP mRNA levels (p = 0.0013 by one-way ANOVA), with
post-hoc Tukey analysis revealing significantly decreased levels of U11 and U4 (p<0.01
denoted by asterisk, Fig 1¢). These data suggest that spliceosome function could be altered in
our NSC-34 cell model of SMA. There was a more significant decrease in U11 snRNA in SMN-
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Fig 1. SMN depletion leads to defective U-snRNP biogenesis. A) Doxycycline treatment (2ug/ml) for 72 hrs reduced SMN protein
levels by ~70% in NSC-34-4#56, which contain both the RTta and the SMN shRNA but not NSC-34 cell clone 4 which expresses only the
RTta. B) Quantification of three separate western blot of SMN protein level after doxycycline treatment in NSC-34-4#56. C) Quantitative
RT-PCR shows mRNA levels of UsnRNPs after doxycycline-induced SMN depletion compared to untreated cells (dashed line). All
samples were compared to levels of the 18S subunit. *~p<0.01. One-way ANOVA followed by post-hoc t-test.

doi:10.1371/journal.pone.0163954.g001
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depleted NSC-34 cells compared to SMN-depleted HeLa cells, which were reported to decrease
U11 only when SMN levels had been reduced to 5% but not at 15% of control levels of SMN
[8]. However, the overall profiles of snRNA changes in doxycycline treated Hela cells and our
NSC-34 system are very similar after SMN depletion. A similar experiment with a lentiviral-
expressed ShRNA against SMN in undifferentiated MN1 cells found that only U11 was
decreased, possibly due to the fact that this experiment was performed on a mixed population
rather than a clonal cell line. Although our results showing decreased U11 and U4 agree with
the findings in Hela cells, when snRNA levels were measured in multiple tissues from SMA
mice, U11 was only significantly reduced in spinal cord and heart tissues from late stage mice
(postnatal day 11) while U4 was only reduced in brain at postnatal day 6 [8].

SMN depletion results in increased alternative splicing events

To address the question of alternative splicing events, we performed total transcriptome
sequencing (RNA-seq). RNAs were harvested from three biological replicates of untreated or
doxycycline-treated NSC-34-4#56 cultures and sequenced using the SOLiD platform. Follow-
ing filtering and processing, 68-76% of all RNA sequence reads were mapped to the mouse ref-
erence genome assembly mm9 using an in-house pipeline that utilizes BFAST (0.7.0a). Unique
reads with no more than two mismatches identified 12,168 genes representing the NSC-34
transcriptome. EdgeR was used to calculate differences in gene expression levels between
untreated and doxycycline-treated samples by assuming the RNA-sequencing counts follow a
negative binomial distribution. SMN shRNA-induced splicing changes were identified using
software called Mixture of Isoforms (MISO) [25]. Based on a Bayesian inference framework,
MISO is a probabilistic framework that quantitates the expression levels of alternatively spliced
genes from RNA-seq data, and identifies differentially regulated exons across samples. MISO
computes Percent Spliced In (PSI, or V) values for each alternative splicing event, representing
the fraction of a gene’s mRNA that includes the exon. For each event, MISO also calculates a
Bayes Factor (BF) that quantifies the likelihood of the changes. For instance, BF = 5 indicates it
is five times more likely that a specific alternative splicing event occurred than did not occur.
Using BF of 5 as a cutoff, we identified a total of 145 events whose splicing patterns differ
between control and SMN depleted cultures. Candidates were chosen for validation using end-
point PCR by selecting targets with difference in PSI value (% of inclusion) greater than 0.5
between treatment groups and BF scores higher than 10 using samples obtained from fresh
NSC-34-4#56 cultures with and without SMN shRNA induction as well as cells from clone #4
(rTta alone) with and without doxycycline. Altered mRNAs were subdivided into four groups:
(1) those that predominantly undergo exon skipping producing a truncated splice variant with
SMN depletion, (2) those that retain exons to predominantly express full length transcripts fol-
lowing SMN depletion, (3) those that retain introns following SMN depletion and (4) those
that predominantly retain introns at normal SMN expression levels (Tables 1-4). Alternative
exon splicing events predominated with relatively few (fifteen) alternative intron usage events.
Table 5 details the total number of reads and the total percentage of mapped events. The com-
plete dataset is available at http://compbio.iupui.edu/group/6/pages/smn and has also been
submitted to to the NCBI sequence read archive (SRP090323).

Three transcripts from group 1 that displayed exon skipping events following SMN deple-
tion were selected for confirmation by RT-PCR analysis due to their high BF and PSI values:
calcineurin A beta (ppp3cb), phosphoinositide-3-kinase class 2 alpha polypeptide (pik3c2a),
and tRNA methyltransferase 5 homolog (trmt5). Primers were designed to the exons flanking
the skipped exon, and using cDNA from NSC-34-4#56 as a template, the regions of interest
were PCR amplified. All three genes exhibited increased levels of truncated transcript in SMN
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Table 1. SMN-dependent exon skipping events ranked by percent inclusion.

Gene Name
Tomm20I
Ppp3cb
Prmt1
Ppp2r3a
Rufy3
Zbtb46
Gyg
Trmt5
Camkk2
Pik3c2a
Samhd1
Mettl9
Slc44a2
Fam35a
Nop58
Immt
Mettl7al
Ube2I3
Tmbim6
Lrrc14
Rap2c
Nxt1
Wdyhv1
Myef2
Krit1
Elk3
Ptar1
Gpatch2
Maged1
Dnajc5
Znrf1
Ywhab
Rcor3
Rhot1
Hnrnpd
Orai3
Rps14
Magi1
Clstn1
Stx11
Josd2
Aldoa
Eif4h
Pcmti
Hnrnpa2b1
Hnrnpa2b1
Stard4

A-psi
-0.83
-0.73
-0.67
-0.65
-0.6

-0.6

-0.59
-0.58
-0.56
-0.55
-0.55
-0.54
-0.54
-0.52
-0.51
-0.5

-0.5

-0.5

-0.49
-0.48
-0.46
-0.46
-0.46
-0.45
-0.45
-0.44
-0.44
-0.44
-0.44
-0.43
-0.42
-0.42
-0.41
-0.4

-0.38
-0.38
-0.37
-0.37
-0.35
-0.32
-0.31
-0.29
-0.28
-0.27
-0.25
-0.22
-0.21

Baye’s factor

62.49
10466467.31
35020.18
1082.85
7.69
7.21
5.2
16869052884
8.86
10849865.75
2935.02
50.5
17.84
8022922821
53505.63
322.38
11.45
6.9
303.79
7.69
1460032.12
8.36
7.44
2743.52
22.35
197.37
25.67
7.76
5.27
7.73
6.47
5.98
8.64
5.13
324.99
93.11
2631505.51
11.97
22.39
7.07
7.77
49.79
6.75
29.77
36.75
294.78
8.1

doi:10.1371/journal.pone.0163954.t001

Event
chr12:72218513:72218594:+ @chr12:72222851:72222993:+ @ chr12:72224036:72224899:+
chr14:21327846:21327943:- @chr14:21322469:21322498:- @chr14:21319252:21320884:-
chr7:52241653:52241938:- @ chr7:52239450:52239503:- @ chr7:52238856:52238957:-
chr9:101027353:101027459:-@chr9:101019508:101019634:- @chr9:101007322:101010299:-
chr5:89012085:89013342:+ @ chr5:89027461:89027514:+ @chr5:89043966:89045604: +
chr2:181193961:181194132:-@chr2:181181407:181181589:-@chr2:181153313:181159093:-
chr3:20025144:20025363:- @ chr3:20023008:20023058:- @ chr3:20021967:20022750:-
chr12:74387671:74387976:- @chr12:74386891:74386962:- @chr12:74385198:74386262:-
chr5:123187442:123187542:-@chr5:123186997:123187039:- @chr5:123181178:123184254:-
chr7:123586818:123587034:- @chr7:123586105:123586192:- @chr7:123560967:123562095:-
chr2:156927457:156927594:- @chr2:156927057:156927179:- @ chr2:156923265:156925239:-
chr7:128200729:128200913:+ @chr7:128216322:128216324:+ @chr7:128219647:128219888:+
chr9:21156911:21156995:+ @chr9:21157445:21157572:+ @chr9:21158126:21159473:+
chr14:35122226:35122651:- @ chr14:35082657:35082722:- @ chr14:35079315:35082138:-
chr1:59741784:59742070:+ @chr1:59745414:59745463:+ @ chr1:59747330:59747833:+
chr6:71802268:71802861:+@chr6:71803167:71803262:+@chr6:71806906:71807042: +
chr15:100135192:100135775:+@chr15:100140255:100140335:+ @chr15:100143425:100144797:+
chr16:17176505:17176600:-@chr16:17171856:17171954:-@chr16:17157390:17160269:-
chr15:99223310:99223471:+ @chr15:99224126:99224161:+ @chr15:99232011:99232094:+
chr15:76541068:76541266:+@chr15:76541394:76541513:+ @chr15:76543297:76544415:+
chrX:48368148:48368460:- @chrX:48361469:48361662:- @ chrX:48357083:48359927:-
chr2:148498337:148498571:+ @chr2:148500200:148500334:+ @chr2:148501018:148501771:+
chr15:57982161:57982211:+ @chr15:57985135:57985259:+ @ chr15:57989457:57990220:+
chr2:124913413:124914747:-@chr2:124913279:124913325:- @chr2:124910364:124912452:-
chr5:3822087:3823785:+ @ chr5:3827628:3827761:+ @chr5:3830606:3830772:+
chr10:92747514:92747722:-@chr10:92727625:92728425:- @chr10:92717434:92717556:-
chr19:23783244:23783457:+ @chr19:23792303:23792592:+ @chr19:23794548:23795619:+
chr1:189049382:189050098:+ @ chr1:189053478:189053539:+ @chr1:189054663:189054724:+
chrX:91787231:91787417:-@chrX:91786590:91786663:- @ chrX:91785194:91785886:-
chr2:181283375:181283546:+ @chr2:181283631:181283705:+ @chr2:181283978:181289837:+
chr8:114059994:114061464:+ @chr8:114130647:114130748:+ @chr8:114133193:114133288:+
chr2:163837338:163837640:+@chr2:163837732:163837734:+ @chr2:163839745:163839865: +
chr1:193940150:193940227:- @chr1:193925633:193925748:- @ chr1:193922425:193925036:-
chr11:80068162:80068364:+@chr11:80071016:80071138:+@chr11:80079244:80081409:+
chr5:100391534:100391631:-@chr5:100391117:100391223:- @ chr5:100384954:100390352:-
chr7:134913328:134913730:+ @chr7:134914248:134914392:+ @chr7:134917071:134918668:+
chr18:60934164:60934340:+@chr18:60936055:60936205:+ @ chr18:60936584:60937062:+
chr6:93632946:93633084:- @ chr6:93630783:93630871:- @ chr6:93625447:93628996:-
chr4:149012342:149012504:+ @ chr4:149015767:149015823:+ @chr4:149017304:149017461:+
chr10:12683806:12684291:-@chr10:12663958:12664092:- @chr10:12659787:12661787:-
chr7:51723021:51723560:+ @chr7:51723676:51723787:+ @chr7:51724177:51725907:+
chr7:133942559:133942769:- @chr7:133941488:133941492:- @chr7:133940851:133941290:-
chr5:135101236:135101332:-@chr5:135100311:135100370:- @ chr5:135097819:135097956:-
chr10:7368849:7368953:- @chr10:7368265:7368458:-@chr10:7367068:7367419:-
chr6:51419670:51420485:- @chr6:51417390:51417425:- @chr6:51417184:51417294:-
chr6:51416302:51416403:-@chr6:51414088:51414102:- @chr6:51411919:51413492:-
chr18:33365774:33365900:- @ chr18:33364875:33364979:- @chr18:33358792:33363469:-
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Table 2. SMN-dependent exon retention events ranked by percent inclusion.

Gene Name A-psi Baye’s factor Event
Cdc123 0.82 5.40E+273 chr2:5754702:5755114:-@chr2:5754127:5754159:- @chr2:5743067:5744243:-
Nrp2 0.72 1780.86 chr1:62832855:62832875:+ @chr1:62859108:62859158:+@chr1:62861907:62865269: +
Fam64a 0.71 5.60E+71 chr11:71856424:71856839:+ @chr11:71858483:71858760:+ @chr11:71859181:71859595:+
Nubp1 0.7 10748107.36 chr16:10419746:10419778:+ @chr16:10420349:10420439:+ @chr16:10421067:10421530:+
Med7 0.67 20186.45 chr11:46250427:46250511:+ @chr11:46253308:46253477:+ @chr11:46254065:46256223:+
Phb2 0.64 8.85 chr6:124665972:124666048:+ @ chr6:124666443:124666448:+ @chr6:124666624:124666967:+
Polh 0.61 1.28422E+34 | chr17:46335583:46335717:-@chr17:46331151:46331365:- @chr17:46327556:46327725:-
Mtch2 0.61 8761.65 chr2:90689755:90689861:+ @ chr2:90692973:90693023:+ @ chr2:90693208:90693270:+
Afg3I1 0.6 178326.09 chr8:126022488:126022598:+ @ chr8:126023892:126024007:+ @chr8:126025133:126025333:+
Ptrh2 0.6 102704.98 chr11:86497379:86497625:+@chr11:86501538:86501630:+ @chr11:86503061:86505959:+
Serinc3 0.57 2.60E+109 chr2:163470734:163470889:- @ chr2:163464902:163465063:- @ chr2:163462543:163462740:-
Snrpd3 0.57 3.80E+74 chr10:74982059:74982205:+ @chr10:74994922:74995114:+ @chr10:74998006:75000126:+
Csell 0.57 88085852.77 | chr2:166760253:166760389:+@chr2:166761423:166761526:+ @chr2:166762842:166762939:+
Dcaf8 0.57 56.43 chr1:174078300:174079452:+ @ chr1:174095979:174096056:+ @chr1:174102460:174104214:+
Stxbp1 0.56 6.29 chr2:32651536:32651690:- @ chr2:32650108:32650233:- @ chr2:32643123:32645157:-
Kars 0.55 4.9952E+12 chr8:114535110:114535255:-@chr8:114529532:114529688:- @ chr8:114527175:114527340:-
Foxk2 0.55 9140760.75 chr11:121159822:121160169:+@chr11:121160898:121161107:+@chr11:121168082:121171214:+
Xpnpep3 0.55 159.21 chr15:81244862:81244978:+ @chr15:81246277:81246424:+ @chr15:81257706:81258384:+
Ptp4a2 0.54 6.67328E+34 chr4:129522306:129522436:+ @ chr4:129523709:129523783:+ @chr4:129524958:129527231:+
Hnrnph1 0.54 4.73985E+15 | chr11:50197182:50198238:+@chr11:50198643:50198692:+ @chr11:50199279:50200031:+
Fam135a 0.53 370308.6 chr1:24039502:24039575:- @chr1:24037581:24037735:- @ chr1:24035039:24037367:-
Neo1 0.52 494354.79 chr9:58736208:58736300:- @ chr9:58732277:58732435:- @ chr9:58728399:58728662:-
Pitpnc1 0.51 692.74 chr11:107087545:107087608:- @chr11:107077992:107078110:-@chr11:107069205:107073972:-
Mprip 0.5 2175532678 chr11:59585119:59585204:+ @chr11:59585654:59585719:+ @chr11:59589018:59595260: +
Cct4 0.5 17774127.29 | chr11:22893267:22893319:+@chr11:22894298:22894387:+@chr11:22895930:22896038:+
Rbms3 0.5 26954.78 chr9:116495136:116495213:-@chr9:116491856:116491983:-@chr9:116481864:116487820:-
Isca2 0.5 95.1 chr12:86114256:86114627:+ @chr12:86114743:86114858:+ @chr12:86115493:86116043:+
Tarbp2 0.5 12.89 chr15:102348601:102349033:+@chr15:102349553:102349722:+ @chr15:102351552:102354105:+
Tmem208 0.49 5.27 chr8:107852222:107852358:+ @ chr8:107852508:107852547:+ @chr8:107852672:107852957:+
Crls1 0.47 20.87 chr2:132675602:132675739:+ @ chr2:132686945:132687030:+ @chr2:132688071:132688139:+
Pank2 0.46 694.78 chr2:131099647:131099999:+ @chr2:131105893:131106090:+ @chr2:131108328:131108504:+
Ndufb5 0.45 6.40645E+17 | chr3:32645331:32645436:+ @chr3:32646519:32646711:+@chr3:32647383:32648279:+
Usp5 0.45 6.18 chr6:124767336:124767489:- @chr6:124767002:124767086:- @ chr6:124765033:124765677:-
Kdmé6a 0.44 16.56 chrX:17851637:17852287:+ @ chrX:17854502:17854689:+ @chrX:17855752:17857062:+
Pstk 0.43 340.94 chr7:138514615:138514903:+ @chr7:138517050:138517344:+@chr7:138517579:138517777:+
Wdfy2 0.43 5.39 chr14:63571849:63571979:+ @chr14:63573698:63573806:+ @chr14:63575117:63580346:+
Sltm 0.42 5 chr9:70390520:70390888:+ @chr9:70391777:70391864:+ @chr9:70406844:70410668:+
Nup88 0.41 9.38 chr11:70757614:70758240:-@chr11:70757381:70757499:-@chr11:70756560:70756824:-
Pxmp3 0.4 607616.71 chr3:5563165:5563272:- @ chr3:5562669:5562732:- @ chr3:5560498:5561764:-
Nup85 0.4 25117.84 chr11:115439244:115439378:+ @chr11:115439478:115439600:+ @chr11:115439803:115439934:+
Tyms 0.4 4431.92 chr5:30398174:30398247:- @ chr5:30395006:30395078:- @ chr5:30390386:30390726:-
Puf60 0.4 673.05 chr15:75905972:75906262:- @ chr15:75905037:75905087:- @ chr15:75902836:75902998:-
Shmt2 0.4 71.44 chr10:126957974:126958307:-@chr10:126957394:126957473:-@chr10:126957027:126957227:-
Prci 0.4 11.96 chr7:87457918:87458017:+ @chr7:87458413:87458454:+ @chr7:87460000:87461202: +
Gpx8 0.39 7.37 chr13:113836380:113836621:-@chr13:113835640:113835901:-@chr13:113832691:113833507:-
Ube2v2 0.38 7109676.49 chr16:15581152:15581300:-@chr16:15577108:15577233:- @chr16:15551079:15556636:-
Uqcrh 0.38 4470.95 chr4:115747521:115747691:- @chr4:115743273:115743362:- @chr4:115742414:115742629:-

(Continued)
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Table 2. (Continued)

Gene Name A-psi Baye’s factor Event
Polr3f 0.38 3402.14 chr2:144361911:144362126:+ @chr2:144362902:144363093:+ @chr2:144364348:144367731:+
Dnlz 0.38 11.2 chr2:26207293:26207631:- @chr2:26206855:26206994:- @ chr2:26203075:26206078:-
Ptpmt1 0.38 5.68 chr2:90757586:90757969:- @ chr2:90754141:90754332:- @chr2:90748507:90751476:-
Crls1 0.38 5.25 chr2:132675602:132675739:+ @chr2:132680629:132680758:+ @chr2:132686945:132687030:+
Ccnb1 0.37 10.87 chr13:101555412:101555573:-@chr13:101553420:101553602:- @chr13:101551580:101551738:-
Pisd-ps1 0.37 6.3 chr11:3025239:3026061:+@chr11:3028932:3029168:+ @chr11:3029385:3029523:+
Bzw2 0.36 1846.79 chr12:36883255:36883451:-@chr12:36861478:36861542:- @ chr12:36856579:36856755:-
Fxr1 0.36 87.52 chr3:33963025:33963241:+ @chr3:33967083:33967174:+ @chr3:33967839:33974920:+
Ppp2r2d 0.36 43.83 chr7:146060093:146060190:+@chr7:146061373:146061538:+ @chr7:146062073:146062185:+
Syncrip 0.35 6.92 chr9:88376894:88377397:- @chr9:88375444:88375603:- @ chr9:88374632:88374750:-
Tpm3 0.34 71 chr3:89891596:89894001:+ @chr3:89894935:89895013:+ @chr3:89903450:89904824: +
Phf3 0.33 5.89 chr1:30919832:30920101:-@chr1:30886688:30888404:- @ chr1:30881055:30881364:-
Pppiri2a 0.32 4923.07 chr10:107688797:107689000:+@chr10:107689813:107689980:+@chr10:107690381:107690551:+
Fundc1 0.31 557.02 chrX:17145159:17145234:-@chrX:17135807:17135935:- @chrX:17133690:17135137:-
Pcgf5 0.31 5.94 chr19:36517334:36517432:+ @chr19:36519478:36519567:+ @chr19:36530111:36535459:+
Tcp1 0.3 2.00129E+28 | chr17:13109195:13109495:+@chr17:13110664:13110749:+@chr17:13110909:13113323:+
Ifi2711 0.3 10290.22 chr12:104674773:104674892:+@chr12:104675663:104675734:+ @chr12:104675886:104675915:+
Emd 0.3 34.72 chrX:71501082:71501215:+@chrX:71502217:71502263:+ @chrX:71506121:71506935:+
Ddx17 0.3 29.97 chr15:79372917:79373016:- @chr15:79371464:79371597:- @chr15:79370839:79370908:-
Lypla1 0.3 12.73 chr1:4818665:4818730:+ @chr1:4820349:4820396:+ @chr1:4822392:4822462:+
Ndufs4 0.3 8.87 chr13:115178167:115178469:-@chr13:115141656:115141734:-@chr13:115107065:115107237:-
Srsf5 0.3 7.22 chr12:82047408:82047707:+ @chr12:82048298:82048368:+ @chr12:82048483:82048782: +
Cops3 0.29 38.46 chr11:59646386:59646435:- @chr11:59643649:59643741:-@chr11:59641348:59641527:-
Picalm 0.29 9.12 chr7:97326010:97326113:+@chr7:97330729:97330878:+@chr7:97337660:97337767:+
Serinc3 0.28 52.88 chr2:163470734:163470889:- @ chr2:163464902:163464924:- @chr2:163462543:163462740:-
Mtch2 0.27 225498.8 chr2:90689755:90689861:+ @ chr2:90692997:90693023:+ @ chr2:90693208:90693270:+
Wbscr22 0.26 116.88 chr5:135532712:135532889:- @ chr5:135531898:135532254:- @ chr5:135529419:135529508:-
Ube2j2 0.25 19.92 chr4:155329531:155329669:+ @ chr4:155330477:155330557:+ @chr4:155331190:155333713:+
Rai12 0.25 6.65 chr11:69784063:69784244:-@chr11:69782995:69783090:- @chr11:69782598:69782698:-
Sqle 0.24 12568724541 chr15:59155362:59155533:+ @chr15:59156017:59156112:+ @chr15:59157590:59157732: +
Agpat6 0.24 39.69 chr8:24301188:24302164:- @chr8:24295001:24295070:- @ chr8:24293135:24293435:-
Surf4 0.24 6.16 chr2:26782289:26782475:-@chr2:26781128:26781204:- @chr2:26780473:26780516:-
Mrps18c 0.23 6.72 chr5:101230927:101231010:+ @chr5:101232072:101232129:+ @chr5:101232989:101235488:+
Znrf1 0.21 20.41 chr8:114059994:114061464:+@chr8:114133193:114133288:+ @chr8:114143106:114143211:+
Slc30a9 0.21 6.2 chr5:67706917:67707084:+ @chr5:67715913:67715972:+ @chr5:67718092:67718191:+
Pot1a 0.2 149.81 chr6:25755875:25755941:- @ chr6:25750284:25750510:- @ chr6:25740138:25744674:-

doi:10.1371/journal.pone.0163954.t002

Table 3. SMN-dependent intron skipping events ranked by percent inclusion.

Gene Name A-psi Baye’s factor Event
2500003M10Rik 0.41 227.54 chr3:90311467:90311548:-@chr3:90310030:90311180:-
Rpl7 0.26 317494357.1 chr1:16093684:16093765:-@chr1:16093591:16093650:-
Fasn 0.16 44.04 chr11:120671337:120671363:-@chr11:120671118:120671268:-
Nap1i1 0.11 7.64 chr10:110933096:110933161:+@chr10:110933810:110933939:+
Ptma 0.06 1.38696E+14 chr1:88426540:88426688:+ @chr1:88426804:88426811:+

doi:10.1371/journal.pone.0163954.t003
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Table 4. SMN-dependent intron retention events ranked by percent inclusion.

Gene Name
Vps33b
Ing4
Ibtk
Rit1
Srsf1
Cenpt
Atg9a
Ptbp1
Psmb6

A-psi
-0.55
-0.5

-0.46
-0.37
-0.27
-0.25
-0.19
-0.15
-0.07

doi:10.1371/journal.pone.0163954.t004

Table 5. RNA-seq workflow and quality control.

Condition
Sample
Total reads
Passed QC
Passed rRNA filter
(rRNA filter)
Mapped
Unmapped

experiment 1

30,113,572
25,254,611
13,265,153
11,989,458
10,043,543
3,221,610

doi:10.1371/journal.pone.0163954.t005

Baye’s factor Event
242.16 chr7:87436001:87436176:+@chr7:87436221:87436465:+
29.19 chr6:124997500:124997958:+ @ chr6:124998194:124998255: +
5.49 chr9:85611158:85611259:- @ chr9:85608906:85609023:-
21035.04 chr3:88529917:88529990:+ @ chr3:88530202:88530393:+
2668051.53 chr11:87862545:87862717:+ @chr11:87862914:87867259:+
123.29 chr8:108373733:108373823:-@chr8:108373526:108373613:-
5.19 chr1:75179166:75179311:-@chr1:75177439:75178505:-
11.61 chr10:79322097:79322267:+ @chr10:79322347:79322457::+
9.27 chr11:70339387:70339454:+ @chr11:70339796:70339927:+
total RNA control total RNA SMN knockdown
experiment 2 experiment 3 experiment 1 experiment 2 experiment 3
30,088,415 26,659,894 29,684,299 39,127,193 33,014,903
23,761,419 22,115,822 24,304,285 32,199,505 25,683,819
19,533,367 20,479,028 1,384,802 9,273,930 10,518,125
4,228,052 1,636,794 22,919,483 22,925,575 15,165,694
13,298,811 15,517,242 1,033,316 6,849,638 7,303,336
6,234,556 4,961,786 351,486 2,424,292 3,214,789

depleted samples (Fig 2a) but not in the control parental NSC-34 #4 cDNA. The histograms
show the posterior distributions over PSI estimated by MISO [25, 26] in control or SMN-
depleted samples conditions. The red lines show the posterior mean and the dotted grey lines
indicate 95% confidence intervals.

The levels of exon-included versus exon-skipped transcripts were quantified from three sep-
arate experiments by band densitometry and each showed a significant impact of SMN deple-
tion on the intensity of the alternatively spliced product (one-way ANOVA, Fig 2b). The fifty-
two genes that produced truncated transcripts indicative of exon skipping following SMN
depletion were queried using Gene Ontology analysis to identify underlying biological pro-
cesses and cellular compartments that may be selectively vulnerable (Fig 2¢). Skipped exon
transcripts appear to function in subcellular protein trafficking and are components of mito-
chondrial membrane and vesicle complexes.

Family with sequence similarity 64 member A (famé64a) was chosen to validate group 2
transcripts with retained exons following SMN depletion, again because of its high BF and
PSI values. As with skipped exons, clear differences were observed in the splicing of this tar-
get between control and SMN reduced NSC-34 cells while there was no difference observed
in parental clone controls with doxycycline treatment (Fig 2a). 83 genes were identified that
were predominantly transcribed as full-length in SMN-depleted cells, which gene ontology
analysis indicated are involved in mRNA processing or localize to organelle membranes
(Fig 2¢).

To confirm that not all exons are affected by SMN depletion, we examined exon 19 on the
RNA binding protein Fox1, which is expressed at high levels in NSC-34 cells and is known to
be frequently alternatively spliced in neuronal cells [27]. Using published primers [28], we
observed that exon 19 was skipped at equal levels in control cells treated with doxycycline or in
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Fig 2. SMN depletion results in alternative exon splicing. A) RT-PCR documented alternative splicing events following SMN depletion
for three group 1 and one group 2 transcripts. The histograms show the posterior distributions over PSI estimated by MISO in control or
SMN-depleted samples conditions. The red lines depict the posterior mean and the dotted grey lines indicate 95% confidence intervals
(also shown in parenthesis). B) Quantification of RT-PCR band intensity from 3 biological replicates showed increased alternative splicing

after SMN depletion but not after doxycycline treatment of NSC-34-4. C) Gene Ontology results for exon skipping events and exon

retention events induced by SMN depletion. *—p<0.01. One-way ANOVA followed by post-hoc t-test.

doi:10.1371/journal.pone.0163954.9002
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#4-56 cells after doxycycline-induced SMN depletion (S1A1 Fig). To determine if alternative
splicing impacted the overall expression level, quantitative RT-PCR was performed using prim-
ers against exons that are common to all splice variants. Although Trmt5 and Fam64a expres-
sion levels were unchanged after SMN depletion, both Ppp3cb and Pik3c2a were significantly
increased in doxycycline treated cells indicating that alternative splicing may result from an
overall increase in expression (S1A2 Fig). All four validated alternatively spliced exons were
examined by RT-PCR on ¢cDNA isolated from SMA patient derived fibroblasts and healthy
parent control (lines 3813T and 3814T respectively). End-point RT-PCR was unable to detect
alternative splicing of either Trmt5 or Famé64a. Exon 2 of Pik3c2a was skipped equally in SMA
and parental fibroblasts. Only exon 13 of Ppp3cb was found to be preferentially alternatively
spliced in the SMA cells (S1A3 Fig).

MISO was used to analyze intronic sequence retention from NSC-34 transcriptome reads
comparing cells with wild type and depleted levels of SMN protein. Using a Bayes Factor cut-
off value of 5, fourteen examples of alternatively spliced introns were observed in SMN-
depleted cells compared to controls (Fig 3). Validation of intron retention was performed by
selecting candidates with large differences in the percentage sequence inclusion (APSI) and
Bayes Factor scores greater than 5. Using these criteria, cDNA from NSC34-4#56 was
screened using primers flanking centrosomal protein T (cenpt) intron 2, Ras-like without
CAAX]1 (rit]) intron 4, and serine/arginine-rich splicing factor 1 (srsfI) intron 3. All targets
analyzed displayed intron retention following SMN depletion whereas analysis of the paren-
tal clonal line did not show any difference in intron retention following doxycycline treat-
ment (Fig 3a). RT-PCR primers designed against the same introns in the human genes did
not detect retention of these introns in cDNA from SMA 3813T fibroblasts compared to
healthy parental 3814T fibroblasts (S1A4 Fig). The histograms show the posterior distribu-
tions over PSI estimated by MISO in control or SMN-depleted samples conditions. The red
lines show the posterior mean and the dotted grey lines indicate 95% confidence intervals.
Quantification by band densitometry of multiple experiments showed a significant increase
in intron retention with SMN-depletion (p<0.01 by one-way ANOVA, Fig 3b). For compari-
son, MISO analysis predicted that Eeflal was expressed at high levels and that retention of
intron 6 showed no significant difference between control and SMN-depleted samples. Prim-
ers anchored in the flanking exons show a strong RT-PCR product under all conditions that
was unaffected by SMN depletion (Fig 3a), demonstrating that SMN-dependent intron
retention events are specific to individual targets rather than a more widespread splicing
error.

U11/U12 splicing after SMN depletion

Primary focus was placed on U12 introns during MISO analysis due to previous reports of
altered non-canonical splicing errors following SMN knockdown [18]. However, only two U12
dependent introns were found to be affected. Introns 1 and 2 of Bzw2 were preferentially
retained under control conditions (Apsi = 0.36) and intron 8 of Myef2 was retained after SMN
depletion (Apsi -0.45). This analysis indicates that in NSC-34 cells, non-canonical splicing is
unaffected by SMN depletion. While it has been reported that the tmem41b transcript is differ-
entially spliced in SMN depleted NIH-3T?3 fibroblasts [18], we were unable to detect the
reported alternative splicing resulting from the exon3-5 fusion or the retention of intron 4 by
endpoint RT-PCR (Fig 4a) using previously published primers anchored in exons 2 and 5 [18].
Our design of primers anchored in exons 3 and 5 yielded a similar result, detecting only the
properly spliced product under all conditions (Fig 4a). Using the previously published gPCR
primers [18], we were able to detect significant increases in the retention of the U12-dependent
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Fig 3. SMN depletion results in alternative intron usage. A) RT-PCR demonstrated increased intron retention events in doxycycline
treated NSC-34-4#56, but not NSC-34-4. The histograms show the posterior distributions over PSI estimated by MISO in control or SMN-
depleted samples conditions. The red lines depict the posterior mean and the dotted grey lines indicate 95% confidence intervals (also
shown in parenthesis). B) Quantification of RT-PCR band intensity from 3 biological replicates shows increased intron retention after SMN
depletion, but not after doxycycline treatment of NSC-34-4. *—p<0.01. One-way ANOVA followed by post-hoc t-test.

doi:10.1371/journal.pone.0163954.g003

intron 3 as well as the alternatively spliced product after SMN depletion (Fig 4b), but found
overall expression levels were very low. Using primers designed to detect all tmem41b isoforms
[18], we detected a similar increase in total levels after SMN depletion. This is in contrast to the
tindings in NIH-3T?3 cells in which alternative splicing resulted in an overall decrease in

tmem41b transcript levels [18]. The previous report of altered tmem41b splicing was following
SMN depletion for five days rather than the three-day knockdown used here. Our findings do,
however, highlight the impact of using disease relevant cell types for the interrogation of SMN-

dependent splice changes.

PLOS ONE | DOI:10.1371/journal.pone.0163954 October 13,2016

11/31



@° PLOS | ONE

Splice Defects in SMN-Depleted Cells Produce Truncated Products Contributing to the Short Processes

A

Tmem4lb

2 3 ] 4
P I T -

> <
Tmem4lb

[ET
> <

4

)

NSC34 #4 NSC34 4#56 L£1.4 A1 * _[

e

i

N
—
—1—

Dox

- 4+ -+

U12 intron Alternatively Spliced  Total transcript

o

Fig 4. Tmem41bis alternatively spliced in SMN-depleted NSC-34 cells. A) Endpoint RT-PCR shows no alternative splicing of
Tmem41b or retention of the U12 dependent intron 3 in either parental cell line NSC-34 #4 or the doxycycline-inducible SMN knockdown
line NSC-34 #4-56 following 72 hours of doxycycline. B) Quantitative RT-PCR shows a significant 20% increase in U12 intron retention
and alternative splicing in Tmem41b after doxycycline-induced SMN depletion but no decrease in total Tmem41b levels. *—p<0.05 by

Student’s t-test.

doi:10.1371/journal.pone.0163954.g004

Identification of RNA binding protein motifs in SMN-dependent exon
skipping events

SMN has been shown to interact with RNA binding proteins (RBPs) so we hypothesized that
perhaps a common RBP was regulating SMN-dependent splice events in NSC-34 cells. In order
to identify candidate RBPs, we analyzed the upstream and downstream exons, the entirety of
the alternatively spliced exon, and the intervening introns using previously described methods
[29] for pentameric motifs associated with known RNA binding proteins (Fig 5a). The candi-
dates were screened using a strict cut off of Bayes factor greater than 10 and a false discovery
rate (FDR) less than 0.05, we identified 76 splicing events with A-PSI greater than zero
(increased inclusion levels) and 35 with A-PSI less than zero (decreased inclusion level). Thir-
teen RBPs were identified (Fig 5b), one of which is a well-characterized regulator of alternative
splicing: FUSIP/SRSF10 [30]. Two of its validated splice targets, KDM6a and SLTM, are present
in our list of alternatively spliced exon events following SMN depletion, indicating that perhaps
in conditions of low SMN, FUSIP/SRSP10 occupancy at these regulatory regions was decreased.
Only hnRNP-L/LL and RBM24 binding motifs were present at exons that are both included or
skipped after SMN-depletion, indicating that these RNA binding proteins could be master co-
regulators of SMN-dependent alternative splicing events. None of the RBPs predicted to regu-
late the alternatively spliced exons and introns were themselves mis-spliced after SMN deple-
tion. Several RBPs themselves are alternatively spliced after SMN knockdown, but since none of
them are predicted to bind the identified splice sites, it is unlikely that these mis-spliced RBPs
are responsible for the observed alternatively spliced transcripts.

Expression of SMN restores normal splicing patterns

To confirm that the alternative splicing events identified by RNA-seq and verified by RT-PCR
are true SMN-dependent splicing changes, we used a human HA-tagged SMN c¢DNA that is
not affected by the murine-specific shRNA in the 4#56 clone to restore SMN protein levels to
normal. NSC-34 4#56 were transfected with HA-hSMN and pBabe-hygro, and a polyclonal
population was used for validation experiments. Western blot analysis with antibodies against
SMN showed expression of this HA-hSMN protein was stable in the presence of doxycycline
without disrupting the knockdown of murine SMN (Fig 6a). RNA was harvested from these
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HA-hSMN rescued cultures and alternative splicing interrogated by RT-PCR. We selected rep-
resentative candidates from three categories of splice error; exon skipping, exon retention and
intron retention, and demonstrated that expression of SMN protein restored these splicing pat-
terns to normal (Fig 6b). Finally, we measured the amount of each validated splice variants by
quantitative real-time PCR on RNA isolated from NSC-34 line #4 (rTta alone), line #4-56
(SMN shRNA) and line #4-56 expressing human HA-SMN (EF1la-hSMN) with and without
doxycycline normalized to 5S RNA by the AACt method and values from untreated cells were
set to 1. For exon skipping products, one primer was placed across an exon-exon border. For
intron retention events, one primer was anchored within the intron and the other in the flank-
ing exon. The end-point PCR shown in Fig 6b shows aberrant splice products were present
after SMN depletion in line #4-56 and that the profile normalized with the addition of human
SMN for both exon skipping and retention (Fig 6¢) and intron retention events (Fig 6d).

HNRNPCLL: TTTTT
PABPC4:AAAAAAA
hnRNPLL: ACACACA
hnRNPL: ACACACA
KHDRBS1: ATAAAA

PCBP2: CCTTCCC hnRNPLL: ACACACA
HNRNPC: TTTTT ZFP36: AAHAARBAAAG hnRNPL: ACACACA
PABPC1: AAAAA A2BP1: GCATG RBM4: GCGCGGG
CPEB4: TTTTTT RBP24: GTGTG

RBM24: GTGTG

CPEB4: TTTTTT
HNRNPC: TTTTT RBM24: GTGTG RBMS3: TATATA
HNRNPCL1: TTTTT Fusipl: AGAGAAA

Exon skipping events A-PSI >0

Exon skipping events A-PSI <0

RNA binding protein Splice Events RNA binding protein|Splice Events
KHDRBS1 39 RBM24 64
HNRNPCL1 38 HNRNPL/LL 57
PABPN1 35 RBMS3 19
HNRNPCL1/HNRNPC/CPEB4 34 RBM4 3
RBM24 30

A2BP1 30

PABC1/PABC4 29

ZFP36 29

FUSIP(SRSF10) 26

HNRNPL/LL 22

PCBP2 13

Fig 5. RNA binding protein motifs at sites of alternative exon splicing. A) The upstream and down-stream intronic regions for each
alternatively spliced exon were interrogated for the presence of pentameric RNA binding protein motifs. No significant RBP recognition
sites were identified within exons or in the up- or downstream exon. B) The total number of recognition motifs for each RNA binding
protein is displayed. Only hnRNP-L/LL and RMP4 binding motifs were present at both retained and skipped exons.

doi:10.1371/journal.pone.0163954.9005
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Fig 6. Aberrant splicing is rescued by reintroduction of human SMN. A) NSC-34-4#56 cells were transfected with HA-tagged human
SMN. Western blotting with antibodies against SMN (MANSMA1) showed that doxycycline reduced the levels of mouse SMN but the HA-
hSMN was unaffected and brought levels of SMN protein within normal range after 72 hours in doxycycline. B) RT-PCR on SMN-depleted
and HA-hSMN expressing cultures shows rescue of three major splicing change categories. C-D) Quantitative real-time PCR (qRT-PCR)
demonstrated that the aberrant splice products from exon skipping/retention (6C) or intron retention (6D) were only present after
doxycycline-induced SMN depletion, and normalized with expression of human SMN. Schematic shows the location of primers for
gRT-PCR quantification of alternative splice products.

doi:10.1371/journal.pone.0163954.9g006

Transcripts with retained introns are stable

For all three of the group 3 validated intron retention events, the resultant transcript contains a
premature stop codon, which we might direct it to the nonsense mediated decay pathway
(NMD). However, recent studies in neuronal cells and mouse cerebellum have demonstrated
that intron retention can be an important tool for expanding the available transcriptome in
neuronal cells, and that intron retained transcripts can be stable and produce truncated protein
products [31]. To determine if the transcripts with SMN-dependent intron retention are targets
of NMD, we followed published methods and exposed the SMN-depleted cultures to the pro-
tein synthesis inhibitor cycloheximide (10 uM) for 4 hours [32]. As a positive control, we used
the well-characterized NMD target Arc [33], which should increase after inhibition of the
NMD machinery proteins by cycloheximide. Quantitative RT-PCR with primers specific to the
intron-retained transcripts shows that their levels are relatively unchanged after cycloheximide
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Fig 7. Retained introns are not targets of non-sense mediated decay. A) Quantitative RT-PCR
measures intron-retained transcripts after treatment with cycloheximide. mRNA levels were compared to
vehicle treated (EtOH) cultures using 5S rna as the internal reference by the AACT method. Arc, a validated
NMD target increased while only Rit1 showed any significant increase, indicating that these transcripts are
not targets of NMD. B) Quantitative RT-PCR compared total transcript levels in SMN-depleted cultures to
control cultures using 5S rna as the internal reference by the AACT method. Cenptwas slightly decreased
after SMN depletion, but neither Srsf1 nor Rit1 transcript are decreased overall after SMN depletion.
(Asterisk—p<0.05 by Student’s t-test).

doi:10.1371/journal.pone.0163954.9007

treatment whereas Arc transcript increased more than 3 fold (Fig 7a). Intron retention could be
used to regulate the over all transcript levels, so we designed primers to common exons and
found that only Cenpt decreased after SMN-depletion. Total transcript levels for RitI and
Srsfl1I were not significantly changed (Fig 7b).

SMN-dependent splice errors are increased in SMA model mice

To determine if the SMN-dependent alternative splice products in our NSC-34 cell model were
present in a mouse model of SMA, we chose the so called “Taiwanese” model [34]. The mice
were obtained from Jackson Labs (stock # 005058) and crossed with FVB/N]J females as
described by Gogliotti et al [35] to produce litters that are 50% healthy heterozygotes and 50%
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Fig 8. Alternative splicing in a mouse model of SMA. A) Kaplan-Meier analysis shows a significantly decreased lifespan in SMA mice
compared to heterozygous (Het) littermates (p<0.07 n=50). B) SMA mice fail to gain and maintain weight compared to the Het siblings
(p<0.01 by two-way ANOVA). C) At postnatal day 9, SMA spinal cords show increased levels of exon-skipped transcripts and intron-
retained transcripts compared to Het spinal cords (p<0.05 by Student’s t-test).

doi:10.1371/journal.pone.0163954.9g008

SMA. In our experience, these mice live approximately 12 days. Kaplan-Meier analysis shows a
significant decrease in survival compared to healthy siblings as well as a failure to maintain
body mass (Fig 8a and 8b). Lumbar spinal cord was harvested at postnatal day 9, when the
SMA pups are fully symptomatic as evidenced by significant weight loss but are still ambula-
tory. Quantitative RT-PCR was run using primers specific for the validated alternatively spliced
transcripts. All three of the group 1 exon-skipping events were significantly increased in SMA
mice. The three validated intron-retention events were also significantly increased compared to
healthy siblings. (Fig 8c).

Biological Consequences of splicing errors in SMN-depleted cells

The validated splicing change in Ppp3cb affects the protein calcineurin AB(CnAp), a neuron-
specific phosphatase. This splice error causes exclusion of exon 13, which results in loss of a
small fragment of the protein’s auto-inhibitory domain (AID) [36]. We predicted that this
change would result in increased CnAR activity. To explore this hypothesis, we used immuno-
fluorescence to study the intracellular localization of the transcription factor NFATc.
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Phosphorylated NFATc is retained in the cytoplasm but following dephosphorylation by
CnAB, translocates into the nucleus [37]. Hyperactive CnAf would result in increased NFATc
nuclear immunofluorescence. NSC-34 cells from clone 4#56 were grown in the presence or
absence of doxycycline for 72 hrs and immunofluorescently labeled with antibodies against
total NFATc. Cultures were grown in calcium-free media to reduce endogenous CnAf activity.
Under these conditions, NFATc is exclusively cytoplasmic and doxycycline-induced SMN
depletion produced no visible increase in nuclear staining (Fig 9a). Quantification of the locali-
zation of NFATc immunofluorescence from three separate experiments demonstrated no sig-
nificant change in the percentage of cells with nuclear NFATc staining after SMN depletion
(Fig 9b). It remains possible that levels of truncated calcineurin are simply too low to have a
biological effect, or the region of the auto-inhibitory domain that is removed is too small to
impact normal protein function.

Having determined that our validated intron-retained transcripts were not targets of non-
sense mediated degradation, we designed a series of experiment to determine the consequences
of translation into a truncated protein product. Neuronal cells are capable of translating intron
retained transcripts in a developmentally regulated fashion, and this process can be extremely
important for local translation in the axon. For instance, Robo3.2, an intron-retained isoform,
is actively translated into protein in cultured commissural axons [38]. Retention of the intron
between exons 2 and 3 in SrsfI was very prominent and appeared to be completely negated fol-
lowing expression of HA-tagged human SMN (Fig 4). Inclusion of this intron creates an in-
frame stop codon that truncates the arginine-serine rich domain (RS) and most of the RNA
recognition motif (RRM2) in the C-terminal 128 amino acids of Srsfl (Fig 9¢). Several natural
isoforms of Srsfl exist including isoform 3, which similarly lacks RS and part of RRM2 (Fig 9c)
and was previously found to be dominant negative [39]. In view of this, we sought to determine
if the SMN dependent truncation product similarly exhibited an effect on splicing. HA-tagged
full-length (FL) and truncated (TM) human Srsfl were cloned for use in an in-vitro splicing
assay where the splicing template is exon 7 SMNI or SMN2 [40]. Srsfl binds the exonic splicing
enhancer (ESE) to promote inclusion of exon 7 in SMN1, while SMN2 has a variant in the ESE
sequence (C840T) that blocks Srsfl binding and results in exon skipping [41]. NSC-34-4#56
cells were transfected with either hSrsf1-FL or TM along with the SMN reporter. Three days
later, RNA was harvested, PCR amplified, and run out on an agarose gel. Cells transfected with
only the SMNI reporter have a single higher band corresponding to SMN with exon 7 included,
while the SMN2 reporter produced an additional band corresponding to the A7 transcript (Fig
9e). Co-transfection of hSrsf1-FL or TM in this system successfully produced stable protein
(Fig 9d), however, no change in splicing ratios was detected in either SMN1 or SMN2 mini-cas-
settes (Fig 9¢), suggesting this Srsfl truncation product was not dominant negative and may
have no effect on splicing of SMN. As a positive control, NSC-34 cells transfected with the
SMN2 minigene were treated with 100pM Na;VO, overnight, which has previously been
shown to promote correct splicing and increase exon 7 inclusion [42]. As expected, Na;VO,
increased the level of full-length transcript, while hSrsf1-TM did not (Fig 9¢). This non-func-
tional mutant is in the context of human Srsfl and not the more relevant mouse Srsfl. The
mSrsfl truncation mutant similarly lacks the RS domain and most of RRM2, but when HA-
mSrsfl-TM was cloned and expressed in NSC-34 cells, a stable protein was not detected by
western blot analysis. Probing endogenous murine Srsfl protein by Western blot in NSC-34
cells using an N-terminal antibody did not reveal any truncated protein products upon SMN
knockdown (Fig 91, arrow), further strengthening the observation that mSrsf1-TM does not
produce a stable protein. The Western blot in Fig 9f does demonstrate clearly that Srsfl protein
levels are not reduced by SMN-depletion, indicating that the intron-retention event is not lead-
ing to changes in the overall levels of full-length Srsfl protein. In light of the lack of mSrsf1-TM
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Fig 9. Alternatively spliced CnAB and Srsf1 do not impact normal biology. A) Immunofluorescent detection of NFATc
localization (green) in NSC-34 4#56 cultures showed that SMN knockdown did not increase nuclear localization of NFATc.
Nuclei were visualized with DAPI (blue). B) Quantification of NFATc localization in three separate experiments showed no
significant effect of SMN depletion. C) Schematic of Srsf1 protein domains. RRM: RNA Recognition Motif, RS: Arginine/
Serine rich region, FL: full length, Iso3: naturally alternatively spliced dominant negative product, TM: alternatively spliced
truncation mutant induced upon SMN knockdown. D) FL and TM Srsf1 expression. FLAG Western blot of FLAG-Srsf1
constructs expressed in NSC-34-4#56 cells. E) Srsf1 expression did not affect SMN splicing. RNA was harvested from NSC-
34-4#56 cells transfected with FLAG-Srsf1 FL/TM and SMN1/2 minigene plasmids. SMN1 and SMNZ2 were PCR amplified
and run on an agarose gel. Addition of 100pM NazVO, shows that the SMN2 minigene is functional, increasing the amount
of exon 7 included transcript. F) Endogenous Srsf1-TM was not detectable upon SMN knockdown. Western blotting with N-
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terminal Srsf1 antibody of control and DOX treated NSC-34-4#56 cells detected the full length Srsf1 protein, but not the
predicted Srsf1-TM (arrow).

doi:10.1371/journal.pone.0163954.9009

expression and the absence of any splicing effect of hSrsf1-TM, the splicing change in Srsf1
upon SMN knockdown is unlikely to contribute to the SMA phenotype.

Ritl is a small G protein involved in promoting axonal outgrowth [43]. We chose this intron
retention event because the dominant phenotype seen in NSC-34-4#56 cells is a reduced neur-
ite length [21, 44], and Rit1 has been shown to influence neurite development in cultured neu-
rons [45]. Upon SMN depletion, Ritl intron 4 is retained resulting in the inclusion of a stop
codon that prevents transcription of the switch II, G4, and G5 domains [46] normally required
for proper orientation of GTP as well as downstream effector proteins (Fig 10a) [47]. If these
missing domains render the truncation mutant (Rit-TM) functionally inactive, we would
expect that expression of Rit-TM in NSC-34 cells would not promote neurite outgrowth. To
examine this, NSC-34-4#56 cells were treated with doxycycline for 3 days to reduce SMN levels
(Fig 10b) and thereby reduce neurite length before being transfected with GFP as a marker and
FLAG-tagged Rit-FL, Rit-TM, constitutively active Rit-Q79L, or the dominant negative Rit-
S35N mutant [48]. Three days after transfection, cells were either lysed and used for Western
blot analysis, or fixed for staining with DAPI and tubulin to measure neurite lengths. Under
this protocol, neurites are predominantly Map2 positive dendrite-like structures, and only pro-
cesses more than twice the width of the soma are considered a neurite (S2A1 Fig). After 72
hours of differentiation, RT-PCR shows that cultures are expressing neuronal markers such as
ChAT, Map2 and Tau, and greater than 70% of the cells produce at least one neurite (S2A2
and S2A3 Fig). All four Rit constructs produced stable proteins as detected by Western blot
(Fig 10c). The slightly larger size of Rit-FL compared to Rit-79 or -35 can be attributed to Rit-
FLs 4x FLAG-tag while the latter have a 3x FLAG. Reduced expression of Rit-S35N but not
Rit-Q79L was previously documented and was observed here [49]. Constitutively active Rit-79,
which cannot hydrolyze GTP and therefore continuously activates downstream effectors [48],
restored neurite length in SMN-depleted cultures. The dominant negative Rit-S35N reduced
neurite length even more than SMN-depletion, as summarized in Fig 10d. Interestingly, Rit-
TM transfected cells have shorter neurites in the presence of doxycycline compared to control
cultures, which is statistically significant as determined by a two-tailed Student’s t-test
(p<0.01). This reduction in neurite length is even more pronounced than the standard domi-
nant negative Rit-35 mutant, suggesting that the SMN-induced Rit truncation product simi-
larly acts as a dominant negative. Transfection of control culture with either Rit-38 or Rit-TM
also resulted in significantly shorter neuritis, comparable to the decrease seen after SMN deple-
tion, supporting the theory that Rit-TM may act as a dominant negative. In contrast, Rit-79 did
not significantly increase neurite length in control cultures. Representative micrographs are
shown in Fig 10e.

Ritl has previously been shown to promote neuronal differentiation and survival by increas-
ing p38 phosphorylation [50-52], activated p38 has been shown to increase SMN protein levels
both in vitro and in animal models [53, 54], leading us to hypothesize that the recuse provided
by constitutively active Rit-79 in the NSC-34 cell model might be a result of p38-induced
increases in SMN protein even in the presence of doxycycline. To address this, NSC-34 cells
were cultured with or without doxycycline, and transfected with either Rit-FL or Rit-79. Total
cell lysates were interrogated by Western blot, and we were able to see that Rit-79 increased
phosphorylation of p38 in both conditions, but particularly in SMN-depleted cells. In cultures
transfected with Rit-79, SMN protein levels were increased and it appeared to completely blunt
the doxycycline-induced knockdown leading to increased levels of SMN protein even in the
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Fig 10. Alternatively spliced Rit1 decreases neurite length. A) Schematic of Rit1 protein domains. Protein sequence shown of minimal
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position. Swl: Switch |, Swll: Switch Il domains, FL: Full length, TM: truncation mutant. B) Representative levels of SMN for NSC34-4#56
cells used in panels D and E upon dox-induced knockdown. C) Western blot expression of FLAG tagged dominant negative Rit S35N,
constitutively active Rit Q79L, full length Rit (FL), and alternatively spliced Rit truncation mutant (TM). D) Neurite extension assay. NSC34-
4#56 cells were dox treated for 3 days followed by transfection of FLAG-Rit /GFP for 3 days. Cells were fixed and tubulin stained to allow
neurite length measurement in GFP positive cells. Data are representative of three independent experiments, p<0.001 as determined by
one-way ANOVA and post-hoc Bonferroni test. **: p<0.01. E) Immunofluorescent images of representative cells. Red: Tubulin, Green:
GFP, Blue: DAPI nucleus. F) Western blot from NSC-34 cells following differentiation and 72 hours treatment with doxycycline.
Transfection with Rit-79 but not Rit-FL increased levels of phospho-p38 and SMN in doxycycline-treated cultures.

doi:10.1371/journal.pone.0163954.g010
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presence of doxycycline compared to cells transfected with Rit-FL which did not restore neurite
length (Fig 10F). Further study is required to determine the mechanism by which Rit1-tm
reduces neurite outgrowth in these cells.

Discussion

Defining a pathological mechanism by which SMN depletion results in neurodegeneration has
remained elusive to date. No single molecular event, which when restored can fully compensate
for the effect of SMN depletion on multiple genetic backgrounds, has been reported in SMA
animal models. This is not surprising given the role of SMN in the assembly of a diverse range
of RNP complexes. Whether SMN’s specific function in snRNP biogenesis and mRNA traffick-
ing are mutually exclusive remains to be determined. To assess how SMN reduction affects
gene expression profiling within a single cell model system of SMA, independent replicates of
total mMRNA were analyzed for RNA expression, isoform expression and mis-splicing events.
SMN depletion resulted in multiple isoform changes indicative of the sensitivity of alternative
splicing to changes in SMN protein levels. Examples of both elongated and truncated isoforms
accompanying SMN depletion were evident, suggesting that in addition to exon skipping, exon
retention events may also be observedin SMA conditions. A recent study used exon-exon
micro-arrays to identify splicing errors in a severe mouse model and validated a subset of these
changes in dividing neuroblastoma cells where SMN was depleted by siRNA [19]. Despite the
fact that their experimental design in a cell-based system was similar to ours, we find very little
overlap between our two datasets. This may partly be due to the fact that our cells are termi-
nally differentiated to a more motor neuron-like phenotype whereas their N2a model was rap-
idly dividing and undifferentiated. Our interpretation of the absence of overlap in the two
model systems is that while distinct SMN-dependent splicing changes are present among the
test systems, the lack of a consistent constellation of errors implies that this cannot be the dom-
inant cause of SMA pathology, although in our model system, the protein product resulting
from aberrant Ritl splicing appears to be a potential explanation for the reduction in neurite
length seen after SMN depletion. Similarly, we found no overlap between our dataset and the
report by Baumer and colleagues, which examined alternative splicing events in SMA mouse
motor neurons at early, intermediate and late disease stages [55] despite the fact that RT-PCR
analysis of spinal cords from symptomatic ‘“Taiwanese” did show an increase in the alterna-
tively spliced form of three exon-skipping and three intron-retention events that were validated
in our NSC-34 cell model. There is a small degree of overlap with the aberrant splicing found
by Zhang et al in late stage mice (Cenpt, Prcl, Ddx17, Kritl, Prmt1, Nup88, Pstkl, Sltm, Ptrh2,
Cct4)[8], as well as a later study done in pre-symptomatic animals by laser-capture micro-dis-
section (Clstnl, Gpx8, Med7)[56]. In comparison, the small number of splicing changes identi-
fied after induction of SMA in adult mice shows no overlap with our dataset [17]. Together,
these findings indicate that perhaps our cells most closely reflect SMN dependent splicing
changes in the neonatal spinal cord rather than in undifferentiated cells or adult tissues. While
this manuscript was undergoing revisions, a new study examined splice changes in a variety of
tissues from the “Taiwanese” mouse model, which we used to validate our alternatively spliced
products. They confirmed that SrsfI and Rit1 were both alternatively spliced in SMA spinal
cord as early as postnatal day 5 [57].

U12 introns have been proposed to be particularly susceptible sites for aberrant processing
following SMN depletion. Using our approach, we were unable to identify many U12 introns
retained in mRNA upon cross-reference with sequences within the U12 database (http://
genome.crg.es/cgi-bin/ul2db/ul2db.cgi). Our data suggest that in NSC34 cells undergoing
steady state differentiation with depleted SMN, minor-class introns do not display increased
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dependence on SMN. Similar findings were reported following RNA-seq analysis of laser cap-
ture motor neurons in SMA mouse spinal cord [56]. This partially supports recent data dem-
onstrating embryonic lethality and locomotion in a Drosophila model of SMA that can be
rescued by human SMN expression without a significant increase in snRNA levels [58]. How-
ever, without quantifying the required snRNA levels to restore these and other less significant
splicing events, we cannot rule out that snRNP biogenesis is redundant in rescuing the motor
neuronal phenotype in NSC34 cells.

To search for biological consequences of alternative splicing that could explain the short-
ened neurite phenotype in our NSC-34 cells model of SMA [21], we focused on intron reten-
tion events, as these often introduced a premature stop codon potentially encoding for a
truncated protein product. Neuronal cells have proven able to translate intron-retained tran-
scripts, even those which have been demonstrated targets of NMD. A splice site mutation in a
GABA receptor subunit produces a retained intron, and the resultant protein product encodes
a stable, truncated y2 subunit that causes familial epilepsy [59]. A large number on intron-
retaining transcripts have recently been reported in primary neuron cultures, indicating that
neuronally cells may increase their transcriptional repertoire by making use of the alternatively
spliced products in the cytoplasm rather than degrading them [60, 61].

The intron retention event with the largest difference in PSI between control and SMN-
depleted samples was retention of a Vps33b 3’ intron following the normal stop codon, and is
unlikely to produce any significant error in the protein product, although it could conceivably
alter mRNA stability. The truncated murine Srsfl protein appears to be unstable, as we could
not detect it by Western blot. However, we were able to model the consequences of over-
expressing the truncated product of the small G protein Ritl. Rit1 is alternatively spliced upon
SMN depletion, creating a truncation mutant (Rit-TM) that reduced neurite length to a greater
extent than even the commonly used S35N dominant negative mutant. This activity of Rit-TM
is likely due to the loss of the G4 and G5 domains that are required for recognition of the gua-
nine of GTP/GDDP, as well as disruption of part of the effector protein binding site within the
switch IT domain. Only a few effector proteins have been discovered for Rit, and two of these
play important roles in neurogenesis. Rit binds B-Raf and C-Raf but only activates the neuronal
specific B-Raf, which plays a role in neurite outgrowth [50]. Par6C binding to Rit is rather
unusual in that it is not GTP dependent, and loss of this interaction alters the fate of axon ver-
sus dendrite differentiation [62]. If Rit is unable to bind these effector proteins, the fate of neur-
ite differentiation and outgrowth is likely to be compromised, which could play a role in the
pathogenesis of SMA. Rit mutations in the switch IT domain are associated with Noonan syn-
drome, which is partly characterized by cardiac defects [63]. Similar cardiac pathologies are
found in the severe mouse model of SMA [64], and one could envision a scenario where
severely low levels of SMN promote the accumulation of truncated Ritl, mimicking some Noo-
nan syndrome pathologies.

The data presented here provide an interesting, albeit restricted snap shot of the complexity
of SMN-dependent RNA processing. Even restricted to a clonal population of a single cell type,
widespread abnormalities are evident that do not highlight any single cellular process or protein
family, making therapeutic strategies for targeting compensatory mechanisms conceptually and
technically challenging. It is likely that similar perturbation is present in additional cell types
involved in the maintenance and maturation of the neuromuscular junction, providing an addi-
tional layer of complexity to the molecular pathogenesis of SMA, and highlighting the require-
ment to understand how non-neuronal phenotypes arise as a result of SMN depletion.
Determining whether SMN function is spatiotemporally sensitive will be important in decipher-
ing compensatory proteins and mechanism that can be manipulated in place of SMN restora-
tion. The finding that over-expression of constitutively active Rit increased neurite length in
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SMN-depleted cultures demonstrates that correcting even a single SMN-dependent splice error
has the power to restore aspects of normal neuronal architecture without increasing SMN pro-
tein levels. Whether correcting this single splice error is sufficient to rescue disease phenotype in
a more complex model of SMA such as the zebrafish or mouse remains to be determined.

Methods
Cell culture

Murine neuroblastoma x spinal cord NSC-34 cells [20] were grown in DMEM (Gibco) supple-
mented to 10% with fetal calf serum (FCS) (Clontech) and 1% penicillin/streptomycin (PSt) at
37°C. Cells were grown to 80% confluence supplemented with or without 2 pg/ml doxycycline
and split into at a density of 2.4x10* cells/ml in DMEM:F12 (Gibco) supplemented with 1%
FCS and 1% PSt to induce differentiation and promote neurite outgrowth in the presence of

2 ug/ml doxycycline or without. Cells were grown for 72 h until approximately 70% confluent
with media changed after 48 h. Fibroblasts from a type II SMA patient (3813) and carrier par-
ent (3814) were grown in DMEM (Gibco) supplemented to 15% with FCS (Sigma) and 1% PSt
at 37°C to 50% confluence [65].

High throughout sequencing

RNA samples were treated with Ribominus (Life Technologies) to reduce ribosomal RNA.
RNA concentration was measured using the Agilent Bioanalyzer 2100, and 250-700 ngs of
each individual RNA sample was fragmented with RNase III. Samples were processed through
the Life Technologies SOLiD4 RNA Sequencing protocol; each individual sample was barcoded
as part of the process. The barcoded libraries were pooled in equal amounts and processed
through SOLiD4 EZ Bead preparation (Life Technologies) using 0.5 pM total in the final prepa-
ration. One full slide of 700-million template-beads was used for 50 base reads forward
sequencing on Life Technologies SOLID 4 Sequencer. The RNA-seq results are publically avail-
able at http://compbio.iupui.edu/group/6/pages/smn and have also been uploaded to the NCBI
sequence read archive (SRP090323).

Alternative splicing analysis and RBP enrichment analysis

Alternative splicing events including skipped exons (SE) and retained introns (RI) were
detected using MISO with default parameters [25]. Reads from biological replicates were
merged together to increase the power of splicing analysis. Differential splicing events with
Bayes factor > 10 were further used in motif enrichment analysis. The up-regulated and down-
regulated events were analyzed separately. Each event was split to 7 regions: 150 bp up/down
stream exons, whole skipped exons and 300 bp of their flanking introns. Sequences in each
region were divided into bins based on GC content. All the combinations of 5-mer sequence
patterns were searched in each region. The background frequency of 5-mer patterns were gen-
erated by 1** order Markov Model [3]. The significance of each pattern was tested by Binomial
test. Patterns with Benjamini-Hochberg corrected p-value < 0.05 are considered as signifi-
cantly enriched.

Cloning

Full-length human Srsfl (hSrsf1-FL) and truncation mutant (hSrsf1-TM) were cloned behind
a HA-tag into pcDNA3. Full length contains all 4 coding exons, and TM includes exons 1-2 as
well as the first 263 bp of intron 2. Protein encoded by TM stops 8 aa downstream of exon 2
due to a stop codon located in the intron. Mouse full length and truncation Srsfl (mSrsf1-FL
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and mSrsfl-TM) were similarly cloned. mSrsf1-TM includes exons 1-2 followed by the first
264 bp of intron 2, so the encoded protein ends 47 aa downstream of exon 2. Full-length
mouse Rit (mRit-FL) and truncation mutant (mRit-TM) were cloned behind a 4xFLAG tag
into pCMV10. Full length encodes coding exons 2-6, while TM includes exons 2-4 plus the
first 105 bp of intron 4 and encodes a protein that terminates 11 aa downstream of exon 4. All
plasmids were confirmed by sequencing.

Quantitative real-time PCR and end point PCR

Nucleic acid was isolated from NSC-34 using mirVana RNA isolation kit (Ambion) according
to manufacturers instructions before DNase treatment using Turbo DNase kit (Ambion).
Nucleic acid was isolated from NSC-34-4, NSC-34-4#56 and SMA patient fibroblasts for end-
point and qPCR analysis by lysing cell pellets in Trizol (Invitrogen) and following the manufac-
turers protocol up until resuspending the aqueous phase in ethanol, for further clean up and
isolation RNA Clean & Concentrator -5 columns were used following manufacturers protocol
(Zymo Research). 5 ug of RNA was used as input into cDNA synthesis from for all samples
used in endpoint and qPCR using SuperScript III (Life Technologies) reverse transcriptase fol-
lowing manufacturers protocol. gPCR was performed using iQ SybrGreen Supermix (BioRad)
and CFX96 real time system using 60°C annealing and extension temperature. Endpoint PCR
was performed using GoTaq polymerase (Promega) with annealing temperatures of 55°C for
differential isoforms, and 59.5°C for intronic transcript templates.

Western blots

NSC34-4#56 cells were transfected with Lipofectamine 2000 at a 2:1 ratio with hSrsfl, mSrsfl,
or mRitl plasmids. After 24 hours, cells were lysed in 0.5% NP40/20mM Tris 8.0/150mM
NaCl. Insoluble protein was pelleted, and 20-40 ug soluble fraction was run on 16% PAGE,
transferred, blocked in milk/PBST, and blotted with FLAG M2 antibody at 1:5,000 dilution,
HA-7 antibody at 1:40,000 dilution, or tubulin (Dm1a) at 1:50,000 dilution. Endogenous SMN
was detected using MANSMA1 1:200 [66] and alpha-tubulin DM1A 1:10,000.

Minigene assay

The SMN minigene assay to detect full length (+exon 7) or alternatively spliced (+ exon 7, A7)
SMN was previously described [67] with one modification; the forward primer was replaced
with pCI-Nhe-Xho-F to amplify only exogenous plasmid produced SMN.

Immunofluorescence

NSC-34-4#56 cells were treated with 2 ug/mL Dox for 3 days in 10% FBS/DMEM. Glass cover-
slips (Fisher 12-545-100) were sterilized by UV irradiation and were treated with 1.5 ug/mL
Poly-D-Lysine. SMN depleted NSC-34 or control cells were plated onto coverslips at 3x10*
cells/well and reverse transfected with Lipofectamine 2000 and Rit and pEGFP-C1. After 3
days, cells were washed with PBS and fixed in 4% paraformaldehyde/PBS and permeabilized in
blocking solution (PBS, 5% normal goat serum, 0.1% Triton X-100) for 30 min. Alpha-tubulin
antibody was diluted 1:2500 in blocking solution and incubated with cells for 2 hrs followed by
Alexa-Fluor 594 1:1000. Slides were mounted using Prolong gold with DAPI, then visualized
on a Nikon Microphot-SA microscope. Neurite lengths were measured using QCapture Pro 6.0
software. All lengths were normalized to GFP control transfected cells.
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Gene Ontology analysis

Gene Ontology analysis was performed using altered RNAs against the mouse mm9 genome.

Animals and ethics statement

Transgenic mice and FVB/N]J breeders were obtained from Jackson Laboratories (stock #
005058 and 001800). The resultant progeny (Tg SMN2 2Hung'®'?; Smn1T™H"¢™WT) yere
intercrossed to produce “experimental” breeders (Tg SMN2 2Hung®’?; Smn1 TmHung/WT),
These were then mated with 005058 animals to produce litters which are 50% healthy

(Tg SMN2 2Hung'®?; Smn1"™""8W1") and 50% SMA (Tg SMN2 2Hung'®'?; Smn1™™H¢/
TmHung) A nimals were maintained in accordance with international guidelines with approval
from the Indiana University School of Medicine Animal Care and Use Committee (IUSM
IACUC) as described in protocol #10646. For spinal cord removal, pups were euthanized by
decapitation at post-natal day 9 and total RNA was harvested as directed using the Trizol
method detailed in the RNA micro kit (Invitrogen, # 12183016)

Primers

mSrsfl1-229-F TACGACTACGACGGCTACC

mSrsfl-447-R GTAACATACATCACCTGCC

mSrsfl-BamH1-F GATCGGATCCAGATGTCGGGAGGTGG
mSrsfl-Ale-Xho-R GTACCTCGAGCTTAAGTTATGTACGAGAGC
hSrsf1-227-F GCTATGATTACGATGGGTACC

hSrsf1-443-R CATACATCACCTGCTITCACGC

HindIII-HA-F GATCAAGCTTATGGCTTACCC
hSrsf1-Ale-Xho-R GTACCTCGAGCTTAAGTTATGTACGAGAGC
Hind-FLAG-mRitl-F GATCAAGCTTATGGTGGATTACAAGGATGACGACGATAAGTTAAT
TAAC ATGGAGTCCG

XbaBsu36-mRit1-R GTACTCTAGACCTGAGGTCAGGTGACCG
mRit-170F CTTATAAGATCCGGATCC

mRit-412R GGTCAGACTTGTTCC

Ex8Rev CTACAACACCCTTCTCACAG

pCI-Nhe-Xho-F GGCTAGCCTCG

mIrmt5 Ex2- F TATTTCCGAGCTGCACCAGA

mTrmt5 Ex2-R TCCTCTCCACACAGCACTTIC

mFam64-a Ex2-3-F GAGAAGAAGGAGGTGACCCG

mFam64-a Ex2-3 R TCACGGATAAGGGAGACGGT

mCenpt i2-F AGGCAGGGTAGCCARACAAA

mCenpt i2-R AACACGAGTCGATCTGCCAA

mPppc3cb-F CCGAGCAATTGGCAAGATGG

mPppc3cb-R CTCAGTGGTATGTGCGGTGT

mRitl i2-F TCCGCATTGATGATGAACCT

mRitl i2-R TCAGCTGCTTTAGGTCAGACT

mSrsF1i2- F CCCGAGAGGCCGCTAT

mSrsF1i2- RAGAAAACTGTATCCAATTCTGGC

mPik3c2a Ex2-F GAGATCGCCAAGTTGTCACC

mPik3c2a Ex2-R AGTAACTGGTAGTTGAAGCCCT

mPpp3cb qQPCRF CCTAGTGGAGTGTTGGCTGG

mPpp3cb qPCR R CGGGGTGGCATTCTCTCATT

mTrmt5 qPCR F GCACCAGAGCATGAGAATCG
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mTrmt5 qPCRR CGCTTTCCTAAGTCTCGGCA
mFamé64a qPCR F ATCAAGGCTGAAGAGAGTGGTG
mFam64a qPCR R GACATCCTGGTGGCTTGGTIG
mPik3c2a qPCR F GCGGGAGAAAAACATGGCTC
mPik3c2a wPCR R AATACCAGGACCTCACGCTG
mcenpt qPCR F GAACATGGCGGACCTCAG
mcenpt QPCR R AGTGCTCCGGCGTCTCAT
msrsfl JPCR F ATAGCGTGGTGATCCTCTGC
msrsfl QPCR R TGCCTACATCCGGGTITAAAG
hcenpt.exon2F GGAGAGCCCTGCTTGAAAC
hcenpt.exon3R CCAGCGCTCACTTACCAGTT
hsrsfl.ex 2F GCGGTCTGAAAACAGAGTGG
hsrsfl.ex 3R TGCCATCTCGGTAAACATCA
hrit.ex 4F GATGATGAGCCTGCCAATCT

hrit.ex 5R ACCCTTCTCCTGCCCTCATA
hPpp3cb Ex 12 F GACACTCAAGGGCCTGACTC
hPpp3cb Ex 14 R TCCTCGGGTGATCTGTCCAT
hPik3c2aex 1 F GGATTACCTGGGCCTTCCAC
hPik3c2a ex 3 R CTGGGTTTGTGCGGTGATTG
hTrmt5 exonl F: TCTACGAGCCTCTACCCCTG
hTrmt5 exon 3 R: CTGCTGAGGTGATTCCTGGAT
hFam64a exon 1 F: GAGTTTCAAATCGGCTGCGG
hFam64a exon 4 R: GCAGGCACTTCCTCAGTCA
mrit.[4.f CAGAACCGTCTGAGCAGTGT

mrit.[4.r CTGAAGCGCAGACTTCCAC
mcenpt.I2.f CCTCTACCCACTCACGTGCT
mcenpt.I2.r GACCCAAACTGCAGGTICCTA
msrsf.I2.f ACTTCGTGCGGGTTAAAATC
msrsf.I12.r TTGGGTAAATCACCACCACA
mPpp3cb Ex 12/14 F: CTGCAGTTTTGAAGAG
mPpp3cb Ex 14 R: CGGGGTGGCATTCTCTCATT
mFamo64a ex 3 F: AGCTGTCTCAAAGGCTGGAC
mFamé64a ex 4 R: ACGGATAAGGGAGACGGTCA
Pik3c2a Ex 1F: TTCTTGAAGAGAGATCGCCAA
Pik3c2a Ex 1/3 R: GGTCTTCAATCTGAGATACTTG
mTrmt5 Ex 1/3 F: GAGCATGAGGCCAAGTTATGG
mTrmt5 Ex 3 R: TTCCTCTCCACACAGCACTTC
mEFla Int6F: CCGAGTGGAGACTGGTGTTC
mEFla Int6R: AATCCAGAACAGGAGCGTAGC

Supporting Information

S1 Fig. Alternative Splicing after SMN depletion. A) End point RT-PCR shows that alterna-
tive splicing of A2bp1 exon 19 is equal in all NSC-34 cell culture conditions and is unaffected
by SMN depletion. 5s RNA is used as loading control. B) Quantitative RT-PCR shows total
transcript levels after SMN depletion using primers in exons that are common to all splice vari-
ants. mRNA levels are shown after doxycycline-induced SMN depletion relative to controls by
the AACT method using 5s RNA as the control gene. C) End-point RT-PCR using total RNA
from either healthy parent fibroblasts (3814) or cells isolated from an SMA patient (3813).
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Only exon 13 of Ppp3cb shows is alternatively spliced in SMA patient fibroblasts compared to
the parent. D) End-point RT-PCR using total RNA from either healthy parent fibroblasts
(3814) or cells isolated from an SMA patient (3813). None of the validated SMN-dependent
intron-retention events from the NSC-34 cell analysis were observed in patient fibroblasts.
(DOCX)

S2 Fig. NSC-34 cell differentiation. A) Immunofluorescent micrograph of NSC-34 cells after
72 hours differentiation. Processes are mainly Map2 positive dendrites (green) and Map2 and
tubulin (red) immunofluorescence overlaps completely. In the merged panel, nuclei are visual-
ized with DAPI (blue). B) End-point RT-PCR expression of motor neuron markers in NSC-34
cell cultures after 72 hours of differentiation. C) Quantification of the percentage of cells pro-
ducing a neurite at least twice the width of the soma after induction of differentiation. Error
bars represent SEM from three independent cultures.

(DOCX)
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