
Article
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promotion time cure rate models
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Abstract

Failure-time data with cured patients are common in clinical studies. Data from these studies are typically analyzed with

cure rate models. Variable selection methods have not been well developed for cure rate models. In this research,

we propose two least absolute shrinkage and selection operators based methods, for variable selection in mixture and

promotion time cure models with parametric or nonparametric baseline hazards. We conduct an extensive simulation

study to assess the operating characteristics of the proposed methods. We illustrate the use of the methods using data

from a study of childhood wheezing.
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1 Introduction

Standard survival models, such as the frequently used Cox regression models, assume that all subjects are
susceptible to the event of interest, and that all subjects will eventually experience the outcome if the follow-up
is long enough.1 Data from some applications, however, contradict the notion that all subjects are at risk.
In practice, analysts deal with the situation by treating the risk-free subjects as ‘‘cured’’. Compared to the non-
cured, the cured tend to have much extended survival times, as indicated by long flat tails and heavy right
censoring in Kaplan-Meier curves.2

Data with such characteristics are abundant in clinical studies. For instance, childhood wheezing, an airway
symptom defined by a coarse or whistling breathing sound, tends to occur only in certain children, while others
never exhibit wheezing symptoms in early years of life.3 Data from our own studies showed that Kaplan-Meier
curves of the onset age of wheezing essentially flattened after the first 48 and 32 months of life in girls and boys,
and thus confirming the existence of risk-free subgroups (see Figure 1). Data with similar features are also seen in
immuno-oncological studies.4

Cure rate models are standard techniques for such data. Traditional cure rate models assume that the
population consists of both cured and non-cured subjects.5 The standard formulation is a mixture of logistic
regression and survival analysis, with the former quantifying the cured portion and the latter depicting the event
time distribution of the non-cured.6 This mixture has been the basis of several model extensions.2,7,8 A more
biology-motivated approach is the promotion time cure model, proposed by Yakovlev et al. in the context of
cancer recurrence.9 Briefly, Yakovlev’s model assumes that cancer recurrence is promoted by carcinogenic cells
that remain active after treatment. So the unobserved number of carcinogenic cells is incorporated into the analysis
through a Poisson model. This line of models has been further extended by others, mostly in the Bayesian
framework (Chen et al.,10–12 Chen and Ibrahim,13 and Tsodikov et al.14). The two different modeling
approaches have been compared by a number of authors.15,16
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Regardless of one’s modeling preference, a common challenge faced by analysts is to select the right
independent variables for the intended model. With the complex structures of cure rate models, variable
selection is certainly not a trivial exercise. Among other things, traditional stepwise procedures often lack the
desired stability.17 Following Tibshirani’s works on the least absolute shrinkage and selection operators
(LASSO),18,19 penalize likelihood-based regularization methods have been developed for variable selection in
frequently used statistical models, including the traditional Cox regression models.1 Theoretically, some of these
methods have been shown to possess the oracle properties.20,21 Most recently, attempts have been made to extend the
LASSO-based selection approach to joint models of longitudinal and survival outcomes.22 The successful use of
LASSO in complex models points to the plausibility of a similar application in the cure rate models.

Literature on variable selection in cure rate models is relatively sparse. One notable piece of work in this field is
by Liu et al.23 who proposed to use LASSO with a smoothly clipped absolute deviation (SCAD) penalty to select
variables for the mixture cure rate model (MCM). The non-convex form of the SCAD penalty, however, tends to
increase the difficulty of parameter estimation. As a result, estimators often lack numerical stability.21

Alternatively, Zou proposed an adaptive LASSO method with L1 penalty, which is computationally more
stable in comparison with SCAD.24

In this research, we discuss variable selection in mixture and promotion time cure models using LASSO and
adaptive LASSO. To the best of our knowledge, this is the first study of its kind, especially for the promotion time
cure model. We compare the selection performance of LASSO and adaptive LASSO. The methods are easily
implementable using an expectation-maximization (EM) algorithm, with generally consistent performance. An
extensive simulation study is conducted to evaluate the operational characteristics of the procedures in both
modeling settings. Finally, we apply the methods to select variables for a mixture cure model using data from a
study of childhood wheezing.

2 Models and estimations

2.1 Mixture cure rate model

2.1.1 Model

Let eTi and Ci be the respective failure time and censoring time for the ith subject, i ¼ 1, 2, . . . , , n. The observed
time is Ti¼min(eTi,Ci). We assume that the censoring time Ci is random and noninformative. We define the failure
time indicator as �i¼ 1 if eTi � Ci (Ti is observed), and �i¼ 0 otherwise. Let Yi¼ 1 be a binary indicator for the non-
cured, and PðYi ¼ 1Þ ¼ �ð�Þ. We write the independent variable vectors for the logistic and survival components as
xi 2 R

p and zi 2 R
q, respectively; and vectors xi and zi may share common elements. Under such a notation, the

population survival function SpðtÞ can be written as

SpðtÞ ¼ f1� �ðxiÞg þ �ðxiÞSncðtjziÞ ð1Þ

where SncðtjziÞ is the survival function of the non-cured, given zi. As t increases, SpðtÞ ! f1� �ðxiÞg4 0. We note
that Spð:Þ may not be a proper survival function.
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Figure 1. Kaplan-Meier estimates of wheezing-free probabilities in male and female subjects.
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With a logit link function in the MCM, Farewell6 described the effects of independent variables x on the
probability of not being cured as

�ðxiÞ ¼
expðbTxiÞ

1þ expðbTxiÞ

where b is a vector of regression coefficients for xi. For the non-cured, the Cox proportional hazards (PH) model
can be written as �ncðtjziÞ ¼ �nc,0ðtÞe

cTzi , where c is the coefficient vectors for zi, and �nc,0ðtÞ is the baseline hazard.
The cumulative baseline hazard function is �nc,0ðtÞ ¼

R t
0 �nc,0ðuÞdu. The independent variable effects for the non-

cured in Model (1) are interpreted in a way similar to that in the traditional Cox models.

2.1.2 Variable selection and estimation

For simplicity, we denote the observed data from the ith subject as ðti, �i, xi, ziÞ. The likelihood function of
model (1) is

Lðb, c, �nc,0Þ ¼
Yn
i¼1

�ðxiÞ�nc,0ðtiÞe
cTziSnc,0ðtiÞ

ecTzi
n o�i

� 1� �ðxiÞ 1� Snc,0ðtiÞ
ecTzi

� �n o1��i� �
ð2Þ

Estimation of the nonparametric baseline hazard is needed to maximize (2). Here we use an EM algorithm to
maximize the complete likelihood based on ðti, �i, xi, zi, yiÞ, by treating yi as a latent binary variable. The complete
likelihood includes a logistic component for the cured, and a PH component for the non-cured. We write

LCðb, c, �nc,0; yÞ ¼
Yn
i¼1

�ðxiÞ
yið1� �ðxiÞÞ

1�yi
� �Yn

i¼1

�nc,0ðtiÞexpðc
TziÞ

� 	�i
Snc,0ðtiÞ

ecTzi
h iyi

The log-likelihood is

lCðb, c, �uc,0; yÞ ¼
Xn
i¼1

yib
Txi � logf1þ expðbTxiÞg

� 	
þ
Xn
i¼1

yi�iflogf�nc,0ðtiÞg þ cTzig þ yi expðc
TziÞlogfSnc,0ðtiÞg

� 	 ð3Þ

For simplicity, we write the first term of the above equation as lC,1ðb; yÞ, and second term as lC,2ðc, �nc,0; yÞ. To
allow for sparse estimation, we use an adaptive LASSO and impose an L1 norm penalty on the log likelihood:

plcðb, c, �nc,0; yÞ ¼ lC,1ðb; yÞ � �1
Xp
j¼1

jbj j

j�1,jj

( )
þ lC,2ðc, �nc,0; yÞ � �2

Xq
k¼1

jckj

j�2,kj

( )
ð4Þ

where �1,j and �2,k are the weight parameters, and �1 and �2 are the tuning parameters controlling the amount of
penalty. Values of the tuning parameters can be determined either by cross-validation or by the Bayesian
information criteria (BIC). We discuss the selection of tuning parameters later in the section.

Following Zou,24 we use consistent estimators of (b, c) as the weight parameters ð�1, �2Þ. The closer the true
estimate to 0, the greater the penalty. As a result, factors with smaller coefficients are more likely to be excluded
from the model. The adaptive LASSO essentially shrinks the less important effects to zeros, and thus achieving a
more parsimonious model. When �1 and �2 are set to the 1, the method leads to LASSO estimators proposed by
Liu et al.23 In this research, we estimate �1 and �2 by maximizing (3).

Computation: For computation, we use adaptive LASSO estimates ð�̂, �̂Þ and the quadratic approximation
algorithm.20

E-step: Let ðbðmÞ, cðmÞ, �ðmÞnc,0Þ be the parameter estimates in the mth iteration. Given the observed data ðti, �i, xi, ziÞ,
in the ðmþ 1Þ th iteration, we replace yi in (3) with y

ðmþ1Þ
i

y
ðmþ1Þ
i ¼ �i þ ð1� �iÞ

�ðxiÞ
ðmÞS

ðmÞ
nc,0ðtiÞ

ecðmÞTzi

1� �ðxiÞ
ðmÞ 1� S

ðmÞ
nc,0ðtiÞ

ecðmÞTzi
n o
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M-step: With yðmþ1Þ plugged in, we maximize (4) with respect to ðb, c, �nc,0Þ. The M-step involves the following
sub-steps

1. Estimate the cumulative baseline hazard function �nc,0ðtÞ using a Breslow type estimator.25 Specifically, the
nonparametric estimate for the ðmþ 1Þ th iteration is

�
ðmþ1Þ
nc,0 ðtÞ ¼

X
tl�t

dlP
k�2Rl

y
ðmþ1Þ
k� exp cðmÞTzk�ð Þ

where dl is the number of events at the earliest time point tl, and Rl is the number of individuals at risk at tl.
2. Solve the penalized score equation for �ðmþ1Þ in the logistic model

0 ¼ UðbÞ ¼
Xn
i¼1

y
ðmþ1Þ
i �

expðbTxiÞ

1þ expðbTxiÞ


 �
xTi � �1

Xp
j¼1

bj=jb
ðmÞ
j j

j�1,jj

¼ rlC,1 b; yðmþ1Þ
� 


� �1b
T ðbðmÞ, �1Þ

where  ðbðmÞ, �1Þ ¼ diag
1=jbðmÞ

j
j

j�1,jj

� �
, j ¼ 1, 2, . . . , p, and rlC,1ðb; yðmþ1ÞÞ ¼ @

@b lC,1ðb; yðmþ1ÞÞ. We obtained the

penalty term
Pp

j¼1

bj=jb
ðmÞ
j j

j�1,jj
by using a quadratic approximation of the penalized likelihood. The penalized

Hessian matrix Hb for b is given by Hb ¼
@
@bUðbÞ.

3. Solve the penalized score equation for the survival model with respect to cðmþ1Þ with given �
ðmþ1Þ
nc,0 ðtÞ, bðmþ1Þ

0 ¼ UðcÞ ¼
Xn
i¼1

y
ðmþ1Þ
i �i � y

ðmþ1Þ
i expðcTziÞ�

ðmþ1Þ
nc,0 ðtiÞ

h i
zTi � �2

Xq
k¼1

ck=jc
ðmÞ
k j

j�2,kj

¼ rlC,2 c; �ðmÞnc,0, y
ðmþ1Þ

� �
� �2c

T cðmÞ, �2
� 


where  ðcðmÞ, �2Þ ¼ diag
j1=cðmÞ

k
j

j�2,kj

� �
, k ¼ 1, 2, . . . , q, and rlC,2 c; �ðmÞnc,0, y

ðmþ1Þ
� �

¼ @
@c lC,2 c�ðmÞnc,0, y

ðmþ1Þ
� �

. We obtained

the penalty term
Pq

k¼1

ck=jc
ðmÞ

k
j

j�2,kj
by using a quadratic approximation for the penalized likelihood. The penalized

Hessian matrix Hc for c in the ðmþ 1Þ th iteration is obtained by Hc ¼
@
@cUðcÞ.

The M-step iterates through the above sub-steps until convergence is achieved. The final maximum likelihood
(ML) estimates (b̂, ĉ) are achieved by iterating between the E and the M steps.

Alternatively, one could use a parametric function for the baseline hazard �nc,0 in (3) to simplify process.
For a finite partition of follow-up time intervals 05 s1 5 s2 5 . . . 5 sG with sG 4 maxfti : i ¼ 1, 2, . . . , ng for a
prespecified G, one could assume a constant hazard rate �nc,0ðtÞ ¼ 	g for the gth interval. The estimate 	ðmþ1Þ of 	 is

obtained by maximizing lC,2ð:Þ with respect to 	. For g ¼ 1, 2, � � �,G, it is easy to show that

	ðmþ1Þg ¼
P

sg�1 5 ti�sg
�iy
ðmþ1Þ
i

h i
�

P
sg�1 5 ti�sg

y
ðmþ1Þ
i ðti � sg�1Þ þ

P
yi4sg

y
ðmþ1Þ
i ðsg � sg�1Þ

n o
expðcðmþ1ÞziÞ

h i�1
: We

later evaluate the selection performance of the nonparametric and parametric baseline hazard function in our

simulation study.

In summary, the key steps of the EM algorithms are:

Step 1: Fix the tuning parameter � ¼ ð�1, �2Þ and initialize ðbð0Þ, cð0Þ, �ð0Þnc,0ðtÞÞ
Step 2: Execute the E-step and compute �nc,0ðtÞ
Step 3: Update the estimates as bð1Þ ¼ bð0Þ �H�1ðbð0ÞÞUðbð0ÞÞ for logistic regression and cð1Þ ¼ cð0Þ �H�1ðcð0ÞÞUðcð0ÞÞ

for survival model
Step 4: Repeat step 2 and 3 until jbð1Þ � bð0Þj ! 0 and jcð1Þ � cð0Þj ! 0
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Tuning/regularization parameter selection: Choosing appropriate tuning parameters � ¼ ð�1, �2Þ is essential for
variable selection. As � increases, more coefficients shrink to zero.24 At the same time, estimates of non-zero
coefficients are likely to have increased biases.21 Nishii adopted a generalized information criterion (GIC) to select
�.26 The GIC type regularization parameter selector takes the form

GICð�Þ ¼
1

n
lC þ 
df�
� 	

ð5Þ

where df� is the degree of freedom associated with Model (3). We select the combination of �1, �2 that minimizes
equation (5) for a given 
. As 
 increases, the size of selected model decreases. When 
 ¼ logðnÞ, the GIC-type
selector reduces to the traditional BIC27 selector. To solve for b and c, we use the BIC regularization parameter
selector. The BIC selector has been shown to identify the true model consistently,28 and is asymptotic efficient.29

Post-selection inference: Making valid inference in the selected models poses a new set of challenges, which are
beyond the scope of the current paper. First, LASSO penalty could introduce biases to parameter estimation.
An obvious way to minimize the bias is to fit the selected model without the penalty term. Such a two-stage
approach is consistent with the current practice where inferences are based on the selected models, as advocated by
standard textbooks.30 What left unsaid is the conditional nature of the inference. The validity of such inference is
clearly contingent upon the goodness of the selected model. Recently, Berk et al. prescribed an attractive
solution.31 They argued that in linear models, one could treat the post-selection inference as one in a multiple
comparison situation, by properly accounting for the errors associated with all possible sub-models. While the idea
is intuitively appealing, its validity in nonlinear models remains to be validated.

Another issue that affects the inference is the estimation of standard errors of the model parameters.
Traditionally, asymptotic standard errors are derived from the Hessian matrix of the observed likelihood. With
the use of EM algorithm for estimation, one could simply plug in the model parameter estimates (b̂, ĉ) into the
Hessian matrix. The following formulae are typically used to approximate the covariance estimators of b̂ and ĉ,
respectively, given �̂nc,0ðtiÞ:

Hðb̂Þ ¼ � xi
eb̂Txi

ð1þ eb̂Txi Þ
2

( )
xTi þ xi ð1� �iÞ �

eb̂Txi exp ��̂nc,0exp ĉTzi
� 
n o

1þ eb̂Txi exp ��̂nc,0ðtiÞexpðcTziÞ
n o� �2

8><>:
9>=>;xTi ;

HðĉÞ ¼ � zi �i � eĉTzi�̂nc,0ðtiÞ
n o

zTi � zi ð1� �iÞ �
eb̂Txi exp ��̂nc,0ðtiÞe

ĉTzi

n o
�̂nc,0ðtiÞe

ĉTzi

1þ eb̂Txi exp ��̂nc,0ðtiÞeĉTzigÞ
2

n o
zTi

8<:
9=;

� zi ð1� �iÞ �
eb̂Txi exp ��̂nc,0ðtiÞe

�̂Tzi
n o

�̂nc,0ðtiÞe
ĉTzi � 1� eb̂Txi exp ��̂nc,0ðtiÞe

ĉTzi

n o
�̂nc,0ðtiÞe

ĉTzi

� �
1þ eb̂Txi exp ��̂nc,0ðtiÞeĉTzi

n o
8<:

9=;zTi
Alternatively, one could resort to resampling methods to ascertain the standard error estimates. An advantage

of bootstrap standard error estimates is their non-reliance of distributional assumptions. To implement, we
resample the observations for a finite number of times with replacement. The resamples are all of size n, the
size of the original sample. We then estimate the parameters for each of the bootstrap samples; bootstrap standard
errors are calculated from the parameter estimates. With the use of EM algorithm, we use this resampling
procedure to obtain the appropriate standard errors of b̂, and ĉ.

2.2 Promotion time cure model

Development of the selection method for promotion time cure models parallels that of the MCMs.

2.2.1 Model

Promotion time cure rate model was developed in the context of cancer recurrence led by carcinogenic cells. For
example, Chen et al. assume that the ith subject has Yi carcinogenic cells that could lead to a recurrent disease.10

They further assume that Yi follows a Poisson distribution with mean function �ðxiÞ ¼ expðbTxiÞ, where b is the

coefficient vector for independent variables xi 2 R
p, and that for each cell, time to event � follows a distribution

F1ðtÞ, or a survival function S1ðtÞ ¼ 1� F1ðtÞ. The observed event time eTi is the time at which the first carcinogenic

Masud et al. 5



source becomes activated. In other words, eTi¼ minf�kg0�k�Yi
for the ith subject. The population survival function

SpðtÞ is defined as the probability of cancer non-detection at time t, which is expressed as

SpðtÞ ¼ PðY ¼ 0Þ þ Pð�1 4 t, � � �, �Yi
4 t;Yi � 1Þ ¼ expf��ðxiÞF1ðtÞg ð6Þ

The population hazard function corresponding to (6) is �pðtÞ ¼ �ðxiÞ f1ðtÞ, where the density function is
f1ðtÞ ¼

d
dt F1ðtÞ. The cumulative hazard corresponding to (6) is defined as �pðtÞ ¼

R t
0 �ðxiÞ f1ðzÞdz ¼ �ðxiÞF1ðtÞ. We

therefore rewrite equation (6) as SpðtÞ ¼ expf��pðtÞg. As t!1, SpðtÞ ! expf��ðxiÞg4 0, where SpðtÞ is typically
not a proper survival function.

Following Tsodikov,32 we introduced a PH structure into Model (6): SpðtjxiÞ ¼ expf�F1ðtÞg
expðbTxiÞ

¼ Sp,0ðtÞ
expðbTxiÞ. Suppose Sp,0ðtÞ ¼ expf�F1ðtÞg, one could regard it as the baseline survival function associated

with F1ðtÞ.

Variable selection and estimation: We first introduce an adaptive LASSO method for the promotion time cure
model. Let the observed time Ti¼min(eTi,Ci), where Ci is the non-informative and random censoring time.
The censoring indicator �i ¼ 1 if eTi � Ci, and �i ¼ 0 otherwise. Model (6) has one set of independent variables
xi for subject i. For Model (6), the observed likelihood is

Lðb,	Þ ¼
Yn
i¼1

�pðtiÞ
�iSpðtiÞ ¼

Yn
i¼1

fexpðbTxiÞ f1ðtij	Þg
�i expf�F1ðtj	Þg

expðbTxiÞ
n o

ð7Þ

where 	 is the parameter in F1ð�Þ.
For variable selection and parameter (b) estimation, we develop an EM-algorithm based on ðti, �i, xi, yiÞ, where

yi is value of the Poisson cell count, Yi. The log-likelihood function for the complete data is

lpcðb,	; yÞ ¼
Xn
i¼1

�ilogð yif1ðtij	ÞÞ þ ð yi � �iÞlogð1� F1ðtij	ÞÞ þ yib
Txi � expðbTxiÞ � logð yi!Þ

� 	
ð8Þ

For variable selection, we use an adaptive LASSO with the following penalized log-likelihood function:

plpcðb,	; yÞ ¼ lpcð:Þ � �
�
Xp
j¼1

jbj j

j�j j

( )
ð9Þ

As in the case of mixture models, the tuning parameter �� determines the amount of penalty in equation (9) and
� functions as weight. Similarly, we obtain a consistent estimate of b by maximizing (8), and use it as the weight.
When �¼ 1, this penalized function reduces to the familiar LASSO penalized function.

Computation: Let (bðmÞ,	ðmÞ) be the parameter estimates in the mth iteration. To maximize equation (9) for given
��, the EM algorithm takes the following steps:

E step: In the ðmþ 1Þ th iteration, we compute y
ðmþ1Þ
i ¼ expðbðmÞTxiÞð1� F1ðtij	

ðmÞÞÞ, and replace yi in (9) with
y
ðmþ1Þ
i .
M step: Solve the penalized score equation UPðbÞ for bðmþ1Þ of b by using quadratic approximation20:

0 ¼ UPðbÞ ¼
Xn
i

y
ðmþ1Þ
i � expðbTxiÞ

h i
xTi � �

�
Xp
j¼1

b=jbðmÞj

j�j j

The penalized Hessian matrix H�b for b at ðmþ 1Þ th iteration is given by H�b ¼
@
@bUPðbÞ.

In the M-step, to estimate 	, we partition the time interval into non-overlapping sub-intervals defined by
05 s1 5 s2 5 . . . 5 sG, with sG 4maxftig. We assume that F1ðtj	Þ follows a piecewise exponential model for
which the hazard 	gð g ¼ 1, 2, � � �,GÞ remains constant for each sub-interval.13 It can be shown by maximizing
(8) with respect to 	g that for i ¼ 1, 2, � � �, n

	ðmþ1Þg ¼
X

sg�1 5 ti�sg

�i

" #
�

X
sg�1 5 ti�sg

y
ðmþ1Þ
i ðti � sg�1Þ þ

X
yi4sg

y
ðmþ1Þ
i ðsg � sg�1Þ

" #�1
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Alternatively, we can use the empirical distribution of F1ðtÞ by assigning a point mass at each distinct observed
event time so that

P
f1ðtÞ ¼ 1 over the entire range of t. Suppose we have D distinct event times defined by

t�1 5 � � �5 t�D. Let f1ðt
�
dÞ ¼ 	d for d ¼ 1, 2, � � �D so that F1ðtij	Þ ¼

P
t�
d
�ti
	d. For given values of �ðmÞ, we maximize

(7) as a function of 	 only. The function to be maximized is

LbðmÞ ð	1, � � �,	DÞ /
YD
d¼1

	d � exp �	d
X
i2Rd

expðbðmÞTxiÞ

( )

The profile ML estimate 	ðmþ1Þ of 	 is given by

	ðmþ1Þd ¼
1P

i2Rd
expðbðmÞTxiÞ

where Rd is the number of individuals at risk at time t�d. This yields an estimate of F1ðtj	Þ

F
ðmþ1Þ
1 ðtj	Þ ¼

X
t�
d
�t

	ðmþ1Þd

which is similar to the nonparametric version of the Breslow estimator of the baseline cumulative hazard.
The final estimator is obtained by iterating between the E and M steps until convergence. The EM algorithm

has the following key steps:

Step 1: Determine an appropriate value for the tuning parameter ��, and initialize bð0Þ

Step 2: Execute the E-step and estimate 	
Step 3: Update the estimates as bð1Þ ¼ bð0Þ �H�1ðbð0ÞÞUðbð0ÞÞ
Step 4: Repeat steps 2 and 3 until jbð1Þ � bð0Þj ! 0

For the tuning parameter selection, we use the same equation (5) to derive the BIC criterion for ��. Given b̂ and
	̂ we obtain an estimate of the log likelihood ^lpcð:Þ from the unpenalized likelihood function. Using the BIC
formula (5), we select a value of �� that minimizes the BIC.

As in mixture cure models, we take a two-step approach for parameter estimation and inference, i.e.
independent variable effects are estimated and tested in a model with the selected variables. A standard
approach for variance estimate is to use the inverse of the negative Hessian matrix derived from the observed
likelihood (7). The covariance estimators for b̂ given F1ðtij	̂Þ is

Hðb̂Þ ¼ �F1ðtij	̂Þe
b̂Txixix

T
i ðe

b̂TxiÞ
T

In this research, we use bootstrap standard deviations for inference.

3 Simulation study

We conduct a simulation study to evaluate the selection performance of the two cure rate models. Specifically,
we compare the rates of selection accuracy of the proposed LASSO and adaptive LASSO methods, against
that of the naı̈ve p value selection method. The significance level for the p value procedure is set at 0.05, i.e.
a variable is retained if the corresponding p value is less than 0.05. The R-code can be downloaded at the
ftp website using windows file explorer at: ftp://public.sjtu.edu.cn. The user name is yuzhangsheng and the
password is public.

3.1 Mixture cure rate models

Data generation. We consider a scenario where x ¼ ðx1, � � �, x9Þ
T has nine independent variables. Three of the nine,

x5, x6,x9, are independent binary variables (1 vs. 0) with probability Pðxj ¼ 1Þ ¼ 0:5, j¼ 5, 6, 9. The other
independent variables in x are standard normally distributed with a pairwise correlation between xi and xj of
�ji�j j ¼ 0:5, which reflects a moderately strong correlation. For the logistic component of the mixture cure model,
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vectors of regression coefficients are set to b ¼ ð0:5, 0:10, � 0:25, 0, 0, 0, 0, 0, 0ÞT. For the survival model, we
assume without loss of generality that x ¼ z. Failure times are generated from a Weibull distribution with a
survival function Sðtja, bÞ ¼ expf� t

bg
a. The shape parameter is a¼ 1.5, and scale parameter b ¼ expfecTzg�1=a

with c ¼ ð1, 0, 0:1, 0:25, 0, 0, 0, 0, 0ÞT. We include an intercept for the logistic model, and no intercept for the
survival model. The mean cure rate is approximately 30%. Censoring times are generated from Uniform ðc, d Þ,
where c and d are selected to achieve the desired censoring rate. We considered two different levels of censoring:
20% and 50%.

For each parameter setting, we generated 100 datasets, with sample sizes of 250 and 500. We apply the LASSO,
adaptive LASSO, and naı̈ve p value procedures for variable selection. We implement the selection procedure with
both parametric and nonparametric estimators for the baseline hazard �nc,0ðtÞ. We apply the penalized methods
for variable selection with given values of the tuning parameter � ¼ ð�1, �2) for the mixture cure rare model.
Optimal values of the tuning parameter are selected by minimizing the BIC selector (5).

Simulation results. Table 1 presents the selection results for the mixture cure model. Six elements of b and c have
zero effects, whereas the other three have non-zero effects. We present the average number of correct exclusion
(unimportant effects not being selected) and the average number of incorrect exclusion (important effects not being
selected) for the logistic regression coefficients b and PH regression coefficients c. The table summarizes the results
based on 100 simulations.

Briefly, for the logistic regression component in the mixture model, the rate of incorrect exclusion is zero for
both LASSO and adaptive LASSO. In other words, both regularization methods have correctly included all three
non-zero effects. In comparison, the p value method has on average incorrectly excluded 2:96� 3 of the 3 non-zero
effects, a very poor performance by any standard. In the meantime, the adaptive LASSO has excellent rates of
correct exclusion: On average, it is able to exclude 4:8� 6 of the 6 true zero effects. This performance is similar to
that of the p value method which consistently excludes 5:8� 6 of the zero effects. The LASSO method, on the
other hand, tends to exclude fewer zero effects.

For the PH component, all three methods have correctly included the three non-zero effects. The difference is in
the exclusion of zero effects. In this regard, the adaptive LASSO has the best performance. It is able to exclude
3:66� 5:91 of the 6 zero effects. LASSO has slightly worse but still acceptable performance. The p value method,
on the other hand, completely fails to exclude any of the zero effects.

In comparing the selection performance of balancing the two different types of errors, the adaptive LASSO
appears to outperform its competitors. Importantly, the superior performance of the adaptive LASSO procedure is
consistent across all simulation settings and it does not appear to be greatly influenced by the censoring proportion
and how baseline hazards are estimated.

3.2 Promotion time cure rate models

Data generation. For the promotion time cure model, we again consider a situation where x ¼ ðx1, � � �, x9Þ
T has

nine independent variables. Three of the nine, x5, x6,x9, are independent Bernoulli variables with probability
Pðxj ¼ 1Þ ¼ 0:5, j¼ 5, 6, 9. The other six variables of x are standard normally distributed with a pairwise
correlation between xi and xj of �

ji�j j ¼ 0:5. As in Model (6), we assume that the mean number of cancer cells
is � ¼ expðbTxÞ with b ¼ ð0:5, 0:10, � 0:25, 0, 0, 0, 0, 0, 0ÞT. We also assume that F1ðtÞ follows a Weibull
distribution with scale parameter b ¼ expf�g�1=a, and the shape parameter a¼ 1.5. Censoring times are
generated from a uniform distribution yielding censoring rate of 20% and 50%. We generated 100 datasets for
each setting with sample sizes 250 and 500, and censoring percentages 20% and 50%. We fit Model (6) by using
both parametric and nonparametric estimates of F1ðtÞ.

Simulation results. Table 2 depicts the selection results for promotion time cure model. The simulation shows
that the adaptive LASSO outperforms both LASSO and the p value methods in identifying the zero effects, as
evidenced by its high correct exclusion rates, while maintaining a perfect rate of including all non-zero effects. The
LASSO has respectable performance in achieving a perfect rate of including all non-zero effects, but it is slightly
less effective in identifying the zero effects. The p value method tends to incorrectly exclude the true non-zero
effects at the unacceptable rates of 1:28� 1:98 out of 3.

3.3 Post-selection inference

In the absence of formal theoretical development of post-selection inference, analysts are likely to perform
inference based on the selected model. Here we conduct a simulation study to examine the empirical
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performance of the practice. Specifically we examine the 95% coverage probabilities and the average bootstrap
standard errors (ASE) for the non-zero coefficients of b and c. Here bootstrap standard errors are obtained based
on 100 resamples. Simulation results are presented in Table 3. Briefly, the coverage probabilities are generally
good, especially for the promotion time cure rate models, even with 50% censoring. The performance of the
mixture model is slightly more variable. Overall, the simulation seems to provide some empirical evidence in
support of the two step selection-estimation procedure.

Finally, we conducted a sensitivity analysis examining the selection performance in misspecified models, i.e.
data are generated from mixture models when promotion time models are fitted, or vice versa. In the strictest
sense, the MCM and promotion cure rate model (PCM) are not directly comparable because of their differences in

Table 1. Simulation study. Performance of variable selection results for mixture cure model with

20% and 50% censoring. The average numbers of correct exclusion (exclusion of zero effects) and

incorrect exclusion (exclusion of non-zero effects).

Average number of 0 coefficients

b(logistic) c(survival)

Correct Incorrect Correct Incorrect

n Method exclusion (6) exclusion (3) exclusion (6) exclusion (3)

20% censoring

Nonpar �0ðtÞ

250 Oracle 6 0 6 0

p< 0.05 6 2.96 0 0

Adaptive LASSO 5.23 0 4.68 0

LASSO 4.97 0 4 0

500 Oracle 6 0 6 0

p< 0.05 6 2.98 0 0

Adaptive LASSO 6 0 5.90 0

LASSO 6 0 4.57 0

Par �0ðtÞ

250 Oracle 6 0 6 0

p< 0.05 5.98 3 0 0

Adaptive LASSO 5.76 0 4.34 0

LASSO 4 0 3.86 0

500 Oracle 6 0 6 0

p< 0.05 5.99 3 0 0

Adaptive LASSO 6 0 5.91 0

LASSO 4.52 0 4 0

50% censoring

Nonpar �0ðtÞ

250 Oracle 6 0 6 0

p< 0.05 5.80 2.90 0 0

Adaptive LASSO 5.02 0 4.02 0

LASSO 3.99 0 3.76 0

500 Oracle 6 0 6 0

p< 0.05 4.92 2.98 0 0

Adaptive LASSO 6 0 4.99 0

LASSO 6 0 3.71 0

Par �0ðtÞ

250 Oracle 6 0 6 0

p< 0.05 5.88 2.94 0 0

Adaptive LASSO 4.80 0 3.66 0

LASSO 3.75 0 3.66 0

500 Oracle 6 0 6 0

p< 0.05 6 3 0 0

Adaptive LASSO 6 0 5.69 0

LASSO 4.41 0 4 0
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Table 2. Simulation study. Performance of variable selection results for promotion time cure model with

20% and 50% censoring. The average numbers of correct exclusion (exclusion of zero effects) and incorrect

exclusion (exclusion of non-zero effects).

Average number of 0 coefficients

20% censoring 50% censoring

b b

Correct Incorrect Correct Incorrect

n Method exclusion (6) exclusion (3) exclusion (6) exclusion (3)

Nonparametric specification

250 Oracle 6 0 6 0

p< 0.05 4.42 1.46 5.55 1.83

Adaptive LASSO 6 0 6 0

LASSO 4.62 0 4.30 0

500 Oracle 6 0 6 0

p< 0.05 4.85 1.56 5.92 1.98

Adaptive LASSO 6 0 6 0

LASSO 5.64 0 5.33 0

Parametric specification

250 Oracle 6 0 6 0

p< 0.05 4.72 1.48 4.65 1.48

Adaptive LASSO 6 0 4.45 0

LASSO 3.98 0 3.45 0

500 Oracle 6 0 6 0

p< 0.05 4.44 1.28 5.48 1.89

Adaptive LASSO 6 0 6 0

LASSO 4 0 3.83 0

Table 3. Simulation study. Empirical 95% coverage probability (Coverage prob), and average values of the

estimated bootstrap standard errors (ASE) of the estimates in the adaptive LASSO selected models.

20% censoring 50% censoring

N Model Coefficient

Coverage

prob. ASE

Coverage

prob. ASE

250 MCM–logistic �1 0.82 0.090 0.91 0.203

�2 0.95 0.072 0.96 0.148

�3 0.95 0.036 0.96 0.074

250 MCM–survival �1 0.96 0.024 0.95 0.022

�2 0.96 0.029 0.91 0.024

�3 0.96 0.014 0.91 0.011

500 MCM–logistic �1 0.88 0.080 0.89 0.071

�2 0.95 0.057 0.96 0.068

�3 0.95 0.028 0.96 0.034

500 MCM–survival �1 0.96 0.021 0.98 0.139

�2 0.94 0.022 0.98 0.150

�3 0.94 0.011 0.98 0.075

250 PCM �1 0.93 0.002 0.95 0.010

�2 0.95 0.004 0.95 0.010

�3 0.95 0.002 0.95 0.005

500 PCM �1 0.95 0.002 0.96 0.003

�2 0.95 0.003 0.96 0.003

�3 0.95 0.002 0.96 0.002

MCM: mixture cure rate models, PCM: promotion time cure rate model.
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structure and assumption. In case A (MCM as true model) and case B (MCM as misspecified model), Table 4 only
shows the survival component of the MCM fits. Simulation shows that selection accuracies in the survival
components of the true and misspecified models were generally comparable, which provided some assurance on
the robustness of the selection method. But we caution against over-interpretation because the simulation has not
taken into account the selection performance of the logistic component in the MCM. Detailed results are included
in Table 4.

4 Application: a childhood wheezing study

To illustrate the proposed methods, we consider a real clinical investigation of childhood wheezing. The basic
study design was described elsewhere.3 Briefly, this is an observational study aimed at understanding the risk
factors associated with early onset of wheezing. For this purpose, the variable selection methods that we develop
provided a logical tool for risk factor screening. The onset age of wheezing symptoms was the main outcome of
interest. Onset age was determined from the monthly reports of wheezing episodes during the study period. The
study recruited a total of 116 children. Enrolled children were followed prospectively for up to five years. Eighty-
six (n¼ 86) children completed the designed follow-up. The current analysis was based on data from these 86
children with complete follow-up.

A total of 13 variables were considered in the current analysis. The demographic and general health variables
included race (RACE, 1¼white and 0¼ non-white), sex (GENDER, 1¼male, 0¼ female), and mother’s smoking
status during pregnancy (1¼ nonsmoker mother during pregnancy, and 0¼ otherwise), allergy to food (FOODANT;
1¼ yes, 0¼ no), egg or milk (EGGMILK, 1¼ yes, 0¼ no), and use of topical steroids (TOPSTEO, 1¼ yes, 0¼ no).
Continuous variables included: (1) provocative concentration of methacholine corresponding to 30% drop in forced
expiratory volume in 1 s (logPC30 (mg/ml)); (2) centralized height (CenHEIGHT (cm)); (3) severity of eczema, a
score ranged from 0 to 29 calculated based the levels of body surface involvement, intensity of symptom, and
presence of pruritus and insomnia (SCVALUE); (4) logarithmic transformed level of total serum immunoglobulin
E (log(ITOTAL)); (5) Z-score of forced vital capacity (ZFVC); (6) Z-score of forced expiratory flow 25%� 75%

Table 4. Sensitivity analysis on robustness of model misspecification.

20% censoring 50% censoring

Correct Incorrect Correct Incorrect

n Method exclusion (6) exclusion (3) exclusion (6) exclusion (3)

CASE A(true model MCM and fitted as PCM)

250 Oracle 6 0 6 0

PCM-Adp. Lasso 5.26 0 5.39 0

PCM-Lasso 4.58 0 4.19 0

MCM-Adp. Lasso 4.68 0 4.02 0

MCM-Lasso 4 0 3.76 0

500 Oracle 6 0 6 0

PCM-Adp. Lasso 5.83 0 5.90 0

PCM-Lasso 5.47 0 5.05 0

MCM-Adp. Lasso 5.90 0 4.99 0

MCM-Lasso 4.57 0 3.71 0

CASE B(true model PCM and fitted as MCM)

250 Oracle 6 0 6 0

PCM-Adp. Lasso 6 0 6 0

PCM-Lasso 4.62 0 4.30 0

MCM-Adp. Lasso 4 0 4 0

MCM-Lasso 4 0 4 0

500 Oracle 6 0 6 0

PCM-Adp. Lasso 6 0 6 0

PCM-Lasso 5.64 0 5.33 0

MCM-Adp. Lasso 4.91 0 4.08 0

MCM-Lasso 4.98 0 4 0

PCM: promotion time cure model, MCM: mixture cure rate model.
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(ZFEF2575); (7) Z-score of forced expiratory volume in half a second (ZFEV5). Among these, the last three
variables (ZFVC, ZFEF2575, and ZFEV5) were lung function measurements. The average age at enrollment of
these children was approximately 10.7 months. The median age at the first wheeze episode was 21.67 months.
Summary statistics of the independent variables are reported in Table 5.

Kaplan-Meier estimates of the wheezing free probabilities for boys and girls are presented in Figure 1.
The Kaplan-Meier plot for girls flattened after 48 months, with relatively few censoring, suggesting that a
portion of the population were not subject to any risk of wheezing. A similar pattern was seen in boys.
To accommodate this fraction of the cured, we analyzed the data using a MCM (1). We did not consider
promotion time cure models in the absence of a clear biological rationale for that approach. Wheezing, as an
airway symptom, does not have a single and specific cause that justifies the use of a promotion time model.
We performed variable selection using methods described in the paper. Both LASSO and adaptive LASSO
methods were used.

To select the tuning parameters for the logistic regression and PH regression models, for a given set of tuning
parameter values we plug in the estimates b̂ and ĉ into equation (3). And then we optimize the tuning parameters that
minimize the BIC selector (5). Under the LASSO penalty, all 13 variables were retained for the logistic regression
model. The adaptive LASSO produced a more parsimonious logistic model with five independent variables:
SCVALUE, GENDER, RACE, MONSMOKE, and TOPSTEO. For the PH model, the LASSO penalty selected
11 of the 13 variables: GENDER, RACE, MOMSMOKE, FOODANT, EGGMI LK, TOPSTEO, ZFEF2575,
ZFEV5, HEIGHT, SCVALUE, and ITOTAL. The adaptive LASSO selected seven variables: SCVALUE,
GENDER, RACE, MONSMOKE, FOODANT, EGGMILK, and TOPSTEO. We present the final model fitting
results based on the adaptive LASSO method in Table 6. Of note, the model identified by the adaptive LASSO was
more parsimonious, and it included all of the variables identified by the LASSO method.

Table 5. Baseline characteristics of subjects included in the analysis.

Factor n Variable Mean Variance

GENDER 0 42 ZFVC � 0.319 1.222

1 44

RACE 0 43 ZFEF2575 � 0.689 0.837

1 43

MOMSMOKE 0 9 ZFEV5 � 0.614 1.108

1 77

FOODANT 0 55 CenHEIGHT � 0.673 41.935

1 31

EGGMILK 0 59 SCVALUE 9.547 50.203

1 27

TOPSTEO 0 47 log(ITOTAL) 2.147 2.700

1 39

logPC30 � 0.787 1

Table 6. Summary of parameter estimates with confidence intervals and two sided p values for the

childhood wheezing study. In the logistic model, OR stands for odds ratio. In the survival model, HR

refers to hazard ratio.

Variable OR (CI) p value HR (CI) p value

Intercept 1.030 (1.017, 1.042) 0.000

SCVALUE 1.337 (1.242, 1.439) 0.000 1.275 (1.196, 1.400) 0.000

MOMSMOKE 1.025 (1.014, 1.037) 0.000 1.022 (1.011, 1.034) 0.000

RACE 1.016 (1.010, 1.025) 0.000 1.014 (1.007, 1.022) 0.000

GENDER 1.017 (1.010, 1.025) 0.000 1.016 (1.010, 1.024) 0.000

TOPSTEO 1.013 (1.010, 1.018) 0.000 1.010 (1.005, 1.015) 0.000

FOODANT 1.009 (1.003, 1.016) 0.002

EGGMILK 1.008 (1.002, 1.014) 0.005
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A careful examination of the parameter estimates from the selected model revealed that: (1) an estimated
49% ¼ 1=ð1þ 1:03Þ of population was subject to the risk of wheezing if all other factors (SCVALUE,
GENDER, RACE, MOMSMOKE, and TOPSTEO) were set to 0; (2) male sex, white race, mother smoked
during pregnancy, topical steroid use, and greater eczema severity were associated with increased risk of
wheezing. For the children who were at risk, a greater eczema severity, mother smoking during pregnancy,
white race, male sex, topical steroid use, and known allergy to food, egg, and milk were associated with early
onset of wheezing.

5 Conclusion and discussion

Cure rate model represents an important class of methods for analyzing time-to-event data, in situations where
certain individuals are free of the disease risk. Because of the increased complexity in modeling structure, a
common challenge that analysts face is the determination of model composition, i.e. what independent
variables should be included in or excluded from which modeling components. While fully subjective variable
selection by investigators is usually thought to be error-prone, the traditional p value-based selection methods are
not always efficient and stable. To alleviate the challenge, we present two selection methods, based on LASSO and
adaptive LASSO, to aid variable selection in different types of cure rate models. Built on earlier attempts on the
mixture cure model,23 this work further extends the selection tool to promotion time models. Extensive simulation
shows that the adaptive LASSO method has superior performance than the LASSO and p value methods, in terms
of selection accuracy. The method appears to have worked well for both mixture and promotion time cure rate
models. Making these methods available to practitioners, we hope, would have an impact on how cure rate models
are used in analytical practice. The selection of independent variables are of course not limited to main effects, two-
way or higher order interactions can be incorporated with modification of the design matrices for the logistic and
survival components, with the usual understanding that the main effects are to be included if an interaction
involving them is selected. Computationally, as we have demonstrated in the current paper, adaptive LASSO is
generally efficient, and it is easily implementable in various computing platforms.

A few practical issues deserve some discussion: (1) Determination of the initial sets of independent variables
going into the logistic and survival components is generally guided by subject science, and it typically reflects the
investigators’ understanding of the cure and survival processes. In the absence of strong scientific reasons for
including and/or excluding certain variables into the initial sets of independent variables, analysts typically use the
same set of variables for both components, so x ¼ z is a rather common practice. (2) Estimation of the unknown
baseline hazard functions. Previously, different authors have explored various approaches. Among the published
methods, for MCM Sy and Taylor2 used a Breslow type estimator and a product limit estimator, Farewell6

considered a parametric (Weibull) model, Corbiere et al.33 attempted the use of nonparametric spline functions,
and Chen and Ibrahim13 used a piecewise exponential model for hazard function for promotion time cure model.
In this research, we constructed a nonparametric step-function for baseline hazard under the promotion time cure
model. For MCM we utilized a piecewise constant hazard function for baseline hazard approximation.
We compared the performance of variable selection of adaptive LASSO and LASSO using the Breslow type
estimator and piecewise exponential model for the baseline hazard function in the simulation. Our simulation
shows that different choices of baseline hazard estimators produced generally comparable selection
results. Consider the simplicity of our approach, we conclude that the choice of baseline hazard estimation
methods is not as consequential as previously thought, at least for the purpose of variable selection. (3)
Determination of the weights for adaptive LASSO. Ideally, the weights need to be data-dependent and
consistent with the oracle properties.20 When the number of variables is larger and many of them are
correlated, the consistent estimates may be difficult to obtain. Thus the issue requires further investigation. (4)
Estimation of standard errors. Standard error estimates are important for the purpose of inference. For linear
models Tibshirani18 and Fan and Li20 provided Hessian matrix-based standard error estimates, while Zou24

advocated the use of bootstrap estimates. For nonlinear models, penalized variable selection methods tend to
introduce biases in the estimation of model parameters. The magnitude of the bias is influenced by the choice of
weights or tuning parameters. As a result, Hessian matrix-based standard error estimates do not work well for
inference, at least in our modeling setting (data not shown). So in this research, we chose to use bootstrap standard
error estimates in the selected model, to minimize the impact of tuning parameters and thus alleviating the risk of
estimation bias. (5) Post-selection inference. As stated earlier, this paper has primarily focused on variable
selection and not on post-selection inference. The two-stage estimation process is somewhat an ad hoc way to
obtain the approximation of standard errors, but it is generally consistent with the current biostatistical practice of
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making inference based on the final selected models.30 Most recently, Berk et al.31 have suggested that one could
reframe the post-selection testing in the context of simultaneous inference, which takes into account the
multiplicity associated with all sub-models (all linear functions of estimates) instead of the selected model, in
hoping that the inference no longer depends on correct selection of the true model. Berk’s approach was discussed
in a linear model setting. Extension of this approach to nonlinear settings remains to be developed. In the absence
of rigorous methodological development, we opted for the standard two-step approach. The simulation study
seems to support the notion of a generally good selection performance, at least in tested settings. On balance, use
of resampling in a two-step process, in our opinion, represents a sensible compromise between accurate standard
error estimation and valid inference performance. We have shown in a previous work that such a method works
well in complex modeling settings.22
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