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Abstract
We study the asymptotic behavior of the discrete analogue of the holomorphic map za . The

analysis is based on the use of the Riemann-Hilbert approach. Specifically, using the Deift-Zhou
nonlinear steepest descent method we prove the asymptotic formulae which was conjectured in 2000
by the first co-author and S.I. Agafonov.
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1 Introduction.

The nonlinear theory of discrete complex analysis goes back to 1985 Thurston’s talk [28] at Purdue
University and declares circle patterns to be natural discrete analogs of analytic functions [26, 27].
The word “nonlinear” refers to the basic feature of equations describing circle patterns. Often,
the so-called cross-ratio system is used for this. In [8] a discrete conformal map was defined as a
complex valued function on the square grid f : Z2 → R2 = C with the property that the cross
ratio on each elementary quadrilateral is -1:

(fn,m − fn+1,m)(fn+1,m+1 − fn,m+1)

(fn+1,m − fn+1,m+1)(fn,m+1 − fn,m)
= −1. (1.1)

Here and below we abbreviate fn,m = f(n,m) . The boundary data f(n, 0), f(0,m) and the
evolution equation (1.1) determine the whole map uniquely. A discrete conformal map is called
embedded if the interiors of different elementary quadrilaterals are disjoint.

Note that the definition of a discrete conformal map is Möbius invariant and is motivated by
the following characterization for smooth mappings: A smooth map f : D → C is conformal
(holomorphic or antiholomorphic) if and only if ∀z ∈ D ⊂ C

lim
ε→0

(f(z)− f(z + ε)(f(z + ε+ iε)− f(z + iε))

(f(z + ε)− f(z + ε+ iε))(f(z + iε)− f(z))
= −1.

It is a very appealing problem to find discrete conformal maps corresponding to classical holo-
morphic functions. In the following we discuss a discretization of the holomorphic map za . A naive
way to construct a discrete analogue of the holomorphic map za would be to take (1.1) with the
boundary data f(n, 0) = n2/3 and f(0,m) = (im)2/3 . However, as demonstrated in Figure 1(left),
the resulting lattice is not embedded and is far from its continuous counterpart. Hence this map
cannot be treated as a discrete za .

The discrete embedded analog, Za , of the function za exists and is shown in Figure 1(right).
To construct discrete Za more involved methods coming from the theory of integrable systems are
required. Indeed, a crucial property of equation (1.1) is its integrability [24, 8]. In the following we
summarize some known facts about the discrete conformal map Za , see [9, 3, 6] for more details.

The discrete map Za was introduced in [6]. In order to construct an embedded discrete analog
of za the following approach is used. Equation (1.1) can be supplemented with the nonautonomous
constraint

afn,m = 2n
(fn+1,m − fn,m)(fn,m − fn−1,m)

(fn+1,m − fn−1,m)
+ 2m

(fn,m+1 − fn,m)(fn,m − fn,m−1)

(fn,m+1 − fn,m−1)
. (1.2)

This constraint is derived within the theory of integrable systems. Solutions of (1.1) satisfying (1.2)
are singled out by an auxiliary special Fuchsian system, which yields formula (1.2) (see Section 2
and [6, 3] for more details). This constraint is compatible with (1.1). A proof of the compatibility
based on the analysis of the corresponding Lax representation and the above mentioned Fuchsian
system is given in [9].

We assume that 0 < a < 2 and denote Z2
+ = {(n,m) ∈ Z : n,m > 0} . To demonstrate that

the constraint (1.2) indeed corresponds to a discrete Za we investigate its continuous limit. The
right hand side of (1.2) in the limit ε→ 0 for z = x+ iy = ε(n+ im) gives

lim
ε→0

2
x

ε

(f(z + ε)− f(z))(f(z)− f(z − ε))
f(z + ε)− f(z − ε)

+2
y

ε

(f(z + iε)− f(z))(f(z)− f(z − iε))
f(z + iε)− f(z − iε)

= xfx+yfy = zfz,
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Figure 1: Two discrete conformal maps with close initial data n = 0,m = 0 : (Left) Continuous
holomorphic mapping z2/3 and the discrete holomorphic mapping with the “naive” boundary data
f(n, 0) = n2/3 and f(0,m) = (im)2/3 . (Right) The discrete Z2/3 : the boundary data is slightly
different from the “naive” ones. [Images by J. Richter-Gebert]

where we have used the holomorphicity of the limiting mapping. The corresponding limit of (1.2)
becomes af = zfz , and its general solution is f(z) = za up to scaling.

This consideration and the properties za(R+) = R+ and za(iR+) = eaπi/2R+ of the holomor-
phic mapping za motivate the following definition [6] of its discrete analog.

Definition 1 For 0 < a < 2 the dicsrete conformal map Za : Z2
+ → C is the solution of equations

(1.1) and (1.2) with the initial conditions

Za(0, 0) = 0, Za(1, 0) = 1, Za(0, 1) = eaπi/2. (1.3)

The properties Za(n, 0) ∈ R+ and Za(0,m) ∈ eaπi/2R+ are obvious. The existence of this map
was proven using the methods of the theory of integrable systems.

As it was shown in [3], the discrete conformal map Za determines a circle pattern of Schramm
type, i.e. an orthogonal circle pattern with the combinatorics of the square grid. The points
Za(n,m) with even and odd n + m are the centers of the circles and their intersection points
respectively (see Figure 2). Moreover, this discrete conformal mapping was also proven to be
immersed, i.e. the neighboring elementary quadrilaterals do not overlap. Finally the embeddedness
of this mapping was proven in [1].

It turns out that the orthogonal Za -circle pattern can be defined in a pure geometric way
without referring to integrable equations. The corresponding rigidity result was obtained in [10]
by analysis methods. It reads as follows. For a ∈ (0, 2) the infinite orthogonal circle pattern
corresponding to the discrete conformal mapping Za is the unique embedded orthogonal circle
pattern (up to global scaling) with the following two properties (see Figure 2(left)):

(i) The union of the corresponding kites (elementary quadrilaterals) of the Za -circle pattern
covers the infinite sector {z = reiφ ∈ C : r > 0, φ ∈ [0, aπ/2]} with angle aπ/2 .

3



Figure 2: The discrete z2/3 as an infinite orthogonal circle pattern: one sector and the covering of
the plane. [Images by J. Richter-Gebert and T. Hoffmann]

(ii) The centers of the boundary circles lie on the boundary half lines R+ and eaπi/2R+ .

For rational a = 4
N , N ∈ {2, 3 . . .} the rigidity of Za follows from the rigidity results obtained

in [18]. For example for the infinite circle pattern in Figure 2(right) it reads as follows. Consider
an orthogonal circle pattern with the combinatorics shown in this figure, i.e. there is one circle
intersected by six neighboring circles and all other circles have exactly four intersecting neighbors.
Then an orthogonal embedded circle pattern that covers the whole plane and possesses the described
combinatorics is unique.

Our goal is to prove the following asymptotic behavior of fn,m ≡ Zan,m as n,m → ∞ , which
was conjectured in [3].

Theorem 1 Let Zan,m be the above defined discrete analog of the power function za . Assume that
0 < a < 2 . Then,

Zan,m = c(a)

(
n+ im

2

)a(
1 +O

(
1

n2 +m2

))
, n2 +m2 →∞, (1.4)

with

c(a) =
Γ
(
1− a

2

)
Γ
(
1 + a

2

) .
This asymptotics was proven for n = 0, 1 in [3]. Also by elementary methods the corresponding

asymptotics without a formula for c(a) was proven for n−m = const in [2].
Theorem 1 is the statement about the asymptotics of the solution of the Cauchy problem

for equations (1.1) and (1.2) determined by the initial data (1.3). Equations (1.1) and (1.2) are
nonlinear difference equations. It is difficult, if not impossible, unless solution is explicit or given
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in terms of contour integrals, to perform global asymptotic analysis of nonlinear equations, both
difference and differential. The reason we are able to do this in the case of the Cauchy problem
for equations (1.1) and (1.2) is their integrability. The latter allows us to use the Riemann-Hilbert
approach - a noncomutative analog of contour integral representation and apply the nonlinear
steepest descent method of Deift and Zhou [13] in our investigation.

As it will be shown in the main text, the function Zan,m is intimately related to a certain col-
lection of orthogonal polynomials. Hence the necessity to use the orthogonal polynomial version of
the Deift-Zhou method [15]. The Riemann-Hilbert problem corresponding to Zan,m is the problem
of a Fuchsian type - the associated system of linear differential equations has the regular singular
points only. Simultaneously, the problem is posed on a half-line. This is a rather rare situation
which leads to certain peculiarities in the implementation of the nonlinear steepest descent method.
In particular, support of the relevant equilibrium measure coincides with the whole half-line, and
the so-called “lenses opening” is not a local operation. Also, what is usually appear as a “global
parametrix”, here becomes a “local parametrix” near infinity. One more deviation from the stan-
dard situation is the need to use at some point (the proof of Theorem 6) a rather sophisticated error
term estimates in the Hankel asymptotic series. More details on the Riemann-Hilbert problem we
are working with are in the main text.

Since we address the paper to a broad geometric audience we decided to make it self-contained.
In our presentations, we included all the details of the nonlinear steepest descent scheme, although
some of them are standard to the experts.

The proof with the use of the Riemann-Hilbert method needs a lot of preparatory steps which
in itself are of considerable interest. First, we need the Lax-pair formulation, then the setting of the
relevant monodromy data which is followed by its conversion into the Riemann-Hilbert setting. In
the course of these steps we will reveal the above mentioned connection to the theory of orthogonal
polynomials and the theory of discrete Painlevé equations. These connections do not help to prove
formula (1.4), while the results of our paper might be of interest in both these theories. With this in
mind, we make a detour from our main goal and discuss in Sections 2.3 the orthogonal polynomials
related to Za .

Finally in Section 4 we define two discrete analogs of the logarithm function: the function
L(n,m) defining an orthogonal circle pattern (nonlinear theory) and Green’s function `(n,m)
(linear theory of discrete holomorphicity). The latter was introduced by Kenyon in [22]. We derive
their asymptotics at r2 ≡ n2 +m2 →∞ from (1.4):

L(n,m) = log(n+ im) + γ − log 2 +O

(
log r

r2

)
,

`(n,m) = log
√
n2 +m2 + γ + log 2 +O

(
log r

r

)
, n+m even.

Here γ is Euler’s constant. The last formula has already been obtained by a different method in
[22].

As already been said, we start with putting the problem of investigation of the discrete conformal
map Za into the Riemann-Hilbert formalism.
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2 The Riemann-Hilbert representation for Za .

2.1 Isomonodromity of Za

The possibility to apply the Riemann-Hilbert technique to the asympotical analysis of Za is based
on the integrability of the system (1.1) - (1.2). The latter exactly means the following two facts.

Proposition 1 ([24, 8]) The nonlinear difference equation (1.1) is the compatibility condition of
the following system of linear difference equations - the Lax pair ,

Ψn+1,m = Un,mΨn.m, Ψn,m+1 = Vn,mΨn.m, (2.5)

where

Un,m ≡ Un,m(λ) =

(
1 −un,m
λ

un,m
1

)
, Vn,m ≡ Vn,m(λ) =

(
1 −vn,m

− λ
vn,m

1

)
, (2.6)

and
un,m = fn+1,m − fn,m, vn,m = fn,m+1 − fn,m. (2.7)

In particular, this statement means that equation (1.1) implies the matrix relation,

Un,m+1(λ)Vn,m(λ) = Vn+1,m(λ)Un,m(λ), ∀λ. (2.8)

The following proposition was proven in ([3]), note that the isomonodromic constraint (1.2) was
obtained for a = 1 in [23].

Proposition 2 The addition constraint (1.2) is equivalent to the existence of a solution Ψn,m to
(2.5) satisfying also the following “ λ - equation”,

d

dλ
Ψn,m = An,mΨn,m, An,m = −Bn,m

1 + λ
+
Cn,m
1− λ

+
Dn,m

λ
, (2.9)

where the independent of λ matrices Bn,m , Cn,m , and Dn,m are of the following structure,

Bn,m = − n

un,m + un−1,m

(
un,m un,mun−1,m

1 un−1,m

)
(2.10)

Cn,m = − m

vn,m + vn,m−1

(
vn,m vn,mvn,m−1

1 vn,m−1

)
(2.11)

Dn,m =

(
−a

4 −a
2fn,m

0 a
4

)
(2.12)

In particular, this statement means that the system (1.1) - (1.2) implies, in addition to (2.8),
two more matrix equations,

dUn,m(λ)

dλ
= An+1,m(λ)Un,m(λ)− Un,m(λ)An,m(λ), ∀λ, (2.13)

and
dVn,m(λ)

dλ
= An,m+1(λ)Vn,m(λ)− Vn,m(λ)An,m(λ), ∀λ. (2.14)
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Equation (2.9) is a Fuchsian liner system with four regular points (±1 , 0 and ∞ ). The
above statements imply that equations (1.1) - (1.2) describe discrete isomonodromy deformations
of system (2.9), and that the monodromy data of this system are the first integrals of (1.1) - (1.2)
(cf. [20]). Our first step will be the evaluation of these integrals for the particular choice of the
initial data (1.3) corresponding to Za . We shall start with the definition of the matrix valued
function Ψn,m(λ) - a carrier of the monodromy data in question, by the equations,

Ψ0,0(λ) = λ−
a
4
σ3 , Ψ0,1(λ) = V0,0(λ)Ψ0,0(λ), Ψ1,1(λ) = U0,1(λ)V0,0(λ)Ψ0,0(λ),

Ψn,m(λ) = Un−1,m(λ)Un−2,m(λ)...U0,m(λ)

× V0,m−1(λ)V0,m−2(λ)...V0,0(λ)Ψ0,0(λ), n,m ≥ 1, (2.15)

σ3 =

(
1 0
0 −1

)
.

In these equations, un,m and vn,m are defined via (2.7) with fn,m ≡ Zan,m . The function λ−
a
4
σ3

as defined on the λ -plane cut along the negative imaginary axis and fixed by the condition,

−π
2
< arg λ <

3π

2
.

It is also worth noticing that

det Ψn,m(λ) = (λ+ 1)n(1− λ)m. (2.16)

Proposition 3 The function Ψn,m(λ) is the common solution of linear equations (2.5), and (2.9).

Proof. The first equation in (2.5) is satisfied by construction. In order to see that the second
equation in (2.5) is satisfied it is enough to observe that matrix equation (2.8) allows to switch the
matrices U and V in the definition of the function Ψn,m(λ) and re-write it in the form,

Ψn,m(λ) = Vn,m−1(λ)Vn,m−2(λ)...Vn,0(λ)

× Un−1,0(λ)Un−2,0(λ)...U0,0(λ)Ψ0,0(λ), n,m ≥ 1. (2.17)

Verification of equation (2.9) needs a little bit more work. Put

Fn,m(λ) :=
d

dλ
Ψn,m(λ)−An,m(λ)Ψn,m(λ).

In view of (2.13), we have that

Fn+1,m =
d

dλ
Ψn+1,m −An+1,mΨn+1,m =

d

dλ
(Un,mΨn,m)−An+1,mUn,mΨn,m

= (An+1,mUn,m − Un,mAn,m) Ψn,m + Un,m
d

dλ
Ψn,m −An+1,mUn,mΨn,m = Un,mFn,m,

which means that
Fn,m(λ) ≡ Ψn,m(λ)Cm(λ),

7



where the matrix Cm(λ) does not depend on n , but might depend on m and λ . Similar arguments
based on the relation (2.14) yields the m - independence of the matrix Cm(λ) ,

Cm(λ) ≡ C0(λ) ≡ C(λ).

It remains to notice that F0,0 ≡ 0 and hence C(λ) ≡ 0 . This completes the proof of the proposition.
We shall now proceed with the establishing of the monodromy properties of the function

Ψn,m(λ) .

• The neighborhood of the point λ = 0 . This is the easiest. Indeed, from the definition (2.15),
we immediately conclude that

Ψn,m(λ) = Ψ̂(0)
n,m(λ)λ−

a
4
σ3 , (2.18)

where Ψ̂
(0)
n,m(λ) and [Ψ̂

(0)
n,m(λ)]−1 are holomorphic at λ = 0 . Moreover,

Ψ̂(0)
n,m(0) =

(
1 −fn,m
0 1

)
.

• The neighborhood of the point λ =∞ . With the help of a straightforward induction, one can
easy check that in the neighborhood of infinity, the function Ψn,m(λ) admits the following
representation.

Ψn,m(λ) = Ψ̂(∞)
n,m(λ)λ−T∞ , (2.19)

where

T∞ =
a

4
σ3 −



(
[m+n

2 ] + 1 0

0 [m+n
2 ]

)
if m+ n is odd

m+n
2 I if m+ n is even

.

The functions Ψ̂
(∞)
n,m(λ) and [Ψ̂

(∞)
n,m(λ)]−1 are holomorphic at λ =∞ . Moreover,

Ψ̂(∞)
n,m(∞) =



(
0 •
• •

)
if m+ n is odd

(
• 0

• •

)
if m+ n is even

(2.20)

The symbol “ • ” indicates that no specific conditions are imposed on the corresponding entry.

In other words, description (2.20) of the matrix Ψ̂
(∞)
n,m(∞) is equivalent to the statement that

this matrix satisfies the following property,[
Ψ̂(∞)
n,m(∞)

]
11

= 0, if n+m is odd and
[
Ψ̂(∞)
n,m(∞)

]
12

= 0, if n+m is even.
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• The neighborhood of the point λ = −1 , n ≥ 1 . The eigenvalues of the residue matrix −Bn,m
at the point λ = −1 are n and 0 . Hence, by the general theory of differential equations
with rational coefficients (see e.g. [20]),

Ψn,m(λ) = Ψ̂(−1)
n,m (λ)

(
1 0
0 (λ+ 1)n

)
E. (2.21)

where Ψ̂
(−1)
n,m (λ) and [Ψ̂

(−1)
n,m (λ)]−1 are holomorphic at λ = −1 , and E does not depend on

λ . (We note that the absence of the logarithmic terms at λ = −1 follows from the very
definition of the function Ψn,m(λ) .) Matrix E in formula (2.21) is defined up to the left
multiplication by a lower triangular matrix factor, and it can be brought either to the form,

E =

(
1 cn,m
0 1

)
(2.22)

(E11 6= 0 ), or to the form,

E =

(
0 1
1 0

)
(2.23)

(E11 = 0 ). We argue that the structure of the matrix E must be the same for all n , m .
Indeed, let us suppose that

En,m =

(
1 cn,m
0 1

)
, while En+1,m =

(
0 1
1 0

)
.

Then, from (2.21) it follows that

Ψn+1,m(λ)Ψ−1
n,m(λ) = H(λ)

(
1 (λ+ 1)−n

(λ+ 1)n+1 cn,m(λ+ 1)

)
H̃(λ), (2.24)

where H(λ) and H̃(λ) are holomorphic at λ = −1 functions. On the other hand, the left
hand side of the last equation is nothing else but Un,m(λ) , which is holomorphic. Moreover,

the matrices H(−1) and H̃(−1) are invertible. Therefore, the cancellation of singularity at
λ = −1 in the right hand side of (2.24) is not possible, and we ran into a contradiction. The
reader can easily check that the similar contradiction arrises if we assume that

En,m =

(
0 1
1 0

)
, En+1,m =

(
1 cn+1,m

0 1

)
,

as well as if we assume that

En,m =

(
1 cn,m
0 1

)
, En,m+1 =

(
0 1
1 0

)
.

or

En,m =

(
0 1
1 0

)
, En,m+1 =

(
1 cn,m+1

0 1

)
,

9



Observe now that in the case of option (2.23), the matrix E does not depend on m,n . In
fact, the same is true even if it is the option (2.22) that is realized for all m,n . Indeed, using
again (2.21) we see that

Ψn+1,m(λ)Ψ−1
n,m(λ) = H(λ)

(
1 (cn+1,m − cn,m)(λ+ 1)−n

0 λ+ 1

)
H̃(λ),

where, as before, H(λ) and H̃(λ) are holomorphic at λ = −1 functions. Once again, the left
hand side of the last equation is Un,m(λ) , which is holomorphic, while the matrices H(−1)

and H̃(−1) are invertible. The cancellation of singularity at λ = −1 is now possible, and it
is possible only if,

cn+1,m = cn,m.

Similarly,

Ψn,m+1(λ)Ψ−1
n,m(λ) = J(λ)

(
1 (cn,m+1 − cn,m)(λ+ 1)−n

0 1

)
J̃(λ) ≡ Vn,m(λ)

where J(λ) and J̃(λ) are again holomorphic at λ = −1 functions. Holomorphicity of
Vn,m(λ) would then imply that

cn,m+1 = cn,m.

Just established independence of the parameter E , in the both its possible forms on n and
m allows us to evaluate it by analyzing the function Ψ1,0(λ) . We have,

Ψ1,0(λ) = U0,0(λ)Ψ0,0(λ) =

(
1 −1
λ 1

)
λ−

a
4
σ3 =

(
λ−

a
4 −λ

a
4

λ−
a
4

+1 λ
a
4

)
.

Consider the product(
λ−

a
4 −λ

a
4

λ−
a
4

+1 λ
a
4

)(
1 −c
0 1

)(
1 0
0 (λ+ 1)−1

)
≡ Ψ̂

(−1)
1,0 (λ)

It is straightforward that this product is holomorphic at λ = −1 iff

c = −e
πia
2 .

Hence the matrix E in representation (2.21) is given by the equation,

E =

(
1 −e

iπa
2

0 1

)
. (2.25)

• The neighborhood of the point λ = 1 , m ≥ 1 . Repeating exactly the same arguments as in
the previous case, we arrive at the following representation of the function Ψn,m(λ) in the
neighborhood of the point λ = 1 .

Ψn,m(λ) = Ψ̂(1)
n,m(λ)

(
1 0
0 (λ− 1)m

)
E. (2.26)

where Ψ̂
(1)
n,m(λ) and [Ψ̂

(1)
n,m(λ)]−1 are holomorphic at λ = 1 , and the constant matrix E is

given by the same equation (2.25). This completes the evaluation of the monodromy data of
the linear system (2.9) corresponding to the discrete map Za .
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The branch of the function λ−a/4 appearing in (2.18), (2.19) is defined on the λ - plane cut along
the ray [0,−i∞) and it is fixed by the condition −π

2 < arg λ < 3π
2 . It also should be noticed that

the product,
Ψn,m(λ)λ

a
4
σ3 , (2.27)

is analytic and single valued on the whole finite λ - plane. It is, in fact, a matrix polynomial.

Proposition 4 Representations (2.18), (2.19), (2.21) and (2.26) (with the matrix E defined in
(2.25)) together with the single-validness of the product (2.27) determine the function Ψn,m(λ)
uniquely.

Proof. Suppose that Ψ̃n,m(λ) is another matrix valued function which admits representations
(2.18), (2.19), (2.21) and (2.26) (with the matrix E defined in (2.25)) and such that the product

Ψ̃n,m(λ)λ
a
4
σ3 ,

is analytic and single valued. Put

Θ(λ) := Ψ̃n,m(λ)[Ψn,m(λ)]−1.

We first notice that

Ψ̃n,m(λ)[Ψn,m(λ)]−1 =
(

Ψ̃n,m(λ)λ
a
4
σ3
)

[Ψn,m(λ)λ
a
4
σ3 ]−1

and hence the function Θ(λ) is single valued. Secondly, because of (2.16), the inversion of the
matrix Ψn,m(λ) does not produce new singularities. Therefore, one can conclude that a priori, the
function Θ(λ) is analytic on C \ {0,∞, 1,−1} . At the same time, at the points 0 , ∞ and ±1 ,
the both functions which form the product Θ(λ) have exactly the same right singular factors which
cancel out in the product. Therefore, we conclude that the function Θ(λ) is, in fact, a constant
function,

Θ(λ) ≡ constant

Now, evaluating this constant matrix at λ = 0 we see that

Θ(λ) ≡
(

1 •
0 1

)
, (2.28)

while the evaluation at λ =∞ yields

Θ(λ) ≡
(
• 0
• •

)
(2.29)

(regardless the parity of m+ n ). Comparing (2.28) and (2.29) we conclude that

Θ(λ) ≡ I.

The proposition is proven.
It is important to emphasize that we do not need to prescribe a priori the 12 matrix entry of

the matrix Ψ̂
(0)
n,m(0). In fact, we shall use the equation,

fn,m = −[Ψ̂(0)
n,m(0)]12, (2.30)

11



as an independent definition of the map Za .
We conclude this section by noticing that the independence on n and m of the matrix E means

again that the discrete map Za describes a special one parameter family of discrete isomonodromy
deformations of system (2.9). In fact, this one parameter family can be also identified with a special
solution of a discrete Painlevé equation, namely of the d-PII equation, see [3]. Moreover, there is
also a connection to the continuous Painlevé equations. The map Za can be also obtained via
the Backulnd transformation of a special solution of the sixth Painlevé equation. This ” Painlevé
connections”, however, does not help in our main problem, which is the evaluation of the large n ,
m asymptotics of the map Za . Rather, the results of our paper might be used in building up a
comprehensive asymptotic theory of Painlevé functions. For the modern state of the art in this
area we refer the reader to the monograph [17] and to the more recent source [12].

2.2 The Riemann-Hilbert setting.

¿From now on we shall assume that m+ n is even. That is, we will first prove Theorem 1 for this
case. An extension of the statement of the theorem to the case of arbitrary parity of m + n will
be done in the last section of the paper, in Section 3.8.

We start with summarizing the previous section’s considerations as the following theorem.

Theorem 2 Let Ψn,m(λ) be the matrix valued function defined by the discrete conformal map
Zan,m according to the equations (2.15). Then, the function Ψn,m(λ) ≡ Ψ(λ) is the unique solution
of the following analytical problem.

• In the vicinity of λ = 1 , the function Ψ(λ) admits the representation,

Ψ(λ) = Ψ̂(1)(λ)

(
1 0
0 (λ− 1)m

)(
1 −e

iπa
2

0 1

)
, (2.31)

where Ψ̂(1)(λ) is holomorphic and invertible at λ = 1 .

• In the vicinity of λ = −1 , the function Ψ(λ) admits the representation,

Ψ(λ) = Ψ̂(−1)(λ)

(
1 0
0 (λ+ 1)n

)(
1 −e

iπa
2

0 1

)
, (2.32)

where Ψ̂(−1)(λ) is holomorphic and invertible at λ = −1 .

• In the vicinity of λ =∞ , the function Ψ(λ) admits the representation,

Ψ(λ) = Ψ̂(∞)(λ)λ−
a
4
σ3λ

m+n
2 , (2.33)

where Ψ̂(∞)(λ) is holomorphic and invertible at λ =∞ . Moreover,

Ψ̂(∞)(∞) =

(
• 0
• •

)
.

12



• In the vicinity of λ = 0 , the function Ψ(λ) admits the representation,

Ψ(λ) = Ψ̂(0)(λ)λ−
a
4
σ3 , (2.34)

where Ψ̂(0)(λ) is holomorphic and invertible at λ = 0 . Moreover,

Ψ̂(0)(0) =

(
1 •
0 1

)
.

The branch of the function λ−a/4 in (2.33) and (2.34) is defined on the λ - plane cut along
the ray [0,−i∞) and it is fixed by the condition −π

2 < arg λ < 3π
2 .

• The product,
Ψ(λ)λ

a
4
σ3 ,

is analytic and single valued on the whole finite λ - plane (it is, in fact, a matrix polynomial).

The map Za itself can be recovered from the known function Ψ by the relation,

Zan,m = −[Ψ̂(0)
n,m(0)]12. (2.35)

We shall call the problem (2.31) – (2.34) - the monodromy problem, and we will be saying that
formula (2.35) gives the monodromy representation of the discrete power function Za . We shall
now perform a series of equivalent reformulations of the monodromy problem which will eventually
transform it to a Riemann-Hilbert factorization problem posed on the ray [0,−i∞) .

Step 1. Put
Φ(λ) = Ψ(λ)λ

a
4
σ3 . (2.36)

This simple transformation makes the new object - the function Φ(λ) , a single valued function on
the whole λ - plane. In terms of the function Φ(λ) the monodromy problem reads as follows.

• The function Φ(λ) is analytic on the finite λ - plane.

• In the vicinity of λ = 1 , the function Φ(λ) admits the representation,

Φ(λ) = Φ̂(1)(λ)

(
1 0
0 (λ− 1)m

)(
1 −λ−

a
2 e

iπa
2

0 1

)
, (2.37)

where Φ̂(1)(λ) is holomorphic and invertible at λ = 1 .

• In the vicinity of λ = −1 , the function Φ(λ) admits the representation,

Φ(λ) = Φ̂(−1)(λ)

(
1 0
0 (λ+ 1)n

)(
1 −λ−

a
2 e

iπa
2

0 1

)
, (2.38)

where Φ̂(−1)(λ) is holomorphic and invertible at λ = −1 .
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• In the vicinity of λ =∞ , the function Φ(λ) admits the representation,

Φ(λ) = Φ̂(∞)(λ)λ
m+n

2 , (2.39)

where Φ̂(∞)(λ) is holomorphic and invertible at λ =∞ . Moreover,

Φ̂(∞)(∞) =

(
• 0
• •

)
.

• The function Φ(λ) is normalized by the condition,

Φ(0) =

(
1 •
0 1

)
.

In the vicinity of λ = 0 we have that (see (2.34))

Φ(λ) = Ψ̂(0)(λ).

Therefore, equation (2.35) becomes the equation,

Z(a) = −Φ12(0). (2.40)

(From now on and until Section 3.8, we will usually suppress the indication of the n,m - depen-
dence.)

Step 2. Observe that equations (2.37) and (2.38) can be rewritten in more uniform way, i.e.

Φ(λ) = Φ̃(1)(λ)

(
1 0
0 (λ− 1)m(λ+ 1)n

)(
1 −λ−

a
2 e

iπa
2

0 1

)
, (2.41)

and

Φ(λ) = Φ̃(−1)(λ)

(
1 0
0 (λ− 1)m(λ+ 1)n

)(
1 −λ−

a
2 e

iπa
2

0 1

)
, (2.42)

with the functions Φ̃(1)(λ) and Φ̃(−1)(λ) possessing the same properties as the functions Φ̂(1)(λ)
and Φ̂(−1)(λ) , respectively. Let now Ω1 and Ω−1 denote the discs of radius 1/2 and centered at
λ = 1 and λ = −1 , respectively. Define,

X(λ) =


Φ̃(1,−1)(λ) λ ∈ Ω1,−1

Φ(λ)

(
1 0

0 (λ− 1)−m(λ+ 1)−n

)
λ ∈ C \ Ω1 ∪ Ω−1

(2.43)

The function X(λ) satisfies a certain factorization Riemann-Hilbert problem posed on the contour,

Σ = ∂Ω1 ∪ ∂Ω−1,
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−1

∂Ω−1

Σ :

1

∂Ω1

Figure 3: Contour for the X - RH problem

which is depicted in Figure 3. The orientation of the circles which form the contour is counterclock-
wise. As usual, the orientation defines a + and a − side on each part of the contour, where the +
side is on the left when traversing the contour according to its orientation. The Riemann-Hilbert
problem which the function X(λ) solves reads as follows.

Riemann-Hilbert problem for X(λ)

• X(λ) is analytic on C \ Σ .

• The boundary values,
X±(λ) := lim

λ′→λ, λ′∈±side of Σ
X(λ′), (2.44)

of X(λ) on Σ exist point-wise, the limits in (2.44) are uniform, and the functions X±(λ)
are continuous. Moreover, the functions X±(λ) satisfy the jump condition,

X+(λ) = X−(λ)G(λ), λ ∈ Σ, (2.45)

where

G(λ) =

(
1 e

iπa
2 λ−

a
2 (λ− 1)−m(λ+ 1)−n

0 1

)
.

• The behavior of the function X(λ) at the point λ =∞ is described by the equation,

X(λ) =

(
• 0
• •

)(
I +O

(
1

λ

))
λ
m+n

2
σ3 , λ→∞. (2.46)

• The function X(λ) is normalized by the condition,

X(0) =

(
1 •
0 1

)(
1 0
0 (−1)m

)
. (2.47)

We shall call the problem (2.45) – (2.47) - the X - RH problem. In terms of the X -RH problem,
relation (2.40) becomes the equation,

Z(a) = (−1)m+1X12(0). (2.48)
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Step 3. Put

Y (λ) =


X(λ)G(λ) λ ∈ C \ Ω1 ∪ Ω−1 ∪ [0,−i∞)

X(λ) λ ∈ Ω1 ∪ Ω−1

(2.49)

This transformation moves the jumps from the circles Σ to the ray Σ0 = [0,−i∞) . Assuming
that the ray Σ0 is oriented towards infinity, we arrive at the Y - RH problem.

Riemann-Hilbert problem for Y (λ)

• Y (λ) is analytic on C \ Σ0 .

• The boundary values of Y (λ) on Σ0 \ {0} satisfy the jump condition,

Y+(λ) = Y−(λ)

1 ω(λ)e−ϕ(λ)

0 1

 , λ ∈ Σ0 \ {0}, (2.50)

where
ω(λ) = 2i sin

aπ

2
λ
−a

2
+ (−1)m+n = 2i sin

aπ

2
λ
−a

2
+ ,

and
ϕ(λ) = m log(λ− 1) + n log(λ+ 1).

• The behavior of the function Y (λ) at the point λ =∞ is described by the equation,

Y (λ) = Ŷ (∞)(λ)

1 e
iπa
2 λ−

a
2

0 1

 (λ− 1)
m
2
σ3(λ+ 1)

n
2
σ3 (2.51)

where Ŷ (∞)(λ) is holomorphic at λ =∞ , and

Ŷ (∞)(∞) =

(
• 0
• •

)
.

• The behavior of the function Y (λ) at the point λ = 0 is described by the equation,

Y (λ) = Ŷ (0)(λ)

1 e
iπa
2 λ−

a
2 (λ− 1)−m(λ+ 1)−n

0 1

 (2.52)

where Ŷ (0)(λ) is holomorphic at λ = 0 , and

Ŷ (0)(0) =

(
1 •
0 1

)(
1 0
0 (−1)m

)
.
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One can easily see that the function Ŷ (0)(λ) in representation (2.52) is just the function X(λ) .
Hence, from (2.48), we conclude that in terms of the Y - RH problem, the discrete Za is given by
the equation,

Za = (−1)m+1Ŷ
(0)

12 (0). (2.53)

The Y-RH problem is depicted in Figure 4. This problem is the final step in the series of
transformations of the original monodromy problem (2.31) – (2.34). The Y-RH problem provides
the Riemann-Hilbert representation for the conformal map Za which we formulate as the following
theorem.

−

Σ0

+

0

Figure 4: Contour for the Y - RH problem

Theorem 3 Let Y (λ) be the matrix valued function defined by the discrete conformal map Za

according to the equations (2.49), (2.43), (2.36), and (2.15). Then, the function Y (λ) is the unique
solution of the Riemann-Hilbert factorization problem (2.50) – (2.52). The map Za itself can be
recovered from the known function Y by relation (2.53).

Remark 1 In the setting of the Y - RH problem, equation (2.51) can be replaced by the relation,

Y (λ) =

(
• 0
• •

)(
I + o(1)

)
λ
n+m

2
σ3 , λ→∞, (2.54)

while equation (2.52) – by the relation:

Y (λ) =

(
1 •
0 1

)(
1 0
0 (−1)m

)(
I + o(1)

)1 (−1)me
iπa
2 λ−

a
2

0 1

 , λ→ 0. (2.55)

More precisely, this means that the more detailed formula (2.51) follows from condition (2.54) and
jump relation (2.50), and similar is true for formula (2.52).

The asymptotic solution of the Y - RH problem will be our goal now. However, before we
proceed with the relevant analysis, we want to make a brief algebraic detour and to discuss a
little bit the connection of the Y - RH problem (2.50) - (2.52) to a certain system of orhtogonal
polynomials.
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2.3 Connection to orthogonal polynomials.

The behavior of the function Y (λ) at infinity, which is indicated in Remark 1, together with the
upper triangularity of the jump matrix G(λ) , shows that the Y - RH problem belongs to the
type of the Riemann-Hilbert problems which appear in the theory of orthogonal polynomials and
random matrices [16] (see also monograph [11] and survey [19]). Indeed, the solution Y (λ) of the
Y - RH problem admits the following orthogonal polynomial representation.

Y (λ) = M

 Pk(λ) 1
2πi

∫
Σ0

Pk(µ)ω(µ)e−ϕ(µ)

µ−λ dµ

− 2πi
hk−1

Pk−1(λ) − 1
hk−1

∫
Σ0

Pk−1(µ)ω(µ)e−ϕ(µ)

µ−λ dµ

 , (2.56)

where

k =
n+m

2
,

Pk(λ) and Pk−1(λ) are the last two members of the collection {Pl(λ)}kl=0 of the monic polynomials
determined by the orthogonality conditions,∫

Σ0

Pl(λ)λjω(λ)e−ϕ(λ)dλ = 0, j = 0, ..., l − 1, l = 0, ..., k, (2.57)

and hk−1 is the squre of the norm of the polynomial Pk−1(λ) , i.e.

hk−1 =

∫
Σ0

Pk−1(λ)λk−1ω(λ)e−ϕ(λ)dλ ≡
∫

Σ0

P 2
k−1(λ)ω(λ)e−ϕ(λ)dλ. (2.58)

The pre-factor M in (2.56) is the constant matrix uniquely determined by the structure of the
matrices Ŷ (∞)(∞) and Ŷ (0)(0) , see (2.51) and (2.52). The map Za can be expressed in terms of
the polynomials Pk(λ) as well. The corresponding formulae are,

Za = − 1

Pk(0)

∑
resλ=±1

(
Pk(λ)e

iπa
2 λ−1−a

2 (λ− 1)−m(λ+ 1)−n
)
. (2.59)

= − 1

Pk(0)

e
iπa
2

(m− 1)!

dm−1

dλm−1

(
Pk(λ)λ−1−a

2 (λ+ 1)−n
) ∣∣∣

λ=1

− 1

Pk(0)

e
iπa
2

(n− 1)!

dn−1

dλn−1

(
Pk(λ)λ−1−a

2 (λ− 1)−m
) ∣∣∣

λ=−1

It is worth noticing that the orthogonality condition (2.57) can be also re-written in a simple residue
form ∑

resλ=±1

(
Pl(λ)e

iπa
2 λj−

a
2 e−ϕ(λ)

)
≡
∑

resλ=±1

(
Pl(λ)e

iπa
2 λj−

a
2 (λ− 1)−m(λ+ 1)−n

)
=

e
iπa
2

(m− 1)!

dm−1

dλm−1

(
Pl(λ)λj−

a
2 (λ+ 1)−n

) ∣∣∣
λ=1

+
e
iπa
2

(n− 1)!

dn−1

dλn−1

(
Pl(λ)λj−

a
2 (λ− 1)−m

) ∣∣∣
λ=−1

= 0 j = 0, ..., l − 1, (2.60)
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which, in fact, allows one to extend the original finite orthogonal polynomials system {Pl(λ)}kl=0

to the infinite system {Pl(λ)}∞l=0 .
The orthogonal polynomial connection described in this subsection will make a little appearance

in the rest of the paper. Mostly, we will use it as a motivation for certain steps in our asymptotic
analysis. Therefore, we skip the formal discussion of the existence of the orthogonal polynomials
Pl(λ) which can be also considered as a direct consequence of a prior existence of the function
Y (λ) . We also skip the derivation of the formula (2.56) itself. It is standard (cf. [16], [11]).
One only have to be a little bit more careful, comparing with the usual cases, when deriving the
asymptotic condition (2.54) from formula (2.56) . Usually, in the Riemann-Hilbert approach to
orthogonal polynomials the weghts participajting in the orthogonality conditions are appeared to
decay very fast at infinity, i.e., faster then any power. This is not the case with our weight, which
itself has a power-like decay at infinity. This, in particular, means that the error o(1) in (2.54)
can not be replaced by O(λ−1) , as it possible to do in the usual situation. Indeed, in our case,
o(1) = 0(λ−a/2) .

As it is always the case with the orthogonal polynomial Riemann-Hilbert problems (see e.g.
[11]), one can extract from fromula (2.56) and orthogonality conditions (2.57) or (2.60) a Hankel
type determinant representations for both, the solution of the Riemann-Hilbert problem (2.50) -
(2.52) and for our main object - the map Zan,m . Indeed, let

Hs :=

∫
Σ0

λsω(λ)e−ϕ(λ)dλ, s = 0, 1, ..., 2k − 1 ≡ n+m− 1, (2.61)

be the moments of the weight ω(λ)e−ϕ(λ) and let

Hl = {Hk+j}j,k=0,...,l−1 ≡



H0 H1 ... Hl−1

H1 H2 ... Hl

..... ... ... ...

Hl−1 Hl ... H2l−2


, l ≤ k

be the corresponding l × l Hankel matrix. Define also the augmented Hankel matrix,

Hl+1(λ) = det



H0 H1 ... Hl−1 Hl

H1 H2 ... Hl Hl+1

..... ... ... ... ...

Hl−1 Hl ... H2l−2 H2l−1

1 λ ... λl−1 λl


, l ≤ k

i.e. the Hankel matrix Hl+1 with the last row replaced by the row of the successive powers of λ .
Orthogonality condition (2.57) is a linear system for the coefficients of polynomial Pl(λ) . Applying
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to this system Cramer’s rule and after some simple manipulations (see again, e.g. [11]), we will
arrive at the equations,

Pl(λ) =
detHl+1(λ)

detHl
, hl =

detHl+1

detHl
, (2.62)

which, in conjunction with the formulae (2.56) and (2.59), provide the determinant representations
for the solution of the Y - RH problem and for the discrete power function Za .

It is worth noticing that the integral in (2.61) can be evaluated by residues, so that the moments
Hs can be expressed in the following form,

Hs = 2πi
e
iπa
2

(m− 1)!

dm−1

dλm−1

(
λs−

a
2 (λ+ 1)−n

) ∣∣∣
λ=1

+ 2πi
e
iπa
2

(n− 1)!

dn−1

dλn−1

(
λs−

a
2 (λ− 1)−m

) ∣∣∣
λ=−1

. (2.63)

Alternatively, the moments Hs can be expreseed in terms of the hypergeometric functions,

Hs = (−1)s2πi
Γ
(
m+ n− 1 + a

2 − s
)

Γ
(
a
2 − s

)
(n+m)!

F
(
m, 1− a

2
+ s;m+ n; 2

)
. (2.64)

The determinant formulae for Zan,m similar to the ones presented above have already been
obtained (without any use of the Riemann-Hilbert analysis) in [4]. However, the size of the de-
terminants detHk , detHk±1 , detHk(λ) , and detHk+1(λ) which appear in the representation of
Y (λ) and Za , grows unboundedly as n,m→∞ which makes these determinant formulae useless
for the asymptotic analysis. We want to stress that this is a general feature of the orthogonal
polynomial theory. That is, the Riemann-Hilbert problem is used to evaluate the asymptotics of
the determinants appearing in the representations of orthogonal polynomials; not the other way
round. This is also the reason why we decided to point out at the relation of the Riemann-Hilbert
problem (2.50) - (2.52) to the system of orthogonal polinomials (2.57) - (2.60). The latter might
be of interest of their own, and the results of our paper might be used for the describtion of the
large k behavior of the polynomials Pk(λ) , as well as of the Hankel determinants detHk whose
generating moments Hs are given by the formulae (2.63) or (2.64).

Remark 2 In the special case a = 1 everything of course trivializes. The unique solution of (1.1)-
(1.3) is, as expected, fn.m = n + im ≡ Za|a=1 and the Y -RH problem admits an explicit (i.e.,
no growing with n and m nontrivial matrix products) solution. We discuss this issue in detail in
Appendix C.

3 Asymptotic analysis.

In the asymptotic analysis of the Y - RH problem we will follow the Deift-Zhou nonlinear steepest
descent method for oscillatory Riemann-Hilbert problems [13]. More precisely, we shall use the
adaptation of the method to the Riemann-Hilbert problems arising in the theory of orthogonal
polynomials and random matrices which was developed in [15] (for a pedagogical exposition of the
method see again [11] and [19]).
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In our presentation we will use the specific terminology accepted in the nonlinear steepest
descent method, such as “ g - function”, local and global “parametricies”, etc. (see e.g. [11]).

Following the methodology of the nonlinear steepest descent method, we will perform a series of
additional transformations of the Y - RH problem. The aim is to arrive at the RH problem whose
jump matrix is approaching the identity as n,m→∞ . In the process of these transformations, we
will solve in closed form certain local Riemann-Hilbert problems and assemble these local solutions
into a piece-wise analytic matrix valued function which will approximate solution of the whole Y
- RH problem. This, in turn, will produce our main results - the asymptotic formula (1.4).

3.1 First transformation Y → T

The first step in the method of [15] is the introduction of the so-called g -function. Let us briefly
describe this notion. For more detailed exposition we refer the reader to monograph [11]).

Orthogonal polynomial representation (2.56) of the function Y (λ) implies that

Y11(λ) = M11Pk(λ), k =
n+m

2
.

On the other hand, taking a hint from the general theory of orthogonal polynomials on the line
with positive weights (see e.g. [11]), one can suggest that, as n2 +m2 →∞ ,

Pk(λ) ∼ eg(λ), (3.65)

where

g(λ) =

∫
log(λ− µ)dν0(λ), (3.66)

and dν0(λ) is the equilibrium measure corresponding to the potential ϕ(λ) . This, means that
dν0(λ) is an extremal point of the ”energy” functional,

E =

∫
Σ0

∫
Σ0

log |λ− µ|dν(λ)dν(µ)−
∫

Σ0

ϕ(λ)dν(λ),

considered on the space of Borel measures on Σ0 satisfying the restriction,∫
Σ0

dν(λ) = k (3.67)

It is not very difficult, at least on the heuristic level, to see that the Euler-Lagrange equations
for the functional E have the form,

g+(λ) + g−(λ)− ϕ(λ) = constant, λ ∈ J, (3.68)

where J means the support of the measure dν0(λ) and subscrips ± indicates the relevant boundary
values of the function g(λ) . Also, condition (3.67) yields the asymptotic condition,

g(λ) ∼ k log λ, λ→∞. (3.69)

Remember that ϕ(λ) = m log(λ − 1) + n log(λ + 1) . This means, in particular, a rather slow
grows of the potential ϕ(λ) at the infinity and hence a natural assumption that the support J of
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the equilibrium measure dν0(λ) should in fact coincide with the whole semi-line Σ0 . Therefore,
one can look at the problem (3.68) - (3.69) as at a scalar Riemann-Hilbert problem posed on the
semi-line Σ0 = [0,−i∞) . The problem can be solved by standard techniques which yields the
following formula for the g - function.

g(λ) = m log(1 +
√
λ) + n log(i+

√
λ). (3.70)

Here,
√
λ is defined on the plane cut along Σ0 = [0,−i∞) and the branch is fixed by the condition

−π/2 < arg λ < 3π/2 . For the logarithmic function, logw , its principal branch, i.e. −π < argw <
π is taken.

We shall not attempt to transform the above heuristic considerations into a rigorous proof of
the asymptotic relation (3.65). Instead, in accord with the method of [15] we shall use them as a
motivation for the first transformation of the Y - RH problem:

Y (λ) =⇒ T (λ) := Y (λ)e−g(λ)σ3 , (3.71)

with the function g(λ) given by formula (3.70). It is also significant, that exactly the same function
g(λ) appears in explicit solution of the Y - Riemann-Hilbert problem in the case a = 1 , see (7.281).

Let us see how does the Y - RH problem change under the transformation (3.71). As it will
become clear soon, the usefulness of this transformation is based on the following properties of the
function (3.70), first three of which have already appeared as the Euler-Lagrange equations (3.68),
(3.69).

• g(λ) is analytic in C \ [0,−i∞] ,

• as λ ∈ [0,−i∞] ,

g+(λ) + g−(λ) = m ln(1− λ) + n ln(1 + λ) + iπn ≡ ϕ(λ) + iπn, mod (2π), (3.72)

• as λ→∞ ,

g(λ) =
m+ n

2
lnλ+ o(1), (3.73)

• as λ→ 0 ,

g(λ) =
iπ

2
n+ (m− in)

√
λ+ 0(λ). (3.74)

In view of the asymptotic formula (3.73), transformation (3.71) regularizes the behavior at infinity
in the setting of the Riemann-Hilbert problem. Indeed, for the new function T (λ) we have that at
λ =∞ ,

T (λ) = T̂ (∞)(λ)

1 e
iπa
2 λ−

a
2

0 1

 (λ− 1)
m
2
σ3(λ+ 1)

n
2
σ3e−g(λ)σ3

= T̂ (∞)(λ)

1 e
iπa
2 λ−

a
2

0 1

(I +O

(
1√
λ

))
diag

=

(
• 0
• •

)(
I + o(1)

)
, (3.75)
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where T̂ (∞)(λ) = Ŷ (∞)(λ) is holomorphic at λ = ∞ . The behavior at λ = 0 does not change
much. Indeed, the asymptotic equations (2.52) and (2.55) are transformed into the equations,

T (λ) = T̂ (0)(λ)

1 e
iπa
2 λ−

a
2 (λ− 1)−m(λ+ 1)−n

0 1

 e−g(λ)σ3 (3.76)

and

T (λ) =

(
1 •
0 1

)(
1 0
0 (−1)m

)
e−

iπ
2
nσ3
(
I + o(1)

)1 e
iπa
2 λ−

a
2

0 1

(I + o(1)
)
, λ→ 0, (3.77)

respectively. Here, T̂ (0)(λ) = Ŷ (0)(λ) is holomorphic at λ = 0 , and equation (2.53) becomes

Za = (−1)m+1T̂
(0)
12 (0). (3.78)

Simultaneously, the jump relations (2.50) transforms into the relations,

T+(λ) = T−(λ)

(
e−h(λ) ω(λ)

0 eh(λ)

)
, λ ∈ Σ0 \ {0}, (3.79)

where

h(λ) = g+(λ)− g−(λ) = m log
1 +
√
λ

1−
√
λ

+ n log
i+
√
λ

i−
√
λ
, λ ∈ Σ0. (3.80)

Put (cf. (7.283)

H(λ) := exph(λ) =

(
1 +
√
λ

1−
√
λ

)m(
i+
√
λ

i−
√
λ

)n
. (3.81)

Observe, that this function admits an analytical continuation on C \ [0, i∞] . Indeed, the continu-
ation is given by formula (3.81) itself with

√
λ defined on the λ -plane with the cut along [0, i∞)

and the branch is fixed by the condition −3π/2 < arg λ < π/2 . We remind that in the case of the
functions g(λ) and λa/4 the cut for

√
λ is [0,−i∞) and −π/2 < arg λ < 3π/2 . The function

H(λ) has a pole at λ = 1 and a zero at λ = −1 . In what follows, a crucial role will be played by
the following lemma.

Lemma 1 For all m,n > 0 , the positive function |H(λ)| is greater than 1 in the first quadrant,
and it is less than one in the second quadrant.

Proof. Follows immediately from the simple geometric fact that |1+
√
λ| > |1−

√
λ| and |i+

√
λ| <

|i−
√
λ| if λ lies in the first quadrant. If λ lies in the second quadrant the inequalities are reversed.

3.2 Opening of lenses and the second transformation T → S

As it is usual at this stage of implementation of the nonlinear steepest descent method, we observe
that (

e−h(λ) ω(λ)

0 eh(λ)

)
=

(
1 0

eh(λ)ω−1(λ) 1

)(
0 ω(λ)

−ω−1(λ) 0

)(
1 0

e−h(λ)ω−1(λ) 1

)
(3.82)
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and go from the function T (λ) to the function S(λ) defined by the equations,

S(λ) = T (λ)



(
1 0

−H−1(λ)ω−1
1 (λ) 1

)
λ ∈ Ωr,

(
1 0

H(λ)ω−1
2 (λ) 1

)
λ ∈ Ωl,

I λ /∈ Ωr ∪ Ωl,

(3.83)

where Ωr ( Ωl ) is the region in the right (left) half-plane between the rays Σ0 and Σ1 = {λ :
<λ = c=λ, c > 0} ( Σ2 = {λ : <λ = −c=λ, c > 0} ). The rays Σ1 and Σ2 , similar to the ray Σ0 ,
are oriented toward infinity. The functions ω1 and ω2 are given by the equations,

ω1(λ) = 2i sin
aπ

2
λ−

a
2 , and ω2(λ) = 2i sin

aπ

2
λ−

a
2 eπia (3.84)

The regions Ωl and Ωr are depicted in Figure 5. The Riemann-Hilbert problem in terms of the
function S(λ) reads as follows.

−

Σ0

+

0

+

Σ1Σ2

+− −

ΩrΩl

Figure 5: Contour for the S - RH problem

• S(λ) is analytic on C \ Γ , Γ = Σ0 ∪ Σ1 ∪ Σ2 ,

• The jump conditions are described by the equations,

1. as λ ∈ Σ0 ,

S+(λ) = S−(λ)

(
0 ω(λ)

−ω−1(λ) 0

)
(3.85)

2. as λ ∈ Σ1 ,

S+(λ) = S−(λ)

(
1 0

H−1(λ)ω−1
1 (λ) 1

)
(3.86)
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3. as λ ∈ Σ2 ,

S+(λ) = S−(λ)

(
1 0

H(λ)ω−1
2 (λ) 1

)
(3.87)

• as λ→∞ ,

S(λ) =

(
• 0
• •

)(
I +O

(
1

λ

))1 e
iπa
2 λ−

a
2

0 1

 (3.88)

×(λ− 1)
m
2
σ3(λ+ 1)

n
2
σ3e−g(λ)σ3



(
1 0

−H−1(λ)ω−1
1 (λ) 1

)
λ ∈ Ωr,

(
1 0

H(λ)ω−1
2 (λ) 1

)
λ ∈ Ωl,

I λ /∈ Ωr ∪ Ωl,

• as λ→ 0 ,

S(λ) =

(
1 •
0 1

)(
1 0
0 (−1)m

)(
I +O(λ)

)
(3.89)

1 e
iπa
2 λ−

a
2 (λ− 1)−m(λ+ 1)−n

0 1

 e−g(λ)σ3



(
1 0

−H−1(λ)ω−1
1 (λ) 1

)
λ ∈ Ωr,

(
1 0

H(λ)ω−1
2 (λ) 1

)
λ ∈ Ωl,

I λ /∈ Ωr ∪ Ωl,

Let Uδ = {|λ| < δ < 1} denote a small neighborhood of λ = 0 . In this neighborhood, with the
cut along the part of the ray [0,−i∞] , one can define the holomorphic function,

h0(λ) = m log
1 +
√
λ

1−
√
λ

+ n log
i+
√
λ

i−
√
λ

= 2(m− in)
√
λ+

∞∑
k=0

akλ
k+ 1

2 . (3.90)

The function h0(λ) satisfies the following properties,

exph0(λ) =


H(λ) λ ∈ Uδ, <λ > 0,

H−1(λ) λ ∈ Uδ, <λ < 0.

(3.91)

Moreover, one can also observe that, for all λ ∈ Uδ ∩ [0,−i∞) ,

g(λ)− 1

2
h0(λ) =

m

2
log(1− λ) +

n

2
log(1 + λ) +

iπ

2
n, (3.92)
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where the branches, which are holomorphic in Uδ , are considered for the logarithms in the right
hand side.

Similarly, in the neighborhood U1/δ = {|λ| > 1/δ > 1} of the point λ =∞ , we can define the
function h∞(λ) ,

h∞(λ) = m log
1 +
√
λ

1−
√
λ

+ n log
i+
√
λ

i−
√
λ

= −iπ(m+ n) + 2(m+ in)
1√
λ

+
∞∑
k=0

bkλ
−k− 1

2 . (3.93)

In the neighborhood U1/δ , the function h∞(λ) satisfies the properties similar to that of h0(λ) ,
i.e.

exph∞(λ) =


H(λ) λ ∈ U1/δ, <λ > 0,

H−1(λ) λ ∈ U1/δ <λ < 0,

(3.94)

and

g(λ)− 1

2
h∞(λ) =

m

2
log(1− λ) +

n

2
log(1 + λ) +

iπ

2
n, (3.95)

for all λ ∈ U1/δ ∩ [0,−i∞) ,
Equations (3.91 - 3.92) and (3.94 - 3.95) allow us to reformulate the S - Riemann-Hilbert

problem in the following, more compact way.

Riemann-Hilbert problem for S(λ)

• S(λ) is analytic on C \ Γ , Γ = Σ0 ∪ Σ1 ∪ Σ2 ,

• The jump conditions are described by the equations,

1. as λ ∈ Σ0 ,

S+(λ) = S−(λ)

(
0 ω(λ)

−ω−1(λ) 0

)
(3.96)

2. as λ ∈ Σ1 ,

S+(λ) = S−(λ)

(
1 0

H−1(λ)ω−1
1 (λ) 1

)
(3.97)

3. as λ ∈ Σ2 ,

S+(λ) = S−(λ)

(
1 0

H(λ)ω−1
2 (λ) 1

)
(3.98)

• as λ→∞ ,

S(λ) =

(
• 0
• •

)(
I +O

(
1

λ

))
λ−

a
4
σ3Cλ

a
4
σ3e−

1
2
h∞(λ)σ3 , (3.99)
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where the matrix C is a piece-wise constant matrix - valued function defined by the equations,

C =

(
1 e

iπa
2

0 1

)


(
1 0

−ω−1
0 1

)
λ ∈ Ωr,

(
1 0

ω−1
0 e−iπa 1

)
λ ∈ Ωl,

I λ /∈ Ωr ∪ Ωl,

(3.100)

and
ω0 = 2i sin

aπ

2
, (3.101)

• as λ→ 0 ,

S(λ) =

(
1 •
0 1

)(
1 0
0 (−1)m

)
e−

iπ
2
nσ3
(
I +O(λ)

)
λ−

a
4
σ3Cλ

a
4
σ3e−

1
2
h0(λ)σ3 , (3.102)

where C is defined by the same equations (3.100).

In terms of the S - RH problem, the discrete Za is given by the equation,

Za = (−1)m+1e−
iπ
2
nŜ

(0)
12 (0), (3.103)

where
Ŝ(0)(λ) ≡ S(λ)e

1
2
h0(λ)σ3λ−

a
4
σ3C−1λ

a
4
σ3 (3.104)

– is the holomorphic (and invertible) matrix factor in the right hand side of (3.102). Similar factor
in the right hand side of (3.99) we shall denote Ŝ(∞)(λ) , i.e.

Ŝ(∞)(λ) ≡ S(λ)e
1
2
h∞(λ)σ3λ−

a
4
σ3C−1λ

a
4
σ3 (3.105)

The S - Riemann-Hilbert problem is depicted in Figure 3. We can completely switch to this
Riemann-Hilbert problem in our analysis of the discrete conformal map Za . That is, in addition
to Theorem 3, we can formulate the following theorem.

Theorem 4 Let S(λ) be the matrix valued function defined by the discrete conformal map Za

according to the equations (3.83), (3.71), (2.49), (2.43), (2.36), and (2.15). Then, the function
S(λ) is the unique solution of the Riemann-Hilbert factorization problem (3.96) – (3.102). The
map Za itself can be recovered from the known function S by relation (3.103).

Remark 3 It is worth noticing that, since 0 < a < 2 , the condition at λ = 0 can be a priori
relaxed. Indeed, it is enough to demand that

S(λ) = O(1)λ−
a
4
σ3O(1)λ

a
4
σ3 , λ→ 0. (3.106)

More detail behavior at λ = 0 which is featured in (3.102) will be then a consequence of (3.106) and
the jump relations. (Of course, one still needs to formulate properly the normalization condition at
λ = 0 ).

27



Now, we can highlight the role of Lemma 1. Due to this lemma, as m,n → ∞ , the jump
matrices across the rays Σ1 and Σ2 become exponentially closed to the identity matrix away from
the points λ = 0 and λ =∞ , and hence the S - problem is getting localized. This suggests that
the approximate solution of the S - RH problem can be assembled from the two local parametrices
- the solutions of the local Riemann-Hilbert problems at λ = 0 and λ = ∞ , and the global
parametrix - the solution of the Riemann-Hilbert problem associated with the jump across the ray
Σ0 . In the next three subsections we will construct these three parametrices explicitly, and in
subsection 3.6 we will assemble them into the piece-wise analytic matrix valued function, which we
will denote S(as)(λ) . In subsection 3.6, we will also show that S(as)(λ) is indeed a parametrix for
the solution of the full S -problem, i.e., that the matrix quotient, R(λ) := S(λ)[S(as)(λ)]−1 solves
the Riemann-Hilbert problem whose jump matrices are uniformly closed to the identity. The last
fact, by the general arguments of the Riemann-Hilbert theory, will allow us to prove that S(as)(λ)
is the genuine asymptotic solution of the S -Riemann-Hilbert problem. The just described strategy
is standard for the nonlinear steepest descent method. The difference comparing with the usual
situation is technical - the global parametrix is not, simultaneously, the parametrix at the infinity,
as it happens in the usual applications of the Riemann-Hilbert method. The reason lies in the
Fuchsian origin of the Riemann-Hilbert problem we are dealing with.

We shall start with the construction of the global parametrix.

3.3 Global parametrix.

The global parametrix for the solution of the S - RH problem, which we will denote P (gl)(λ) , is
defined as the solution of the following Riemann-Hilbert problem posed on the ray Σ0 .

• P (gl)(λ) is analytic on C \ Σ0 ,

• The jump conditions are described by the equation,

P
(gl)
+ (λ) = P

(gl)
− (λ)

(
0 ω(λ)

−ω−1(λ) 0

)
, λ ∈ Σ0 \ {0} (3.107)

We note that in the setting of the P (gl) - RH problem we do not prescribe any special behavior
either at λ = 0 or at λ =∞ . Hence the parametrix P (gl)(λ) is defined up to the left multiplication
by the matrix valued function analytic on C \ {0} . This non-uniquiness, however, will not affect
the construction of the approximate solution to the S - RH problem.

A solution of the P (gl) - RH problem can be easily found. Indeed, we notice that for all
λ ∈ Σ0 \ {0} , (

0 ω(λ)
−ω−1(λ) 0

)
= λ

−a
4
σ3

−

(
0 2i sin aπ

2 e
πi
2
a

− 1
2i sin aπ

2
e−

πi
2
a 0

)
λ
a
4
σ3

+

= λ
−a

4
σ3

−

(
0 eiπa − 1

− 1
eiπa−1

0

)
λ
a
4
σ3

+ = λ
−a

4
σ3

− ησ3
(

0 1
−1 0

)
η−σ3λ

a
4
σ3

+ , (3.108)
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where η =
√
eπia − 1 . Diagonalizing the matrix

(
0 1
−1 0

)
, we also have that

(
0 1
−1 0

)
= T−1iσ3T = T−1λ

σ3
4
− λ

−σ3
4

+ T, where T =

1
2 − i

2

1
2

i
2

 . (3.109)

Combining (3.108) and (3.109) we arrive at the following representation for the jump matrix of the
P (gl) - RH problem. (

0 ω(λ)
−ω−1(λ) 0

)
= λ

−a
4
σ3

− ησ3T−1λ
σ3
4
− λ

−σ3
4

+ Tη−σ3λ
a
4
σ3

+ .

This equation suggests that the the global parametric can be taking in the form,

P (gl)(λ) = λ
−σ3

4
+ Tη−σ3λ

a
4
σ3

+ = λ−
σ3
4

1
2 − i

2

1
2

i
2

 η−σ3λ
a
4
σ3 , η =

√
eπia − 1. (3.110)

We shall now concentrate on constructing the parametrices to the solution of the S - problem
at points λ = 0 and λ =∞

3.4 Parametrix at λ = 0 .

Expansion (3.90) implies that in the neighborhood Uδ ,

h2
0(λ) = 4(m− in)2

(
λ+

∑
j≥2

cjλ
j
)
, (3.111)

where the coefficients cj satisfies the uniform estimate,

|ck| ≤
c

k
, k > 1, n,m > 0. (3.112)

Therefore, the equation,

ξ(λ) = h2
0(λ) ≡ 4(m− in)2

(
λ+

∑
j≥2

cjλ
j
)
, (3.113)

determines a conformal change of variables in the neighborhood Uδ :

Uδ → Dr(0) ≡ {ξ : |ξ| < r2δ}, r =
√
m2 + n2. (3.114)

The action of the map λ → ξ on the part of the contour Γ of the S - RH problem, which
is inside of the neighborhood Uδ is indicated in Figure 6. We shall assume that the rays Σk are
actually slightly deformed so that inside of the neighborhood Uδ they coincide with the pre-images
of the rays Γk which satisfy the following conditions,

arg ξ|Γ0+ = −π
2
− 2θ, (3.115)
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Σ0

0

Σ1Σ2

δ λ→ ξ

Γ1

Γ2

Γ0 4r2δ

m > n
0 ≤ θ < π

4

0

Γ1

Γ2

Γ0

4r2δ

m = n
θ = π

4

0

Γ1

Γ2

Γ0

4r2δ

m < n
π
4 < θ ≤ π

2

0

Figure 6: The local map λ→ ξ

arg ξ|Γ1 =
π

4
− 2θ, arg ξ|Γ2 =

3π

4
− 2θ, (3.116)

where
θ = − arg(m− in), 0 ≤ θ ≤ π

2
. (3.117)

Define
√
ξ on the ξ -plane cut along the ray Γ0 and fixed by the condition,

−π
2
− 2θ < arg ξ <

3π

2
− 2θ.

Then, we will have that, for all θ ,

− π

2
+
π

8
≤ arg

√
ξ|Γ1 < arg

√
ξ|Γ2 ≤

π

2
− π

8
, (3.118)

that is, for all θ , the images, under the map ξ 7→
√
ξ , of the rays Γ1 and Γ2 and of the sector

between them lie in the right half plane <
√
ξ > 0 .

30



Observe that inside of the neighborhood Uδ , cut along the curve Σ0 , we have that h0(λ) =√
ξ(λ) . Therefore, the jump matrix GS of the S - RH problem inside of the neighborhood Uδ

can be written down in the form,

GS(λ) = e
1
2

√
ξ(λ)σ3λ−

a
4
σ3Lλ

a
4
σ3e−

1
2

√
ξ(λ)σ3 , (3.119)

where the piecewise constant matrix L is given by the equations,

L =

(
0 ω0e

iπa
2

−ω−1
0 e−

iπa
2 0

)
≡ L0, λ ∈ Σ0 ∩ Uδ,

L =

(
1 0

ω−1
0 1

)
≡ L1, λ ∈ Σ1 ∩ Uδ,

L =

(
1 0

e−πiaω−1
0 1

)
≡ L2, λ ∈ Σ2 ∩ Uδ,

and ω0 is defined in (3.101). Therefore, the map, λ→ ξ , transforms the Uδ - part of the S - RH
problem into the following model RH problem which is formulated for a matrix function Φ(0)(ξ)
defined on the ξ -plane.

• Φ(0)(ξ) is analytic on C \ Γξ , Γξ = Γ0 ∪ Γ1 ∪ Γ2 ,

• The jump conditions are described by the equations,

Φ
(0)
+ = Φ

(0)
− e

1
2

√
ξσ3ξ−

a
4
σ3Lξ

a
4
σ3e−

1
2

√
ξσ3 , (3.120)

where L = Lk if ξ ∈ Γk , k = 0, 1, 2 .

• as ξ →∞ ,

Φ(0)(ξ) = ξ−
1
4
σ3

1
2 − i

2

1
2

i
2

(I +O

(
1√
ξ

))
η−σ3ξ

a
4
σ3 (3.121)

• as ξ → 0 ,

Φ(0)(ξ) = Φ̂(0)(ξ)ξ−
a
4
σ3Cξ

a
4
σ3e−

1
2

√
ξσ3 (3.122)

where the matrix-valued functions Φ̂(0)(ξ) is holomorphic at ξ = 0 ,

Φ̂(0)(ξ) = B
(
I +O(ξ)

)
, det Φ̂(0)(ξ) ≡ i

2
, (3.123)

and the piece-wise constant matrix - valued function C is the same as in (3.100) with Ωr,l

replaced by their images via the map λ 7→ ξ(λ) , i.e.

C =

(
1 e

iπa
2

0 1

)


(
1 0

−ω−1
0 1

)
−π

2 − 2θ < arg ξ < π
4 − 2θ,

(
1 0

ω−1
0 e−iπa 1

)
3π
4 − 2θ < arg ξ < 3π

2 − 2θ,

I π
4 − 2θ < arg ξ < 3π

4 − 2θ,

(3.124)
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The branch of the function ξ1/4 is define on the ξ -plane cut along the ray Γ0 and fixed by the
condition ξ1/4 > 0 as ξ > 0 , i.e.

− π

2
− 2θ < arg ξ <

3π

2
− 2θ. (3.125)

The problem is depicted in the Figure 7 (for the case m > n ).

−Γ0

+
0

Γ1

Γ2

+
−

+ −

Figure 7: The contour for the Φ(0) - RH problem

The same remark as in the case of the S -problem can be made, i.e., since 0 < a < 2 , in the
setting of the Φ(0) - RH problem it is enough to demand, that

Φ(0)(ξ) = O(1)ξ−
a
4
σ3O(1)ξ

a
4
σ3 , ξ → 0. (3.126)

The normalization condition (3.121) comes from the fact that we want the “interior” function
Φ(0)(ξ(λ)) to match asymptotically, as n,m→∞ , the “exterior” function P (gl)(λ) at the bound-
ary of Uδ . In other words, to specify the behavior of Φ(0)(ξ) as ξ → ∞ , we must look at the
behavior of P (gl)(λ) at λ = 0 . To this end, we notice that the function P (gl)(λ) can be written
in the neighborhood Uδ in the form,

P (gl)(λ) = E(λ)ξ(λ)−
1
4
σ3

1
2 − i

2

1
2

i
2

 η−σ3λ
a
4
σ3 , (3.127)

where

E(λ) =

(
ξ(λ)

λ

) 1
4
σ3

(3.128)

is holomorphic at λ = 0 . Indeed, in view of (3.113), we have that

E(λ) = (2(m− in))
1
2
σ3
(

1 +
∑
j≥1

cjλ
j
) 1

4
σ3

= (2(m− in))
1
2
σ3
(
I +

∑
j≥1

Cjλ
j
)
, (3.129)

where Cj are (diagonal) matrix coefficients of the Taylor series indicated. Equation (3.127) ex-
plains the choice of the normalization condition at ξ = ∞ which we made in the model problem
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(3.120 - 3.122). The holomorphic factor E(z) has no relevance to the setting of the Riemann-
Hilbert problem in the ξ -plane; it will be restored latter on, when we start actually assembling the
parametrix for S(λ) in Uδ .

Remark 4 It should be noticed that solution of the Riemann-Hilbert problem (3.120) - (3.122) is
not unique and is defined up to the transformation,

Φ(0)(ξ)→

1 0

κ 1

Φ(0)(ξ), (3.130)

where κ is an arbitrary complex number. As with the setting of the Riemann-Hilbert problem for
the global parametrix, this non-uniqness will not affect the construction of the approximate solution
to the S - RH problem. In fact, the uniqness can be formally achieved if the error O(ξ−1/2) in the
normalization condition (3.121) is replaced by the error O(ξ−1) . However, as it follows from the
explicit solution of the problem, which is presented in Appendix A, this error can not be achieved
for the generic value of a . It also can be observed, that with the help of the gauge transformation
(3.130) the normalization condition (3.121) at infinity can be replaced by the condition,

Φ(0)(ξ) =

(
I +O

(
1

ξ

))
ξ−

1
4
σ3

1
2 − i

2

1
2

i
2

 η−σ3ξ
a
4
σ3 , (3.131)

as ξ → ∞ . With this modification, the setting of the Riemann-Hilbert problem for the function
Φ(0)(ξ) will provide the uniqness property of its solution. We prefer, however, to stay with condition
(3.121) and keep in mind the possibility of the gauge transformation (3.130).

Similar to the model problems appearing in [14] and [29], the model problem (3.120) - (3.122)
admits an explicit solution in terms of the Bessel functions. In order to see this, let us make the
following simplifying substitution,

Φ(0)(ξ) = Ψ(0)(ξ)η−σ3ξ
a
4
σ3e−

1
2

√
ξσ3 . (3.132)

In terms of the function Ψ(0)(ξ) , the Riemann-Hilbert problem (3.120) - (3.122) reads:

• Ψ(0)(ξ) is analytic on C \ Γξ , Γξ = Γ0 ∪ Γ1 ∪ Γ2

• The jump conditions are described by the equations,

Ψ
(0)
+ = Ψ

(0)
− L(0) (3.133)

where L(0) = L0
k if ξ ∈ Γk , k = 0, 1, 2 , and

L
(0)
0 = η−σ3L0η

σ3 =

 0 1

−1 0

 , L
(0)
1,2 = η−σ3L1,2η

σ3 =

 1 0

e±
πia
2 1

 (3.134)
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• as ξ →∞ ,

Ψ(0)(ξ) = ξ−
1
4
σ3

1
2 − i

2

1
2

i
2

(I +O

(
1√
ξ

))
e

1
2

√
ξσ3 (3.135)

• as ξ → 0 ,

Ψ(0)(ξ) = B0

(
I +O(ξ)

)
ξ−

a
4
σ3C0 (3.136)

where B0 is related with the matrix B from (3.123) by the relation,

B0 = Bησ3 , (3.137)

and the piece-wise constant matrix - valued function C0 is defined by the equations,

C0 =

(
1 1

2i sin πa
2

0 1

)


(
1 0

−e
iπa
2 1

)
−π

2 − 2θ < arg ξ < π
4 − 2θ,

(
1 0

e−
iπa
2 1

)
3π
4 − 2θ < arg ξ < 3π

2 − 2θ,

I π
4 − 2θ < arg ξ < 3π

4 − 2θ,

(3.138)

As before, the condition at ξ = 0 can be replaced by

Ψ(0)(ξ) = O(1)ξ−
a
4
σ3O(1), ξ → 0. (3.139)

The problem is depicted in the Figure 8.

−Γ0

+
0

Γ1

Γ2

(
1 0

e−πi
γ
2 1

)

(
0 1
−1 0

) (
1 0

eπi
γ
2 1

)

+ −

+
−

Figure 8: The contour and jump-matrices for the Ψ(0) - RH problem
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A distinguished feature of this Riemann-Hilbert problem is ξ - independence of its jump matri-
ces. Following the standard arguments (see e.g. [17]) we derive from this fact that the “logariphmic
derivative” of the solution Ψ(0)(ξ)) of the problem,

A(ξ) :=
dΨ(0)(ξ)

dξ
(Ψ(0)(ξ))−1,

is continious accross the contour Γξ and hence is analytic on C\{0} . Moreover, the (differentiable
in ξ !) asymptotoc expansions (3.135) and (3.136) tell us that,

A(ξ) =
1

4

0 0

1 0

+
1

4ξ

−1 1

0 1

+ ξ−
1
4
σ3O

(
1

ξ

)
ξ

1
4
σ3 , (3.140)

as ξ →∞ , and

A(ξ) = − a

4ξ
B0σ3B

−1
0 . (3.141)

as ξ → 0 . Combaining these estimates with the analyticity of A(ξ) on C \ {0} , we arrive at the
conclusion that A(ξ) is a rational function admiting the following representation,

A(ξ) =
1

4

0 0

1 0

+
1

4ξ

α 1

β −α

 , (3.142)

where a and b are some complex numbers satisfying (as it follows from (3.141)) the determinant
constraint,

α2 + β = a2.

Using the gauge transformation (3.130) with κ = −α we can actually eliminate the diagonal entries
of the matrix A(ξ) and reduce A(ξ) to the form,

A(ξ) =
1

4

0 0

1 0

+
1

4ξ

 0 1

a2 0

 . (3.143)

Hence, the solution of the Riemann-Hilbert prioblem (3.133) - (3.136), if exists, can be choosen in
such a way that it satisfies the matrix linear differential equation,

dΨ(0)(ξ)

dξ
=

1

4

 0 1
ξ

1 + a2

ξ 0

Ψ(0)(ξ). (3.144)

Put
ψ1(ξ) := Ψ

(0)
1j (ξ), ψ2(ξ) := Ψ

(0)
2j (ξ),

for j = 1 or j = 2 . Then from (3.144) it follows that

ψ2(ξ) = 4ξ
dψ1(ξ)

dξ
, (3.145)
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while the function ψ1(ξ) satisfies the second order linear ODE,

d2ψ1

dξ2
+

1

ξ

dψ1

dξ
− 1

16ξ

(
1 +

a2

ξ

)
ψ1 = 0. (3.146)

By the change of variables,

z =
i

2

√
ξ, ψ1(ξ) = y(z),

equation (3.146) becomes the standart Bessel equation,

d2y

dz2
+

1

z

dy

dz
+

(
1− a2

4z2

)
y = 0. (3.147)

Therefore, for the solution of the model Riemann-Hilbert problem (3.133) - (3.136) the following
ansatz might be suggested,

Ψ(0)(ξ) =

1 0

0 4ξ


 H

(2)
−a/2

(
i
2

√
ξ
)

H
(1)
−a/2

(
i
2

√
ξ
)

d
dξH

(2)
−a/2

(
i
2

√
ξ
)

d
dξH

(1)
−a/2

(
i
2

√
ξ
)
C(0),

where H
(1,2)
−a/2(z) are the Hankel functions forming a basis for the solution space of (3.147), and C(0)

is the constant matrix whose choice could depend on the sector on the ξ - plane. Next proposition
specifies exactly how the matrix C(0) should be chosen.

Proposition 5 The following formulae define a solution of the problem (3.133) - (3.136).

Ψ(0)(ξ) =

√
π

2

1
2 0

0 2ξ


 H

(2)
−a/2

(
i
2

√
ξ
)

H
(1)
−a/2

(
i
2

√
ξ
)

d
dξH

(2)
−a/2

(
i
2

√
ξ
)

d
dξH

(1)
−a/2

(
i
2

√
ξ
)
 e

πia
4
σ3

×



I −π
2 − 2θ < arg ξ < π

4 − 2θ,

(
1 0

2 cos πa2 1

)
3π
4 − 2θ < arg ξ < 3π

2 − 2θ,

(
1 0

e
iπa
2 1

)
π
4 − 2θ < arg ξ < 3π

4 − 2θ,

(3.148)

which in addition satisfies the following specification of the asymptotic condition (3.135),

Ψ(0)(ξ) = ξ−
1
4
σ3

(
I +

1√
ξ

Ψ1 +O

(
1

ξ

))1
2 − i

2

1
2

i
2

 e
1
2

√
ξσ3 , (3.149)

where the constant matrix Ψ1 is off-diagonal and is given by the equations,

Ψ1 =

 0 ψ1

ψ1 − 1 0

 , ψ1 =
1− a2

4
. (3.150)
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The proof of the proposition is based on the known algebraic and asymptotics properties of the
Hankel functions and it is presented in detail in Appendix A.

Having constructed the function Ψ(0)(ξ) and hence the solution of the model problem Φ(0)(ξ)
the local parametrix at the point λ = 0 is defined by the equations,

P (0)(λ) = E(λ)Φ(0)(ξ(λ))

(
λ

ξ(λ)

)a
4
σ3

(3.151)

Taking into account the holomorphicity of E(λ) in Uδ (see (3.128)), we conclude that inside of
the neighborhood Uδ , the function P (0)(λ) has exactly the same jumps as the solution of the S -

problem is supposed to have. Indeed, just as it is with the function E(λ) , the right factor
(

λ
ξ(λ)

)a
4
σ3

is holomorphic in Uδ and replaces the functions ξ±
a
4
σ3 in the Φ(0) - jump matrix (3.120) by the

functions λ±
a
4
σ3 . In this way, the Φ(0) - jump matrix (3.120) transforms into S -jump matrix

(3.119). By the same reason, the singular factors of the right hand side of (3.122) transforms into
the singular factors of the right hand side of (3.102). In other words, if S(λ) is the solution of the
S - problem, then

S(λ)[P (0)(λ)]−1 = holomorphic function in Uδ . (3.152)

At the same time, on the boundary of the neighborhood, ξ(λ)→∞ as m,n→∞ . Therefore, the
function Ψ(0)(ξ(λ)) can be replaced there by its asymptotics (3.149), and we can see that on the
boundary of the neighborhood the following matching relation with the global parametrix P (gl)(λ)
takes place (cf. (3.127)).

P (0)(λ) =

(
I +

1√
ξ(λ)

λ−
1
4
σ3Ψ1λ

1
4
σ3 +O

(
1

r2

))
P (gl)(λ), λ ∈ ∂Uδ, n2 +m2 →∞. (3.153)

We notice that again the factor
(

λ
ξ(λ)

)a
4
σ3

was important in bringing the leading asymptotic term

of (3.121) to the form of (3.127).
Near the point λ = 0 , the parametrix P (0)(λ) admits the representation (cf. (3.89)),

P (0)(λ) = P̂ (0)(λ)λ−
a
4
σ3Cλ

a
4
σ3e−

1
2
h0(λ)σ3 . (3.154)

In the last step of our evaluation of the asymptotics of the function Za we will need to know exactly
the matrix P̂ (0)(0) . The explicit formula for this object is presented in the following proposition.

Proposition 6 The matrix factor P̂ (0)(0) in the right hand side of (3.154) is given by the equa-
tions,

P̂ (0)(0) = ∆
1
2
σ3B∆−

a
2
σ3 =


−2a

√
π

ηaΓ(−a2 )
∆

1
2
−a

2 −2−a−2 iη√
π

Γ
(
−a

2

)
∆

1
2

+a
2

2a
√
π

ηΓ(−a2 )
∆−

1
2
−a

2 −2−a−2 iηa√
π

Γ
(
−a

2

)
∆−

1
2

+a
2

 , (3.155)

where
∆ = 2(m− in) (3.156)

The proof of the proposition needs some extra work with the Bessel functions, and it is moved to
Appendix B.
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3.5 Parametrix at λ =∞ .

The construction of the parametrix at λ = ∞ can be done in a complete analogy with the con-
struction of the parametrix at λ = 0 . However, we can considerably reduce the calculations by
using the symmetry of the problem with respect to the map λ 7→ 1/λ̄ .

Let U1/δ be the image of Uδ under the map λ 7→ 1/λ̄ . We assume that the pieces of the
contours Σk inside of the neighborhood U1/δ are the images, under the map λ 7→ 1/λ̄ , of the
respective pieces of Σk inside of the neighborhood Uδ . We notice, that the map preserves the
orientations of the contours: the “+” - side of Σk ∩Uδ goes to the “+” side of Σk ∩U1/δ and the
“-” - side of Σk ∩ Uδ goes to the “-” side of Σk ∩ U1/δ . Secondly, we observe that

h0

(
1

λ̄

)
= h∞(λ) + iπ(m+ n). (3.157)

We also notice that arg 1/λ̄ = arg λ and hence the branches of all the power functions are preserved,
and, in particular, √

1

λ̄
=

1√
λ

Consider now again the zero parametrix P (0)(λ) . By construction, it solves the following local
RH problem in the neighborhood Uδ .

• P (0)(λ) is analytic in Uδ \
(

Σk ∩ Uδ
)

• The jump condition is described by the equation,

P
(0)
+ (λ) = P

(0)
− (λ)e

1
2
h0(λ)σ3λ−

a
4
σ3Lkλ

a
4
σ3e−

1
2
h0(λ)σ3 , λ ∈ Σk ∩ Uδ (3.158)

• as λ→ 0 ,

P (0)(λ) = P̂ (0)(λ)λ−
a
4
σ3Cλ

a
4
σ3e−

1
2
h0(λ)σ3 , (3.159)

where the matrix-valued function P̂ (0)(λ) is holomorphic at λ = 0 .

• on the boundary of Uδ , the following matching relation with the global parametrix (3.110)
takes place,

P (0)(λ) =

(
I +O

(
1

r

))
P (gl)(λ), λ ∈ ∂Uδ, n2 +m2 →∞, (3.160)

which , in fact, can be specified as it is indicated in (3.153).

The problem is depicted in Figure 9.
Let us indicate explicitly the dependence of the parametrix P (0)(λ) and the matrices L and

C on the parameter a , i.e., we put,

P (0)(λ) ≡ P (0)(λ; a), L ≡ L(a), C ≡ C(a).

We argue, that the parametrix at λ =∞ can be defined by the equation,

P (∞)(λ) = σ1P (0)

(
1

λ̄
;−a

)
(3.161)

We have to check that so defined matrix-valued function solves the following local RH problem in
the neighborhood of infinity, U1/δ .
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Figure 9: The local P (0) - and P (∞) - RH problems

• P (∞)(λ) is analytic in U1/δ \
(

Σk ∩ U1/δ

)
• The jump condition is described by the equation,

P
(∞)
+ (λ) = P

(∞)
− (λ)e

1
2
h∞(λ)σ3λ−

a
4
σ3Lkλ

a
4
σ3e−

1
2
h∞(λ)σ3 , λ ∈ Σk ∩ U1/δ (3.162)

• as λ→∞ ,

P (∞)(λ) = P̂ (∞)(λ)λ−
a
4
σ3Cλ

a
4
σ3e−

1
2
h∞(λ)σ3 , (3.163)

where the matrix-valued function P̂ (∞)(λ) is holomorphic at λ =∞ .

• on the boundary of U1/δ , the following matching relation with the global parametrix (3.110)
takes place,

P (∞)(λ) =

(
I +O

(
1

r

))
P (gl)(λ), λ ∈ ∂U1/δ, n2 +m2 →∞. (3.164)

The problem is depicted in the same Figure 7.
The first condition is trivial; indeed, we have already indicated that under the map λ 7→ 1/λ̄

the segments Σk ∩ U1/δ become the segments Σk ∩ Uδ with the preservation of the respective
sides of the segments. In order to check the jump relations (3.162), we should use (3.157) and the
obvious equation,

Lk(−a) = Lk(a) ≡ Lk. (3.165)
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We would have that (taking into account that m+ n is even),

P
(∞)
+ (λ) = σ1P

(0)
+

(
1

λ̄
;−a

)

= σ1P
(0)
−

(
1

λ̄
;−a

)
e

1
2
h∞(λ)σ3+ 1

2
iπ(m+n)σ3λ−

a
4
σ3Lk(−a)λ

a
4
σ3e−

1
2
h∞(λ)σ3− 1

2
iπ(m+n)σ3

= P
(∞)
− (λ)e

1
2
h∞(λ)σ3λ−

a
4
σ3Lkλ

a
4
σ3e−

1
2
h∞(λ)σ3 , λ ∈ Σk ∩ U1/δ.

Since the matrix C satisfies the same relation (3.165) as the matrices Lk , we would have condition
(3.163) at λ =∞ with

P̂ (∞)(λ) = σ1P̂ (0)

(
1

λ̄
;−a

)
. (3.166)

Finally, we observe that

σ1P (gl)

(
1

λ̄
;−a

)
= σ1λ

σ3
4

1
2

i
2

1
2 − i

2

 η−σ3λ
a
4
σ3

= σ1λ
σ3
4 σ1σ1

1
2

i
2

1
2 − i

2

 η−σ3λ
a
4
σ3 = λ−

σ3
4

1
2 − i

2

1
2

i
2

 η−σ3λ
a
4
σ3 = P (gl)(λ)

Therefore, on the boundary of U1/δ , we have,

P (∞)(λ) =

(
I +O

(
1

r

))
σ1P (gl)

(
1

λ̄
;−a

)
=

(
I +O

(
1

r

))
P (gl)(λ), n2 +m2 →∞.

That is, the matching condition (3.164) is satisfied. This completes the proof that equation (3.161)
indeed defines a parametrix for the S - RH problem in the neighborhood of λ =∞ . It should be
also noticed that from (3.153) the similar specification of (3.164) follows,

P (∞)(λ) =

I +
1√
ξ
(

1
λ

)λ− 1
4
σ3σ1Ψ1(−a)σ1λ

1
4
σ3 +O

(
1

r2

)P (gl)(λ), λ ∈ ∂U1/δ, n2+m2 →∞.

(3.167)
In addition, formula (3.166), together with (3.155) implies the following expression for the

matrix P̂ (∞)(∞) .

P̂ (∞)(∞) = σ1P̂ (0)(0;−a) =


2−a

√
π

ηΓ(a2 )
∆̄−

1
2

+a
2 −2a−2 iηa√

π
Γ
(
a
2

)
∆̄−

1
2
−a

2

2−a
√
π

ηaΓ(a2 )
∆̄

1
2

+a
2 2a−2 iη√

π
Γ
(
a
2

)
∆̄

1
2
−a

2

 (3.168)
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3.6 Asymptotic solution of the S - RH problem

It is convenient to pass from the matrix-valued function S to the function (cf. (3.105)),

S̃(λ) =
[
Ŝ(∞)(∞)

]−1
S(λ). (3.169)

The function S̃(λ) satisfies the same S - RH problem except that the condition at infinity (3.99)
is replaced by the more standard condition,

• as λ→∞ ,

S̃(λ) =

(
I +O

(
1

λ

))
λ−

a
4
σ3Cλ

a
4
σ3e−

1
2
h∞(λ)σ3 , (3.170)

The solution S(λ) of the S - RH problem can be recovered from the solution S̃(λ) of the S̃ -
RH problem via the equation

S(λ) = MS̃(λ), (3.171)

where the matrix M is uniquely determined by the properties,

M =

(
• 0
• •

)
, MD =

(
1 •
0 1

)(
1 0
0 (−1)m

)
e−

iπ
2
nσ3 , (3.172)

where the matrix D is the left constant matrix factor in the representation of the solution S̃(λ)
at λ = 0 (cf. (3.89),

S̃(λ) = D
(
I +O(λ)

)
λ−

a
4
σ3Cλ

a
4
σ3e−

1
2
h0(λ)σ3 , (3.173)

¿From (3.172) it follows that

M12 = 0, M11 =
1

D11
e−

iπ
2
n, M21 = (−1)m+1e

iπ
2
nD21, M22 = (−1)me

iπ
2
nD11 (3.174)

This in turn means that

Ŝ
(0)
12 = M11D12 =

D12

D11
e−

iπ
2
n.

The last equation allows us to rewrite (3.103) in term of the S̃ - function,

Za = (−1)m+1e−iπn
D12

D11
= −D12

D11
, (3.175)

where we again took into account that m+n is even. We shall now present the asymptotic solution
of the S̃ - RH problem.

Define the piecewise analytic function,

S(as)(λ) =



P (0)(λ) λ ∈ Uδ,

P (∞)(λ) λ ∈ U1/δ,

P (gl)(λ) λ ∈ C \ (Uδ ∪ U1/δ),

(3.176)
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and consider the matrix ratio,

R(λ) = P̂ (∞)(∞)S̃(λ)[S(as)(λ)]−1. (3.177)

The function R(λ) is the piece-wise analytic matrix-valued function whose jump-contour is

ΣR = ∂Uδ ∪ ∂U1/δ ∪ Σ
(0)
1 ∪ Σ

(0)
2 , (3.178)

where Σ
(0)
1 and Σ

(0)
2 denote the segments of the rays Σ1 and Σ2 , respectively, included between

the curves ∂Uδ and ∂U1/δ . It should be noted that, since the functions S̃(λ) and the function

S(as)(λ) share the same jump matrices on the ray Σ0 and on the parts of the rays Σ1 and Σ2 which
are inside the neighborhoods Uδ and U1/δ , the function R(λ) is continuous across these pieces
of the contour Γ . On the contour ΣR , the function R(λ) solves the following Riemann-Hilbert
problem.

• R(λ) is analytic on C \ ΣR .

• The jump conditions are described by the equations,

1. as λ ∈ Σ
(0)
1 ,

R+(λ) = R−(λ)P gl(λ)

(
1 0

H−1(λ)ω−1
1 (λ) 1

)[
P gl(λ)

]−1
, (3.179)

2. as λ ∈ Σ
(0)
2 ,

R+(λ) = R−(λ)P gl(λ)

(
1 0

H(λ)ω−1
2 (λ) 1

)[
P gl(λ)

]−1
, (3.180)

3. as λ ∈ ∂Uδ ,

R+(λ) = R−(λ)P gl(λ)
[
P (0)(λ)

]−1
(3.181)

4. as λ ∈ ∂U1/δ ,

R+(λ) = R−(λ))P gl(λ)
[
P (∞)(λ)

]−1
(3.182)

• The function R(λ) is normalized by the conduition,

R(∞) = I (3.183)

It is also worth noticing that at the node points of the graph ΣR the function R(λ) is bounded
and its monodromy at each node point is trivial. The R - RH problem is depicted in Figure 10.

Let GR(λ) denote the R -jump matrix. Then, in view of Lemma 1, we have that there exists
a positive constant c0 such that

GR(λ) = I +O
(
e−c0r

)
, (3.184)

for all λ ∈ Σ
(0)
1 ∪ Σ

(0)
2 , as n,m → ∞ . Simultaneously, the estimates (3.160) and (3.164) imply

that

GR(λ) = I +O

(
1

r

)
, (3.185)
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Σ
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1

Figure 10: The contour for the R - RH problem

for all λ ∈ ∂Uδ ∪ ∂U1/δ , as n,m → ∞ . Taking into account (3.153) and (3.167), we can specify
estimate (3.185) as

GR(λ) = I +G
(0)
1 (λ) +O

(
1

r2

)
, G

(0)
1 (λ) ≡ 1√

ξ(λ)
λ−

1
4
σ3Ψ1λ

1
4
σ3 (3.186)

if λ ∈ ∂Uδ and

GR(λ) = I +G
(∞)
1 (λ) +O

(
1

r2

)
, G

(∞)
1 (λ) ≡ 1√

ξ
(

1
λ

)λ− 1
4
σ3σ1Ψ1(−a)σ1λ

1
4
σ3 (3.187)

if λ ∈ ∂U1/δ . We note that, because of the off-diagonal structure of the matrix Ψ1 (cf. (3.150)), the

matrix functions G
(0)
1 (λ) and G

(∞)
1 (λ) are holomorphic in Uδ \ {0} and U1/δ \ {∞} , respectively.

In their turn, asymptotic relations (3.184) and (3.185) yield the estimate,

||I −GR||L1(ΣR)∩L2(ΣR)∩L∞(ΣR) ≤
L

r
, r > 1, (3.188)

with some positive constant L . The standard arguments [13] (see also Theorem 1.5 in [19]) lead
then to the asymptotic relation,

R(λ) = I +O

(
1

(1 + |λ|)r

)
, n2 +m2 →∞, (3.189)

uniformly on every closed subset of CP 1 outside of the contour ΣR . Hence we arrive at the
following asymptotic representation of the solution of the S̃ - problem.

Theorem 5 . Let S̃(λ) be the solution of the S̃ - problem. Then,

S̃(λ) =
[
P̂ (∞)(∞)

]−1
(
I +O

(
1

(1 + |λ|)r

))
S(as)(λ), n2 +m2 →∞, (3.190)

uniformly on every closed subset of CP 1 outside of the contour ΣR .
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3.7 Asymptotics of Za . The completion of proof of theorem 1 for the case of
even n+m

The matrix factor D from (3.173) is given by the equation,

D =
[
P̂ (∞)(∞)

]−1
R(0)P̂ (0)(0). (3.191)

This, together with (3.189) yields at once the asymptotic equation,

D =
[
P̂ (∞)(∞)

]−1
(
I +O

(
1

r

))
P̂ (0)(0), n2 +m2 →∞. (3.192)

We will need, however, a more detail information about the structure of the estimate (3.192 ).

Proposition 7 .The matrix entries of R(0) satisfy the estimates,

R11(0) = 1 +O

(
1

r2

)
, R22(0) = 1 +O

(
1

r2

)
, R12(0) = O

(
1

r

)
, R21(0) = O

(
1

r

)
.

Proof. The matrix function R(λ) admits the following integral representation (see again [13], [19]),

R(λ) = I +
1

2πi

∫
ΣR

ρ(µ)(I −GR(µ))

µ− λ
dµ, λ ∈ C \ ΣR, (3.193)

where the matrix function ρ(λ) ≡ R−(λ) solves the singular integral equation,

ρ(λ) = I +
1

2πi

∫
ΣR

ρ(µ)(I −GR(µ))

µ− λ−
dµ, λ ∈ ΣR. (3.194)

In (3.194), the singular Cauchy operator in the right hand side is defined by the formula,

1

2πi

∫
ΣR

ρ(µ)(I −GR(µ))

µ− λ−
dµ := lim

λ′→λ, λ′∈− side of ΣR

∫
ΣR

ρ(µ)(I −GR(µ))

µ− λ′
dµ.

Equation (3.194) is considered as an equation in L2(ΣR) . ¿From the general theory (see again
[13]), it follows that estimate (3.188) implies the large r solvability of equation (3.194) (which, in
fact, we have a priori for all r > 0 ) and the estimate

||I − ρ||L2(ΣR) ≤
L

r
, r > 1. (3.195)

Applying this estimate to (3.193), we come to the conclusion that

R(0) = I +
1

2πi

∫
ΣR

(I −GR(λ))

λ
dλ+O

(
1

r2

)
, (3.196)

as n2 + m2 → ∞ . Taking into account (3.184) and (3.186), (3.187) we see that one can replace
in (3.196) the contour of integration by the union ∂Uδ ∪ ∂U1/δ , and the difference I −GR(λ) by

−G(0)
1 (λ) and −G(∞)

1 (λ) . In other words, we have that

R(0) = I − resλ=0
1

λ
G

(0)
1 (λ)− resλ=∞

1

λ
G

(∞)
1 (λ) +O

(
1

r2

)
, (3.197)
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and remembering the off-diagonal structure of the matrices G
(0)
1 (λ) and G

(∞)
1 (λ) , the proposition

follows.
Denote

pjk = (P̂ (0)(0))jk, qjk = (P̂ (∞)(∞))jk.

Then, taking into account that det P̂ (∞)(∞) = det P̂ (0)(0) = detB = i/2 (see (3.155) and (3.123),
we would have from (3.191) that

D11 = −2iq22p11

(
R11(0)− q12

q22
R21(0) +

p21

p11
R12(0)− q12p21

q22p11
R22(0)

)
, (3.198)

and

D12 = −2iq22p12

(
R11(0)− q12

q22
R21(0) +

p22

p12
R12(0)− q12p22

q22p12
R22(0)

)
, (3.199)

Using Proposition 7 and recalling explicit formulae for the matrices P̂ (∞)(∞) and P̂ (0)(0) , i.e.,
formulae (3.155) and (3.168), respectively, we derive from the equations (3.198) and (3.199) the
following estimates for the matrix entries D11 and D12 ,

D11 = −2iq22p11

(
1 +O

(
1

r2

))
, (3.200)

and

D12 = −2iq22p12

(
1 +O

(
1

r2

))
. (3.201)

Substituting (3.200) and (3.201) into (3.175) we obtain that,

Za = −p12

p11

(
1 +O

(
1

r2

))
,

or, looking one more time at (3.155),

Za = −i2−2a−2 η
2a

π
Γ2
(
−a

2

)
∆a

(
1 +O

(
1

r2

))
, n2 +m2 →∞. (3.202)

Taking into account the definition (3.117) of the branch of the argument of m − in and the
assumption that 0 < arg(m+ in) < π/2 , we see that

∆a = 2ae−
iπa
2 (n+ im)a,

and therefore,

η2∆a = 2a+1i sin
πa

2
(n+ im)a.

The last equation allows to rewrite (3.202) as

Za =

(
n+ im

2

)a 1

π
sin

πa

2
Γ2
(
−a

2

) a
2

(
1 +O

(
1

r2

))
, n2 +m2 →∞, (3.203)

Since,
1

π
sin

πa

2
Γ2
(
−a

2

) a
2

= −
Γ
(
−a

2

)
Γ
(
1 + a

2

) a
2

=
Γ
(
1− a

2

)
Γ
(
1 + a

2

) ,
equation (3.203) is equivalent (1.4) and hence Theorem1 is proven for the case of the even sum
n+m .

45



3.8 Extension to the general case.

We need to extend the validity of asymptotic formula (1.4) to the case of the odd value of the sum
n+m . It is obvious that this will be achieved if we, still assuming the evenness of the sum n+m ,
will be able to extract from the considerations of the previous sections not only the asymptotics
of fn,m but the asymptotics of the quantities fn+1,m or fn,m+1 as well. In order to have that, in
virture of equations (2.7), it is enough to find the asymptotic behavior of the discrete derivatives
un,m and vn,m .

We start with noticing that from (2.10) and (2.11) it follows that

un,m =
(Bn,m)11

(Bn,m)21
, (3.204)

and

vn,m =
(Cn,m)11

(Cn,m)21
. (3.205)

Matrices Bn,m and Cn,m , in their turn, can be determined through the left holomorphic factors
in the representations (2.21) and (2.26) of the function Ψn,m(λ) near the points −1 and 1 ,
respectively. Indeed we have,

Bn,m = −nΨ̂(−1)
n,m (−1)

0 0

0 1

[Ψ̂(−1)
n,m (−1)

]−1
, (3.206)

and

Cn,m = −mΨ̂(1)
n,m(1)

0 0

0 1

[Ψ̂(1)
n,m(1)

]−1
, (3.207)

If we trace all the transformations which we made when moving from the original monodromy
problem (2.31) - (2.34) to the final S - problem (3.96) - (3.102), we will easily find out that

Ψ̂(−1)
n,m (λ) = S(λ)

 1 0

−H(λ)ω−1
2 (λ) 1

1 0

0 (λ− 1)m

 ,

and

Ψ̂(1)
n,m(λ) = S(λ)

 1 0

−H−1(λ)ω−1
1 (λ) 1

1 0

0 (λ+ 1)n

 .

Taking into account that H(−1) = 0 and H−1(1) = 0 , we see that

Ψ̂(−1)
n,m (−1) = S(−1)

1 0

0 (−2)m

 ,

and

Ψ̂(1)
n,m(1) = S(1)

1 0

0 2n

 ,
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and hence equations (3.206) and (3.207) can be rewritten directly in terms of the function S(λ) ,

Bn,m = −nS(−1)

0 0

0 1

S−1(−1), (3.208)

and

Cn,m = −mS(1)

0 0

0 1

S−1(1). (3.209)

(We remind that we always suppress the indication of the dependence of S(λ) on n and m .) As a
consequence, the basic relations (3.204) and (3.205) for the discrete functions un,m and vn,m can
be replaced by the equations,

un,m =
(S(−1))12

(S(−1))22
, (3.210)

and

vn,m =
(S(1))12

(S(1))22
, (3.211)

¿From the formulae (3.171) and (3.177) it follows that the solution S(λ) of the S - RH problem
can be written in the form of the product,

S(λ) = M
[
P̂ (∞)(∞)

]−1
R(λ)S(as)(λ)

Taking into account (3.172) and (3.191), the last equation can be transformed into the relation,

S(λ) =

1 −fn,m

0 1

1 0

0 (−1)m

 e−
i/pi
2
nσ3
[
P̂ (0)(0)

]−1
R−1(0)R(λ)S(as)(λ),

which in turn implies that,

S(±1) = S(λ) =

1 −fn,m

0 1

1 0

0 (−1)m

 e−
i/pi
2
nσ3

×
[
P̂ (0)(0)

]−1
R(±)P (gl)(±1), (3.212)

where

R(±) = R−1(0)R(±1) = I +O

(
1

r

)
, r =

√
n2 +m2 →∞. (3.213)

When deriving (3.212), we have used the fact that ±1 /∈ C \ (Uδ ∪ U1/δ) and hence S(as)(±1) =

P (gl)(±1) in accord with definition (3.176) of the parametrix S(as) . It also should be noticed
that the matrix entries of R(±) admit the same type of specification of the estimate (3.213) as in
Proposition 7.

Equation (3.212) allows us to estimate the quantities (S(±1))12 and (S(±1))22 involved in
the formulae (3.210) and (3.211). To this end, we first notice that, as it follows from equation

47



(3.110) and the convention about the branches of the multivalued functions used in (3.110) (i.e.,
−π/2 < arg λ < 3π/2 ), we have that,

P (gl)(±1) =

 1
2ηe

σiπ
4

(a−1) − iη
2 e
−σiπ

4
(a+1)

1
2ηe

σiπ
4

(a+1) iη
2 e
−σiπ

4
(a−1)

 , (3.214)

where σ = 0 in the case P (gl)(1) and σ = 1 in the case P (gl)(−1) . Secondly, taking into account
that det P̂ (0)(0) = i/2 (cf. (3.123)), we can write

[
P̂ (0)(0)

]−1
= −2i

 p22 −p12

−p21 p11

 , pjk = (P̂ (0)(0))jk. (3.215)

Substituting (3.214) and (3.215) into (3.212) and skipping some strightforwrad though tedious
calculations, we arrive at the following representations for (S(±1))12 and (S(±1))22 .

(S(±1))12 = A− fn,mB, (S(±1))22 = B, (3.216)

where

A = −ηe−
iπ
2
n−σiπ

4
(1+a)

(
p22

(
R

(±)
11 − e

σiπ
2 R

(±)
12

)
− p12

(
R

(±)
21 − e

σiπ
2 R

(±)
22

))
, (3.217)

and

B = −η(−1)me
iπ
2
n−σiπ

4
(1+a)

(
−p21

(
R

(±)
11 − e

σiπ
2 R

(±)
12

)
+ p11

(
R

(±)
21 − e

σiπ
2 R

(±)
22

))
. (3.218)

Substituting, in turn, these equations into the right hand sides of formulae (3.210) and (3.211), we
obtain that (we remind that we are still assuming that m+ n is even),

un,m = −fn,m +
p22

(
R

(−)
11 − iR

(−)
12

)
− p12

(
R

(−)
21 − iR

(−)
22

)
−p21

(
R

(−)
11 − iR

(−)
12

)
+ p11

(
R

(−)
21 − iR

(−)
22

) ,
and

vn,m = −fn,m +
p22

(
R

(+)
11 −R

(+)
12

)
− p12

(
R

(+)
21 −R

(+)
22

)
−p21

(
R

(+)
11 −R

(+)
12

)
+ p11

(
R

(+)
21 −R

(+)
22

) ,
respectively. Remembering now equations (2.7), the last equations become in fact the equations
for fn+1,m and fn,m+1 , respectively. That is we have,

fn+1,m =
p22

(
R

(−)
11 − iR

(−)
12

)
− p12

(
R

(−)
21 − iR

(−)
22

)
−p21

(
R

(−)
11 − iR

(−)
12

)
+ p11

(
R

(−)
21 − iR

(−)
22

) , (3.219)

and

fn,m+1 =
p22

(
R

(+)
11 −R

(+)
12

)
− p12

(
R

(+)
21 −R

(+)
22

)
−p21

(
R

(+)
11 −R

(+)
12

)
+ p11

(
R

(+)
21 −R

(+)
22

) . (3.220)
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We are ready now to produce the asymptotic formulae for fn+1,m and fn,m+1 . Indeed, taking
from (3.155) the exact expressions for pjk we derive from (3.219) and (3.220) the relations,

fn+1,m = −i2−2a−2 η
2a

π
Γ2
(
−a

2

)
∆a 1− a

∆κ−

1 + a
∆κ−

, (3.221)

and

fn,m+1 = −i2−2a−2 η
2a

π
Γ2
(
−a

2

)
∆a 1− a

∆κ+

1 + a
∆κ+

, (3.222)

where

κ− =
R

(−)
11 − iR

(−)
12

R
(−)
21 − iR

(−)
22

, κ+ =
R

(−)
11 −R

(−)
12

R
(−)
21 −R

(−)
22

.

Using estimate (3.213) for the matrix entries of R(−) we see that

κ− = i+O

(
1

r

)
, κ+ = −1 +O

(
1

r

)
, r →∞. (3.223)

Simultaneously, we observe that

∆a = ∆a
1

(
1 +

2ia

∆1
+O

(
1

r2
1

))
, (3.224)

and

∆a = ∆a
2

(
1− 2a

∆2
+O

(
1

r2
2

))
, (3.225)

where we have introduced the notations,

∆1 := 2(m−i(n+1)), ∆2 := 2(m+1−in), r1 =
√

(n+ 1)2 +m2, and r2 =
√
n2 + (m+ 1)2.

Equations (3.223), (3.224), and (3.225) imply that

∆a 1− a
∆κ−

1 + a
∆κ−

= ∆a
1

(
1 +O

(
1

r2
1

))
,

and

∆a 1− a
∆κ+

1 + a
∆κ+

= ∆a
2

(
1 +O

(
1

r2
2

))
,

Therefore, formulae (3.221) and (3.222) generate the asymptotic equations,

fn+1,m = −i2−2a−2 η
2a

π
Γ2
(
−a

2

)
∆a

1

(
1 +O

(
1

r2
1

))
, r →∞ (3.226)

and

fn,m+1 = −i2−2a−2 η
2a

π
Γ2
(
−a

2

)
∆a

2

(
1 +O

(
1

r2
2

))
, r →∞ (3.227)

Comparing these equations with (3.202), we immediately conclude that

fn+1,m =
Γ
(
1− a

2

)
Γ
(
1 + a

2

) (n+ 1 + im

2

)a(
1 +O

(
1

(n+ 1)2 +m2

))
, r →∞ (3.228)

and

fn,m+1 =
Γ
(
1− a

2

)
Γ
(
1 + a

2

) (n+ i(m+ 1)

2

)a(
1 +O

(
1

n2 + (m+ 1)2

))
, r →∞. (3.229)

This proves Theorem 1 for an arbitrary parity of the value of the sum n+m .
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Figure 11: Discrete logarithm function L(n,m) as an orthogonal circle pattern. [Image by T. Hoff-

mann]

4 Discrete logarithm and Green’s functions

Considered in this paper discrete function Za with 0 < a < 2 can be used to construct discrete
analogs of logarithmic functions. The corresponding functions in the linear and nonlinear theories
of discrete holomorphic functions were constructed in [22] and [3] respectively. In this section we
present the corresponding results and derive the asymptotics of these functions.

The circle pattern described by a discrete logarithm function L(n,m) is presented in Figure
11. As it was shown in [3] it can be obtained from the discrete Za in the limit a → 0 by the
following formula (see [3, 7, 9] for more details):

L(n,m) = lim
a→0

Za(n,m)− 1

a
. (4.230)

There is another discrete version of the logarithmic function closely related to Green’s function
of the discrete Laplace operator on a isoradial graph, i.e. on a rhombic embedding of a quad-graph.
The system

zn+1,m − zn,m = wn+1,mwn,m, zn,m+1 − zn,m = iwn,m+1wn,m (4.231)

describes a relation between solutions zn,m of the cross-ratio equation (1.1) and solutions wn,m of
the Hirota equation

wn,mwn+1,m + iwn+1,mwn+1,m+1 − wn+1,m+1wn,m+1 − iwn,m+1wn,m = 0.

The geometric meaning of the Hirota variables is the following: for even n + m they are positive
w(n,m) ∈ R+ and describe the radii of the corresponding circles, for odd n+m they are unitary
w(n,m) ∈ S1 and describe the rotation angles at the intersection points of circles (see [7, 9] for
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details). We denote by W a(n,m) the Hirota function corresponding to the the discrete Za , i.e.
describing the radii and the rotation angles of the Za circle pattern. Then as it was shown in [7, 9]
the formula

`(n,m) =
d

da
W a−1(n,m)|a=1 (4.232)

describes the discrete logarithm function in the linear theory. The latter satisfies the discrete
Cauchy-Riemann equations

`(n,m+ 1)− `(n+ 1,m) = i(`(n+ 1,m+ 1)− `(n,m)).

At even n+m this is Green’s function of the discrete Laplace operator on an isoradial quad-graph
introduced by Kenyon [22].

Theorem 6 When r2 ≡ n2 + m2 → ∞ the following asymptotic formulas hold for the nonlinear
discrete logarithm (orthogonal circle pattern)

L(n,m) = log(n+ im) + γ − log 2 +O

(
log r

r2

)
, (4.233)

and for the linear Green’s function:

`(n,m) = log
√
n2 +m2 + γ + log 2 +O

(
log r

r

)
, n+m even, (4.234)

where γ is Euler’s γ .

Proof. The formal derivation of the asymptotic formulae (4.233) and (4.234) is easy. Asymptotics
(4.233) is obtained by a direct differentiation of estimate (1.4) with respect to a and putting then
a = 0 . To obtain the second formula we observe the identity W a(n,m) = |Zan+1,m−Zan,m| at even
n+m due to the mentioned above geometric interpretation in terms of the radii of the circles. After
that the asymptotics (4.234) is a result of a simple computation including again the differentiation
of estimate (1.4) with respect to a , this time at a = 1 . What is needed is the justification of the
legality of differentiation of estimate (1.4). To this end it is enough to establish the following two
facts: (a) the validity of estimate (1.4) for the complex values of a in the small neighborhoods of
the points a = 0 and a = 1 and (b) the analyticity of the map Za , at least for the large n2 +m2 ,
in these neighborhoods. In what follows we will show that these two facts indeed take place.

Applying to the Hankel asymptotic series the error term estimates (10.17.14) and (10.17.15)
from [25], one can arrive at the following bound to the error term in (3.149)∣∣∣∣O(1

ξ

)∣∣∣∣ ≤ √2π

64|ξ|
|a2 − 1||a2 − 9| exp

{
|a2 − 1|

4

√
2π

|ξ|

}
. (4.235)

This bound shows that the error term in (3.149) and, as a consequence, the error term in (3.153)
are uniform in the small complex neighborhoods of the points a = 0 and a = 1 . This in turn
implies the same uniformity of the estimates (3.185) - (3.187) for the jump matrix GR(λ) of the
R -RH problem. In addition, we notice that estimate (3.184) is also uniform with respect to the
complex a in the indicated neighborhoods in view of the equation,

η2ω−1
1,2 = e±

πia
2 λ

a
2 .
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This means that the key estimate (3.188) is valid for the complex a in the small neighborhoods
of a = 0 and a = 1 with the universal constant L and, as a consequence, that the final estimate
(3.189) for the solution R(λ) of the R - RH problem is uniform in these neighborhoods. This
uniformity is obviously inherited by the estimates for Rjk(0) given in Proposition 7. Let us notice
that

q12

q22
= − a

∆
,

p21

p11
= −p22

p12
= − a

∆
.

Therefore, the estimates (3.200), (3.201) and, as a consequence, our final result - estimate (3.202)
for the discrete map Za are uniform in the small complex neighborhoods of a = 0 and a = 1 .
Let us now show that the map Za is analytic in these neighborhoods.

The analyticity of Za with respect of a , in fact its meromorphicity, is an immediate corollary of
the formulae of Section 2.3. Indeed, equations (2.63) shows that the moments Hs are polynomials

in a and e
iπa
2 ; actually, they are linear functions in e

iπa
2 with polynomial in a coefficients. In

virtue of (2.62), the polynomials Pl(λ) are meromorphic in a and, in view of (2.59) so is the map
Za . We only have to be sure that a = 0 and a = 1 are not, at least for sufficiently large n2 +m2 ,
its poles. This is true and follows from (3.202). Together with the uniformity of this estimate in
a in the small neighborhoods of a = 0 and a = 1 this allows us to differentiate estimate (3.202)
which is equivalent to (1.4) with respect to a . The proof of Theorem 6 is completed.

Remark 5 In order to be able to exploit the analyticity - uniformity arguments for justification of
the differentiation with respect to a when deriving (4.234), one can use the formula,

d

da
W a(n,m) = W a(n,m)<

(
d

da
log
(
Zan+1,m − Zan,m

))
,

which is valid for real a .

Formula (4.234) is the asymptotics of the discrete Green function derived by Kenyon [22].
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5 Appendix A. Proof of Proposition 5

The proof is formal: we will just check that the function Ψ(0)(ξ) determined by the right hand
side of the formula (3.148) solves the Riemann-Hilbert problem (3.133) - (3.136).

First we check the jump relations. The correct jumps across the rays Γ1 and Γ2 follows
immediately from the definition (3.148). Consider then the jump across the ray Γ0 . We have,

Ψ
(0)
+ (ξ) =

√
π

2

1
2 0

0 2ξ


 H

(2)
−a/2

(
i
2

√
ξ+

)
H

(1)
−a/2

(
i
2

√
ξ+

)
d
dξH

(2)
−a/2

(
i
2

√
ξ+

)
d
dξH

(1)
−a/2

(
i
2

√
ξ+

)
 e

πia
4
σ3
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and

Ψ
(0)
− (ξ) =

√
π

2

1
2 0

0 2ξ


 H

(2)
−a/2

(
i
2

√
ξ−
)

H
(1)
−a/2

(
i
2

√
ξ−
)

d
dξH

(2)
−a/2

(
i
2

√
ξ−
)

d
dξH

(1)
−a/2

(
i
2

√
ξ−
)
 e

πia
4
σ3

×
(

1 0
2 cos πa2 1

)
The ray Γ0 is the cut for all the multivalued functions involved. In particular,√

ξ− =
√
ξ+e

iπ.

The Hankel functions H
(1,2)
ν (z) are defined on the universal covering of C \ {0} and satisfy there

the relations (see e.g. [5]),
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ν (zeiπ) = −e−iπνH(2)

ν (z), H(1)
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ν (z), (5.236)

H(2)
ν (ze−iπ) = −eiπνH(1)

ν (z), H(2)
ν (zeiπ) = 2 cosπνH(2)

ν (z) + eiπνH(1)
ν (z). (5.237)

Therefore,
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,

and the above formula for Ψ
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− (ξ) can be rewritten as,

Ψ
(0)
− (ξ) =

√
π

2

1
2 0

0 2ξ


 e−

iπa
2 H

(1)
−a/2

(
i
2

√
ξ+

)
−e

iπa
2 H

(2)
−a/2

(
i
2

√
ξ+

)
e−

iπa
2

d
dξH

(1)
−a/2

(
i
2

√
ξ+

)
−e

iπa
2

d
dξH

(2)
−a/2

(
i
2

√
ξ+

)

 1 0

−2e−
iπa
2 cos πa2 1



×e
πia
4
σ3

(
1 0

2 cos πa2 1

)
,
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¿From (5.238) it follows that,
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Thus the function Ψ(0)(ξ) defined by (3.148) satisfies all the prescribed jump condition. Next, we
have to prove the asymptotics (3.135) and (3.136). Consider (3.135) first.

The large z behavior of the Hankel functions is given by the classical formulae (see [5] and
[25]),

H(1)
ν (z) =

√
2

πz
ei(z−

νπ
2
−π

4 )
(

1 +O

(
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, (5.239)

z →∞, −π < arg z < 2π,

and
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, (5.240)

z →∞, −2π < arg z < π.

We remind that these asymptotics are uniform in every sub-sector of the indicated sectors on the
universal covering of C \ {0} . We shall also assume that i = eiπ/2 in the all arguments of the

Hankel functions H
(1,2)
−a/2

(
i
2

√
ξ
)

. Consider the closed sector between the rays Γ0 and Γ1 , i.e.,
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2
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4
− 2θ. (5.241)

For all 0 ≤ θ ≤ π/2 we have that
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≤ arg ξ ≤ π

4
,
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and hence
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8
,
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√
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8
.

Therefore, in sector (5.241) and for all θ we can use for the functions H
(1,2)
−a/2

(
i
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√
ξ
)

formulae

(5.239-5.240). This gives the following asymptotic representations for these functions and their
derivatives as ξ →∞, −π
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H
(1)
−a/2

(
i

2

√
ξ

)
= −i 2√

π
e
πia
4 ξ−

1
4 e−

1
2

√
ξ

(
1 +O

(
1√
ξ

))
, (5.242)
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In the same sector, the function Ψ(0)(ξ) is given by the equation (cf. (3.148),
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Combaining this formula with equations (5.242) - (5.245) we arrive at the desired large ξ behavior
of Ψ(0)(ξ) in the sector (5.241). Indeed, substituting (5.242) - (5.245) into the right hand side of
(5.246)and performing the trivial matrix multiplications, we have,
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Next we consider the sector between the rays Γ1 and Γ2 , i.e.,

π

4
− 2θ ≤ arg ξ ≤ 3π

4
− 2θ. (5.248)

For all 0 ≤ θ ≤ π/2 we have that
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4
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4
,
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and hence
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8
, (5.249)

while
π

8
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√
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8
.

Therefore, in sector (5.248) and for all θ we can again use for the functions H
(1,2)
−a/2

(
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√
ξ
)

formulae

(5.239-5.240). The function Ψ(0)(ξ) , however, is now given by the equation (cf. (3.148),
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Therefore, instead of (5.247, we shall get now,
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ξ →∞, π

4
− 2θ ≤ arg ξ ≤ 3π

4
− 2θ.

At the same time, in the sector (5.248) we have inequality (5.249). Therefore, in the asymptotic
formula (5.251) the lower triangular matrix in the right hand side can be droped, and we arrive at
the desired large ξ behavior of the function Ψ(0)(ξ) in sector (5.248).

Finally, we consider the sector between the rays Γ2 and Γ0 , i.e.,

3π

4
− 2θ ≤ arg ξ ≤ 3π

2
− 2θ. (5.252)

This time, for all 0 ≤ θ ≤ π/2 we have that
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2
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and
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.

This means that we can continue to use asymptotic formula (5.239) for the function H
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,

but can not use formula (5.240) for the function H
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. At the same time, in sector (5.252),
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the function Ψ(0)(ξ) , is given by the equation (see again (3.148),
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Observe now that from the second equation in (5.236) it follows that
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Hence formula (5.254) can be rewritten as,
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We also observe that
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This means, that we can use in the sector (5.252) formula (5.239) for the both H
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−a/2 - functions

in (5.255), i.e., for the function H
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gives us in the sector (5.252), in addition to (5.242) and (5.243), the asymptotic equations (cf.
(5.244) and (5.245)),
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as ξ → ∞ . Substituting these estimates, together with the estimates (5.242) and (5.243), into
(5.255) we obtain the desired large ξ behavior of the function Ψ(0)(ξ) in sector (5.252). Indeed,
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we have that (cf. (5.247)),
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This completes the proof of the fact that the function Ψ(0)(ξ) given by the formula (3.148) satisfies
the asymptotic condition (3.135).

Let us now show that the asymptotic condition (3.135) can be actually written in the form
(3.149). To this end we need to calculate explicitly the term of order 1/

√
ξ in (3.135). This term,

as in fact the whole asymptitic series that can be written in the right hand side of (3.135), does
not depend on the sector in ξ -plane. Let us then choose the sector −π

2 − 2θ < arg ξ < π
4 − 2θ

where the function Ψ(0)(ξ) is given by formula (5.246). We will need the first corrections to the
asymptotic equations (5.239) and (5.240). They are given by the formulae (see again [5] and [25] ),
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z →∞, −π < arg z < 2π,
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z →∞, −2π < arg z < π,

These formulae, in turn allow us to replace relations (5.242) - (5.245) by the following more detail
asymptotics,
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where 1 ψ1 = 1−a2
4 (cf.3.150). Substituting equations (5.261) - (5.264) into (5.246), we have that

(cf. (5.247))
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1 Actually the exact value of the coefficient ψ1 is not that important. What is important is that it is the same
value in all the eqautions (5.261) - (5.264), and that it appears in these equations where it appears.
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and this is the asymptotic equation (3.149).
To complete the proof of Proposition 5, it is enough to notice that the known expansions of

the Hankel functions H
(1,2)
ν (z) at z = 0 guarantee the behavior indicated in (3.139) and hence

the asymptotic condition (3.136). In fact, in Appendix B we derive representation (3.136) directly
from (3.148) and calculate explicitly the relevant matrix B0 , see equations (6.271) - (6.273) .

6 Appendix B. Proof of Proposition 6

The proof of Proposition 5 is based on one the basic properties of the Bessel equation, which is
the possibility, rooted in the relations (5.236) - (5.237) between the Hankel functions, to evaluated
explicitely the Stokes multipiers associated with the irregular singular point λ =∞ . The proof of
Proposition 6 exploits another fundamental property of the Bessel equation, which is the possibility
to solve explicitely the Connection Problem associated with the two singular points of the equation
- the regular point at λ = 0 and the irregular point at λ = ∞ . This possibility is bassed on the
classical relation between the Hankel and the Bessel functions (see again [5]),
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]
, (6.265)
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]
, (6.266)

Using (6.265), (6.266), we can transform formula (3.148) into the following representation of
the function Ψ(0)(ξ) which is more suitable for the study of its behavior near ξ = 0 .

Ψ(0)(ξ) =

√
π

2

1
2 0

0 2ξ

J(ξ)

e− iπa2 −e
iπa
2

−1 1

 e
πia
4
σ3 i

sin πa
2

×



I −π
2 − 2θ < arg ξ < π

4 − 2θ,

(
1 0

2 cos πa2 1

)
3π
4 − 2θ < arg ξ < 3π

2 − 2θ,

(
1 0

e
iπa
2 1

)
π
4 − 2θ < arg ξ < 3π

4 − 2θ,

(6.267)
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where we denote,

J(ξ) =

 J−a/2
(
i
2

√
ξ
)

Ja/2
(
i
2

√
ξ
)

d
dξJ−a/2

(
i
2

√
ξ
)

d
dξJa/2

(
i
2

√
ξ
)
 . (6.268)

Observing that e− iπa2 −e
iπa
2

−1 1

 e
πia
4
σ3

 1 0

e
iπa
2 1

 =

−2i sin πa
2 e

iπa
4 −e

iπa
4

0 e−
iπa
4

 ,

equation (6.267) can be rewritten in the form,

Ψ(0)(ξ) =

√
π

2

1
2 0

0 2ξ

J(ξ)
i

sin πa
2

×

−2i sin πa
2 e

iπa
4 −e

iπa
4

0 e−
iπa
4





(
1 0

−e
iπa
2 1

)
−π

2 − 2θ < arg ξ < π
4 − 2θ,

(
1 0

e−
iπa
2 1

)
3π
4 − 2θ < arg ξ < 3π

2 − 2θ,

I π
4 − 2θ < arg ξ < 3π

4 − 2θ,

(6.269)

Using the known convergent series expansions of the Bessel function Jν(z) at z = 0 (see again
[5]),

Jν(z) =
∞∑
j=0

(−1)j

j!Γ(ν + j + 1)

(z
2

)2j+ν
,

we derive from (6.269) the asymptotic representation of Ψ(0) at ξ = 0 . We have,

Ψ(0)(ξ) =


2a−2

√
π

Γ(1−a
2 )
e−

iπa
4 2−a−2

√
π

Γ(1+a
2 )
e
iπa
4

−2a−2 a
√
π

Γ(1−a
2 )
e−

iπa
4 2−a−2 a

√
π

Γ(1+a
2 )
e
iπa
4

(I +O(ξ)
)
ξ−

a
4
σ3

× i

sin πa
2

−2i sin πa
2 e

iπa
4 −e

iπa
4

0 e−
iπa
4





(
1 0

−e
iπa
2 1

)
−π

2 − 2θ < arg ξ < π
4 − 2θ,

(
1 0

e−
iπa
2 1

)
3π
4 − 2θ < arg ξ < 3π

2 − 2θ,

I π
4 − 2θ < arg ξ < 3π

4 − 2θ,

(6.270)
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Noticing that

i

sin πa
2

−2i sin πa
2 e

iπa
4 −e

iπa
4

0 e−
iπa
4

 =

2e
iπa
4 0

0 i
sin πa

2
e−

iπa
4


1 1

2i sin πa
2

0 1

 ,

and taking into account some of the basic properties of the Γ - function, we conclude from (6.270)
that, as ξ → 0 ,

Ψ(0)(ξ) =


−2a

√
π

aΓ(−a2 )
−2−a−2 i√

π
Γ
(
−a

2

)
2a

√
π

Γ(−a2 )
−2−a−2 ia√

π
Γ
(
−a

2

)
(I +O(ξ)

)
ξ−

a
4
σ3

×

1 1
2i sin πa

2

0 1





(
1 0

−e
iπa
2 1

)
−π

2 − 2θ < arg ξ < π
4 − 2θ,

(
1 0

e−
iπa
2 1

)
3π
4 − 2θ < arg ξ < 3π

2 − 2θ,

I π
4 − 2θ < arg ξ < 3π

4 − 2θ,

(6.271)

≡


−2a

√
π

aΓ(−a2 )
−2−a−2 i√

π
Γ
(
−a

2

)
2a

√
π

Γ(−a2 )
−2−a−2 ia√

π
Γ
(
−a

2

)
(I +O(ξ)

)
ξ−

a
4
σ3C0, (6.272)

where the matrix C0 is the same as in (3.136). The comparison of representation (6.272) with
equation (3.136), yields the following explicit formula for the matrix B0 in (3.136),

B0 =


−2a

√
π

aΓ(−a2 )
−2−a−2 i√

π
Γ
(
−a

2

)
2a

√
π

Γ(−a2 )
−2−a−2 ia√

π
Γ
(
−a

2

)
 , (6.273)

and the formula,

B =


−2a

√
π

ηaΓ(−a2 )
−2−a−2 iη√

π
Γ
(
−a

2

)
2a

√
π

ηΓ(−a2 )
−2−a−2 iηa√

π
Γ
(
−a

2

)
 , (6.274)

for the B -matrix in (3.123). We are now just one step from the formula for P̂ (0)(0) . Indeed, the
definition of P (0)(λ) (see equation (3.151) implies that

P̂ (0)(λ) = E(λ)Φ̂(0)(ξ(λ))

(
λ

ξ(λ)

)a
4
σ3

.

Therefore,

P̂ (0)(0) = ∆
1
2
σ3B∆−

a
2
σ3 , ∆ = 2(m− in), (6.275)

and equations (3.155) and (3.156) follow from (6.274).
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7 Appendix C. The a = 1 case

As it has already been indicated in Remark 2, in the case a = 1 the unique solution of (1.1) - (1.3)
is, as expected, fn,m = n+ im ≡ Za|a=1 . Correspondingly, un,m = 1 and vn,m = i for all n and
m . This in turn implies that, for all n and m , the matrices Un,m and Vn,m from the Lax pair
(2.5) are given by the simple formulae,

Un,m(λ) ≡ U(λ) =

1 −1

λ 1

 , Vn,m(λ) ≡ V (λ) =

 1 −i

iλ 1

 . (7.276)

The corresponding function Ψn,m(λ) is given by the equation (cf. (2.15)),

Ψn,m(λ) = UnV mλ−
1
4
σ3 . (7.277)

Matrices U and V are commute (as they should !) and their simultaneous diaganalization can be
written down as follows,

U(λ) = Q

1− i
√
λ 0

0 1 + i
√
λ

Q−1, V (λ) = Q

1 +
√
λ 0

0 1−
√
λ

Q−1, (7.278)

where

Q =

 1 1

i
√
λ −i

√
λ

 . (7.279)

Combining equations (7.278) with (7.277) we arrive at the following explicit (i.e., no growing with
n and m nontrivial matrix products) representation of the function Ψn,m in the case a = 1 .

Ψn,m(λ) = Q

(1− i
√
λ)n(1 +

√
λ)m 0

0 (1 + i
√
λ)n(1−

√
λ)m

Q−1λ−
1
4
σ3

= Q

1 0

0 (1 + λ)n(1− λ)m

 e−
iπ
2
nσ3eg(λ)σ3Q−1λ−

1
4
σ3 , (7.280)

where
g(λ) = m log(1 +

√
λ) + n log(i+

√
λ). (7.281)

The corresponding solution Y (λ) of Y - RH problem (2.50) - (2.52) is given by the equation,

Y (λ) = Q

 1
2 0

1
2H
−1
0 (λ) i√

λ
(−1)m

 e−
iπ
2
nσ3eg(λ)σ3 , (7.282)

where

H0(λ) =

(
1 +
√
λ

1−
√
λ

)m(
i+
√
λ

i−
√
λ

)n
. (7.283)
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We note that H−1
0 (±1) = 0 and hence the function (7.282), as it should, has no singularities on

C \ [0,−i∞) .
No analog of the equations (7.280) or (7.282) is known for the generic non-commutative case

a 6= 1 . However, as we have seen in the main text of the paper, the objects g(λ) and H0(λ) which
appear in the explicit formulae (7.282) for the solution of the Riemann-Hilbert problem (2.50) -
(2.52) in the trivial a = 1 case also play central roles in the asymptotic analysis of this problem in
the case of general a .

Remark 6 For generic a , one can attempt to modify ansatz (7.277) by replacing the factor λ−
1
4
σ3

by the factor λ−
a
4
σ3 . This would lead to the replacement of equation (7.282) by the equation,

Y (λ) = Q

 1
2 (−1)na−H0(λ)

1
2H
−1
0 (λ) (−1)ma+

 e−
iπ
2
nσ3eg(λ)σ3 , (7.284)

wherek

a± =
i

2
√
λ

(
±1− ie

iπ
2
aλ

1−a
2

)
.

The reader can easily check that the function Y (λ) defined by this formula would satisfy all the
conditions of the Rimeann-Hilbert problem (2.50) - (2.52) except it would not be analytic on C\Σ0 .
Indeed, since a− is not zero for all a 6= 1 the right hand side of (7.284 )has poles at λ = ±1 .
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