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This paper reports on an interview study conducted with four pre-service secondary teachers 

(PSSTs) for the purpose of understanding how symbolizing sets of outcomes supports 

opportunities for generalizing in the context of solving combinatorial problems. This paper 

examines opportunities for generalizing based on differences in symbolization as well as 

differences in PSSTs’ conceptualization of seemingly identical symbols. 
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Introduction with Supporting Literature 

The act of generalizing is central to mathematical reasoning because it is a primary vehicle 

for the construction of new mathematical knowledge (Amit & Klass-Tsirulnikov, 2005; Lannin, 

2005; Sriraman, 2003). As a result, “developing children’s generalizations is one of the principal 

purposes of school instruction (Davydov, 1972/1990, p. 10).” Current mathematics curricula and 

standards reflect this principal purpose (e.g., Hirsch, et. al., 2007; Lappan, et. al., 2006), and 

State and National standards focus on generalization (e.g., Council of Chief State School 

Officers, 2010; Indiana Academic Standards for Mathematics, 2014). 

Researchers studying combinatorics have identified symbolizing sets of outcomes as helpful 

for students to produce all possible outcomes (English, 1991, 1993; Nunes & Bryant, 1996); 

avoid, correct, and explain common counting errors (Lockwood, 2014); and establish when two 

ways of reasoning are isomorphic (Maher, Powell, & Uptegrove, 2010). Researchers 

investigating combinatorial reasoning have not yet explicitly examined how symbolizing sets of 

outcomes could support students’ opportunities for generalizing. Two reasons such an 

exploration is of interest in combinatorics are: (a) it is common for students to symbolize sets of 

outcomes for the same problem in different ways; and (b) it is common for students to symbolize 

sets of outcomes in ways that look identical, but their symbols have different meanings.  

Given these observations, the purpose of this paper is to examine differences in the way pre-

service secondary teachers (PSSTs)–who were student-participants in a teaching experiment–

symbolized sets of outcomes in their solution of combinatorics problems and to identify how 

these differences afforded and constrained their opportunities for generalizing. The following 

research questions guide this paper: 

1. What different opportunities for generalizing are available to PSSTs when they 

symbolize sets of outcomes for the same problem in different ways? 

2. What different opportunities for generalizing are available to PSSTs when they 

symbolize sets of outcomes in the same way but conceive of the symbols differently?   

Theoretical Perspectives 

We use the term symbolizing sets of outcomes to include the creation of graphic items (or the 

use of other figurative material) in the context of a student implementing her schemes (cf. Von 

Glasersfeld, 1995). We include in our definition items that are conventional ways of symbolizing 

a set of outcomes like a written or verbal list, a tree diagram, an array, or an empty slot as well as 
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non-conventional ways of symbolizing sets of outcomes like a drawing, tally marks, curved 

lines, or a demonstration with concrete materials. We follow Ellis (2007) in differentiating 

between generalizing actions and reflection generalizations. For the purposes of this paper, we 

consider symbolizing sets of outcomes to be a generalizing action, which is an action that 

precedes and may support a formal statement of generalization. Therefore, we focus on 

differences in the way PSSTs symbolized sets of outcomes and how such differences afforded or 

constrained opportunities for statements of generalization. We do this even in situations where 

students may not explicitly make formal statements of generalization.   

Methods and Methodology 

The data for this study was collected using teaching experiment methodology (Confrey & 

LaChance, 2000; Steffe & Thompson, 2000). The research team consisted of one university 

faculty member and six graduate students in mathematics education. Participants in the study 

were four PSSTs who were concurrently enrolled in their second mathematics methods course at 

a Midwestern university during the fall of 2018.  

Participants were paired for interview purposes, with each pair participating in 13 teaching 

episodes. Teaching episodes were conducted weekly, lasted 60-90 minutes, and were recorded 

with three cameras. Two cameras recorded the written work of each PSST, and a third captured 

the interaction between the teacher-researcher and the PSSTs. The goal of the first 9 teaching 

episodes was to help the PSSTs see combinatorial structure in common algebraic identities, with 

an aim at helping them gain a progressively more general understanding of the relationship 

between common algebraic identities and combinatorial structure (Tillema & Gatza, 2016; 

Tillema & Gatza, 2017). The remaining 4 episodes focused on how the PSSTs could use their 

work to teach a lesson sequence during their student teaching.  

Data analysis included the first and second author independently watching video segments 

from each of the four participants to analyze how symbolizing sets of outcomes afforded or 

constrained opportunities for generalizing. The first and second author then discussed their 

interpretations of these video segments until they reached a common interpretation. These 

interpretations were then shared with the third author and again discussed until there was a 

common interpretation. The example in this paper focuses on opportunities for generalizing 

based on PSSTs’ symbolizing sets of outcomes in a combinatorial situation where they were 

making meaning for the term 10x3y2 in the expansion of (x + y)5. We choose this example 

because the ten arrangements of three x’s and 2 y’s was not obvious to the PSSTs who had not 

yet developed a systematic way to count arrangements for middle terms in the identity (i.e., 

10x3y2, 10x2y3). 

Results and Discussion 

In this paper, we provide one example of how symbolizing a set of outcomes affords 

different opportunities for generalizing. This case highlights differences in the ways Olive and 

Aaron symbolized sets of outcomes. We will provide additional examples across the four PSSTs 

during the presentation. 

During the ninth teaching episode, Olive and Aaron generated a list related to the algebraic 

identity (A + B)5 = 1A5 + 5A4B + 10A3B2 + 10A2B3 + 5AB4 + 1B5. At this point in the study, Olive 

and Aaron had established: (a) that A and B were variables representing the number of possible 

options in a binary situation; (b) that each term on the right-hand side of the equivalence 

represented 5 selections of either variable A or variable B; and (c) that the coefficients 

represented the number of ways they could position the As or Bs in 5 slots (e.g., the number of 
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different ways to position 3 As and 2 Bs for the term A3B2). They, however, did not have a 

systematic way to count the arrangements of As and Bs for the middle terms of the identity (i.e., 

A3B2 and A2B3). The teacher-researcher pressed both PSSTs to show the different ways to 

arrange 3 As and 2 Bs.  

For the A3B2-term, Olive focused on the variable appearing fewer times, i.e. B (Figure 1). 

 

 
Figure 1: Olive’s representation of the 10 variations of A3B2. 

 

Olive’s way of symbolizing the set of outcomes communicated a systematic organization, and so 

the teacher-researcher asked Aaron to make a conjecture regarding Olive’s thinking. 

She fixed her Bs and then rotated where the other [second] B could be. Because you only 

have two Bs. She fixed [a B] in the first position and then moved [the fixed B] to the second 

position. But you know that you can’t have another B back in the first position because you 

already counted that for the first one. And then you keep working your way down, rotating 

over the fixed B and counting the other ways, knowing the others behind the fixed B were 

already counted.  

Olive agreed that Aaron had adequately explained her method. Without prompting, Olive 

symbolized her set of outcomes as 4 + 3 + 2 + 1 = 10. After accurately explaining Olive’s list, 

the teacher-researcher asked Aaron to explain his own (Table 1, left). 

  

Table 1: Aaron symbolizing outcomes 

Aaron’s original list of outcomes:  Aaron’s list emphasizing his thinking:  

    
    

 

Aaron explained that he focused on placing three x’s for the outcomes in the first column. He 

fixed two x’s in the first two positions and then rotated the third x through the remaining three 

positions (i.e., either position 3 or 4 or 5) (Table 1, right). In the second column, he repeated this 

process by fixing x in the first and third positions while rotating the third x through the remaining 

two positions. Aaron then fixed x’s in the first and fourth positions, placing the third x in the last 

position. Realizing he had exhausted possible arrangements with x in the first position, Aaron 

considered arrangements with y in the first position. At this point, Aaron’s thinking changed 

from placing x in three out of five positions to placing y in two out of five positions. Aaron stated 

“the y’s are easier to explain. I fixed the first y and started the other at the outside and just 

worked its way in.”  

Although Aaron interpreted Olive’s method before explaining his own, he did not seem to 

alter his explanation based on new insight provided by Olive’s method. We make this inference 

based on Aaron’s reaction to (a) Olive’s re-voicing of his thinking and (b) Olive subsequently 
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explaining how she could see her own structure in Aaron’s list. During Olive’s explanation, 

Aaron gestured between the two lists (i.e., Olive’s and his own) as if attempting to confirm the 

connection Olive suggested. 

Based on Aaron’s thinking, the total number of outcomes in his list could be symbolized as 

(3 + 2 + 1) + 4, where (3 + 2 + 1) represents arrangements when the x positions were 

foregrounded and 4 represents the foregrounding of the y positions. However, Aaron did not 

numerically symbolize his set of outcomes in either way; he simply wrote that there were 10 

ways. Writing 10, taken together with Aaron’s statement that “the y’s are easier to explain”, 

indicates that this mixed method of listing constrained his ability to easily symbolize a structure 

that he could subsequently generalize with algebraic notation.  

Response to Research Question 1 

Olive and Aaron worked on the same task; however, they symbolized the set of outcomes 

differently. Olive’s method explicitly demonstrated a process, but left the individual outcomes 

implied. The explicit nature of Olive’s listing method allowed Aaron to accurately infer the 

process she used and enabled Olive to independently translate her method into the sum 4 + 3 + 2 

+ 1 ways to produce the A3B2-term. Aaron, on the other hand, listed individual outcomes 

explicitly, switching processes part way through. When Aaron used numerical symbols for his 

solution he did not use them to show the structure of his reasoning; this is in part because he 

switched the process for generating outcomes as he created his list. We see these distinctions as 

affording differences in opportunities to generalize. Olive’s explanation suggested she could 

project how she would reason in new cases whereas Aaron’s explanation suggested he would 

have difficulty projecting his reasoning onto new cases. We took the PSSTs’ ability (or inability) 

to provide explanations that could be applied to new cases as a key indicator of opportunity to 

generalize. 

Response to Research Question 2 

Aaron generated his final four outcomes using a new strategy. Aaron could have continued to 

focus on the position of the x’s after exhausting outcomes with x in the first position. With this 

method, Aaron’s list (Figure 2) could be symbolized as (3 + 2 + 1) + (2 + 1) + (1)–i.e., as a sum 

of sums–with the partial sum (2 + 1) symbolizing the number of outcomes with the first x fixed 

in the second position, and the final partial sum (1) as symbolizing the number of outcomes with 

the first x fixed in the third position. 

 

 
Figure 2: Aaron’s list  

 

We see other students, who produce the same list as Aaron but conceive of their list as a sum of 

sums by persisting with focus on x’s, as afforded greater opportunity to generalize. 

Our data illustrates both that different ways of symbolizing sets of outcomes offer different 

opportunities to generalize and that different meanings for the same way of symbolizing a set of 

outcomes offers different opportunities to generalize. These findings support the conclusion that 

careful attention both to the way students symbolize sets of outcomes as well as to the meaning 

students have for the outcomes they have symbolized is crucial for teachers interested in 

supporting generalization in the domain of combinatorics.  
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