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We report our preliminary efforts to evaluate a departmental project: the inclusion of computational methods
across our undergraduate curriculum. Our overarching goal is for students to consider computational approaches
as a “normal” way to solve physics problems, on par with analytical approaches. In this paper, we focus on our
efforts to evaluate the development of our students’ attitudes and self-efficacy with respect to key computational
methods. We describe our efforts to develop and deploy a survey instrument students complete each semester.
This allows us to study, e.g., the points in the curriculum at which students gain confidence with particular
methods, or adopt more expert-like attitudes regarding computation in general. We investigated the reliability
of our instrument using a split-half process and found the Spearman-Brown coefficients for unequal length were
r = 0.818, r = 0.895, and r = 0.917 for the three constructs in our survey. We also provide preliminary data
from the early use of the survey and outline next steps for the project.
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I. INTRODUCTION

Over the last 20 years, much has been written about the
need to incorporate computational methods in the undergrad-
vate physics curriculum [1-7]. More recently, the impor-
tance of inculcating computational methods has been recog-
nized at the national level. In 2016, the American Association
of Physics Teachers (AAPT) released Recommendations for
Computational Physics in the Undergraduate Physics Cur-
riculum [8] and the APS-AAPT Joint Task Force on Under-
graduate Physics Programs released its final report, empha-
sizing the importance of computation as a career skill for
physics majors [9].

Despite this attention, only a few physics departments have
embraced computational methods at the level we envision;
Oregon State University [10] and Lawrence University [11]
are notable examples. We were also surprised by the apparent
lack of published instruments suited to evaluating the inclu-
sion of computation in the curriculum. The PICUP project
site [12] does not include any such tools, nor does PhysPort
[13]. Indeed, Caballero notes that there is an opportunity for
physics education researchers to support computational in-
struction through the development of computational assess-
ments [7]. It is this lack of assessment instruments we are
beginning to address. Our plan is to develop two instruments.
The first is focused on students’ attitudes and self-efficacy re-
garding computational methods. That instrument is the sub-
ject of this paper. The second will focus on students’ abilities
to use computational methods. Those interested in the first
instrument may contact the authors for access to the current
version.

To help readers understand the scope and constraints on our
efforts, we briefly describe our institutional context and the
broad outlines of our computational project in Section II. The
remainder of the paper will focus on our preliminary efforts
to evaluate our results. Section III will outline the methods
we used to develop the first of two planned instruments, in-
cluding efforts to establish validity and reliability. In sections
IV and V, we will present and discuss preliminary data gained
from this instrument, and Section VI will provide a summary
and outline our plans for the future.

II. CONTEXT

A. Institutional context

This work was completed at Indiana University Purdue
University Indianapolis (IUPUI), an urban, public university
located in downtown Indianapolis, IN. The department is of
moderate size: we have 10 tenured or tenure-track faculty
members, and three full-time lecturers. We offer B.S., M.S.,
and Ph.D. degrees.

Our undergraduate curriculum follows a traditional model,
including a two-course introductory sequence, a ‘“‘mod-
ern physics” course, two upper-level labs, and single
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semester treatments of intermediate mechanics, electrody-
namics, physical optics, quantum mechanics, and statisti-
cal physics. We also require a single semester of faculty-
mentored undergraduate research as a capstone.

B. The computational initiative

Beginning in 2016, the faculty began discussing efforts to
incorporate computational methods in the curriculum. From
the outset, our overarching goal has been that our gradu-
ates will consider computational approaches to be a ‘“nor-
mal” way to do physics. They should not consider the use
of computation to be an unusual technique set aside for “spe-
cial” problems, e.g. many-body physics. The initiative arose
as a “grassroots” effort, but was supported from the outset by
the department chair (one of the co-authors of this paper) and
the college administration.

We gained initial support in the form of an internal grant
from a campus center, [UPUI’s STEM Education and Inno-
vation Research Institute (SEIRI), supplemented by depart-
mental funds. SEIRI also provided the support of a postdoc
with evaluation experience to help us begin the effort reported
here. The grant was supplemented by department funds used
to support faculty travel to workshops hosted by the Partner-
ship for the Integration of Computation into Undergraduate
Physics (PICUP) [12], and to invite colloquium speakers who
had experience teaching computational physics in a variety of
contexts.

The first year of the project was devoted to expanding
our overarching goal into specific student learning outcomes
(SLOs), and to further establishing priorities, methods, and
responsibilities. We discussed issues such as whether a spe-
cialized computational physics course (or sequence) should
be developed, what skills and attitudes students should gain,
what, if any, computational platform should be preferred, and
how to assess the results. Some key conclusions were

1. We would incorporate computation in all courses.

2. Our primary focus must stay on physics, not coding.

3. Five SLOs describing skills and attitudes, e.g., students
should not be satisfied with working code, but should
use that code to “explore the physics.”

. A list of topics with which students should gain some
fluency, e.g., numerical integration, data analysis, and
using common tools such as Excel and MATLAB

. That we would need to develop at least two instruments
to evaluate the progress of the initiative.

C. Evaluation goals

The balance of this paper focuses on the first of two instru-
ments conceived in item 5, above. Our approach to eval-
uating our “normalizing” goal is to understand the path
students take in gaining confidence and skill with compu-
tational approaches. Discussions among the faculty led to a



plan to use a repeated survey technique that allows us to un-
derstand that path, both at the individual student level and in
aggregate.
The instrument was developed to address three primary

constructs:

* Affect regarding the value of computational methods

* Self-efficacy regarding 10 computational methods

* Students’ estimates of their initial ability on these same

10 methods
The survey was given to all students in physics majors’

courses at the end of the semester from Fall 2018 through
Spring 2021. The instructions specify that students should
complete the survey after each semester during which they
take one or more physics courses. Using this instrument, we
hope to be able to answer research questions such as “Do our
graduating students have expert-like attitudes regarding the
use of computational methods?”’; “At what points in the cur-
riculum do their attitudes shift from naive towards expert?”;
and similar questions focused on self-efficacy regarding par-
ticular skills.

III. METHODS

A. Instrument development

The development, review, and refinement of the present
instrument took place in three stages. First, initial items
were developed by project leaders and further discussed and
adjusted by the full group of faculty members in physics.
We worked until a consensus was reached that the instru-
ment could be used as an effective evaluation tool. The in-
strument begins with demographic questions (names, student
IDs, physics courses taken that semester). These are followed
by items asking students to rate their agreement with state-
ments related to computational physics, e.g., “Using compu-
tational methods helps me understand physics topics” (five-
point Likert scale). Students are then asked to rate both their
present and initial abilities on ten computational skills, e.g.,
numerical integration, on a 1-10 scale (initial is defined as “at
the time they began the program”). During the second stage
of development, the instrument was reviewed by an evalua-
tion expert with instrument development experience at SEIRI,
which resulted in a few items being reworded for better clar-
ity. This form of the instrument was used for 4 semesters of
data collection during the period of internal funding.

B. Validity and reliability

We sought preliminary evidence of content validity after
receiving further funding from NSF. Content validity evi-
dence involves examining the relationship between the instru-
ment content (e.g., themes, wording, item format, tasks, or
questions) and the construct it is intending to measure through
evaluations from expert judges, among other methods [14].
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We asked five content area experts from PICUP to provide
feedback on the overall structure of the instrument, as well its
clarity and completeness. There was agreement among the
experts that the items are examining what they are intended
to examine—students’ attitudes and self-efficacy concerning
computational methods. Some clarifications and additional
items were also suggested. For instance, several of the con-
tent experts agreed that the term “analytical methods” might
be confusing, particularly to beginning students. The phrase
“pencil and paper math” was added as a parenthetical ex-
planation. One item was dropped and four new items were
added, bringing the total number of items in this section from
six to nine. Finally, the order of the items asking students
to rate their skills was changed such that present skills were
rated before initial skills. This updated version was used in
the two most recent semesters of data collection.

We did not have data from the same participants on mul-
tiple occasions and thus were unable to examine test-retest
reliability. However, we were able to estimate internal con-
sistency by obtaining split-half correlation coefficients. This
method examines the agreement between different parts of a
measure by splitting scores into two halves and examining the
corrected correlation between the two halves, which serves as
an estimate of the reliability of the full-length measure [14].
Split-half correlations were respectively examined for the af-
fective, present skills, and initial skills item clusters. We used
an odd-even split, in which odd-numbered items are in one
subset and even-numbered items are in the other. This type of
split avoids any factors related to item order (e.g., participant
fatigue) from having an extraneous effect on the coefficient
by ensuring items from each portion of the measure are rep-
resented in each subset [15].

The Spearman-Brown coefficients for unequal length were
r = 0.814 for the affect questions, r = 0.895 for the present
skills items and » = 0.917 for initial skills items in the up-
dated instrument. Although there is debate on this topic, high
Spearman-Brown coefficients are thought to reflect better re-
liability, with some experts citing reliability coefficients of
0.7 to 0.8 or above being acceptable for research purposes
[16]. Based on these guidelines, the current instrument seems
to have reasonable internal consistency.

We should note that the value » = 0.814 above was ob-
tained for the most current version of the survey, used for two
semesters, with N = 130 respondents. The self-efficacy con-
struct was unchanged between versions, and had N = 323
respondents. For completeness, we also performed a split-
half analysis of the affect questions on the earlier version of
the survey, and found results that were consistent r» = 0.866.

C. Data analysis

The first section of the survey measures students’ attitudes
towards computational methods. Our approach is to begin
with a one-way ANOVA followed by Tukey’s HSD (honestly
significant difference) test [17]. In each case, we compare all



records from students who are completing a 100 level course,
200 level course, etc. If a student takes courses at multi-
ple levels in a given semester, we consider the highest level
course taken. In some cases, our results violated the assump-
tion of equal variances between groups. One-way ANOVAs
are typically quite robust [17] but since we have unequal
group sizes, this violation can be problematic. For the ques-
tions that violated this assumption, we applied a Welch cor-
rection [18]. For the follow-up test to the Welch corrected
ANOVA, we used the Games-Howell test [19], which is de-
signed for assumption violations but functions similarly to
Tukey’s HSD in that it produces results for all pairwise com-
binations of treatments (courses levels). Where we report
results that are statistically significant (p < 0.05), we also
report effect sizes using Hedge’s g, a measure similar to Co-
hen’s d, but suited to cases with different sample sizes [20].

D. Initial use

Each semester, about 2 weeks before final exams, a link to
the survey is sent to all students who are completing the tar-
geted courses. The instructions tell students that they will be
asked to complete the survey each semester, but that only one
copy is necessary if they are taking more than one physics
course. Participation is voluntary, and no incentives were of-
fered for participation.

This design allows us to measure the changes in students’
attitudes over time, both in the aggregate and as individuals.
Our response rates are reasonable, typically near 20%. We
note that selection effects may bias results, and that the sam-
ple size in upper level classes is low due to the size of our
major. As a result, we cannot yet observe statistically sig-
nificant results tracking individuals or single courses. Our
present data set allows us to find significant results when we
aggregate responses over students completing courses at the
100 level, 200 level, etc. (This roughly tracks students’ 1%
year classes, ond year, etc). We report those results, based on
6 semesters: Fall 2018 - 2020, and Spring 2019 - 2021. The
results are described in the next section.

IV. RESULTS
A. Attitudes

For this work, we analyzed the five affect questions that
were included in both the original and updated surveys. All
five produce statistically significant results in the ANOVA,
and most produce multiple significant results in the Tukey
HSD. As an example, we highlight this item “Computational
methods, experiments, and analytical solutions are equally
necessary in the field of physics,” phrased as 5-point Likert
scale. For convenience, we will refer to this item as “item
A1” (Affect 1).
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TABLE 1. Significance and effect size for pairwise comparisons
among course levels for item A1, organized by course level.

Course levels compared P g
100, 300 0.015 0.62
100, 400 0.040 0.74
200, 300 0.014 0.77
200, 400 0.036 0.91
Student responses to affect question 1
5
c o4
£
g
L3
G
]
)
o
1

100 Level 200 Level 300 Level 400 Level

FIG. 1. Students’ average responses to item Al grouped by highest
completed course level. Error bars are standard errors.

The omnibus one-way ANOVA showed a significant dif-
ference between class levels, F'(3,340) = 4.57,p = 0.001.
The Tukey HSD follow-up showed significant pairwise dif-
ferences in four of the 6 possible pairwise comparisons. The
results are detailed in Table I. The data is also illustrated in
Fig. 1. The numbers of respondents are N1gg = 183, Nogg =
132, N3gp = 23, Nagp = 12.

B. Competencies

The second portion of the survey asks students to rate their
present ability on a scale of 1 to 10 for ten computational
skills. Eight of the ten produce statistically significant results
in the ANOVA, and most produce multiple significant results
in the TukeyHSD. We highlight two of these competencies
here: use of MATLAB, and matrix operations. We respec-
tively designate these items “SE1” and “SE2” (self-efficacy
1 and 2). For item SEI, the omnibus one-way ANOVA re-
sults were Welch’s F'(3,40.750) = 22.658,p < 0.01. For
item SE2, we find F(3,41.465) 11.098,p < 0.01. As
above, the results for all statistically significant pairwise com-
parisons are summarized in Table II. The data is shown in
Fig. 2. The numbers of respondents to these questions were
Nipo = 166, Noogo = 128, N30 = 21, Nygo = 12.



TABLE II. Significance and effect size for pairwise comparisons
among course levels for items SE1 and SE2

MATLAB
Course levels compared p g
100, 200 <0.01 0.59
100, 300 <0.01 1.04
100, 400 <0.01 1.35
200, 400 <0.01 0.85
Matrix Operations
Course levels compared p g
100, 300 <0.01 0.82
100, 400 0.029 0.70
200, 300 <0.01 0.69
Present Self-Efficacy
1: = MATLAB Matrix operations

8 I

: I

6 I I
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2
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FIG. 2. Students’ responses to items SE1 and SE2 grouped by high-
est completed course level. Error bars are standard errors.

V. DISCUSSION

To date, our results suggest that our instrument is valid and
reliable at a basic level. After several stages of review and ad-
justment, faculty within and beyond the department agree that
the items are clear and focused on the desired constructs indi-
cating content validity. The split-half correlation coefficients
we obtained for each construct were over 0.8, indicating rea-
sonable internal consistency. We will continue our efforts to
establish validity and reliability in coming semesters.

The data presented above enables us to begin to address
our stated goal of understanding the path along which our stu-
dents develop the desired computational skills and attitudes.
Interpreting Hedge’s ¢ values is similar to Cohen’s d, with
most guidance characterizing g = 0.5 as a medium effect,
and g > 0.8 as a large effect [20]. By this standard, all three
examples described here, plus many others in our data, show
students making medium or large gains in adopting expert-
like attitudes and in increasing self-efficacy.

One notable observation is that some skills and attitudes
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appear to develop in a stepwise fashion between the 200 and
300 level. Results for item A1 presented in Table I and Fig. 1
develop this way. Likewise, the second table and figure show
that students’ self-efficacy with respect to matrix operations
(item SE2) also takes a substantial jump at this level. In con-
trast, students’ self-efficacy with respect to using MATLAB
(item SE1) develops more steadily, as shown in Table II and
Fig. 2. We see these trends in other questions not presented
here as well.

As we gather more data, we expect that this trend will
sharpen, and we will be able to investigate which courses at
each level are most responsible for these improvements. This
observation highlights one of the chief benefits this instru-
ment offers. It allows us to determine where in the curricu-
lum students’ gains are occuring, and to compare those gains
to the goals of the courses taken. If some courses seem to
underperform, corrective action can be considered. Similarly,
if certain courses produce large gains, it may be possible to
adopt the methods used in those classes to improve others.

VI. CONCLUSION

Our efforts are still at an early stage, but our results thus far
point towards some preliminary conclusions. We have devel-
oped an instrument intended to measure students’ attitudes
and self-efficacy towards computation, and we have estab-
lished content validity by involving experts in several rounds
of review of the instrument. Regarding reliability, we have
thus far established internal consistency by measuring split-
half correlation coefficients. Over several semesters use of
the instrument, we find that our students’ attitudes become
more expert-like as they progress through the curriculum, and
that their confidence with using computational methods also
grows, with effect sizes that are in many cases substantial.
We note that some of the measures we focus on grow steadily,
while others seem to take a particularly large step between the
200 and 300 level. We speculate that this is a result of the sig-
nificant step up in sophistication in our classes and decrease
in class size at that level.

As we continue to acquire data, we will soon be able to
look more closely at these developmental processes, identi-
fying the particular courses in which students make progress
on specific survey items. Additional data will also allow us
to more fully establish validity and reliability. Factor anal-
ysis will allow us to examine the instrument structure, and
correlating results from this instrument with data on student
performance in courses will help establish predictive validity.
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