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ABSTRACT

Over the past two decades, open systems that are described by a non-Hermitian Hamil-

tonian have become a subject of intense research. These systems encompass classical wave

systems with balanced gain and loss, semi-classical models with mode selective losses, and

lossy quantum systems. The rapidly growing research on these systems has mainly focused on

the wide range of novel functionalities they demonstrate. In this thesis, I intend to present

some intriguing properties of a class of open systems which possess parity (P) and time-

reversal (T ) symmetry with a theoretical background, accompanied by the experimental

platform these are realized on. These systems show distinct regions of broken and unbroken

symmetries separated by a special phase boundary in the parameter space. This separating

boundary is called the PT -breaking threshold or the PT transition threshold. We inves-

tigate non-Hermitian systems in two settings: tight binding lattice models, and electrical

circuits, with the help of theoretical and numerical techniques.

With lattice models, we explore the PT -symmetry breaking threshold in discrete real-

izations of systems with balanced gain and loss which is determined by the effective coupling

between the gain and loss sites. In one-dimensional chains, this threshold is maximum when

the two sites are closest to each other or the farthest. We investigate the fate of this thresh-

old in the presence of parallel, strongly coupled, Hermitian (neutral) chains, and find that

it is increased by a factor proportional to the number of neutral chains. These results pro-

vide a surprising way to engineer the PT threshold in experimentally accessible samples.

In another example, we investigate the PT -threshold for a one-dimensional, finite Kitaev

chain—a prototype for a p-wave superconductor— in the presence of a single pair of gain and

loss potentials as a function of the superconducting order parameter, onsite potential, and

the distance between the gain and loss sites. In addition to a robust, non-local threshold,

we find a rich phase diagram for the threshold that can be qualitatively understood in terms

of the band-structure of the Hermitian Kitaev model. Finally, with electrical circuits, we

propose a protocol to study the properties of a PT -symmetric system in a single LC oscil-

lator circuit which is contrary to the notion that these systems require a pair of spatially

separated balanced gain and loss elements. With a dynamically tunable LC oscillator with

13



synthetically constructed circuit elements, we demonstrate static and Floquet PT breaking

transitions by tracking the energy of the circuit. Distinct from traditional mechanisms to

implement gain and loss, our protocol enables parity-time symmetry in a minimal classical

system.
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1. INTRODUCTION

This chapter mainly contains already established theoretical framework of non-Hermitian PT

symmetry, to help set up the background, with one section containing original work published

in Acta Polytechnica conference proceedings.

My eight year old journey in exploring non-Hermitian physics probably began very similar

to almost all researchers currently in the field: which is the surprise one gets from conven-

tional teachings of quantum mechanics courses that Hamiltonians which describe a physical

system, need not be Hermitian to engender a real energy eigenvalue spectrum. This finding

took the physics community by storm in 1998 when Carl Bender and Stefan Boettcher pub-

lished their seminal paper describing a class of quantum Hamiltonians on a continuum line

that respect the combined parity (P) and time-reversal (T ) symmetries show a real eigen-

value spectrum [  1 ]. Their paper currently stands at 5513 citations (at the time of writing

this thesis) from various journals. Since then there have been hundreds of papers submitted

to arXiv under the topic of PT -symmetry every year. The interesting fact is that it was

only over a decade ago that experiments were designed to test some of the properties which

I intend to describe in thesis.

This thesis is divided into four chapters, where the first chapter introduces the various

concept I have learned and some important algebra pertaining to Non-Hermitian quantum

mechanics. The following chapters allude to the new work I have done. Figure  1.1 is

a pictorial representation of the thesis, where the bubbles in the blue section (above the

research bubble) indicate the background which will collate into the introduction chapter.

The bubbles in the red section indicate the chapters which include some of the published

and currently ongoing works I have had the opportunity to investigate.

1.1 Introduction to PT -symmetry

In the past two decades, there has been an explosion of research in the field of non-

Hermitian systems described by Hamiltonians which are invariant under the combined op-

eration of parity(P) and time-reversal(T ). Traditionally in quantum mechanics, the notion

of a closed system means that the system is described by a Hermitian Hamiltonian. This
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is good because Hermiticity guarantees that the energy levels are real and the time evolu-

tion operator of the system is unitary. This would mean that the bases states functions of

this system spans a Hilbert space implying that the position and momentum operators are

observables. More than two decades ago Bender et al. found that certain non-Hermitian

Hamiltonians with PT -symmetry engender a purely real spectra [  1 ], [  2 ]. It was only in the

last decade or so, that it has become clear that PT -symmetric systems can be reproduced

in open, semi-classical systems with balanced, spatially or temporally separated gain and

loss that are represented by complex real-space potentials [  3 ]–[ 5 ]. This idea has been the

inspiration of many research ideas including ours.

Ever since its first inception, PT -symmetry has emerged as a powerful tool to study open

classical or quantum systems. The theory is a complex extension of quantum mechanics,

based on a special class of non-Hermitian Hamiltonians which have a purely real spectra [ 1 ],

[ 2 ], [ 6 ], [ 7 ]. This class of Hamiltonians are invariant under the combined operations of

parity (P) and time-reversal (T ). We have now realized that PT -symmetric systems can

be represented by systems with balanced, spatially or temporally separated gain and loss

sites [ 3 ]–[ 5 ].

A special property of these Hamiltonians is that when the strength of the non-Hermiticities

is small relative to the energy scale of the Hermitian part, the spectrum is purely real. We

refer to this as the PT -symmetric phase. For large non-Hermiticities, the spectrum turns

into complex conjugate pairs which we refer as the PT -broken phase.

1.2 The Hamiltonian

To illustrate the properties of non-Hermitian physics we begin with a general 2 × 2

Hamiltonian,

H =

W + Z X − iY

X + iY W − Z

 ≡ W1+Xσx + Y σy + Zσz, (1.1)
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Figure 1.2. A comparison of the energy eigenvalue profiles and inner prod-
uct plots of eigenvectors for two simple yet significant model non-Hermitian
Hamiltonians. The top row demonstrate the flow of the (a) real and the (b)
imaginary parts of energy eigenvalues of H1 and overlap of its eigenstates while
(d)-(f) are the plots for the Hamiltonian H2. In these two cases, the red and
the blue lines show the variation of the real and imaginary parts of the energies
as the non-Hermitian gain-loss strength is increased, for δ/J = 0. The black
lines in the linear variation of the inner product starting from I.P. = 0 for
γ/J = 0 to I.P. = 1 for γ/J = 1. This is the exceptional point where the
eigenvectors are parallel to each other.

18



where W,X, Y, Z are complex coefficients, 1 denotes the identity matrix and σx,y,z are the

Pauli matrices. The eigenvalues for this non-Hermitian Hamiltonian are,

E1,2 = W ±
√
X2 + Y 2 + Z2, (1.2)

and the corresponding linearly independent eigenvectors are,

|E1,2〉 = 1
N1,2

(E1,2 −W + Z)/(X + iY )

1

 , (1.3)

where N1,2 is the appropriate normalization constant.

If the coefficients are real, it is evident that H = H†; i.e. the Hamiltonian is Hermitian

with a real energy eigenvalue spectrum. One can then see that if all the coefficients are

purely imaginary then this is an example of a trivially broken non-Hermitian Hamiltonian

with H = −H†. This is known as anti-Hermiticity. Here the eigenvalues are complex in

the entire parameter space. One must notice that in both these cases, that eigenvectors are

orthogonal everywhere.

Let us now consider the case when W = δ, X = −J and Z = iγ.

H1 =

δ + iγ −J

−J δ − iγ

 ≡ δ1− Jσx + iγσz. (1.4)

The construction of such a simple single particle Hamiltonian is motivated by its representa-

tion of two site (dimer) systems with complex on-site potentials and coupling between these

sites. Here δ represents the real symmetric potential while iγ represents the imaginary anti-

symmetric onsite potential and J is the strength of the coupling between two sites. This is

clearly a non-Hermitian model since H 6= H† with the non-Hermiticity in the z-component.

This model of a two site system model with balanced gain and loss as illustrated on the far

left of the first column of Fig. 1.2 .
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A comparison of the energy eigenvalue profiles and inner product plots of eigenvectors

with a contrasting non Hermitian Hamiltonians defined by:

H2 =

δ + iγ −J

−J −δ − iγ

 ≡ −Jσx + (δ + iγ)σz, (1.5)

where δ is detuning attached to the σz component. In Fig.  1.2 the top row demonstrate the

flow of the (a) real and the (b) imaginary parts of energy eigenvalues of H1 and overlap of

its eigenstates while (d)-(f) are the plots for the Hamiltonian H2. In these two cases, the

red and the blue lines show the variation of the real and imaginary parts of the energies as

the non-Hermitian gain-loss strength is increased, for δ/J = 0. The black lines in the linear

variation of the inner product starting from inner product I.P. = 0 for γ/J = 0 to I.P. = 1

for γ/J = 1. This is the exceptional point where the eigenvectors are parallel to each other.

Notice that for H1 a change in δ does not change the relative difference in the energies as

compared to the model described by H2. At the exceptional point, perturbing the system

by increasing δ, increases the energy gap proportional to
√
δ in the first order correction

to the eigenvalue. The perturbation series of eigenvalues of non-Hermitian Hamiltonians is

known as the Puiseux series  

1
 . This is different from the regular power series expansion for

Hermitian Hamiltonians where the first order correction is linear. This means that a system

described by a non-Hermitian Hamiltonian is more sensitive to perturbation. This idea is

the bases for making ultra sensitive sensors using non-Hermitian physics. In our current

example, n = 2. By definition the order of an exceptional point is the size of the Jordan

block.

Let us now look at the symmetries of this problem. We define the linear parity operator,

as P = σx and an anti-linear time reversal operator as T = ∗ where ∗ is the complex

conjugation operation and one can verify that PT H1,2PT = H1,2. This Hamiltonian is

PT -symmetric!

The next obvious question is that What are the conservation laws or quantities that are

associated with these symmetries? We will answer this in the later sections of this chapter
1

 ↑ E = E0 + ∆1/N E1 + ∆2/N E2 + . . .
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under Pseudo-Hermiticity and Intertwinning operators. The phase transition from PT -

symmetric to PT -broken occurs when γ = γth = J , where γth is called the PT -symmetry

breaking threshold. At this point the eigenvalues become degenerate. The most intriguing

feature of the transition point is that the non-Hermiticity not only induces the degeneracies in

the eigenvalues, but also in their corresponding eigenvectors. Such a Hamiltonian degeneracy

is called an exceptional point (EP) degeneracy. Fig.  1.2 (c) shows the overlap of the two

eigenstates calculated by their Dirac inner product; I.P.(δ/J, γ/J) = 〈E1|E2〉 /|E1||E2|.

In the past decade, PT -symmetric systems with balanced gain-loss have been realized in

classical wave systems including evanescently coupled waveguides [  8 ], fiber loops [  9 ], optical

resonators [ 10 ], [  11 ], electrical circuits [  12 ], [  13 ], and mechanical oscillators [  14 ]. However,

since the EP degeneracies also occur for Hamiltonians with mode selective dissipation, the

dynamics of PT -symmetric Hamiltonians have also been realized in purely lossy classical

systems consisting of coupled waveguides, resonators, or electrical circuits [  15 ], [ 16 ], semi-

classical systems with ultracold atoms [  17 ], and quantum systems [ 18 ]–[ 20 ]. These systems,

in the definition of quantum mechanics, engender a complex energy eigenvalue spectrum.

About two decades ago, Carl Bender and Stefan Boettcher made a remarkable discovery

where they realized that a non-Hermitian system, if invariant under the combined operation

on parity(P) and time reversal(T ), will exhibit a real energy spectrum [  1 ]. With the birth

of this new field, investigations were carried out which are physically realized as systems

with balanced, spatially separated, gain and loss [ 21 ] locations, with an effective coupling

between them. Traditional Dirac Hermiticity in quantum mechanics, ensures the preserva-

tion of the norm and hence is a sufficient condition to guarantee a real energy spectrum.

It is now shown that, a system having an antilinear symmetry (like PT ), and anti-unitary,

serves as a necessary condition to produce real energy eigenvalues [  22 ], [ 23 ], thus making it

a more general theory of quantum mechanics. Typically, a non-Hermitian PT -symmetric

system behaves either like an open or a closed system depending on the strength of the

non-Hermiticity. As this strength increases, two (or more) real eigenvalues become degen-

erate as do the corresponding eigenvectors. Although, PT -symmetric quantum mechanics

was initially studied on a continuum line, experimental realizations, in the past few years,

have been done using simple discrete models. Therefore, with the motivation to investigate
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the aspects of the PT -symmetry breaking threshold, we study discrete quantum systems

which are generalizations of a simple dimer model with one pair of PT -symmetric gain-loss

potentials. In Fig.  1.2 (a), the energy eigenvalues start out distinct and real when γ/J = 0.

As the non-Hermiticity increases, the energy levels are drawn closer to each other. At this

point, the corresponding eigenvectors are no longer orthonormal.

Furthermore, we can also define our time evolution operator (let ~ = 1) as

G(t) ≡ e−iHt = G(t) = cos(Et)1− i
H

E
sin(Et) (1.6)

Consider that |1〉 and |2〉 are the normalized states in the site basis, with 1 representing

the gain site and 2 the loss site. We can rewrite the Hamiltonian in the site basis as

H = iγ(|1〉 〈1| − |2〉 〈2|) − J(|1〉 〈2| + |2〉 〈1|) (1.7)

We evolve a wavefunction, |ψ(t = 0)〉 = a |1〉 + b |2〉 starting in the gain site, i.e. a = 1 and

b = 0; i.e.

|ψ(t)〉 = G(t) |ψ(t = 0)〉 = G(t) |1〉 (1.8)

Fig.  1.3 captures the evolution of the norm of the wavefunction |ψ(t)|2 for different values

of γ. In the Hermitian case, panel(a), the norm (black dashed line) is constant. The blue and

red lines indicate the probability of the wavefunction projected onto 1 and 2 respectively. As

the non-Hermiticity is increased to 0.5J , panel(b), we notice the total probability is no longer

conserved but exhibits a bounded oscillatory behavior much like the Hermitian case. With

γ = J , panel(c), at the PT transition threshold, the probability has a quadratic increase in

time. In panel(d), the probability increases exponentially (figure shows linear growth in log

scale) as the system is rendered into the PT broken phase with γ = 1.2J .
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Figure 1.3. The evolution of the transmission probability, |ψ(t)|2 (black
dashed line), for simple 2-site PT -symmetric system. The probabilities,
| 〈1|ψ(t)〉 |2 (blue) and | 〈2|ψ(t)〉 |2 (red) for (a) Hermitian case, γ = 0, (b)
PT -symmetric phase, γ = 0.5J , (c) at the PT threshold γ = J , and (d) when
γ = 1.5J with broken PT -symmetry (log scale).

1.2.1 Floquet quantum mechanics

Let us now introduce an interesting formalism to engineer different quantum systems

that may be difficult to investigate experimentally. A quantum system is driven by external

fields such that the Hamiltonian describing the system follows,

H(t) = H(t+ T ), (1.9)

where T is the time period of the periodic drive. The Floquet formalism provides a recipe

for generating a static effective Hamiltonian by periodically probing the system at integer

multiples of time period of the driving field.
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We will explore some details of this formalism in this section through some examples of

simple two level systems. Consider the time-dependent Schödinger eqation;

H(t)|ψ(t)〉 = i~∂t|ψ(t)〉 (1.10)

where H(t) = H(t+ T ) is a time-periodic Hamiltonian with a drive frequency of ω = 2π/T

acting on an eigenstate |ψ(t)〉. For simplicity we assume ~ = 1.

We are particularly interested in the dynamics of the state |ψ(t)〉 as measured strobo-

scopically, i.e. t = nT . This leads to the following definition of the time operator G(T ) as a

time ordered product

G(T, 0) = Te−i
∫ T

0 H(t)dt ≡ e−iHFT , (1.11)

where T indicates the time-ordering operator.

According to the theory, we can define a effective Floquet Hamiltonian HF using the

Floquet time evolution operator,

G(t) = P (t) exp [−iHF t], (1.12)

where P (t) = P (t+ T ) is called the micromotion operator that describes the dynamics with

a single period. Using the initial condition, G(t = 0) = 1 implies that

P (0) = P (nT ) = 1 ∀n ∈ Z+. (1.13)

It is easy to see that if an observer was to make periodic observations starting at t = t0

during the driving cycle, the new time evolution operator is related to G(t) by a similarity

transformation:

G̃(T + t0, t0) = Ŝ−1G(T, 0)Ŝ, (1.14)

where Ŝ is micromotion operator that connects the observation times. Consequently, the

effective Hamiltonians will also change based on when one begins to observe :

H̃F (t0) = Ŝ−1HF (0)Ŝ. (1.15)
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This method shows us a way to realise a whole new class of PT -symmetric systems. The time

dependent Hamiltonian representations may not even be PT -symmetric, but it could on some

stroboscopic observation lead to an effective PT -symmetric Hamiltonian representation. To

illustrate we this, investigate two simple dimer models with a periodically driven by a square

wave.

1.2.2 PT -symmetric Floquet dimer

Let us consider a PT -symmetric dimer with the matrix representation as given in Eq.  1.4 

with δ/J = 0.

H(t) =

+iΓ(t) −κ(t)

−κ(t) −iΓ(t)

 . (1.16)

Now let’s examine two cases: Case 1, where the non-Hermitian onsite potential (Γ(t) =

γf(t/T )) is driven while the intersite coupling (κ = J) is kept constant during the cycle.

Case 2, where the coupling κ(t) = Jf(t/T ) is driven while the onsite potential(Γ(t) = γ)

is constant. Here f(t/T ) is the driving function. The two cases produce distinct and rich

phase diagrams showing regions of broken and unbroken PT -symmetries. For the sake of

analytical tractability, let us consider the periodic driving function to be a square wave with

a time period of T defined as :

f(t/T ) =
{ 1 0 ≤ t < T/2

α T/2 ≤ t < T
(1.17)

where α ∈ [−1, 1) is the lower limit of the function. Let us call these Hamiltonians H1,2 =

~e1,2~σ. Here we define ~σ = σxx̂+ σyŷ + σz ẑ, and the complex vectors e1,2 = ex1,2x̂+ ey1,2ŷ +

ez1,2ẑ. This means that the first half of the cycle, the system is described by Hamiltonian

H1 while for the second half of the cycle the Hamiltonian is H2. In practice, driving the

system in between these states is also experimentally easier to implement.
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The general form for the Floquet time evolution operator in a two site basis with a square

wave modulation [ 24 ] is:

GF (T ) =
[
C1C2 − (~e2 · ~e1)S1S2

]
12 + i

[
C1S2~e1 + C2S1~e2 + (~e2 × ~e1)

]
· ~σ, (1.18)

where C1 = cos (E1T/2), C2 = cos (E2T/2), S1 = sin (E1T/2), S2 = sin (E2T/2) and E1,2 =

| ~e1,2| =
√
ex2

1,2 + ey2
1,2 + ez2

1,2, which is also the positive energy eigenvalue of H1,2.

In order to see the features of the effective Floquet Hamiltonian we need to calculate

the time evolution operator, which fortunately for us, can be easily found for these two level

systems with a square wave drive. Recall our definition in Eq.  1.11 . To find the Floquet

Hamiltonian HF , Gf (T ) can be rewritten as:

GF (T ) ≡ e−h0T

cos (|~h|T )1− i
~σ · ~h
|~h|

sin (|~h|T )
 (1.19)

where HF = h012 + ~σ · ~h. (1.20)

The Floquet Hamiltonian is written in terms of the Pauli matrices, with ~h = hxx̂+hyŷ+hz ẑ

and |~h| =
√
h2
x + h2

y + h2
z.  

2
 

Since the behaviour of GF (T ) switches between unitary and non-unitary, we can thus

introduce a robust parameter ∆ξ which we define as the scaled absolute difference of the

magnitudes of the eigenvalue of GF (T ).

∆ξ =
∣∣∣∣∣ |g1| − |g2|
|g1| + |g2|

∣∣∣∣∣ (1.21)

Fig.  1.4  1.5 reveals a rich phase diagram with PT -symmetric and PT -broken regions. Since

these phase plot have a phase boundary, it is only natural to ask are there exceptional

points? We therefore calculate the inner product of the eigenvectors of GF (T ) in order to

compute these exceptional line contours and also support the phase diagrams plots. Recall
2

 ↑ With the eigenspectrum decomposition of GF = V ΛV −1 one can compute the effective Floquet Hamilto-
nian HF = i

T V log [ΛGF
]V −1 using symbolic numerical techniques
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that at the exceptional points the eigenvectors are parallel to each other. The metric we

used is simply the Dirac inner product:

I.P. = |〈g1|g2〉|, (1.22)

where |g1,2〉 are the eigenvectors of GF (T ).

Case 1:

In this case, constructing of the Floquet system from the Hamiltonian in Eq.  1.16 , the

periodic switch happens between :

H1 =

+iγ −J

−J −iγ

 and H2 =

+iαγ −J

−J −iαγ

 . (1.23)

The time evolution operator for one period can be thus constructed simply as the time

ordered product of the two individual half cycles [ 24 ]:

G
(1)
F = e−iH2T/2e−iH1T/2 (1.24)

Fig.  1.4 shows the PT phase plots numerically computed using Eq.  1.21 and eigenstate

inner product from Eq.  1.22 for this system with a square wave modulation. Panels (a)-(c)

show the scaled relative difference in the eigenvalues of the time evolution operator for three

different cases of modulation parameterized by α. It is interesting to see that different values

of α have unique phase diagrams since their effective Hamiltonians represent completely

different systems. When α = −1 the system switches between a PT -symmetric dimer and

its reflection counterpart. Panels (a) and (d) show the relative difference of the eigenvalues

and inner product plots for this type of system. Notice in panel (a) as the frequency of

modulation is increased the PT breaking threshold is also enhanced which is not seen in

the other cases. When α = 0, the system is modulates from a PT -dimer and a purely

real, Hermitian Hamiltonian. Finally when α = 0.5 the system modulates between two PT -

symmetric dimers, one with half its gain-loss strength. For all three cases, the inner product
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Figure 1.4. PT phase plots and eigenstate inner product (I.P.) plots for the
system with a square wave modulation described in Eq.  1.23 . Panels (a)-(c)
show the scaled relative difference in the eigenvalues of the time evolution oper-
ator for three different cases of modulation parameterized by α. Panels (d)-(f)
show a rich profile of the inner product of the eigenvectors of the GF . (a)&(d)
When α = −1 the system switches between a PT -symmetric dimer and its
reflection counterpart. (b)&(e) when α = 0 the system is modulates from a
PT -dimer and a Hermitian dimer. Finally when α = 0.5 the system modu-
lates between two PT -symmetric dimers, one with half its gain-loss strength.
All three cases show a very rich PT -phase with the blue region being the sym-
metric phase and the colored region representing PT broken phase. The inner
product plots show clearly show the region of exceptional line contours where
the eigenvectors are parallel to each other. The red dotted line represents the
exceptional points of a static dimer
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plots show a key feature missing from the phase diagrams. These are the contours of zero

overlap deep in the broken region signifying resonances in the system. These regions show

a similar behavior to non-Hermitian systems with completely decoupled gain-loss elements.

The red dotted line represents the exceptional points of a static dimer. This line is there to

show that at certain points the system has real eigenvalues even when the individual half

cycle Hamiltonians have an exceptional point.

Case 2:

Contrary to the earlier case, we can now see if periodic changes in the Hamiltonian

Eq. 1.16 , occur in the coupling between the two sites; i.e. :

H1 =

+iγ −J

−J −iγ

 and H2 =

+iγ −αJ

−αJ −iγ

 . (1.25)

The features seen in the phase diagrams in Fig.  1.5 are contrasting to case 1. The

motivation to study this case is important to quantum experiments done in platforms using

photonics and superconducting qubits where modulating the gain is specially difficult.

Fig.  1.4 shows the PT phase plots numerically computed using Eq.  1.21 and eigenstate

inner product from Eq.  1.22 for this system with a square wave modulation. When α = −1

the PT dimer switches between a negative coupling and a positive coupling. In panels (b)

and (d) when α = 0 the system is modulates from a PT -dimer and a completely non-

Hermitian dimer with no coupling between the sites. In contrast to the earlier case, when

α = 0, there is a rich PT -phase diagram with the blue region being the symmetric phase and

the colored region representing PT broken phase. The inner product plots show clearly show

the region of exceptional line contours where the eigenvectors are parallel to each other. The

red dotted line represents the exceptional points of a static dimer. When α = −1, although

there are no PT phases, it is interesting because we are able to realize an anti-Hermitian

Hamiltonian by switching between two PT -symmetric systems.
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Figure 1.5. PT phase plots and eigenstate inner product (I.P.) plots for the
system with a square wave modulation described in Eq.  1.25 . Panels (a)-(b)
show the scaled relative difference in the eigenvalues of the time evolution
operator for three different cases of modulation parameterized by α. Panels
(c)-(d) shows the inner product of the eigenvectors of the G(2)

F . (a)&(c) When
α = −1 the PT dimer switches between a negative coupling and a positive
coupling. (b)&(d) when α = 0 the system is modulates from a PT -dimer
and a completely non-Hermitian dimer with no coupling between the sites. In
contrast to the earlier case, when α = 0, there is a rich PT -phase diagram with
the blue region being the symmetric phase and the colored region representing
PT broken phase. The inner product plots show clearly show the region of
exceptional line contours where the eigenvectors are parallel to each other.
The red dotted line represents the exceptional points of a static dimer. When
α = −1, although there are no PT phases, it is interesting because we are
able to realize an anti-Hermitian Hamiltonian by switching between two PT -
symmetric systems.

30



1.3 Pseudo Hermiticity, intertwinning operators, and conserved quantities

This section consists of excerpts from our paper on intertwinning operators and conserved

quantities which have been slightly modified

We have noticed that Hermiticity is not a necessary condition for eigenvalues to be

real. It is however Hamiltonians with an antilinear symmetry (like PT ), where reality of

eigenvalues is possible [ 25 ]. PT -symmetry provides an way to implement the symmetry in a

physical setting by spatial separation of gain-loss elements. We will now see a more general

idea called pseudo Hermiticity that provides a deeper insight into the properties of general

non-Hermitian operators [ 6 ], [ 7 ], [ 26 ].

To establish the idea of pseudo-Hermiticity, we assume a linear operator H acting on the

Hilbert space. H is said to be pseudo-Hermitian if it satisfies the following relation,

H† = ηHη−1 (1.26)

where η is an invertible, Hermitian linear operator, also called the intertwinning operator.

1.3.1 Conserved quantities in non-Hermitian systems

The content of this subsection is a part of our paper published in Journal of Physics:

Conference series.

In classical mechanics, observables that are conserved during time evolution are most

easily defined in the Hamiltonian formalism, where they are determined by a vanishing Pois-

son bracket [  27 ]. Therefore, it should come at no surprise that their quantum counterparts

become by far most apparent in the Heisenberg picture. Let the system under consideration

be governed by a static Hamiltonian H that may not be Hermitian. It satisfies the equations

of motion i∂t|ψ(t)〉 = H|ψ(t)〉 and −i∂t〈ψ(t)| = 〈ψ(t)|H†. By definition, a linear operator

η is a constant of motion if and only if 〈ψ(t)|η|ψ(t)〉 = Tr[ηρψ(t)] remains constant for any
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arbitrary state |ψ〉 (or a density matrix ρψ). In the absence of intrinsic time-dependence,

this constraint translates into

i
d

dt
〈ψ(t)|η|ψ(t)〉 = 〈ψ(t)|ηH −H†η|ψ(t)〉 = 0. (1.27)

Due to the linearity of the constraint in Eq.(  1.27 ), without loss of generality, we can choose η

to be a Hermitian matrix. When H = H† (an isolated system), the observable conservation

is therefore equivalent to commutation of η with H, just as expected. A Hermitian system

trivially leaves two important operators conserved, namely the identity (state-norm) and

the Hamiltonian itself (energy). We emphasize that many more independent, conserved

operators can be constructed very easily; an example is the set of Hermitian projectors onto

the eigenspace for each real eigenvalue. These are often disregarded in many applications

since they are not connected to fundamental symmetries of the system. However, they fulfill

all requirements for a genuine conserved observable and will play an important role in the

following analysis. When H is not Hermitian, Eq.(  1.27 ) leads to the following intertwining

constraint,

ηH = H†η. (1.28)

This characterization of conserved observables as intertwining operators, Eq.(  1.28 ), has

appeared in the literature in the context of pseudo-Hermitian operators (η is invertible) [  6 ],

[ 7 ], [  28 ].Here, we only focus on them as conserved observables for an open system with gain

and loss.

A simple but powerful way to generate these conserved operators may be constructed

iteratively by using the prescription

ηk+1 = ηkH (1.29)

starting from an initial η1 that is determined from the outset. Note that if ηk is Hermitian,

the intertwining relation Eq.(  1.28 ) implies that recursively obtained ηk+1 is also Hermitian.

It also follows that the different η operators do not commute with each other, and the
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commutator is proportional to the anti-Hermitian part of H. Finally, since H obeys a

characteristic polynomial equation of order n, it follows that

ηN+1 = η1H
N , (1.30)

can be written as a linear combination of lower-order operators ηk≤N . Thus, for an n-

dimensional system, this recursive procedure gives rise to n non-commuting, linearly inde-

pendent conserved observables [ 29 ].

For a broad class of transpose-symmetric Hamiltonians η1 is found as follows. For con-

served quantities to exist, the Hamiltonian must have purely real or complex-conjugate

eigenvalues, i.e. an antilinear operator A commutes with it. Let us write A = PT = L∗

where L denotes the entire linear part of A and ∗ is purely the complex-conjugation opera-

tion. (In general, the operator T has a nontrivial unitary part; that has been absorbed into

the operator L.) It is easy to see that if H = HT , then L is an intertwining operator. Once

η1 = L is identified, the rest are determined by the recursive procedure.

1.3.2 Finding η operators from an eigenvalue problem

The content of this subsection is a part of our paper published in Acta Polytechnica

conference proceedings.

Here is a novel method we developed to find the conserved quantities by treating the

intertwining relation we mentioned in Eq.  1.26 as an eigenvalue equation [ 30 ]. Let us recall,

the constraint condition in Eq.  1.27 . This equation is reminds of the Gorini Kossakowski

Sudarshan Lindblad (GKSL) equation [ 31 ], [  32 ] (henceforth referred to as the Lindblad

equation) that describes the dynamics of the reduced density matrix of a quantum system

coupled to a much larger environment [  33 ]–[ 35 ]. Interpreting η̂ as an N ×N matrix, all η̂s

that satisfy Eq.( 1.27 ) can be obtained from the corresponding eigenvalue problem

Ekη̂k = −i(η̂kHPT −H†
PTη̂k) ≡ Lη̂k, (1.31)
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for 1 ≤ k ≤ N2. We vectorize the matrix η̂ into an N2-sized column vector |ηv〉 by stacking

its columns, i.e. [η̂]pq → ηvp+(q−1)N [ 36 ]. Under this vectorization, the Hilbert-Schmidt trace

inner product carries over to the Dirac inner product, (η̂†
1η̂2) = 〈ηv1 |ηv2〉 where 〈ηv1 | is the

Hermitian-conjugate row vector obtained from the column vector |ηv1〉. Using the identity

Aη̂B → (BT ⊗A)|ηv〉, the eigenvalue problem Eq. (  1.31 ) becomes det(L − E1N2) = 0 where

the N2 ×N2 “Liouvillian” matrix is given by

L = −i
[
HT

PT ⊗ 1N − 1N ⊗H†
PT

]
, (1.32)

and 1m is the m × m identity matrix. Thus, the intertwining operators are distinct eigen-

vectors |ηvm〉 with zero eigenvalue in Eq.(  1.31 ). The N2 eigenvalues of the Liouvillian L are

simply related to N eigenvalues εm of the HPT as

Epq = −i(εp − ε∗
q). (1.33)

Since the spectrum of HPT is either real (εp = ε∗
p) or complex conjugates (εp = ε∗

q for some

pair), there are N zero eigenvalues of L when HPT has no symmetry-driven degeneracies; the

number of zero eigenvalues grows to N2 if the Hamiltonian is proportional to the identity

matrix [ 37 ]. Note that when E = 0, due to the linearity of the intertwining relation, Eq.(  1.26 ),

without loss of generality, we can choose the N intertwining operators η̂m to be Hermitian.

This analysis of constants of motion is not only valid for static PT -symmetric Hamilto-

nians, but can be generalized to time-periodic (Floquet) PT -symmetric Hamiltonians [ 16 ],

[ 38 ]–[ 41 ]. When HPT(t) = HPT(t + T ) is periodic in time, the long-time dynamics of the

system is governed by the Floquet time-evolution operator [ 42 ]

GF (T ) = Te−i
∫ T

0 HPT(t′)dt′ , (1.34)

where T stands for the time ordered product that takes into account non-commuting nature

of the Hamiltonians at different times. The (stroboscopic) dynamics of the system at times
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tm = mT is then given by |ψ(tm)〉 = Gm
F |ψ(0)〉, and the corresponding, Hermitian, conserved

operators η̂ = η̂† are determined by us [ 37 ], [ 41 ]

G†
F η̂GF = η̂. (1.35)

Vectorization of Eq.(  1.35 ) implies the conserved quantities are given by eigenvectors with

unit eigenvalue of the “Floquet Liouville time-evolution” matrix

G = GT
F ⊗G†

F (1.36)

Furthermore, the transformation properties of GF (T ) → GF (T + t) (recall Eq.  1.14 )

and the conserved operators η̂ are related. When the periodic Hamiltonian is Hermitian, i.e.

H0(t0) = H†
0(t) = H0(t0+T ), shifting the zero of time to t0 leads to a unitary transformation,

GF (T + t0, t0) = U(t0)GF (T )U †(t0), (1.37)

where U(t0) = Te−i
∫ t0

0 H0(t′)dt′ and therefore the conserved operators are also transformed by

the same unitary operator. However, in our case, Eq.(  1.37 ) becomes a similarity transfor-

mation,

GF (T + t0, t0) = SGF (T )S−1 (1.38)

where S = T exp(−i
∫ t0

0 HPT(t′)dt′) does not satisfy S†S = 1 = SS†. Under this transforma-

tion, the conserved operators change as η̂ → S−1†η̂S−1. This non-unitary transformation of

the conserved quantities under a shift of zero of time suggests that they are not related to

“symmetries” of the open system with balanced gain and loss.

1.4 PT -symmetry in optics

We now switch our attention to the experimental side of PT -symmetry. In order to

observe PT transitions, optics has been an accessible tool for observing these effects of PT -

symmetric quantum systems experimentally, although it can be a challenging task. Nonethe-

less, the possibility to implement PT -symmetry can be done with the propagation of light in
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optical systems such as coupled waveguides arrays [  43 ], [ 44 ]. With some engineering of mate-

rials one can have a set of complex potentials by introducing positive and negative imaginary

parts in the refractive index. This is achievable because the scalar form of Maxwell’s wave

equation, under paraxial approximation, yields the Schrödinger equation. As we will see in

this section, even though this is a pure classical setting, it captures the essence of a quantum

system with balanced gain and loss.

Let us consider the following Maxwell’s equations in a homogeneous material with no

charge or current densities;

∇ × ~E = − ∂ ~B

∂t

∇ × ~B =µε∂
~E

∂t
= n(x, y, z)2

c2
∂ ~E

∂t

(1.39)

Here, ~E and ~B are the electric and magnetic fields, µ and ε are the permitivity and permia-

bility, and n(x, y, z) is the refractive index profile of the material. With this we can derive

the wave equation of the electric field,

∇ × ∇ × ~E = −n2

c2
∂2 ~E

∂t2
(1.40)

Using the identity,

∇ × ∇ × ~E = ∇(∇ · ~E) − ∇2 ~E (1.41)

Using the fact that ∇ · ~E = 0, Eq.  1.40 is simplified to,

∇2 ~E = −n2

c2
∂2 ~E

∂t2
(1.42)

The solution for the above equation can be written as follows, assuming that the propagation

of the wave is in the z-direction,

~E(x, y, z, t) = ~u(x, y, z)ei(kz−ω0t). (1.43)
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Here we define k = n0k0 where the wavenumber k0 = ω0/c = 2π/λ for incident light of

wavelength λ and n0 is the effective refractive index of cladding. Substituting Eq.  1.43 in

Eq.  1.42 we obtain,

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 + 2ik ∂
∂z

− k2
)
~u = − n2ω2

0
c2 ~u

=⇒
(

∇2
T + ∂2

∂z2 + 2ik ∂
∂z

+ k2
0(n2 − n2

0)
)
~u =0

(1.44)

where ∇2
T = ∂2/∂x2 + ∂2/∂y2. This is now reduced down to the Helmholtz equation.

We now impose that the electric field in the propagation direction is slowly varying, also

known as SVEA (slowly varying envelope approximation), i.e.;

∣∣∣∣∣∂2~u

∂z2

∣∣∣∣∣ <<
∣∣∣∣∣2k∂~u∂z

∣∣∣∣∣ . (1.45)

For small enough refractive index contrast (i.e. (n − n0)/n0 ∼ 10−4), we can approximate

(n2 − n2
0)/n0 ≈ 2(n− n0) = 2∆n. Therefore we get,

(
− 1

2k∇2
T − ∆n

)
~u = i

∂~u

∂z
. (1.46)

This is called the paraxial equation, and indeed it looks similar to the time dependent

Schrödinger equation for potential well(s) with depth ∆n. The width and the depth of

a single well is chosen appropriately to get a single eigenmode. Notice that the partial

derivative with respect to time is replaced by the propagation direction z. Now considering

the analogy to the Schrödinger equation, let us define an evolution operator. This can be

written as

G =e−iĤz

where Ĥ = − 1
2k∇2

T − ∆n.
(1.47)
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1.4.1 Beam Propagation method

This description of a quantum system in a classical framework is a remarkable correspon-

dence and therefore allows us to study discrete single particle quantum systems experimen-

tally. In order to numerically model these systems in settings like coupled waveguide arrays

we use a computational technique called the Finite Difference-Beam Propagation Method

(FD-BPM) [ 45 ].

For simplicity we assume that the variation in the refractive index of a waveguide and the

intensity profile of the input beam incident is only in one dimension. Therefore the refractive

index is n(x) = ns + ∆n(x) ± inI(x), where ns is the index of the substrate or cladding

(ns = 1.4500), ∆n(x) is the contrasting index of the core of the waveguide (∆ns ∼ 5×10−4),

and nI represents the imaginary refractive index to be introduced as gain-loss potentials on

parity symmetric sites (nI ∼ 10−6). The envelope function is therefore ~u(x, z) = u(x, z)ŷ

with the direction of propagation along the z-axis.

The continuous variables x, z are made discrete and hence the envelope function is written

as u(xi, zj) ≡ u(i∆x, j∆z) with i = 0, 1, . . . Nx − 1 and j = 0, 1, . . . Nz − 1. The 2nd order

differential operator, written in the 3-point symmetric form, as;

∂2u(xi, zj)
∂x2 = u(xi−1, zj) − 2u(xi, zj) + u(xi+1, zj)

∆x2
(1.48)

We can represent this differential operator as a matrix product in the following way;

∂2u(xi, zj)
∂x2 → 1

∆x2



−2 1 0

1 . . . . . .
. . . . . . 1

0 1 −2





u(x0, zj)

u(x1, zj)
...

u(xNx−1 , zj)


=
[
M

∆x2

]
U(x, zj).

(1.49)
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Here we define U(x, zj) as the column vector representing the beam profile in the x-direction.

Note that, we make use of open boundary conditions that requires the elements u(x−1, zj)

and u(xNx , zj) to be zero. The operator Ĥ from Eq.  1.47 can be rewritten as;

Ĥ = − 1
2k

[
M

∆x2

]
− 1∆n(x) (1.50)

where 1 is the identity matrix of size Nx × Nx and ∆n(x) is the refractive index contrast

represented as a column matrix. We now have an expression for the evolution operator in

the form of a matrix which needs to be calculated only once in the case where the refractive

index does not change in the propagation direction. Therefore,

U(x, zj+1) = eiĤ∆zU(x, zj). (1.51)

Recall that the paraxial equation (Eq.  1.46 ) had a 1st order derivative of u(x, z) with

respect to z. Using forward difference, Eq.  1.51 can be discretized as,

u(xi, zj+1) − u(xi, zj)
∆z = −iĤu(xi, zj) (1.52)

∴ U(x, zj+1) = (1− iĤ∆z)U(x, zj). (1.53)

This is called the explicit scheme. Although simplified for numerical calculations, the ex-

pression is unstable for large ∆z. For this reason, we also consider the backward difference

of the derivative (called the implicit scheme),

u(xi, zj+1) − u(xi, zj)
∆z = −iĤu(xi, zj+1) (1.54)

Adding the two schemes, essentially gives a half-step propagator, defined below, which fixes

the instability problem;

K± = 1± i∆zĤ/2. (1.55)
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Hence, for a full step of ∆z,

U(x, zj+1) = K−1
+ K−U(x, zj). (1.56)

The finite difference discretization of this kind is called the Crank-Nicholson scheme and

serves as a sufficiently powerful tool to numerically simulate beam propagation.

In Fig.  1.6 , we show an example of the BPM calculation for a system of two coupled waveg-

uides. Let the waveguides be labeled WG1 and WG2. Keeping in mind the PT -symmetric

dimer case discussed in Sec.  1.2 , we used the following parameters for the simulations. Con-

sider a light beam of wavelength λ = 630nm injected in WG1 centered at x = −10µm.

We define the 1D envelope function of this beam as U(x, z) ≡ e1, which is the normalized

eigenmode of WG1. We also define, ‘e2’, the normalized eigenmode of WG2. With this, we

define the intensities of light in each of the waveguides, at a distance z, as the square of the

projected weight of U(x, z) on the eigenmodes of individual waveguides. In the language of

quantum mechanics we can write this as, |E1|2 = |〈U|e1〉|2 and |E2|2 = |〈U|e2〉|2 respectively.

Each waveguide has a width 5µm with edges separated by 15µm. The distance between

waveguides is chosen such that the overlap of the eigenmodes ‘e1’ and ‘e2’ is significantly

small as compared to the intensity of each mode.

Fig.  1.7 shows this variation as the separation between the waveguides increase. As seen

this overlap decreases exponentially with the separation. This needs to be small enough to

treat the eigenmodes as solutions to the paraxial equation (Eq.  1.46 ) for a single waveguide.

This is analogous to the wavefunction of a particle localized in one of the site in the tight

binding model.

The substrate refractive index is ns = 1.45 while the core refractive index is nc = 1.4505.

The figure shows four case each for a different value of nI. In each panel of Fig.  1.6 , the top

image, shows the electric field intensity |U(x, z)|2 of the beam as it evolves in the transverse

z direction. The bottom sub-panel, plots show variation in the transverse direction of the

normalized intensities |Enorm|2 in WG1 (shown in blue), WG2 (shown in red) and the total

intensity in both (black). Panel (a) shows the Hermitian case with nI = 0. In panel (b), the

magnitude of the complex refractive index is nI = 2.658 × 10−6. Notice the total normalized
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Figure 1.6. Beam Propagation results for a pair of evanescently coupled
waveguides of width 5µm separated by 15µm. The incident light has a wave-
length of 630nm. The core refractive index is 1.4505 and the cladding re-
fractive index is 1.4500. Panel (a) shows the Hermitian case with nI = 0.
In panel (b), nI = 2.658 × 10−6. Panel (c) show the region of broken PT -
symmetry with the imaginary refractive index as nI = 5.316 × 10−6 and panel
(d) with nI = 7.974 × 10−6 the intensity increases exponentially (lower sub-
panel logscale in y).

intensity is bounded but greater than 1. This signifies the PT -symmetric region. Panels

(c) and (d), with nI equal to 5.316 × 10−6 and 7.974 × 10−6 respectively, show unbounded

growth in the intensity signifying that the PT -symmetry in the system is broken.
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Figure 1.7. Variation of the overlap of individual eigenmodes, |〈e1|e2〉|, of
the two coupled waveguides as a function of their separation ∆xgap.

In the next chapter, we theoretically investigate the fate of the PT -symmetry breaking

threshold, keeping in mind an experimental setup of coupled waveguide arrays with one pair

of spatially separated, balanced gain-loss potentials.
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2. PT -SYMMETRIC LATTICE MODELS

The content of this chapter is a parts of two of our papers which have been slightly modified.

These papers have been published in APS Physical Review A.

Before we dive into what PT -symmetric lattice models are, it is important for us to

understand some key properties of a simple lattices. Lattice models are designed to investi-

gate properties such as electron transport in materials or to determine their electronic band

structure, although as we will see, is not limited to condensed matter systems. Tight bind-

ing models have widely been used due to their simplicity and accuracy in describing a large

number of systems in condensed matter, ultra cold atoms and photonic lattices. The under-

lying idea is to use the discretization the system to solve the single particle non-interacting

Schrodinger equation. Although doing so can be analytically difficult if the lattice structure

in non-uniform or has impurities, but can solved numerically much more easily. One very

versatile and powerful technique is the tight-binding model.

2.0.1 Energy spectrum of a tight binding lattice

Let us consider the simplest model of an arrangement of atoms forming a 1D lattice

with an electron moving through it. These “nearly free” electrons have a uniform hopping

probability of J to jump from one atom to the next. Note that the motivation in using a

crystal and an electron is only due to its historical significance: this tight binding model was

used to explain electronic properties of crystals. We will generically refer to the discretely

positioned atoms of the crystal as sites of a lattice and the electron as a particle. For a

more mathematically rigorous description, we recall our friend, the Hamiltonian. The goal

is to construct a Hamiltonian description of a system and solve the Schrödinger equation.

For this, we first assume that a particle localized at site n will be represented by |n〉. This

serves as our eigenvector basis. The energy of such a particle is εn = 〈n|H0|n〉, where H0 is

the Hamiltonian of this system. Another assumption we impose is that the particle is only
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allowed to hop to its nearest neighbour with a probability of J = 〈n|H0|n+1〉. So this single

particle Hamiltonian with N sites can be written as:

H0 =
N∑
n=1

εn|n〉〈n| −
N∑
n=1

Jn|n〉〈n+ 1| = H†
0, (2.1)

where εn − ε0 and Jn = J for all n ∈ [1, N ] due to uniformity.

Since we have N sites in our lattice (typically we assume that N → ∞), we form an

ansatz to describe a particle in such a lattice as a linear combination of plane wave solutions

in site basis:

|ψn〉 = A
N∑
n=1

cn|n〉, (2.2)

where k is the quasi momentum, A is the normalization constant and cn = e−ikn are the

amplitudes of finding the particle on site n  

1
 . Evaluating the Schrodinger equation, the

dispersion relation is calculated to be,

E(k) = ε0 − 2J cos k (2.3)

(a) (b)

......

Figure 2.1. Schematic of a lattice with (a) Open boundary condition, (b)
Periodic boundary condition.

Fig.  2.1 shows the schematics of lattices with two different boundary conditions. Panel

(a) is when the last site is coupled to the first site. With this condition the model represents

an infinite lattice with translational invariance. This type can help in understanding lattices

which are in the shape of a ring. In this case, from the boundary condition (e−ik(N) =

e−ik(0) = 1), one can easily calculate the quasi-momentum to be k = 2pπ/N where p ∈ [1, N ]

denotes the energy level index. The normalization constant is A = 1√
N

. Panel (b) shows the

1
 ↑ The tight binding model is also known as Linear Combination of Atomic Orbitials (LCAO) for this reason.
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schematic for a lattice with open boundary conditions. Here the model represents a more

realistic scenario since materials have edges where the probability of finding a particle outside

is zero, (unless of course there exists a coupling between the environment and the boundary).

Most of the lattice examples we deal with in this thesis will possess open boundary conditions.

Here we find that e−ik(N+1) = e−ik(0) = 0, resulting in the quasi-momentum to be k =

pπ/(N + 1) where again p ∈ [1, N ] denotes the energy level index. The normalization

constant in this case is A =
√

2
N+1 Fig.  2.2 (a) show a typical energy dispersion plot for a

(a) (b)

Figure 2.2. (a) Dispersion relation of a tight binding lattice with nearest
neighbour coupling J and ε0 = 0 (b) Probability distribution of eigenstates
of a single particle Hamiltonian describing a tight binding lattice with N = 8
sites and open boundary condition. Note that the energy axis is independent
of the site index and is only there to label the eigenstate to its corresponding
energy eigenvalue.

uniform tight binding lattice with N = 8 sites and ε0 = 0. Panel (b) shows the probability

distribution, |ψn,p|2 of all the eigenstates which due to open boundary conditions simplifies

to:

|ψn,p〉 =
√

2
N + 1

N∑
n=1

sin
(
pπn

N + 1

)
|n〉 (2.4)

We shall now explore some tight binding lattice where specific sites interact with the

environment and calculate the PT symmetry breaking points for these systems in one and

two dimensions. These models have been a playground for many researchers studying non-
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Figure 2.3. 1D chain : Plots of the eigenspectrum flow for a lattice of N = 20
sites as a function of the non-Hermiticity strength γ/J with the gain-loss sites
at the (a) edges i.e. m0 = 1 along with the eigenstates of the Hamiltonian
participating in the breaking of PT -symmetry when (b) γ = 0.5J and (c)
γ = 1.2J . (c) As the γ/J is increased beyond the PT -threshold (γth = J)
the eigenstate distribution no longer possess parity symmetry. A schematic is
provided on the left. (d) This is the eigenspectrum flow for when the gain-loss
sites are closest to each other i.e. m0 = 10. (e) One such pair is presented here
when γth = J with the feature that not only they have the same eigenvalue but
their probability distributions overlap completely. (f) As the non-Hermiticity
is increased to γ = 1.2J the states with their broken parity symmetry are
anti-symmetric to each other.

Hermitian open quantum systems as they offer a numerically solvable simple representation

of the PT -symmetric Hamiltonian.

2.1 Non-Hermitian PT -symmetric chains

Let us recall the Hermitian Hamiltonian from Eq.  2.1 that describes a system of N sites

with constant couplings J . We now introduce a non-Hermitian potential of the following

form:

Γ(m0, γ) = iγ(|m0〉〈m0| − |m̄0〉〈m̄0|) = −Γ†, (2.5)
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where m0 is the site of with a +iγ potential and m̄0 = N + 1 −m0 has a −iγ potential, with

γ denoting the strength of the non-Hermiticity. The new Hamiltonian H(m0, γ) = H0 + Γ

is non-Hermitian but PT -symmetric. We define the linear parity operator by its action on

a state as P|n〉 → |N + 1 − n〉 and anti-linear time reversal operator as : T : |n〉 → |n〉∗

where ∗ is the complex conjugation operator.

Introducing a complex potential like this means that the norm of the system is not pre-

served. The system’s interaction with the environment is special since the ±iγ on reflection

symmetric sites represents balanced gain and loss. This is special because of the following

reason. When γ = 0, the Hamiltonian is Hermitian. As the gain-loss strength is increased,

the eigenvalues of the H(γ) are real and their corresponding eigenstates are simultaneous

eigenstates of the PT operator until γ = γth, where γth is called the PT breaking thresh-

old. At this point depending on whether N is even or odd and the relative position of the

gain-loss sites, the two or three levels coalesce. On increasing γ more than the threshold,

the symmetry is broken and two eigenstates have complex eigenvalues.

Fig.  2.3 exactly depicts this change from closed to open system behaviour for two lattices

with N = 20 sites, first (a)-(c) when m0 = 1 and then (d)-(f) when m0 = 10. The plot

in panel (a) shows the flow of the eigenspectrum as a function of the non-Hermiticity γ/J .

Panel (b) shows the eigenstates of the Hamiltonian participating in the breaking of PT -

symmetry when γ = 0.5 J and clearly shows that the states are invariant under parity.

(c) Beyond the threshold for γ = 1.2J , the eigenstate distribution no longer possess parity

symmetry. This is the region of broken PT -symmetry. In panel (d), the eigenspectrum flow

for when the gain-loss sites are closest to each other i.e. m0 = 10. This is a special case

because at the PT breaking threshold, all the states participate in the symmetry breaking

as consecutive states coalesce producing N/2 2nd order exceptional points. [  46 ]. (e) One

such pair is presented here when γth = J with the feature that not only they have the same

eigenvalue but their probability distributions overlap completely. (f) As the non-Hermiticity

is increased to γ = 1.2J the states with their broken parity symmetry are anti-symmetric to
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Figure 2.4. Schematic of a PT symmetric chain with Nx sites, strongly
coupled to Ny − 1 Hermitian chains of the same length. The gain site (blue)
has a potential +iγ and its parity-symmetric site (red) has the loss potential
−iγ. The coupling within a chain is Jx and the inter-chain coupling is Jy.

each other 

2
 . It is worth mentioning that when the lattice has an odd number of sites, the

PT breaking threshold when m0 = N/2, γth → J/2 as N → ∞.

A feature of PT symmetric models with one pair of gain-loss potentials is that the PT

breaking threshold is proportional to the tunneling amplitude. In principle, the threshold

is increased by reducing the distance between the gain and loss sites. Similarly, the PT

transition threshold is, in principle, increased by making the gain and loss sites closer to

each other. Although in practice, the different physical machinery necessary to implement

loss in one and gain in the other put serious constraints on the minimum separation between

the two sites.

So the question is whether the PT -threshold can be enhanced beyond γth/J = 1. We

now show that when strongly coupling the PT symmetric chain to a large number of neutral

chains, the PT symmetry breaking threshold increases by a factor proportional to the total

number of coupled chains. The results obtained in this section are a part of the paper we

have published [ 47 ].
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2.1.1 Strongly coupled chains

Let us now construct a two-dimensional, finite, tight binding lattice with Nx sites along

the x-direction, Ny sites along the y-direction, and open boundary conditions as shown in

Fig.  2.4 . Jx and Jy denote the nearest-neighbor couplings along the two directions respec-

tively. The gain site potential +iγ, is located at (m0, n0) while the loss potential −iγ, is at

reflection-symmetric location (m̄0, n0) with m̄0 = Nx + 1 − m0. We can write the Hamil-

tonian for this system as HPT = H0 + Γ, where the Hermitian tight-binding part and the

non-Hermitian part are given by

H0 = −Jx
∑
m,n

(|m,n〉 〈m+ 1, n| + h.c.) ,

−Jy
∑
m,n

(|m,n〉 〈m,n+ 1| + h.c.) , (2.6)

Γ = +iγ (|m0, n0〉 〈m0, n0| − |m̄0, n0〉 〈m̄0, n0|) , (2.7)

where |m,n〉 denotes a state localized at lattice site (m,n). The parity operator is given by

P : (m,n) → (m̄, n) and time reversal operator is defined by T = ∗. We find the eigenvalues

and eigenvectors of H0(Jx, Jy) to be,

Ψp,q(m,n) ≡ 〈m,n|kp, kq〉 = A sin(kpm) sin(kqn), (2.8)

Ep,q = −2Jx cos kp − 2Jy cos kq, (2.9)

where kp = pπ/(Nx+1) and kq = qπ/(Ny+1) are the dimensionless quasimomenta consistent

with open boundary conditions, 1 ≤ p ≤ Nx, 1 ≤ q ≤ Ny, and the normalization constant is

given by A = 2/
√

(Nx + 1)(Ny + 1).

In this project, we focused on the strongly coupled chains, i.e. Jy/Jx � 1. In this limit,

the spectrum in Eq.(  2.9 ) has Ny energy bands, with each band comprising Nx eigenvalues

spread over a width ∼ 4Jx. Therefore, in the following, we will use the label p to denote the

level index within a band and q to denote the band index. This separation of the spectrum
2

 ↑ It is often thought that the symmetry of the PT -symmetric Hamiltonian breaks is misleading since the
symmetry of the Hamiltonian is independent of γ/J . A more accurately, beyond the threshold the eigenstates
of the Hamiltonian are no longer simultaneous eigenstates of the PT operator. This can be seen in Fig.  2.3 
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into bands and levels within a band is valid when the bands do not overlap, and we will

consider chains where this criterion is satisfied.

2.1.2 Numerical calculation of the PT threshold

The results we obtain for γth(m0, n0) are found by exact diagonalization of the PT -

symmetric Hamiltonian, HPT . Figure  2.5 shows the behavior of γth as a function of the

relative gain position µ = 2m0/Nx when the gain site is on the top chain, i.e. n0 = 1. These

results are for Jy/Jx = 20. Panel (a) shows the results for an even chain with Nx = 26 sites.

When the number of chains is Ny = 1, the threshold shows the characteristic U-pattern

as a function of location of the gain site [  48 ]. When the number of chains increases to

Ny = {6, 13}, the maximum value of the threshold increases monotonically with it. Recall

that this maximum occurs when the gain-loss potentials are farthest apart, i.e. m0 = 1, or

nearest neighbors, i.e. m0 = Nx/2. The maximum threshold γth(m0 = 1)/Jx scales linearly

with the number of horizontal chains Ny up to a point, Ny . 15. These results are valid for

all strongly coupled chains with an even number of lattice sites.

Figure  2.5 (b) shows the results for an odd, Nx = 27 lattice with Jy/Jx = 20 and relative

gain position µ = 2m0/(Nx − 1). For a single chain, the threshold γth(m0) shows the

characteristic U-shape where the threshold for the nearest gain-loss location, m0 = (Nx −

1)/2, is half of that for the farthest gain and loss, m0 = 1 [ 48 ]. As the number of chains Ny is

increased, the threshold γth(m0) increases in a proportionate manner. Fig.  2.5 (d) shows the

linear dependence of the largest threshold γth(m0 = 1)/Jx on the number of chains. When

Ny & 14 this linear relationship breaks down, as it does in Fig.  2.5 (b). These results are

valid for all strongly coupled chains with an odd number of lattice sites.

Notice that in Figs.  2.5 , panels (b) and (d) the scaling of the PT threshold breaks down as

Ny is increased. This breakdown is due to the finite values of Jy/Jx used in the calculations.

We find that the scaling is only valid in the “strong coupling” regime which we defined by

enforcing that the energy bands do not overlap. We were able to calculate that for a large
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Figure 2.5. Dependence of the PT -breaking threshold γth(m0)/Jx on the
relative gain position µ = 2m0/Nx and the number of horizontal chains Ny for
(a) even lattice with Nx = 26 and (c) odd lattice with Nx = 27. The couplings
are Jy/Jx = 20. For a single chain, γth(m0) shows the characteristic U-shape.
As Ny is increased, the PT -threshold increases as well. The graphs in panel
(b) and (d) show that the maximum value of the threshold, found for m0 = 1,
increases linearly with the number of chains.

number of chains Ny � 1, in the strong coupling limit, the PT breaking threshold for Ny

coupled chains is strongly renormalized. For open boundary conditions, Fig.  2.5 , we get

lim
Ny�1

γth(m0, Ny) =
(
Ny + 1

2

)
γth(m0, Ny = 1), (2.10)

2.1.3 Results for small systems

Let us now consider some experimentally accessible system sizes with 2-3 chains, i.e.

Ny = {2, 3}, and with two or three sites in each chain, Nx = {2, 3}, and small to moderate
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coupling ratio Jy/Jx ∼ O(1). Fig.  2.6 (a) shows a gain-loss dimer (strongly) connected to a

neutral dimer. The 4 × 4 Hamiltonian for such a system is given by

H4(γ) = (−Jxσx + iγσz) ⊗ 12 + 12 ⊗ (−Jyσx). (2.11)

It is straightforward to obtain the particle-hole symmetric eigenvalues

λk = ±
[
J2
x + J2

y − γ2

2 ± 1
2
√
γ4 + 16J2

xJ
2
y − 4γ2J2

y

]1/2

. (2.12)

The PT transition threshold γth/Jx can be analytically obtained from Eq.(  2.11 ). Depending

on the ratio Jy/Jx the pair of eigenvalues, among the four given in Eq.(  2.12 ), that drive the

PT breaking transition varies. This variation gives rise to the three distinct functional forms

for the threshold function γth(Jy) seen in Fig.  2.6 (a). In a similar spirit, we also consider

a PT dimer connected to two neutral dimers, and a PT trimer connected to one or two

neutral trimers.
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Figure 2.6. PT threshold dependence on coupling to neutral sites shown by
blank circles; the gain-site is shown in blue and the loss-site is shown in red.
(a) γth/Jx for a PT -neutral dimer system is tripled from its single-dimer value
when Jy/Jx = 2, and saturates to two in the strong coupling limit, Jy/Jx � 1.
(b) for three dimers, the threshold is more than doubled near Jy/Jx ∼ 2 and
saturates to two for Jy/Jx � 1. Corresponding results for a (c) PT -neutral
trimer system, and (d) a three-trimers system. In all cases, the threshold is
more than doubled even at moderate values of Jy/Jx & 2.
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Figure  2.6 (a) schematically shows the dependence of the threshold γth/Jx on the ratio of

coupling strengths Jy/Jx for a PT -neutral dimer system. Starting from unity, the dimen-

sionless threshold γth/Jx decreases to zero for the symmetrical configuration, i.e. Jy = Jx,

but then rises rapidly to three when Jy = 2Jx. As the asymmetry increases, Jy/Jx � 1, the

threshold saturates to two. Results for one PT dimer with two neutral dimers are shown in

panel (b). When the PT dimer is in the middle, the threshold is first suppressed to zero, and

then rises to three when Jy/Jx =
√

2 (solid blue line). In contrast, when the PT dimer is on

top, the threshold vanishes at two different coupling strengths, and reaches a maximum near

Jy/Jx = 2 (dot-dash red line). In both configurations, the threshold saturates to γth/Jx = 2

in the strong coupling limit.

Figures  2.6 (c) shows the corresponding results for a PT trimer. When connected to

another neutral trimer (top panel), the threshold γth/Jx first decreases down to zero, then

increases, and saturates to γth/Jx = 2
√

2 = 2γth(Jy = 0). When we have two neutral

trimers (bottom panel), the threshold shows a qualitatively similar behavior. The results in

Fig.  2.6 show that the PT transition threshold in experimentally realizable configurations

is dramatically changed by coupling the PT -dimer or PT -trimer to neutral sites.

In conclusion, these results show that highly asymmetrical, two-dimensional lattice mod-

els, with a few balanced gain and loss sites, give rise to a strong renormalization of the PT

symmetry breaking threshold. These results show an interesting and novel wave to change

the PT symmetry breaking thresholds from zero to a factor of two to three times the dimer

coupling by simply changing the inter-dimer coupling.
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2.2 A brief introduction to topological superconductors

Let us now explore the non-Hermitian version of a model that has received a lot of

attention in recent year due to its application to quantum computing. In these sections of this

chapter, we investigate the variation of the PT -symmetry breaking threshold in a celebrated

toy model for a topological superconductor called the Kitaev chain model with one pair of

gain-loss potentials on reflection symmetric sites. The Kitaev chain is intuitively constructed

to host the so-called Majorana fermions. In the past decade there has been a race to observe

these elusive particles, because in principle, they could serve as viable and robust candidates

for a quantum bit; the building block for a quantum computer. A Majorana particle is, by

design, a superposition of Dirac fermions, i.e. a fermion constructed from a electron-hole

pair. This superposition is defined such that the particle is its own antiparticle. By this

definition, they must have zero energy. Conversely, a Dirac fermion can be assumed to a

superposition of two Majorana particles. Since this seems like a mathematical construction,

the question is if one can separate these Majoranas far enough to probe them.

One innovative design is done on a finite 1D tight-binding chain that couples the Majorana

particles on the nearest neighbor sites. This leaves the Majoranas on the edges uncoupled

which are highly localized, robust modes with zero energy of this open chain. Kitaev’s model

is a way to build a one dimensional p-wave superconductor with topological properties.

2.3 Understanding the Kitaev Hamiltonian

The Kitaev model of a one dimensional, p-wave superconducting chain with N -sites and

open boundary conditions is described by the following Hermitian Hamiltonian,

H0 = −µ
N∑
n=1

c†
ncn − J

N−1∑
n=1

(c†
ncn+1 + h.c.)

+
N−1∑
n=1

(δeiΦcncn+1 − h.c.). (2.13)

Here c†
n and cn are fermionic creation and annihilation operators for site n in the chain, µ

is the on-site potential, J > 0 is the nearest-neighbor hopping strength, and δ > 0 is the
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amplitude of the (p-wave) superconducting coupling for a Cooper pair that is localized across

neighboring sites [ 49 ].

The fermionic creation and annihilation operators can be written in terms of the Majorana

operators as

c†
n = eiΦ/2

2 (a2n−1 + ia2n), (2.14)

cn = e−iΦ/2

2 (a2n−1 − ia2n). (2.15)

The Majorana operators satisfy the anticommutator relation {ai, aj} = 0. The global phase,

Φ, of the superconducting order parameter is fixed at π/2 to ensure that Eq.(  2.13 ) is parity-

time symmetric, with the parity operator given by P : cn → cn̄ where n̄ = N + 1 − n

is the mirror-symmetric counterpart of site n and the time-reversal operator is given by

complex conjugation, T = ∗. The Majorana operators follow the anti-commutation relation

{ai, aj} = 2∆i,j where ∆i,j is the Kroneker delta function.

Additionally, the Hamiltonian with the Majorana operators looks like:

HM
0 = −µ

2

N∑
n=1

(1 + ia2n−1a2n) − i

2

N−1∑
n=1

(J + δ)a2na2n+1

+ i

2

N−1∑
n=1

(J − δ)a2n−1a2n+2. (2.16)

Note that for the case µ = 0, J = δ, the Hamiltonian is HM
0 = −iJ∑N−1

n=1 a2na2n+1; as a

result half of the modes have degenerate energy equal to +J and the other half will have

energy −J . There remain two unpaired operators, a1 and a2N , which commute with the

Hamiltonian, implying that these modes have zero energy. These are called Majorana zero

modes (MZM).
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We rewrite Eq.( 2.13 ) by using the Bogoliubov-de Gennes representation in terms of the

operator-vector Ψ = (c1, c
†
1, c2, c

†
2 . . . cN , c

†
N)T as H0 = Ψ†HBdGΨ where the 2N × 2N matrix

HBdG in the site-representation, with open boundary conditions, is given by

HBdG = −µ

2

N∑
n=1

|n〉 〈n| ⊗ σz

−J

2

N−1∑
n=1

(|n〉 〈n+ 1| + |n+ 1〉 〈n|) ⊗ σz

+iδ2

N−1∑
n=1

(|n〉 〈n+ 1| − |n+ 1〉 〈n|) ⊗ σx, (2.17)

where σx, σz are Pauli matrices. For a chain with periodic boundary conditions, translational

invariance allows us to transform the site-space Hamiltonian (  2.17 ) into momentum space,

H̃BdG = UHBdGU
† with a unitary

U = 1√
N

N∑
k,n=1

e−i|pk〉〈n| ⊗
(
eiπ/412 + e−iπ/4σz

)
. (2.18)

The block-diagonalized momentum-space Hamiltonian is given by H̃BdG = ∑N
k=1 h(pk)|pk〉〈pk|

where pk = 2πk/N are the discrete quasimomenta for a finite chain and

h(p) =

−J cos p− µ/2 −iδ sin p

iδ sin p J cos p+ µ/2

 . (2.19)

The bulk energy spectrum of the Hamiltonian H̃BdG is given by

E±(p) = ±
√

(J cos p+ µ/2)2 + δ2 sin2 p, (2.20)

and it shows that in the limit of an infinite chain, N � 1, the gap in the spectrum vanishes

at p = π when µ = 2J . For the finite chain, the spectrum Eq.(  2.20 ) is symmetric about

δ = 0 because HBdG(−δ) = SHBdG(δ)S† with a unitary operator S = 1N ⊗ σz. When the

coupling between the first and the last sites is continuously reduced to zero, i.e. boundary

conditions are changed from periodic to open. In the zero chemical potential limit, Majorana

zero-modes (fermionic excitations) appear localized on the edges of the chain. These edge
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modes are robust when gain-loss potentials are introduced on random sites [ 50 ] or on parity

symmetric sites with disorder [ 51 ].

2.4 PT -symmetric Kitaev chain

Recently there has been a number of studies in the setting of topological superconductors

with non-Hermitian PT -symmetric potentials [  50 ]–[ 58 ]. These studies explore the effects

of non-Hermiticity on these edge states which are characterized by zero energy. The Kitaev

chain with a pair of PT -symmetric potentials at the edges have been studied in [ 50 ], [ 51 ],

[ 55 ], [ 56 ]. The result is the emergence of an additional pair of edge state with a non-

zero energy eigenvalue[ 51 ]. In another study it was reported that the zero energy of these

(Majorana) edge states remain unperturbed unless the PT potentials are imposed on the

unpaired Majorana sites on the edges of an open Kitaev chain [ 50 ]. Jin and Song show that

for a finite size Kitaev chain, the non-Hermitian coupling potentials on the edges generate

a pair of coalescing PT -symmetry breaking modes with zero energy beyond the topological

phase transition point, suggesting a non-Hermitian extension to the topological properties

of the Kitaev chain. The energy eigenvalues of these states are real in the topological trivial

phase(TTP) and become imaginary-energy modes in the topological non-trivial phase(TNP)

[ 56 ].

In contrast to these studies on the Majorana edge modes, we focused on the variation of

the PT -breaking threshold γth(m0, N) with the location m0 of the gain potential in a Kitaev

chain of size N . These results are a part of our published paper [  59 ].

Recall the Hermitian Kitaev Hamiltonian from Eq.  2.17 . To this toy model with open

boundary conditions (OBC), we add a pair of balanced gain/loss potentials ±iγ at mirror

symmetric sites m0 and m̄0,

iΓ = iγ

2 (|m0〉 〈m0| − |m0〉 〈m0|) ⊗ σz, (2.21)

and thereby get a non-Hermitian, PT -symmetric Kitaev chain Hamiltonian

HK(γ, δ, µ) = HBdG + iΓ. (2.22)
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1 2 N-1 N

Figure 2.7. Schematic representation of a Kitaev model with one pair of
gain and loss potentials, Eq.(  2.22 ). Two chains (gray and white) with detuned
potentials ±µ have nearest neighbor Hermitian tunneling amplitudes ±J , and
next-nearest-neighbor Hermitian amplitudes ±iδ. Due to the presence of two
degree of freedom on each site [ 60 ], the potential iγ on site m0 acts as gain
(red) for one and loss (blue) for the other. This schematic can be realized with
coupled resonator rings where one can engineer complex, Hermitian tunneling
amplitudes.

Fig.  2.7 shows a schematic representation of a lattice model described by Eq.(  2.22 ).

Although the original model refers to a many-body fermionic system with two bands, in its

“single-particle” form, Eq.(  2.22 ), it can be interpreted as two detuned coupled chains with

Hermitian nearest-neighbor couplings ±J and Hermitian, purely imaginary, next-nearest-

neighbor couplings ±iδ [ 60 ]. The gain potential on site m0, given by (iγ/2)|m0〉〈m0| ⊗ σz,

then stands for gain in one chain and loss in the second chain. This representation of the

PT -symmetric Kitaev model can be experimentally implemented in resonator arrays where

real and purely imaginary tunneling amplitudes can be easily engineered. In the next section

we explore the global phase diagram for the PT -symmetry breaking threshold γth(m0, δ, µ).

2.4.1 PT -threshold Results

The results presented in this section are obtained by diagonalizing HK or HBdG for Kitaev

chains of size N = 20 (Fig.  2.8 ) and N = 21 (Fig.  2.9 ). They remain qualitatively same for

larger chain sizes, and the differences between even and odd parity chains persist in the large

N limit, as they do for a simple tight-binding model. All energy scales are measured in units

of the tight-binding coupling J = 1. Figures  2.8 (a)-(d) show the the energy eigenvalues En
for a Hermitian Kitaev chain as a function of the superconducting order parameter δ/J . In

the trivial case, when δ = 0 = µ, we get the cosine-band of a tight-binding model. As the
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detuning δ is increased from (a) to (d), the two bands become well-separated. On the other

hand, at a fixed detuning, when δ is increased, the bands develop fan-like linear dispersion,

leading to massively degenerate flat bands at δ/J = 1 at zero detuning. As the detuning

is increased from µ = 0, the system develops two crossing points (shown by blue circles in

(b)). We also note that zero-energy states are present when µ < 2J . At µ/J = 2, the

superconducting gap closes marking a phase transition to the topologically trivial phase.

Here the mid-gap states become a part of the bulk. When µ is increased further, Fig.  2.8 (d),

the system is in the trivial superconducting phase and energy spectrum is gapped. The

topological, edge-localized zero energy states only occur when µ ≤ 2J . At µ = 0, these zero-

energy states are fully localized on the end sites. When µ is increased, these states extend

into the bulk of the chain, with an exponentially decaying probability density [ 57 ], [  58 ]. The

Hermitian, (near or exact) degeneracies of the Hamiltonian HBdG play an important role

in determining the threshold gain-loss strength γth when a pair of gain-loss potentials is

introduced at mirror symmetric sites.

Figures  2.8 (e)-(h) show the numerically determined PT -symmetry breaking threshold

γth for the N = 20 chain as a function of m0 and superconducting order parameter δ. When

µ/J = 0 (panel e), we see that γth(m0, δ) has the characteristic U-shaped behavior [ 47 ],

[ 48 ] when δ = 0 and becomes mostly zero for intermediate locations m0 ∼ N/4. When

m0 = 1, i.e. when the gain-loss locations are farthest apart, the PT threshold is maximized

to γth = J , and reflects the non-local robustness that is ubiquitous for systems with open

boundary conditions [ 21 ], [  48 ]. In this case, the states that participate in the PT -breaking

process are the mid-band states. As m0 is increased, the threshold decreases and it rises

back to γth = J when the gain and loss locations are nearest neighbors, i.e m0 = N/2. In

this situation, all eigenvalues simultaneously and pairwise become complex, giving rise to

maximal PT -symmetry breaking [ 46 ].

In contrast to the variation with m0, we find that when the superconducting order pa-

rameter δ is varied, for most locations m0, the PT -threshold is uniformly suppressed from its

δ = 0 value. The exception is the region m0 ∼ 1, where, as δ is increased, we see that the PT

threshold at δ = J is double its δ = 0 value [ 51 ], where the flat bands occur; see Fig.  2.8 (a).

As δ is increased further, the threshold dips to zero and then increases reaching a steady,
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Figure 2.8. Energy eigenvalues (in units of J) of an N = 20 site Hamiltonian
HBdG(δ), Eq.( 2.17 ) as a function of detuning. (a) µ/J = 0, (b) µ/J = 1 have
topological edge modes, while the system is in the topologically trivial phase
at (c) µ/J = 2 and (d) µ/J = 3. Corresponding PT threshold values γth/J
obtained from the Hamiltonian HK, Eq.(  2.22 ) are plotted as a function of the
gain location m0 ∈ [1, N/2] and the superconducting order parameter δ/J : (e)
µ/J = 0, (f) µ/J = 1, (g) µ/J = 2 (h) µ/J = 3. Most of these features can
be understood in terms of Hermitian band structure, panels a-d.

δ-independent value of γth = J/2. As the detuning µ is increased from zero, Fig.  2.8 (f),

there is an overall suppression of the PT -breaking threshold γth although the characteristic

U-shape behavior as a function of m0 and the non-monotonic behavior as a function of δ for

farthest gain-loss potentials are both retained. These qualitative trends continue for µ ≤ 2J ,

i.e. when the system is in the topological phase.

When the detuning is large, µ > 2J , the system enters into a trivial superconducting

phase with no edge localized states, (g) and (h). In this regime, the system consists of

two separated bands, and therefore the PT -threshold does not sensitively depend on the

detuning. On the other hand, when gain and loss are on nearest neighbor sites, m0 = N/2,

the threshold is suppressed to zero for δ ∼ 2J . This is explained by the level crossings that

occur near band edges; see Figs.  2.8 (c) and (d).

Figure  2.9 shows corresponding, representative results for a chain with N = 21 sites.

Panels (a)-(d) shows the dispersion of the Hermitian Kitaev chain as a function of δ/J for
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Figure 2.9. Energy eigenvalues (in units of J) of an N = 21 site Hamiltonian
HBdG(δ), Eq.( 2.17 ) as a function of detuning. (a) µ/J = 0, (b) µ/J = 1 have
mid-gap states with zero energy, but these are not topological. (c) µ/J = 2 and
(d) µ/J = 3 show emergence of a gapped spectrum. Corresponding PT thresh-
old values γth/J obtained from the Hamiltonian HK, Eq.( 2.22 ) are plotted as
a function of the gain location m0 ∈ [1, (N − 1)/2] and the superconducting
order parameter δ/J : (e) µ/J = 0, (f) µ/J = 1, (g) µ/J = 2 (h) µ/J = 3.
Due to the absence of topological edge modes, the PT threshold behavior at
µ = 0 is markedly different from that of an even chain, Fig.  2.8 (e). At nonzero
detuning, the threshold is non-monotonically suppressed with increasing δ.

increasing detuning values. At zero detuning, panel (a), the band structure looks similar to

that in Fig.  2.8 (a), but with a key difference: there is no degenerate pair of topological zero

energy states. As µ is increased, the qualitative evolution of the band structure is similar

to that of an even Kitaev chain, with the band gap closing at µ = 2J and well-separated

two-band structure at higher detuning values. Panel (e) shows the PT threshold γth/J as

a function of the gain location m0 and the superconducting order parameter δ/J . Near

δ = 0, we recover the characteristic U-shaped behavior with a robust threshold γth ∼ J

when m0 = 1, i.e. the farthest gain and loss pairs. In contrast, for closest gain-loss locations,

i.e. m0 = (N − 1)/2, the threshold reaches γth ∼ J/2 [ 46 ], [ 48 ]. This behavior is seen across

the entire range of µ/J ; panels (f)-(h).
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In a sharp contrast, the behavior of the threshold γth/J as a function of the supercon-

ducting order parameter δ/J is markedly different for the zero detuning case, panel (e),

vs. the nonzero detuning case, panels (f)-(h). For the latter, the threshold shows a non-

monotonic suppression of γth with increasing δ/J . When µ = 0, on the other hand, we

see that the γth increases with δ/J , thereby strengthening the PT -symmetric phase. We

emphasize that when m0 = 1—gain and loss localized on the end sites—this enhancement

occurs even at δ/J = 1. Recall that at δ/J = 1, the Hermitian band structure forms flat

bands (Figs.  2.8 a,  2.9 a), leading to a zero threshold irrespective of m0 in the even chain,

Fig.  2.8 e.

To get better insights into the rich structure of the PT threshold, we consider the behavior

of γth/J for nearest-neighbor gain-loss potentials, m0 = N/2, as a function of µ/J and δ/J

for an N = 20 site chain (Fig.  2.10 (a)). Apart from the nonzero threshold that occurs in the

limit of a non-superconducting, tight-binding chain (δ = 0) for any detuning, we see that

γth = 0 for large δ for any µ, and there is beak-shaped region in the µ − δ plane with a

positive PT threshold. In the magnified view of the region at small δ/J < 1 (Fig.  2.10 (b)),

we see significant variations in the PT threshold as we sweep across µ/J . These threshold

“dips” occur at values of µ/J where the lowest energy levels in the bulk become degenerate.

The white dashed line in Fig.  2.10 (a), separating the zero-threshold region from the positive-

threshold regions, is described by equation αµJ+ |J2 − δ2| where α ∼ 0.5 is an N -dependent

constant. The region 0 < µ/J < 2, < δ/J < 1 enveloped in the PT phase boundary shows

many ripples with γth > 0 but it decays to zero in the thermodynamic limit.

We remind the reader that in the δ = 0 tight-binding case with nearest-neighbor gain-loss

potentials, all states contribute pairwise to the PT -symmetry breaking [ 46 ]. In contrast, in

the current set up, only the states near the band edges become degenerate and then complex

conjugate. In order to find the asymptotic behavior of the zero-threshold line, we turn to

the Hermitian band structure, Eq.  2.20 . A zero threshold is a result of degeneracy in the
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(a)

(b)

Figure 2.10. (a) PT -symmetry threshold for a chain with N = 20 and
m0 = N/2. The white dashed line, separating the zero-threshold region from
the nonzero-threshold region, is empirically fit by equation αµJ + |J2 − δ2| =
0 where α → 0.5 as N → ∞; at N = 20, we find that α = 0.53. This
functional dependence can be obtained by requiring that two adjacent levels
in the Hermitian band-structure become degenerate to get γth = 0. (b) closeup
of the boxed region near the origin shows multiple ripples in γth.

consecutive levels, i.e. E(qk) = E(qk−1) where qk = πk/(N+1) are the lattice quasimomenta

consistent with open boundary conditions. Simplifying the degeneracy criterion gives

a1µJ + a2(J2 − δ2) = 0, (2.23)

a1 = cos(qk) − cos(qk−1), (2.24)

a2 = a1 [cos(qk) + cos(qk−1)] . (2.25)

Defining α = a1/|a2|, we obtain an analytical expression for asymptotic value of α. From

the energy spectra in Figs.  2.8 (a)-(d) and numerical analysis, it follows that regions near

q ∼ 0, π contribute giving α → 0.5 in the limit N → ∞.

63



(a) (b) (c)

(e) (f) (g) (h)

(d)

Figure 2.11. PT threshold for an N = 5 chain. (a) Schematic of N = 5
chain with m0 = 1. (b)-(c) Flow of real part of eigenavalues of the N = 5
chain as a function of γ for farthest gain-loss locations (far left) shows that
PT breaking occurs at an EP3 and the threshold increases monotonically with
the superconducting order parameter δ. (d) γth(µ, δ) shows behavior consistent
with Fig.  2.10 including a contour of zero threshold given by αµJ+|J2−δ2| = 0.
(e) Schematic of N = 5 chain with m0 = 2. (f)-(g) Corresponding results for
closest gain-loss locations, m0 = 2, show that PT -breaking occurs at an EP2,
and the threshold varies non-monotonically with δ. (h) γth(µ, δ) map shows
features similar to those in panel (d). The white-daashed line is zero-threshold
contour given by αµJ + |J2 − δ2| = 0 with α = 1.6.

Next, to understand the global behavior of the PT threshold γth(m0, µ, δ) in an odd

chain, we look towards the smallest nontrivial case with zero detuning, i.e. N = 5 and

µ = 0. When m0 = 1, the doubly-degenerate energy spectrum is analytically tractable and

is given by

En = ∓1
2
√

2

[
4(J2 + δ2) − γ2 ±

√
4(J2 − δ2)2 + γ4

]1/2
, (2.26)

along with two (degenerate) zero eigenvalues, E5,6 = 0. As γ is increased, the energy

levels E3,4 = −E7,8 first approach each other, merge with the zero-levels, and then become
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complex conjugate, thereby giving rise to an exceptional point of order three (EP3). The

PT -threshold in this case is given by

γth(1) = J

[
3(δ2 + J2)2 + 4δ2J2

2J2(δ2 + J2)

]
. (2.27)

A similar analysis for the case with next-nearest-neighbor gain-loss potentials gives particle-

hole symmetric, doubly degenerate spectra

En = ∓1
2
√

2
[
4(J2 + δ2) − γ2 ±

√
A
]1/2

, (2.28)

A = 4(J2 − δ2)2 + γ4 − 8γ2(J2 + γ2), (2.29)

along with two (degenerate) zero eigenvalues, E5,6 = 0. As γ is increased, we now find that

the levels near the band-edge approach each other and become degenerate, giving rise to an

EP2. The PT threshold, obtained by requiring E1,2(γth) = E3,4(γth), is given by

γth(2) =
[
4(J2 + δ2) − 2

√
3δ4 + 10δ2J2 + 3J4

]1/2
. (2.30)

We note that these analytical results are only valid for zero detuning, and for finite detuning

µ > 0, we have to resort to numerical calculations.

Figure  2.11 (a) shows the schematic of an N = 5 site chain with gain-loss potentials at

its ends, i.e. m0 = 1. Panels (b)-(c) show the flow of the real parts of energy eigenvalues for

the model as a function of γ/J for different values of δ. We see that increasing γ leads to

PT -breaking that occurs at the center of the band, giving rise to an EP3. They also show

that the threshold increases monotonically with δ, consistent with what is seen in Fig.  2.9 e.

Panel (d) shows numerically obtained threshold diagram in the µ− δ plane.

Figure  2.11 (e) shows the configuration with nearest-possible gain-loss potentials, i.e.

m0 = 2. Panels (f)-(g) show the flow of real part of eigenvalues for the model. Increas-

ing γ in this case leads to PT -breaking at the band edges, and it has a non-monotonic

dependence on the superconducting order parameter δ, also seen in Fig.  2.9 e. Panel (h)

shows numerically obtained threshold γth(µ, δ). The similarity of these threshold maps with
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Fig.  2.10 is striking. By fitting the zero threshold contour to the form αµJ + |J2 − δ2| = 0

(dashed white line in panel (h)), we obtain α = 1.6.

2.4.2 Exceptional Lines and rentrant PT phase

In one-dimensional lattice models with a single pair of gain and loss potentials, typically,

the PT -symmetry breaking occurs monotonically with increasing gain-loss strength γ. This

is true for uniform chains with open [  48 ] or periodic boundary conditions [ 61 ]; the Su-

Schrieffer-Heeger, the Aubrey-Andre-Harper or quasi-periodic models [  62 ], [  63 ]; and models

with non-uniform, parity-time symmetric tunneling profiles [  64 ], including the perfect-state

transfer models. On the other hand, the presence of two or more gain-loss potentials can

lead to re-entrant PT -symmetric phase [  65 ], [ 66 ] where increasing gain-loss strength leads

to repeated PT -symmetry breaking and PT -symmetry restoration transitions.

In contrast to these models with multiple non-Hermitian terms [  65 ], [  66 ], the Kitaev chain

we have considered shows a re-entrant PT -symmetric phase and its subsequent breaking

when the gain-loss strength γ is increased. This phenomenon occurs for an even chain

with µ = 0 and m0 = 1, at moderate superconducting order parameter 1 ≤ δ/J ≤
√

2,

independent of the chain size. In Fig.  2.12 (a), we plot Λ(γ, δ) = log10 maxk =(Ek) where

Ek are (purely real or complex-conjugate) eigenvalues of the Hamiltonian HK for an N = 8

chain. The PT -symmetric region is marked by black, and the rest is PT -symmetry broken

region. With δ/J ∼ 1, as γ is increased, the first PT symmetry breaking near γ/J ∼ 0.5

occurs due to the level-attraction between and coalescence of two highest energy states in

the upper band; recall that due to the particle-hole symmetric nature of the spectrum, two

lowest energy levels in the lower band concurrently become degenerate. With increasing

γ, subsequent lower energy levels, except the lowest state in the upper band, coalesce in

pairs. This sequence of transitions leads to a large number of exceptional points in the PT -

symmetry broken region. Further increasing γ leads to a reverse process where levels with

complex-conjugate energies undergo level-attraction and PT -symmetry is restored. For the

lowest-energy states in the upper band (and their chiral counterparts), the re-entrant PT -

symmetric phase is accompanied by a qualitative change where the wave-function weight
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Figure 2.12. (a) PT phase diagram in the γ − δ plane for an N = 8 lattice
with µ = 0 and m0 = 1 shows the heat map of Λ ≡ log10 maxk =(Ek) where Ek
are the 2N are the eigenvalues of HK, Eq.( 2.22 ). A re-entrant PT -symmetric
phase (black) emerges in the range 1 ≤ δ/J ≤

√
2 as the gain-loss strength γ/J

is increased. (b) EP2 contours at the PT boundary and in the PT -broken
region show sequential coalescence of eigenvalues. At δ/J = 1, due to the
presence of robust Majorana modes, a third-order EP emerges at γ/J = 2
(yellow circle). (c)-(d) corresponding results for an N = 24 lattice shows same
qualitative features.

shifts from the bulk to the edges. As γ is increased further, the system enters the PT -

broken region again. This second PT transition across an EP is driven by coalescence of the

near-zero-energy state with state at the bottom of the top band.

To map out the exceptional point contours in the δ − γ plane, we use the (Dirac) inner-

product matrix Mpq = |〈ψp|ψq〉| where |ψk〉 is the (Dirac)-normalized right eigenvector of

HK with eigenvalue λk. The order of the EP is then given by maxp
∑
q 6=pMpq. Figure  2.12 (b)

shows the contours of exceptional points in the parameter space. In addition to the bound-
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aries of PT -symmetric and PT -broken regions, seen in Fig.  2.12 (a), we see EP contours

that denote the cascades of eigenvalue coalescence that occur in the PT -broken region as γ

is increased. Of particular interest is the contour that starts at δ = 0 and γ/J = 1. At point

δ/J = 1, the system has fully degenerate bands with robust, mid-gap edge states.Therefore,

introduction of the gain-loss potentials leads to a third-order EP at γ/J = 2 (shown by a

yellow circle) in the otherwise second-order EP contour. We note that the prominent reen-

trant PT phases only occur when the gain-loss potentials are farthest apart, i.e. m0 = 1

and remain robust only at µ = 0 for any even N ; Figs.  2.12 (c)-(d) show the phase diagram

and EP contours for an N = 20 Kitaev chain.

In summary we have shown that the threshold profile is rich, with persistent differences

between even and odd parity lattices. In particular, we have found that for a zero-detuning

chain with odd number of sites, the threshold is enhanced with increasing superconducting

order parameter. For an even chain with edge gain-loss potentials and superconducting

coupling δ & 1, we discover re-entrant PT -symmetric phase, and PT -phase boundaries

that contain both second and third order EPs. We have also discussed, briefly, a potential

realization of our lattice model with coupled optical resonators. Our results further the

understanding of non-Hermitian condensed matter models in the presence of realistically

achievable gain and loss.
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3. PT -SYMMETRIC ELECTRICAL CIRCUITS

The content of this chapter is a part of our paper which have been slightly modified. The

preprint is available on arxiv.org and in the process of submission to a journal.

The field of PT -symmetry has grown and diversified due to its easily accessible experi-

mental platforms like photonics, ultra cold atoms and electrical circuits. The realization that

a PT -symmetric Hamiltonian represent systems with spatially separated balanced gain and

loss elements, has been the key motivator. Some of these experimental platforms include two

waveguides [  8 ], [ 67 ], two mechanical oscillators [ 14 ], two coupled electrical oscillators [  12 ],

[ 68 ], two fiber loops [  9 ], two or more coupled micro-resonators [  69 ]–[ 71 ], acoustics [ 72 ], dif-

fusive systems [ 17 ], damped and driven shallow fluids [  73 ], and two coupled, time-delayed

semiconductor lasers [ 74 ]. As you might have realised, that there are always two elements.

In this chapter we will take a look a novel protocol we designed, for PT symmetry based

on a time-dependent similarity transformation using electrical circuits as a platform. The

manifestation of a complex gauge potential, from the non-unitary change of basis, generates

a representation of separated, balanced gain and loss potentials. An added benefit of this

approach is that we can implement PT symmetry in a minimal system setting with only

one variable element which in our case is a single LC oscillator.

3.1 PT -symmetry in a single oscillator

Let us consider a LC oscillator circuit as shown in Figure  3.1 a in which the voltage V (t)

across the capacitor and the current I(t) in the inductor satisfy following Kirchhoff rules,

I(t) + C(t)dV (t)
dt

= 0, (3.1)

V (t) − L(t)dI(t)
dt

= 0. (3.2)
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(a)

(b)

(c)

Dyamical PT

Figure 3.1. PT -symmetry in a single LC circuit. (a) The state |φ(t)〉 of the
circuit encodes the voltage V (t) across the capacitor and current I(t) in the
inductor, and satisfies a linear, first-order equation given by Kirchoff laws. A
static change-of-basis to |ψ(t)〉 = A1/2|φ(t)〉 leads to a Hermitian Hamiltonian
H0 = ω0σy for the new state |ψ(t)〉. Thus, an LC circuit is mapped into
a two-site model. (b) When C(t), L(t) are exponentially varied subject to
the constraint L(t)C(t) = L0C0 (hyperbola), the time-dependent change of
basis generates balanced, constant gain and loss ±iγ. This leads to a purely
imaginary, PT -symmetric Hamiltonian HPT = ω0σy + iγσz. (c) When the
constrained variation is not exponential, arbitrary, but balanced gain and loss
potentials ±iγ(t) can be generated. Here, we focus on the special case when
γ(t) is periodic.
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With some arrangement, these equations in a matrix representation look like,

i
d

dt

V (t)

I(t)

 =

 0 −i/C(t)

i/L(t) 0


V (t)

I(t)

 (3.3)

i∂t|φ(t)〉 = M |φ(t)〉 (3.4)

Multiplying ‘i’ on both side is a cheap trick to make it look like the Schrödinger equation

with a “state vector” defined as |φ(t)〉 ≡ [V (t), I(t)]T . The imaginary, non-symmetric matrix

M has eigenvalues ε± = ±ω0 = ±1/
√
LC.

Under a static, non-unitary change of basis to |ψ(t)〉 = A1/2|φ(t)〉, the equation of motion

becomes i∂t|φ(t)〉 = H0|ψ(t)〉 with a Hermitian Hamiltonian

H0 = A1/2MA−1/2 = ω0σy. (3.5)

Here

A =

C/2 0

0 L/2

 (3.6)

and σy is the Pauli y-matrix. The energy of the circuit by can be calculated by take the

expectation value

〈φ(t)|A|φ(t)〉 = 1
2CV (t)2 + 1

2LI(t)2 = E(t). (3.7)

Here things get interesting when the basis transformation is time dependent, and so the

new state vector satisfies i∂t|ψ(t)〉 = Heff(t)|ψ(t)〉. The effective Hamiltonian Heff is the sum

of (possibly time-dependent) Hamiltonian H0(t) and a gauge potential iΓ(t) that arises from

the non-constant nature of the change of basis matrix [ 75 ],

Heff = A(t)1/2MA(t)−1/2 + i
(
∂
∂t
A(t)1/2

)
A(t)−1/2 (3.8)

= H0(t) + i ∂
∂t

lnA1/2(t) (3.9)
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We label our newly manifested gauge term as,

Γ(t) = ∂t lnA1/2(t). (3.10)

In fundamentally quantum systems, the matrix A1/2 is unitary and gives rise to a Hermi-

tian gauge term iΓ = (iΓ)†. In contrast, for effective models like ours, a non-unitary A1/2(t)

can be tailored to create non-Hermitian, gain and loss potentials.

Generating a PT Hamiltonian

Now, let us consider constrained variations of the form C(t) = C0 exp[+2f(t)] and

L(t) = L0 exp[−2f(t)] to ensure that the frequency of the oscillator remains unchanged. Such

variations give rise to a traceless, anti-Hermitian gauge potential iΓ = iγ(t)σz = i(df/dt)σz
that represents balanced gain and loss in a solitary oscillator. The effective Hamiltonian

then becomes

HPT(t) = ω0σy + iγ(t)σz. (3.11)

HPT(t) is invariant under combined operations of parity P = σx and time reversal T = ∗

(complex conjugation). In contrast to quantum systems with a complex state vector, the

realness of the elements of |ψ(t)〉 = [
√
C(t)/2V (t),

√
L(t)/2I(t)]T is guaranteed by an HPT

with purely imaginary entries. This requirement also constrains the most general form of

the non-Hermitian Hamiltonian for this system to HPT = hyσy + ihzσz + ihxσx with hk ∈ R.

With a suitable choice of the dimensionless function f(t), Eq.(  3.11 ) provides the protocol

for arbitrary, balanced gain and loss for the energy dynamics. When f(t) = γt is linear in

time, Eq.(  3.11 ) gives the static PT -symmetric Hamiltonian HPT(γ) = ω0σy+iγσz. As shown

in Fig.  3.1 b, when γ > 0, the capacitor acts as the “gain site” and the inductor acts as the

“loss site” for the circuit energy. On the other hand, surfing the hyperbola L(t)C(t) = L0C0

back and forth leads to a time-periodic γ(t) where each “site” acts as a gain for fraction of

the period and a loss for rest of the time (Fig.  3.1 c).

72



Parameter Control

Inductance Capacitance

Resistance

1

1

1

1

1

1
(t)

1
(t)

1

n(a)

(b)

(c)

(d)

(e)

(f)

(g)

PTS

PTB

Figure 3.2. Dynamics of a PT -dimer with static gain and loss. (a) Schemat-
ics of synthetic LC circuit comprising capacitor (red), inductor (blue), resistor
(yellow), and signal adder (pink) boxes. (b) Actual circuit board with cor-
responding color-coded components marked. The circuit has C = 100µF,
L = 0.01 H, ω0 = (2π) × 159.15 Hz, and a parasitic resistance R = 103 Ω. (c)-
(d) Circuit energy E(t) oscillates in the PT -symmetric phase. The gain-loss
strength is (c) γ = 0.375ω0 and (d) γ = 0.75ω0. (e) E(t) grows exponentially in
the PT -broken phase, γ = 1.05ω0 (experimental data: blue dots, theory: red
dashed line). (f) At γ = 0.375ω0 (PT -symmetric region, PTS) although the
circuit energy E(t) oscillates, η2(t) = E(t) + γV (t)I(t)/2ω2

0 remains constant
with time. (g) The same, constant behavior of η2(t) is observed at γ = 1.05ω0
(PT -broken region, PTB). Gray traces are experimental data; red dashed lines
are theory.
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3.2 Experimental results for a static HPT

We experimentally demonstrate this protocol with a state-of-the-art fully reconfigurable

electronic oscillator comprising functional blocks synthesized with operational amplifiers (op-

amps) and passive linear components [  16 ], [ 76 ], [ 77 ]. We thus electronically reproduce the

dynamics described by Eqs.( 3.1 ) and (  3.2 ) in the presence of a parasitic resistance R = 103 Ω

in parallel with the LC circuit. Figure  3.2 a shows for the circuit schematics, while the

actual device is shown in Fig.  3.2 b. C0 = 100µF is minimum capacitance and L0 = 0.01 H

is the maximum inductance that our electronic platform can efficiently simulate. Their

combination gives ω0 = (2π) × 159 Hz as the fundamental frequency of the oscillator. By

increasing the capacitance at different speeds, different gain-loss strengths are realized. The

eigenvalues of HPT(γ) are ±
√
ω2

0 − γ2, and they change from real to complex-conjugate pair

at the exceptional point marked by γEP = ω0.

The time-dependent evolution of the circuit energy E(t) = 〈ψ(t)|ψ(t)〉 in the PT -

symmetric phase is shown in Fig.  3.2 (experimental data: blue dots, theory: red dashed

lines). When the gain-loss strength is doubled from γ = 0.375ω0, Fig.  3.2 c, to γ = 0.75ω0,

Fig.  3.2 d, the period of oscillations increases by
√

2, and the amplitude of oscillations also

increases. It is worth pointing out that the fast fluctuations in the experimental data are due

to oscilloscope’s inherent noise; as the circuit energy E(t) increases from tens of micro-Joules

(µJ) to a milli-Joule (mJ), the relative effect of the noise is suppressed. When γ = 1.05ω0,

Fig.  3.2 e, the system goes into the PT -broken phase, as indicated by a monotonically in-

creasing circuit energy. The temporal range of our simulation of a static HPT(γ) is limited

the maximum value of capacitance, and not by the gain saturation of op-amps at high circuit

energies.

For an ideal PT -symmetric circuit, the energy E(t) = 〈ψ(t)|ψ(t)〉 either oscillates or grows

exponentially with time and yet, for all values of γ/ω0, this open system has two conserved

quantities given by expectation values of Hermitian, intertwining operators.Recalling the

intertwinning relation,

η̂kHPT(γ) = H†
PT(γ)η̂k. (3.12)
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In this case, the operators are

η̂1 = σy (3.13)

η̂2 = η1HPT/ω0 = 12 + (γ/ω0)σx. (3.14)

The experimentally measured η2(t) ≡ 〈ψ(t)|η̂2|ψ(t)〉 = E(t) + γV (t)I(t)/2ω2
0 is shown in

Fig.  3.2 f (γ = 0.375ω0) and Fig.  3.2 g (γ = 1.05ω0). Gray traces are experimental data; red

dashed line is theory. η2(t) remains flat (modulo oscilloscope noise) in both PT -symmetric

and PT -broken regions. Note that the system starts out with V (0) = 0.99 Volts and

I(0) = 0, and thus the conserved quantity η2(t) = E(0). Since |ψ(t)〉 has real entries and

η̂1 = σy has purely imaginary entries, η1(t) is identically equal to zero.

3.3 Results for a time-periodic HPT

The range of dynamics generated by Eq.( 3.11 ) is tremendously enhanced if the anti-

Hermitian term γ(t) is periodic with period T .The time-evolution operator G(t) at time

t = nT + θ is given by G(t) = K(θ)GF (T )n where,

K(θ) = T exp[−i
∫ θ

0
HPT(t′)dt′], (3.15)

captures the micromotion that occurs during a single period 0 ≤ θ < T , T denotes the

time-ordered product, n is an integer, and GF (T ) ≡ K(T ) = exp(−iTHF ) is the one-period

time evolution operator, that, in turn, defines the Floquet Hamiltonian HF . The complex

eigenvalues λ± of GF (T ) determine whether the system is in the PT symmetric region

(|λ+| = |λ−|) or broken region (|λ+| 6= |λ−|).

Congruent with the experimental setup, we use the function f(t) = αΠ(t) = f(t + T )

where Π(t) = sgn(t)/2 for |t| ≤ T/2 is the unit-step square wave (Fig.  3.3 a), and α quantifies

the extent of constrained variation, i.e. e−α ≤ C(t)/C0, L(t)/L0 ≤ eα. By taking into
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Figure 3.3. Floquet PT -transitions and conserved quantities. (a) The step-
function f(t) switches C(t) and L(t) by a factor of e±α and gives rise to pe-
riodic, δ-function gain and loss. Resultant EP lines emerging from odd reso-
nances νk = 502/(2k + 1) Hz are shown by red and blue in the α−νT plane.
(b) PT -broken regions in the vicinity of ν2 (cyan), ν3 (yellow), ν4 (pink), and
ν5 (green), signaled by Λamp > 0, are shown (experimental data: filled cir-
cles, theory: gray surface). (c) At ν1 = 500/3 = 167 Hz, the gain saturation
leads to a suppressed Λamp, with the suppression largest near the resonance
(experimental data: filled circles; theory with gain saturation: muve surface,
theory without: gray mesh). In all cases 2τ = 50 ms is used in Eq.( 3.18 ).
(d) Constant of motion η1F (tm) is measured near the ν3 dome (yellow) in the
PT -symmetric phase (ν = 69 Hz; circles) and PT -broken phase (ν = 72 Hz;
diamonds). These data are at α = 0.1. (e) Measured values of η2F (tm) near
the ν5 dome (green), both in the PT -symmetric phase (ν = 44 Hz, circles) and
PT -broken phase (ν = 46 Hz, diamonds). These data are at α = 0.2. Gain
saturation leads to non-constant behavior at times t & 2τ . Gray flat lines are
theory in (d)-(e).
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account the δ-function generated by ∂tΠ(t), it is straightforward to evaluate the purely real,

one-period operator

GF (T ) = e+ασze−iω0σyT/2e−ασze−iω0σyT/2. (3.16)

Its eigenvalues are λ± = C2 − S2 cosh(2α) ± iS
√
D where the discriminant is given by

D = C2[1 + cosh(2α)]2 − sinh2(2α), and C = cos(ω0T/2), S = sin(ω0T/2). The boundary

between the PT -symmetric and PT -broken regions in the α−νT plane (νT = 1/T ) is marked

by a vanishing discriminant D = 0 or, equivalently,

cos(ω0T/2) = ± tanh(αEP). (3.17)

At α = 0, the eigenvalues λ± = e±iω0T of the matrix GF become degenerate at odd

resonances 2πνn = 2ω0/(2n + 1). These are diabolic-point (DP) degeneracies. At small

α symmetrical EP lines, emerging from the DP, satisfy the equation δνn(αEP) = ±AnαEP

where δνn = νT − νn is the distance from DP and An = 2ω0/[(2n + 1)π]2. Thus, the PT -

broken region at arbitrarily small α, bounded by the two EP lines, becomes narrower with

increasing n [ 24 ], [ 78 ]. Figures  3.3 b,c show these lines in the α−νT plane.

For this set of experiments, using C0 = 400µF and L0 = 1 mH fixes the oscillator

frequency at ω0/(2π) = 251 Hz. We use an experimentally friendly parameter [  16 ], [ 79 ]

Λamp(α, νT ) = lim
2τ�T

1
τ

log
[

max E(0 ≤ t ≤ 2τ)
max E(0 ≤ t ≤ τ)

]
, (3.18)

obtained from the circuit energy to characterize the strength of the PT -broken phase. Since

E(t) oscillates in the PT -symmetric phase, Λamp = 0, whereas its exponential growth in the

PT -broken region gives Λamp > 0. Figure  3.3 b shows the emergent triangular PT -broken

regions at ν2 = 100 Hz (cyan circles), ν3 = 71 Hz (yellow circles), ν4 = 55 Hz (pink circles),

and ν5 = 45 Hz (green circles). The gray surface is theory. In the PT -broken regions, at high

circuit energies, E(t) does not grow exponentially due to op-amp saturation. This leads to

a suppression of the effective amplification rate Λamp. This suppression is maximum in the

deepest PT -symmetry broken region and leads to Λamp → 0 as the circuit energy saturates
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at short times. It is clearly seen in Fig.  3.3 c at ν1 = 167 Hz (orange circles) at large α, but is

absent at smaller values of α. The mauve surface is a theory prediction with gain saturation

+iγ(V ), whereas the gray mesh is one without gain saturation. This suppression is almost

complete at the primary resonance which occurs at ν0 = 2ω0/(2π) = 502 Hz (not shown)

limiting the use of Eq.( 3.18 ) to distinguish between PT -symmetric and broken phases.

In the Floquet case, the conserved quantities are the expectation values of Hermi-

tian, indefinite operators η̂F that satisfy the intertwining relation G†
F (T )η̂FGF (T ) = η̂F ,

i.e. ηF (tm) ≡ 〈ψ(mT )|η̂F |ψ(mT )〉 is independent of m [ 37 ]. We choose them as η̂1F =

cosh(α)12 − sinh(α)σz + sinh(α) tan(ω0T/2)σx and η̂2F = η̂1FGF (T ). Figure  3.3 d shows

η1F obtained from the experimentally measured state-vector |ψ(t)〉 at times t = tm. Since

ν ∼ 70 Hz−40 Hz, there are ∼ 5 stroboscopic data points available. These are representative

results in the PT -symmetric (circles) and PT -broken (diamonds) phases in the vicinity of

ν3 and ν5 domes with color-coded symbols (Fig.  3.3 b). Experimentally measured η2F (tm) re-

sults are shown in Fig.  3.3 e. The deviation from flat gray lines (theory) at long times t & 2τ

is due to gain saturation in the PT -broken phase (diamonds). Since GF (T ) = −12 at the

DP degeneracies νk = 502/(2k + 1) Hz, we see that η2F (tm) = −η1F (tm) holds, surprisingly,

irrespective of the gain saturation. Similar results are valid, of course, across the entire

α − νT plane. This remarkable ability to map out the entire Floquet PT -phase diagram

across five domes showcases the tremendous versatility of the synthetic electronic platform,

and the distinct advantage of complex gauge-field induced gain and loss mechanism over

traditional approaches.This unparalleled versatility has also enabled the first demonstration

of conserved quantities in the Floquet dynamics of a PT -symmetric system.

3.4 Walking the EP line

As a last demonstration of the synthetic oscillator platform, we investigate the temporal

dynamics at numerous points along the EP contours. This has been extremely challenging

in gain-loss systems due to the requisite fine-tuning of multiple mechanisms. In loss-only

PT -systems, it is a challenge because decay rate is maximum at the EP.
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Figure 3.4. Giant dynamical asymmetry along the EP contours. (a) The
inner-product heat map IP (α, νT ) shows EP lines emerging from odd reso-
nances νk = 502/(2k + 1) Hz, consistent with Eq.(  3.17 ). (b) Zoomed-in view
near ν1 = 167 Hz shows the αEP values sampled for the circuit energy dy-
namics (filled and open circles). (c) Experimentally measured E(t) for the
two EPs at α = 0.2 show a giant asymmetry. The circuit energy is con-
stant except at times pT/2 (p ≥ 1) when the δ-function gain-loss potentials
are active. (d) Color-coded stroboscopic, normalized energy traces along the
blue contour show quadratic behavior consistent with a second-order EP. The
(constant) energy along the flat steps in (c) is averaged to obtain error bars
on E(tm)/E(0). By fitting the data to Eq.( 3.20 ), A±(α), B±(α) are obtained
for the nine α values sampled along blue and red contours. (e) A±(α) show
approximate α ↔ −α symmetry, vanish at the DP as expected, and show that
E(tm) growth along the red contour is ∼ 25-fold larger than along the blue
contour. (f) Similar results, including a giant 25-fold asymmetry, are obtained
for B±(α).
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A complementary way to show the PT -phase diagram in the α−νT plane is the Dirac

inner-product of the right eigenvectors of GF (T ). By expressing the real, Floquet evolution

matrix as GF (T ) = G012 + Gxσx + Gzσz + iGyσy where Gk ∈ R, it is straightforward to

obtain the inner-product as IP (α, νT ) = min(r, 1/r) where

r =
G2
y√

G2
x +G2

z

= tanh(α)
cos(ω0/2νT ) . (3.19)

Figure  3.4 a shows the heat-map overlaid with EP contours, IP = 1, where blue is for the

plus sign and red corresponds to the minus sign in Eq.(  3.17 ). Figure  3.4 b shows the region

near ν1 = 167 Hz extended to negative values of α. We “park the system” at 9 points with

equidistant αEP values along the blue (filled circles) and red (open circles) contours each,

and obtain the circuit energy evolution E(t). Since the system has second-order EP contours,

the stroboscopic circuit energy E(tm) = 〈ψ(0)|G†
F (mT )GF (mT )|ψ(0)〉 grows quadratically

with time tm. Figure  3.4 c shows the experimentally measured circuit energy E(t) at α = 0.2

on the blue contour (blue trace) and the red contour (red trace) over m ∼ 25 periods. It is

constant except at integer and half-integer periods when the δ-function gain-loss potential is

active. Surprisingly, E(t) also shows an order-of-magnitude asymmetry for the two contours

that emerge symmetrically from the DP at ν1; this asymmetry persists at all αEP.

We quantify the growth of stroboscopic, normalized circuit energy E(tm) with two di-

mensionless coefficients,

E(tm)
E(0) = 1 − A±(αEP)m+B±(αEP)m2, (3.20)

that depend only on αEP since it uniquely determines the corresponding νT via Eq.(  3.17 ).

This approach allows us to investigate their dependence on the proximity to the DP degen-

eracy at α = 0, and the dynamical asymmetry between temporal evolution along the blue

(plus) and red (minus) EP contours. At the second-order EP,

GF (tm) = e−ih0T (12 − imTHF ) (3.21)

80



where,

HF = 1
T

[∓2 sinh(αEP)σy

+2i tanh(αEP)σz

±2i sinh(αEP) tanh(αEP)σx] (3.22)

is the Floquet Hamiltonian and h0T = π. We obtain

A = iT 〈ψ(0)|H†
F −HF |ψ(0)〉/E(0) (3.23)

B = T 2〈ψ(0)|H†
FHF |ψ(0)〉/E(0) ≥ 0 (3.24)

for the coefficients in Eq.(  3.20 ). Figure  3.4 d shows the stroboscopic, normalized circuit

energy E(tm)/E(0) as a function of m along the blue contour for |α| = {0, 0.1, 0.3}. The

error bars on E(tm) are obtained by averaging its value over the constant region. As the DP

at α = 0 is approached from either side, the coefficients A+(α) and B+(α) are monotonically

suppressed to zero. The slight negative slope of E(tm) at α = 0 (no gain or loss) is due to

the parasitic resistance in the circuit.

We extract the coefficients A−(α) (Fig.  3.4 e) and B−(α) (Fig.  3.4 f) from the experimental

data along the red contour. Similar results, with dramatically smaller values of A+ and

B+, are obtained for a walk along the blue contour. They clearly demonstrate the order-

of-magnitude dynamical asymmetry that arises when the same initial state |ψ(0)〉, with a

fully charged capacitor, is evolved along the two symmetrical EP lines that emerge from

ν1 = 167 Hz.

To summarize, most of the transformative ideas in non-Hermitian physics—Riemann sur-

faces, bi-orthogonal basis, exceptional points, to name a few—have been well-known in math-

ematics. Yet, their reinterpretation in the context of open systems has lent novel insights

which could be used to support some technological advances such as enhanced sensing [ 70 ],

[ 71 ], chiral mode switch [ 80 ], [ 81 ], or topological braiding [ 82 ].

We have contextualized time-dependent non-unitary transformations into a novel proto-

col to implement balanced gain and loss in a single oscillator. Models based on the simple

81



harmonic oscillator are all-pervasive in nature, and our protocol provides a recipe for their

non-Hermitian generalization. For example, in a metamaterial, the non-unitary change of

basis is given by the permittivity ε and the permeability µ. A constrained variation of the

two, with a constant product (and therefore a constant index of refraction), can lead to a

new class of PT -symmetric metamaterials [ 83 ] without material gain or loss.

It is also easy to generalize this protocol to a network of oscillators, where the gain and

loss “sites” are localized in different nodes or are distributed throughout the network. For

example, with reconfigurable synthetic LC circuits, this method can lead to non-passive,

PT -symmetric extensions of topoelectrical circuits [ 84 ].
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4. CONCLUSION

Open systems with balanced gain-loss can be described by a non-Hermitian Hamiltonian

which is invariant under the combined operations of an antilinear symmetry. The conse-

quence of such a Hamiltonian is that depending on the strength of gain and loss the eigen-

value spectrum of such a system will be either completely real, called the PT -symmetric

phase, or will be have pairs of complex conjugate eigenvalues, called the PT -broken phase.

For a non-zero gain-loss strength, we also saw that the time evolution of an arbitrary state,

in the symmetric phase, no longer has unit norm, but is oscillator and bounded. At the

PT -threshold, the time evolution of the norm has a polynomial growth, while in the broken

phase, the norm of the state grows exponentially.

We have also explored time dependent Hamiltonians which with a periodic drive lead to

a rich PT phase diagram. This is a powerful tool to emulate other non-Hermitian systems

which may not be experimentally accessible. In lattice models, we have studied the effects

of surrounding a PT symmetric chain with neutral chains of the same length. The primary

effect is that the PT transition threshold is increased by a factor equal to half the total

number of chains. Although our analysis was carried out for many, long, strongly coupled

chains, the results are also true for experimentally realizable PT symmetric dimers and

trimers. The PT symmetry breaking thresholds in these systems are increased by a factor

of two to three. We have investigated the dependence of the PT -threshold γth on the

properties of the underlying Hermitian Kitaev model and gain-loss potential locations. We

have shown that the threshold profile is rich, with persistent differences between even and

odd parity lattices. In particular, we have found that for a zero-detuning chain with odd

number of sites, the threshold is enhanced with increasing superconducting order parameter.

For an even chain with edge gain-loss potentials and superconducting coupling δ > 1, we

discover a re-entrant PT -symmetric phase, and PT -phase boundaries that contain both

second and third order exceptional points. With all the attention to symmetries of the

system, the conserved quantities associated with them, need to be well understood. We

have reviewed conserved quantities that arise in the dynamics of systems that are governed

by non-Hermitian Hamiltonians with antilinear symmetries. For isolated quantum systems
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governed by Hermitian Hamiltonians, the conserved observables are linearly independent

operators that commute with the Hamiltonian. Furthermore, we have presented a new

method to obtain intertwining operators or conserved quantities in PT -symmetric systems

with static or time-periodic Hamiltonians. In this approach, these operators appear as zero-E

eigenmodes of the static Liouvillian L or as λ = 1 eigenmodes of the Floquet G. Finally,

while exploring electrical circuits, we discovered that by actively manipulating the inductor

and capacitor in a ‘single’ LC oscillator circuit, we see signatures of PT -symmetry, which

is counter-intuitive from the traditional idea for the need of a pair of gain-loss elements

to see PT transitions. This is possible if we realise that the time dependent non-unitary

transformation of basis, gives rise to a gauge term that can be interpreted as a non-Hermitian

potential with spatially separated balance gain and loss elements.
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