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Abstract
Sensorineural hearing loss (SNHL) is a major cause of functional disability in both the developed and developing world. 
While hearing aids and cochlear implants provide significant benefit to many with SNHL, neither targets the cellular and 
molecular dysfunction that ultimately underlies SNHL. The successful development of more targeted approaches, such as 
growth factor, stem cell, and gene therapies, will require a yet deeper understanding of the underlying molecular mechanisms 
of human hearing and deafness. Unfortunately, the human inner ear cannot be biopsied without causing significant, irrevers-
ible damage to the hearing or balance organ. Thus, much of our current understanding of the cellular and molecular biology 
of human deafness, and of the human auditory system more broadly, has been inferred from observational and experimental 
studies in animal models, each of which has its own advantages and limitations. In 2013, researchers described a protocol 
for the generation of inner ear organoids from pluripotent stem cells (PSCs), which could serve as scalable, high-fidelity 
alternatives to animal models. Here, we discuss the advantages and limitations of conventional models of the human audi-
tory system, describe the generation and characteristics of PSC-derived inner ear organoids, and discuss several strategies 
and recent attempts to model hereditary deafness in vitro. Finally, we suggest and discuss several focus areas for the further, 
intensive characterization of inner ear organoids and discuss the translational applications of these novel models of the 
human inner ear.

Introduction

An estimated 430 million people worldwide (13 million 
in the United States) have moderate-to-profound hearing 
loss (GBD Hearing Loss Collaborators 2021; Goman and 
Lin 2016). Hearing loss is not only a quality-of-life issue, 
with hearing impaired persons reporting feelings of isola-
tion, frustration, and anxiety (Khan et al. 2020; Lindburg 
et al. 2021), but also a significant contributor to the global 
disability burden (GBD Hearing Loss Collaborators 2021). 
Reduced hearing is associated with language and other 
developmental delay (Figueras et al. 2008; Tomblin et al. 
2015), cognitive decline (Lin et al. 2013), and depression (Li 
et al. 2014), with working-age adults demonstrating lower 
average wages and reduced labor force participation (Jung 
and Bhattacharyya 2012) and elderly persons reporting 

increased difficulty in completing activities of daily living 
(Dalton et al. 2003; Gopinath et al. 2012). Most permanent 
hearing loss is of the sensorineural type (SNHL). Causes of 
SNHL include aging (Agrawal et al. 2008; Yamoah et al. 
2020), infection (Bedford et al. 2001; Brown et al. 2009; 
Goderis et al. 2014), noise exposure (Lie et al. 2016), oto-
toxic drugs (Farzal et al. 2016; Frisina et al. 2016), traumatic 
disruption of the otic capsule (Honeybrook et al. 2017), 
and a long—and growing—list of single-gene mutations 
(Shearer et al. 1993; Toriello and Smith 2013). Regardless 
of the specific etiology, all SNHL ultimately results from 
the loss, dysfunction, or malformation of cochlear hair cells, 
spiral ganglion neurons, and/or the synapses in between. 
Though the causes of SNHL are generally well established, 
the underlying pathophysiologic mechanisms of even the 
most common causes remain poorly elucidated at the cel-
lular and molecular level.

The successful development of new therapeutic 
approaches, such as growth factor, stem cell, and gene thera-
pies, will require a yet deeper understanding of the biology 
of hearing and deafness, as well as high-fidelity models for 
pre-clinical testing. Since the human inner ear cannot be 
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biopsied without causing significant, irreversible damage to 
the hearing or balance organ, the biological study of human 
inner ear cells has traditionally been limited to scarce fetal or 
cadaveric tissues. Thus, much of our current understanding 
of the cellular and molecular biology of human deafness, 
and of the human auditory system more broadly, has been 
inferred from observational and experimental studies in ani-
mal models [e.g., mouse (Mus musculus), chicken (Gallus 
gallus), zebrafish (Danio rerio), and African clawed frog 
(Xenopus laevis)]. Scientists have developed over 50 mouse 
models of hereditary deafness (Friedman et al. 2007), as 
well as rodent models for cochlear toxicity (Fernandez et al. 
2019), noise-induced hearing loss (Escabi et al. 2019; Holt 
et al. 2019), infection (Yun et al. 2015), age-related hearing 
loss (presbycusis) (Cai et al. 2018; Hunter and Willott 1987), 
and cochlear ischemia, which is implicated in sudden SNHL 
(Gyo 2013). The anatomical and histological similarity of 
the human and rodent inner ears has also made rodents use-
ful for modeling the many technical and biological hurdles 
to stem cell and gene therapy in the inner ear (Al-Moyed 
et al. 2019; Chen et al. 2012; Gyorgy et al. 2019; Pandit 
et al. 2011).

While each animal model has its own advantages and lim-
itations (Fig. 1), all exhibit important differences from the 
human auditory system (Fig. 1). The hair cells of zebrafish 
and other non-mammalian vertebrates display a robust spon-
taneous regenerative response not seen in the mammalian 
organ of Corti (Corwin and Cotanche 1988; Harris et al. 
2003; Roberson and Rubel 1994; Ryals and Rubel 1988; 
Schuck and Smith 2009), while those of the rodent cochlea 
do not acquire an adult-like morphology until the early post-
natal period (Lenoir et al. 1987), in contrast to the appear-
ance of adult-like hair cells in the third trimester of human 
gestation (Lavigne-Rebillard and Pujol 1986). Indeed, the 
stages of mouse and human inner ear development are 

hardly equivalent (Yamoah et al. 2020). In addition, while 
more than 99% of genes in the mouse genome have a human 
homologue (with approximately 80% having a one-to-one 
orthologue) (Mouse Genome Sequencing Consortium 2002), 
the targeted introduction of human deafness-related muta-
tions into the mouse genome does—in some cases—fail to 
produce a deafness phenotype (Lu et al. 2014; Tona et al. 
2020), suggesting that the sequence homology of a gene 
does not necessarily translate to functional identicality of its 
end-product. This was demonstrated more systematically by 
Liao and Zhang (2008), who found that more than 20% of a 
sample of one-to-one mouse orthologues of human essential 
genes (i.e., those genes required for survival to reproductive 
age or reproduction itself) were non-essential.

In vitro generation of inner ear tissue

An alternative and complementary approach to generating 
animal models is the in vitro derivation of inner ear tis-
sues from mouse or human pluripotent stem cells (PSCs) 
or tissue-specific progenitor cells. Specialized tissues are 
generated from PSCs through a process termed directed 
differentiation, which involves the precisely timed addition 
of growth factors and small molecules to recapitulate the 
signaling events of in vivo development. Culture systems 
are more scalable than animal models, and cells in vitro can 
be easily accessed for electrophysiological, molecular, and 
imaging studies (Fig. 1). PSCs and tissue-specific progeni-
tor cells can be distinguished by their respective capacities 
for cell fate specification (virtually unlimited versus line-
age-restricted), and in theory, self-renewal (infinite versus 
limited). However, PSCs may spontaneously differentiate in 
culture, and researchers have demonstrated using multiple 
cytogenetic methods that, over long-term culture, PSCs have 

Fig. 1   Chart comparing the characteristics of non-mammalian vertebrate (left), rodent (left-middle), 2D cell culture (right-middle), and organoid 
(right) models of the human auditory system
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a tendency to accumulate chromosomal aberrations (Dekel-
Naftali et al. 2012; Martins-Taylor 2011; Merkle et al. 2017; 
Narva et al. 2010; International Stem Cell Initiative 2011; 
Yang et al. 2010), which, in turn, have been shown to affect 
their differentiation capacity (Fazeli et al. 2011; Markouli 
et al. 2019; Yang et al. 2010). The combination of sponta-
neous differentiation and accumulated chromosomal aber-
rations likely imposes a de facto passaging limit on PSCs 
in culture.

From a culturing standpoint, there are at least two 
important differences between mouse and human PSCs. 
First, in vitro tissues arise more slowly from human PSCs 
(hPSCs) than from mouse PSCs (mPSCs) (Compare Koehler 
et al. 2013, 2017), reflecting the longer gestational period 
in humans (280 days versus 20 days). Second, mPSCs and 
hPSCs have distinct states of pluripotency—the ground 
(naïve) and primed states, respectively (Nichols and Smith 
2009). The ground state is embodied by the inner cell mass 
of the pre-implantation mouse blastocyst, while the primed 
state is embodied by the epiblast of the post-implantation 
mouse embryo. Mouse induced PSCs (miPSCs), like 
mESCs, exhibit the properties of naïve pluripotency. Con-
versely, hPSCs, even when derived as hESCs from the pre-
implantation inner cell mass, more closely resemble post-
implantation mouse epiblast cells (Brons et al. 2007; Tesar 
et al. 2007) and are, therefore, primed PSCs. This difference 
is important, as primed cells demonstrate poorer survival in 
single-cell suspension and are poised to differentiate along 
certain lineages. Together, these differences generally lead to 
the slower, less efficient, and more inconsistent in vitro deri-
vation of inner ear tissues from hPSCs than from mESCs.

Despite the advantages of using mPSCs, in vitro models 
of the mouse inner ear obviously do not provide the ability 
to research human tissues. Conversely, hPSC-based culture 
systems allow researchers to study auditory system devel-
opment, structure, physiology, and regeneration in living 
tissue that is genetically identical to the human inner ear. 
However, the transcriptional similarity of these models is 
highly dependent on the fidelity of the culture system. Con-
ventional 2D culture systems, in which cells are grown on a 
glass or plastic substrate, have generally failed to yield tran-
scriptionally, morphologically, and physiologically mature 
hair cell-like cells in appreciably high numbers (Chen 
et al. 2012; Ealy et al. 2016; Oshima et al. 2010; Ouji et al. 
2012; Ronaghi et al. 2014). Indeed, it is likely that the 2D 
microenvironment is unable to accurately recapitulate the 
cell–cell and cell–ECM (extracellular matrix) interactions 
seen in vivo, which provide important cues for differentia-
tion and gene expression. The use of utricular feeder cells or 
stromal conditioned medium can overcome this limitation to 
some degree (Oshima et al. 2010; Ouji et al. 2012), but these 
practices can lead to highly variable cultures. There is also a 
second, inherent limitation to modeling SNHL in 2D culture. 

That is, 2D culture systems are—by definition—incapable of 
modeling the complex, 3D process of mammalian inner ear 
morphogenesis or the precise, 3D spatial organization of the 
adult inner ear and its embryologic forerunners.

It is perhaps unsurprising, then, that 3D culture systems 
can overcome many of the limitations of 2D culture, result-
ing in higher fidelity models (Fig. 1). The term “organoid,” 
meaning “resembling an organ,” refers to culture systems in 
which cells self-organize into 3D tissues that recapitulate—
to at least some degree—the cellular diversity, 3D spatial 
organization, and functional properties of native organs. 
Researchers have developed protocols for generating intes-
tinal (Spence et al. 2011), cerebral (Lancaster et al. 2013), 
retinal (Eiraku et al. 2011; Nakano et al. 2012), kidney 
(Freedman et al. 2015; Morizane et al. 2015; Takasato et al. 
2015), lung (Dye et al. 2015), and—of course—inner ear 
(Koehler et al. 2013, 2017) organoids from PSCs. LGR5+ 
tissue-specific progenitor cells have also been expanded into 
3D in vitro tissues resembling pyloric epithelium (Barker 
et al. 2010), small intestinal crypt-villus units (Sato et al. 
2009), colonic crypts (Sato et al. 2011), and hepatocytes 
(Huch et al. 2013). A population of LGR5+ support cells 
that displays some characteristics of tissue-specific progeni-
tors is also present in the mammalian cochlea (Shi et al. 
2012). McLean et al. (2017) recently described a protocol for 
expanding these LGR5+ support cells in vitro into 3D vesi-
cles lined by hair cell- and support cell-like cells. However, 
these LGR5+ support cell-derived vesicles fail to recapitu-
late the full cellular diversity of the mammalian cochlea.

PSC-derived inner ear organoids, in contrast, comprise 
not only hair cell- and support cell-like cells, but also neu-
ron-like cells and distinct regions of PAX8+ non-sensory 
otic-like epithelium and TFAP2A+/SLUG+ periotic-like 
mesenchyme (Bouchard et al. 2010; Koehler et al. 2013, 
2017). To date, all publications describing the successful 
generation of PSC-derived inner ear organoids have built 
upon the foundations of the stepwise induction protocol 
described by Koehler et al. (2013) (see DeJonge et al. 2016; 
Hartman et al. 2018; Koehler et al. 2017; Liu et al. 2016; 
Perny et al. 2017; Schaefer et al. 2018; Tang et al. 2019). 
PSC-derived aggregates are treated with BMP-4 and the 
TGF-beta inhibitor SB-431542, which promote the specifi-
cation of non-neural ectoderm, while simultaneously inhibit-
ing the formation of mesendoderm. Next, FGF-2 and LDN-
193189, a BMP-4 inhibitor, are used to drive non-neural 
ectoderm toward a pre-placodal, rather than an epidermal 
fate. Under the influence of endogenous Wnt signaling 
(DeJonge et al. 2016; Koehler et al. 2013), the pre-placo-
dal ectoderm-like tissues adopt an otic placodal fate, and 
mimicking the sequential genesis of the otic pit and vesicle, 
invaginate to form distinct vesicles (Koehler et al. 2013, 
2017). DeJonge et al. (2016) later discovered that otic pla-
codal differentiation could be enhanced by exogenous Wnt 
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signaling through addition of the GSK3 inhibitor CHIR-
99021. After a period of self-directed maturation, the vesi-
cles contain luminal patches of MYO7A+ hair cell-like cells, 
which abut a dense, basal layer of SOX2+ support cell-like 
cells and form putative synapses with TUJ1+ neuron-like 
cells (Koehler et al. 2013, 2017).

The further, intensive characterization of inner ear orga-
noids by Koehler et al. (2013, 2017) and others has revealed 
an impressive similarity to native inner ear tissues. Besides 
Myo7a, PSC-derived hair cell-like cells were found to 
express a number of other hair cell-specific genes, includ-
ing Pou4f3 (Koehler et al. 2013, 2017; Xiang et al. 1998, 
2003), Otof (Tang et al. 2019; Yasunaga et al. 1999), and 
Tmc1 (Kurima et al. 2002; Tang et al. 2019). The major-
ity of the hair cell-like cells also labeled for a handful of 
proteins expressed in the type II vestibular hair cells—but 
not in the inner, outer, or type I hair cells—of adult mice, 
namely CALB2 (Desai et al. 2005; Koehler et al. 2013, 
2017), SOX2 (Koehler et al. 2013, 2017; Oesterle et al. 
2008), and ANXA4 (Koehler et al. 2017; Liu et al. 2016; 
McInturff et al. 2018). Consistent with this, most hair cells 
in mouse inner ear organoids also adopted the morphology 
of type II vestibular cells, as well as voltage response, fast 
inward rectifier, and large outward delayed rectifier currents 
that resembled those of the type II vestibular hair cells of the 
postnatal day 4 (P4) mouse utricle (Liu et al. 2016). Amaz-
ingly, these currents underwent a maturation process similar 
to that in the native mouse utricle. That is, the prevalence of 
hyperpolarization-activated cation channels increased after 
culture day 22, while that of voltage-dependent Na+ currents 
declined (Liu et al. 2016).

In addition, the hair cell-like cells in inner ear organoids 
seem to have the ‘necessary parts’ for mechanotransduction. 
PSC-derived hair cell-like cells display F-actin+/ESPN+ ste-
reocilia bundles, PCDH15+/CDH23+ tip link-like structures, 
and a single acetylated-alpha-tubulin+ kinocilium on their 
luminal surfaces, reminiscent of the mechanotransduction 
apparatus of native vestibular hair cells (Koehler et al. 2013; 
Tang et al. 2019). The hair bundle-like structures of these 
cells often demonstrated a pattern of local alignment that 
was reminiscent of the organization seen in the mouse utricle 
(Liu et al. 2016), and by day 24, the length of stereocilia on 
mouse PSC-derived hair cells fell within the normal range 
for adult mouse utricular hair cells. FM4-64 and FM1-43 
uptake assays suggested the presence of functional mecha-
nosensitive channels (Koehler et al. 2013; Liu et al. 2016), 
which was confirmed by the measurement of mechanotrans-
duction currents by day 25 (Liu et al. 2016). Furthermore, 
CTBP2+ punctae were observed at the base of hair cell-like 
cells in close proximity to the neurite-like extensions of 
neuron-like cells, which, in turn, expressed multiple post-
synaptic markers (Koehler et al. 2013, 2017). Hair cell-
like cells also exhibited the depolarization-activated Ca2+ 

currents necessary for neurotransmitter release in vivo (Liu 
et al. 2016).

Modeling hereditary deafness in 2D and 3D 
culture

An estimated 80% of prelingual deafness in the developed 
world is thought to be attributable to genetic causes (Shearer 
et al. 1993). Modeling hereditary deafness, therefore, rep-
resents an incredibly valuable application of PSC-derived 
inner ear organoids. There are two general approaches to 
modeling hereditary deafness in vitro (Fig. 2). The first 
approach involves the targeted introduction of deafness-
associated mutations into wild-type ESC lines via CRISPR-
Cas9 (Cong et al. 2013; Mali et al. 2013), prime editing 
(Anzalone et al. 2019), or another precision genome-editing 
technique. The second is to harvest somatic cells—often 
dermal fibroblasts or peripheral blood mononuclear cells—
from patients with hereditary deafness and convert them into 
induced PSCs (iPSCs) (Takahashi et al. 2007; Takahashi and 
Yamanaka 2006). Stepwise induction protocols can then be 
used for the directed differentiation of inner ear-like tissues 
from iPSCs or CRISPR-Cas9-edited ESCs or iPSCs.

iPSCs certainly hold more therapeutic potential than 
ESCs, as iPSC-derived donor cells can be used for autolo-
gous cell-based inner ear therapy without concern for rejec-
tion. However, several studies have revealed the presence 
of significant genetic background variation among iPSCs, 
which, in turn, leads to significant variability in the directed 
differentiation process (Burrows et al. 2016; Kyttala et al. 
2016; Rouhani et al. 2014). Indeed, DeJonge et al. (2016) 
reported that the optimal timing of FGF-2/LDN-193189 
treatment in the stepwise induction of inner ear organoids 
varied among four miPSC lines, while Koehler et al. (2017) 
found that exogenous BMP-4 was necessary for the induc-
tion of non-neural ectoderm in hiPSC-, but not hESC-, 
derived aggregates. In contrast, in the absence of off-target 
mutations, genetically engineered ESCs have a homogenous 
genetic background, allowing for the more consistent deriva-
tion of inner ear organoids, as well as the ability to control 
for genetic background noise when comparing wild-type and 
mutant PSC-derived cells or tissues. Another limitation of 
iPSCs is the rarity of specific single-gene mutations, which 
are often only reported in individual families. The routine 
use of iPSC-based culture systems in modeling hereditary 
deafness will, therefore, likely require a significant collabo-
rative effort with the establishment of an iPSC biorepository.

Nonetheless, researchers have used hiPSC-based, 2D cul-
ture systems to model two forms of autosomal recessive non-
syndromic deafness, DFNB2 (Tang et al. 2016) and DFNB3 
(Chen et al. 2016a), as well as Pendred syndrome (Hosoya 
et  al. 2017, 2019), the inherited peripheral neuropathy 
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Charcot–Marie–Tooth disease type 1A (CMT1A) (Shi 
et al. 2018), and myoclonic epilepsy with ragged-red fib-
ers (MERRF) (Chen et al. 2018), a mitochondrial disorder 
characterized by SNHL, myopathy, ataxia, and—as the name 
implies—epilepsy. Shi et al. (2018) generated iPSCs from 
CMT1A and healthy patients, and then differentiated these 
cells into neural crest stem cell-like cells in 2D culture. 
Under the appropriate conditions, CMT1A and wild-type 
neural crest stem cell-like cells were able to differentiate 
into osteoblast-, adipocyte-, chondrocyte-, smooth muscle 
cell-, and neuron-like cells with similar efficiency. How-
ever, under conditions in which wild-type cells gave rise to 
GFAP+/S100B+ Schwann cell-like cells, CMT1A hiPSC-
derived neural crest stem cell-like cells instead produced 
CD34+ endoneurial fibroblast-like cells, suggesting that 
the pathogenesis of CMT1A may be related to the aber-
rant differentiation of Schwann cell progenitors. Hosoya 
et al. (2017) went a step further, not only modeling Pendred 
syndrome in an iPSC-based 2D culture, but also using this 
model to test the therapeutic effects of low-dose rapamycin 
and metformin. This iPSC-based Pendred syndrome model 
has since been used to determine the minimum effective 
dose of rapamycin in preventing otic-like cell death in vitro 
(Hosoya et al. 2019).

Several other studies have used CRISPR-Cas9 genome 
editing to generate in vitro models of genetic deafness. 
Barhl1 is a mammalian homologue of the Drosophila home-
obox gene BarH1 (Bulfone et al. 2000). Barhl1 encodes a 

homeodomain transcription factor expressed in the inner ear 
and central nervous system. While there is no human deaf-
ness phenotype currently associated with BARHL1 muta-
tion, Barhl1-null mice exhibit progressive SNHL (Li et al. 
2002). Zhejiang University scientists have used CRISPR-
Cas9 technology to generate frameshift mutations in the 
coding region (Zhong et al. 2018) and 3’ enhancer (Hou 
et al. 2019) of the Barhl1 gene in mESCs. To investigate the 
underlying mechanism of SNHL in Barhl1 mutants, both 
wild-type and Barhl1-mutant mESCs were subjected to a 
stepwise induction protocol for deriving hair cell-like cells 
in 2D culture. The authors used several analytical methods 
to investigate the effects of Barhl1 mutation on hair cell dif-
ferentiation, revealing a significant downregulation of hair 
cell-specific genes in both mutant cell lines (Hou et al. 2019; 
Zhong et al. 2018). Downregulated hair cell-specific genes 
were then cross-referenced with potential BARHL1 targets 
(Zhong et al. 2018). The results of this analysis suggested 
that the effects of Barhl1 mutation on hair cell differentiation 
may be mediated by the downregulation of Clic5 and Ush1g.

Similarly, Tang et  al. (2019) used CRISPR-Cas9 to 
generate Tmprss3-KO mESCs. Tmprss3 encodes a type II 
transmembrane serine protease. Mutations in TMPRSS3 are 
the cause of autosomal recessive non-syndromic deafness 
DFNB8/10, which is characterized by prelingual SNHL 
(Scott et  al. 2001). Mice homozygous for the nonsense 
mutation Tmprss3Y260X exhibit rapid hair cell degeneration 
at P12 following a period of normal hair cell development 

Fig. 2   Graphical representation of the generation and analysis of 
PSC-derived inner ear organoid models of hereditary deafness. a 
Patient-specific iPSCs with mutation in deafness-related gene (X) are 
generated from somatic cells through induced expression of pluripo-
tency genes. b Precision genome editing is used to create targeted, 
deafness-related mutations in ESCs. c The coding sequence of a fluo-
rophore (e.g., tdTomato) is inserted downstream of the promoter for a 

gene-of-interest (e.g., deafness-related gene, cell type-specific gene, 
or regionally expressed transcription factor) to generate a fluorescent 
reporter PSC line. d Fluorescent cells within organoids can be selec-
tively harvested, either manually or automatically (e.g., by FACS), for 
further analyses. ESCs embryonic stem cells, FACS fluorescence-acti-
vated cell sorting, iPSC induced pluripotent stem cell
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(Fasquelle et al. 2011). Despite the presence of this mouse 
model, the exact functional role of TMPRSS3 in the inner 
ear remains poorly understood, and the precise pathophysi-
ologic mechanism underlying DFNB8/10 has yet to be 
revealed. Thus, Tmprss3-KO and wild-type mESCs were 
subjected to directed differentiation into inner ear orga-
noids (Tang et al. 2019). The researchers found that, while 
Tmprss3-KO PSCs initially gave rise to hair cell-like cells 
with normal hair bundles and FM1-43 uptake, by day 38 
(equivalent to P12-P14 in vivo), Tmprss3-KO hair cell-like 
cells exhibited significantly higher levels of the apoptosis 
protein caspase-3. The organoid format permitted easy 
access to inner ear-like tissues for single-cell RNA sequenc-
ing (scRNA-seq), which revealed potential roles for calcium 
ion homeostasis and extracellular matrix maintenance in 
TMPRSS3-related deafness.

Unsettled questions in inner ear organoid 
research

Despite the promise of inner ear organoids in modeling 
human deafness, we must exercise caution when applying 
findings in inner ear organoids to the human auditory sys-
tem. A recent scRNA-seq analysis revealed that the specifi-
cation of distinct cellular subtypes was not achieved in corti-
cal organoid culture and suggested that this was due, at least 
in part, to high levels of endoplasmic reticulum (ER) stress 
(Bhaduri et al. 2020). Only time will tell if this ER stress-
induced inhibition of cell type specification is an inherent 
feature of organoid culture or simply a matter of optimiz-
ing culture conditions, or—for that matter—whether these 
results are even generalizable to organoids on the whole. It 
is certainly auspicious for the future of inner ear organoid 
research that many deafness-related genes are expressed in 
inner ear organoids with a similar spatiotemporal pattern 
to the native inner ear (Table 1), while many others have 
been detected in putative otic-like sensory epithelial cells 
by scRNA-seq (Tang et al. 2019). Nonetheless, the process 
of characterizing inner ear organoids is still in its infancy, 
and establishing the inner ear organoid as a valid model of 
the human auditory system in health, disease, and develop-
ment will require the continued dedication and collabora-
tion of stem cell biologists, cellular electrophysiologists, 
bioinformaticians, and others. We will use this opportunity 
to suggest and discuss areas for the further, intensive char-
acterization of inner ear organoids.

Perhaps the single greatest open question in inner ear 
organoid research—which is also a significant limitation 
of inner ear organoids—relates to the conspicuous absence 
of hair cell-like cells with a cochlear phenotype. Indeed, 
until cochlear-type inner ear organoids are derived, these 3D 
culture systems will never be able to fully recapitulate the 

human auditory system. There are several possible expla-
nations for the notable absence of cochlear hair cell-like 
cells in organoid culture. First, the non-physiologic culture 
environment may be causing ER stress that, in turn, inhib-
its cell type specification, as observed in cortical organoids 
(Bhaduri et al. 2020). It is not exactly clear why ER stress 
would specifically inhibit the differentiation of cochlear hair 
cell-like cells. However, it is worth noting that vestibular 
hair cells express many hair cell-specific genes at earlier 
developmental timepoints than cochlear hair cells (Table 1) 
and share several features with immature hair cells that are 
eventually lost in cochlear hair cells, including the presence 
of a kinocilium and—in type II hair cells—expression of 
SOX2. This suggests that the differentiation of vestibular 
hair cells may require less molecular specification of hair 
cell progenitors than cochlear hair cells. Another possibility 
is that the innervation by PSC-derived neuron-like cells in 
inner ear organoids is too limited to provide adequate trophic 
support for the survival of early cochlear hair cell-like cells. 
Indeed, Kersigo and Fritzsch (2015) elegantly demonstrated 
that denervation results in the progressive loss of hair cells 
in mice, but that vestibular hair cells are significantly more 
resilient. It is, therefore, possible that nascent cochlear hair 
cell-like cells are originally present in inner ear organoids 
but that inadequate innervation by neuron-like cells eventu-
ally leads to their preferential loss over vestibular hair cell-
like cells.

Alternatively, it may be that current protocols produce a 
signaling environment favoring the differentiation of vestib-
ular hair cell-like cells from hair cell progenitor-like cells. A 
series of elegant studies has demonstrated that development 
of the cochlea and vestibule are regulated by the oppos-
ing effects of ventral and dorsal signals. Sonic hedgehog 
(SHH) induces expression of ventral transcription factors 
such as Otx2, Pax2, and Ngn1, while inhibiting expression 
of the dorsal marker Dlx5 (Riccomagno et al. 2002). Con-
versely, Wnt and BMP both induce the expression of Dlx5, 
and BMP inhibits Otx2 (Ohta et al. 2016; Riccomagno et al. 
2005). These signals are so critical to the specification of 
the cochlea and vestibule that their loss or ectopic expres-
sion has been shown to produce dramatic malformations. For 
example, the loss of SHH results in complete absence of the 
cochlear duct in mice (Riccomagno et al. 2002). Thus, the 
preferential differentiation of vestibular hair cell-like cells 
could be explained by the relative overactivity of dorsal sig-
nals, and therefore, corrected by the precisely timed addi-
tion of a ventralizing molecule, such as the SHH agonist 
purmorphamine, or an inhibitor of dorsal signals, such as 
LDN-193189. Jeong et al. (2018) recently reported the gen-
eration of inner ear organoids with hair cell-like cells that 
expressed some markers of cochlear hair cells. Notably, this 
was achieved with only slight modifications to the protocol 
described by Koehler et al. (2013), such as the maintenance 
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of PSCs on feeder cells. However, the purported cochlear 
hair cell-like cells were incompletely characterized, and 
the result has yet to be replicated. If these results are repli-
cated, it will be important to investigate the mechanism(s) 
by which the modified protocol produced cochlear-type hair 
cell-like cells.

Cell–cell junctions, including gap junctions, tight junc-
tions, and tricellular junctions, are broadly present in the 
membranous labyrinth of the mammalian inner ear (Forge 
et al. 1999; Kitajiri et al. 2004) and are essential in main-
taining the functional barrier between the perilymphatic and 
endolymphatic compartments, as well as facilitating neu-
ronal growth and promoting cellular organization (Reviewed 
in Jagger and Forge 2015; Kitajiri and Katsuno 2016). 
Indeed, the cell–cell junctions of the inner ear are essential 
for normal hearing, evidenced by the fact that deficiencies 
in several junctional proteins are associated with hereditary 
deafness (Shearer et al. 1993; Toriello and Smith 2013), 
including GJB2 (connexin 26) deficiency (DFNB1A), the 
most common cause of autosomal recessive non-syndromic 
deafness in humans. Phalloidin staining has revealed the 
presence of an apical F-actin network in inner ear orga-
noids, reminiscent of the network of cell–cell tight junc-
tions between support cells of the mouse inner ear (Koehler 
et al. 2013; Schaefer et al. 2018), and scRNA-seq data have 
revealed the expression of Cldn9, which encodes the tight 
junction protein claudin-9, in putative mouse hair cell-like 
cells (Tang et al. 2019). However, the subcellular co-local-
ization of F-actin, claudins, and other tight junction pro-
teins, such as occludins and junctional adhesion molecules, 
at cell–cell interfaces has yet to be demonstrated in inner 
ear organoids. The extent to which inner ear organoids reca-
pitulate the many, highly specialized, non-neurosensory cell 
types of the native inner ear is another open question in inner 
ear organoid research. However, this subject was recently 
discussed in great depth by van der Valk et al. (2021), and 
we will direct the interested reader to this excellent review.

Should inner ear organoids prove to accurately recapitu-
late the structural, functional, and molecular features of the 
native inner ear, then it is reasonable to assume that the same 
extrinsic insults that lead to SNHL in humans would be simi-
larly deleterious to inner ear organoids, allowing researchers 
to study the pathophysiologic mechanisms by which they 
act. However, it is not obvious how certain causes of SNHL 
(e.g., noise-induced hearing loss) could be simulated in the 
culture environment, while limits on culture duration will 
likely preclude any meaningful study of non-genetic, age-
related hearing loss. Nonetheless, a wide range of chemical 
and infectious insults remain potentially amenable for study 
in inner ear organoids. To date, few studies have focused 
on the ability of inner ear organoids to model these insults. 
The ototoxic aminoglycoside dihydrostreptomycin has been 
shown to reversibly block stimulus-evoked currents in the 

hair cell-like cells of mouse organoids (Liu et al. 2016), 
while another aminoglycoside, gentamicin, failed to produce 
any obvious loss of hair bundle-like structures (Schaefer 
et al. 2018). Further studies are needed to better charac-
terize inner ear organoids’ susceptibility to aminoglycoside 
antibiotics and other extrinsic insults known to cause SNHL.

Genome editing and single‑cell omics 
in inner ear organoids

Genome editing encompasses a number of technologies 
that allow researchers to alter the genetic code of a cell 
or organism. Genome-editing technologies have become 
increasingly targeted over the years. For example, fluores-
cent reporter PSC lines are generated by the targeted inser-
tion of a fluorescent protein coding sequence downstream 
of the promoter of a gene-of-interest, which—in the case of 
inner ear organoids—could be a deafness-related gene, cell 
type-specific gene, or regionally expressed transcription fac-
tor. PSC reporter lines for PAX2, FBXO2, and ATOH1, have 
all been generated and differentiated into inner ear organoids 
(DeJonge et al. 2016; Hartman et al. 2018; Koehler et al. 
2017; Liu et al. 2016; Schaefer et al. 2018), with numerous 
applications. For example, Liu et al. (2016) used the eGFP 
signal emitted by the hair cell-like cells of Atoh1-eGFP PSC-
derived aggregates to selectively harvest hair cell-like cell 
bearing vesicles for electrophysiological recording. FACS 
sorting of organoid cells derived from reporter lines could 
be similarly used for the selective isolation of otic-like cell 
types for single-cell analyses. Fluorescent reporters can also 
been used for expression monitoring, allowing researchers 
to observe the expression patterns of developmental tran-
scription factors or cell type-specific marker genes over 
the course of organoid development. For example, Hart-
man et al. (2018) used a Venus reporter for Fbxo2, an otic 
lineage-specific gene, to demonstrate surprising differences 
in spatiotemporal expression patterns between the native 
mouse vestibular epithelium and mouse inner ear organoids. 
Another application of fluorescent reporters is lineage trac-
ing. Chimeric inner ear organoids could be generated from 
a mixture of mutant and wild-type cells to study the role of 
paracrine signaling in different types of hereditary deafness 
or to control for batch-to-batch variability in comparisons 
of wild-type and mutant cells. Combining this technology 
with fluorescent reporter lines would allow for the easy iden-
tification of genotype in chimeric organoids via fluorescent 
microscopy or single-cell transcriptomics.

scRNA-seq has a number of applications in both auditory 
research (Reviewed in Pyle and Hoa 2020) and PSC-derived 
organoids (Reviewed in Camp and Treutlein 2017; Qin and 
Tape 2020), and will undoubtedly facilitate the further char-
acterization of organoids and their application in disease 
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modeling. Several unsettled questions in inner ear organoid 
research could be answered by the generation of a single-cell 
transcriptional atlas (Kolla et al. 2020; Korrapati et al. 2019; 
Petitpre et al. 2018; Shrestha et al. 2018; Sun et al. 2018) for 
inner ear organoids or by scRNA-seq analyses that focus on 
the expression of signaling molecules, stress response genes, 
or regionally expressed transcription factors. scRNA-seq has 
already been used to compare the transcriptional profiles of 
mutant and wild-type inner ear organoids in the hopes of 
elucidating the underlying molecular mechanisms of hered-
itary deafness Tang et al. (2019). Meanwhile, single-cell 
RT-qPCR, has been used to compare the gene expression 
between PSC-derived otic-like tissues and the native inner 
ear to investigate the transcriptional fidelity of a 2D culture 
system and optimize the protocol (Ealy et al. 2016). In the 
future, comparative analyses could be performed to investi-
gate transcriptional heterogeneity among organoids derived 
from different cell lines or according to different protocols, 
as has been demonstrated in kidney organoids (Wu et al. 
2018). Other single-cell technologies, such as scATAC-seq 
(single-cell assay for transposase-accessible chromatin with 
high-throughput sequencing), could be similarly applied to 
compare, for example, the epigenetic landscape in inner 
ear organoids and the native inner ear. Multiple single-cell 
technologies can also be simultaneously applied (single-cell 
multi-omics), and the resulting data integrated for analy-
sis with computational tools such as Seurat v3 (Stuart et al. 
2019) or LIGER (Welch et al. 2019). Protocols have even 
been developed which would allow for simultaneous char-
acterization of the transcriptome, electrophysiology, and/or 
morphology of single PSC-derived hair cell- and neuron-like 
cells (Bardy et al. 2016; Cadwell et al. 2016; Chen et al. 
2016b; Foldy et al. 2016; Fuzik et al. 2016; Ranum et al. 
2019), permitting the remarkably detailed comparison of 
native and PSC-derived cells, and possibly, the identification 
of cellular subtypes in inner ear organoids.

Translational applications of inner ear 
organoids

The potential translational applications of inner ear orga-
noids in disease modeling are incredibly numerous. Should 
inner ear organoids prove to be sensitive to the ototoxic 
compounds, they would be incredibly useful in the scalable, 
high-throughput testing of drug toxicity in pre-clinical trials. 
Conversely, when combined with developmental or regen-
eration studies, this same scalability could be applied toward 
the large-scale, high-throughput, pre-clinical screening of 
otoprotective or oto-regenerative compounds. Inner ear orga-
noids could also serve as a platform for testing the effects of 
CRISPR-Cas9 genetic correction of single-gene mutations. 
This could even one day be employed in a patient-specific 

manner, with the generation of inner ear organoids from 
CRISPR-Cas9-corrected patient-specific iPSCs being a rou-
tine quality check before cell-based therapy is performed 
for SNHL. Lastly, inner ear organoid models of inner ear 
disease could be used for the testing of emerging therapies 
such as cell-based and gene therapy. Successfully employ-
ing inner ear organoids for these applications will almost 
certainly require that researchers find a way to overcome 
the previously reported high variability and low efficiency 
of organoid generation (Schaefer et al. 2018; Koehler et al. 
2017), as well as the overgrowth of periotic-like mesen-
chyme in late-stage culture, which hinders analytic meth-
ods such as expression monitoring, whole-mount imaging, 
and single-cell isolation. Fortunately, progress toward these 
goals is already underway. For example, Chang et al. (2020) 
recently reported increased efficiency of inner ear organoid 
generation with the use of photobiomodulation and hanging 
droplet techniques, while Hocevar et al. (2021) described a 
method for dissecting organoids away from their aggregates 
and reported that, when cultured in media with Matrigel, 
organoids display the same autonomy seen in vivo (Swanson 
et al. 1990).

Summary

Since the human inner ear cannot be biopsied without caus-
ing significant, irreversible damage to the hearing or bal-
ance organ, the biological study of human inner ear cells 
has traditionally been limited to scarce fetal and cadaveric 
tissues. Researchers recently described a protocol for gen-
erating inner ear organoids, which could serve as a scalable, 
high-fidelity alternative to animal models. However, many 
questions and challenges remain, including how cochlear-
type hair cell-like cells can be derived, whether cell–cell 
junctions are present, whether non-neurosensory inner cell 
types are represented, and whether inner ear organoids are 
susceptible to the same extrinsic insults that cause deafness 
in humans and other mammals. With the continued dedica-
tion of stem cell biologists, cellular electrophysiologists, and 
bioinformaticians, and the utilization of fluorescent reporter 
lines and single-cell omics, it is likely that these questions 
and others will be answered in the coming years. If, through 
these efforts, high-fidelity, human cochlear inner ear orga-
noids are successfully generated, then a wide array of trans-
lational applications await inner ear organoids, including 
high-throughput drug and toxicity screens and pre-clinical 
testing and patient-specific quality checks for stem cell and 
gene therapies.
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