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Abstract

Background—Little is currently known regarding the immunological mechanism(s) that initiate 

peanut allergy. Notably, peanut proteins have been detected in house dust, and their levels correlate 

with peanut allergy prevalence.

Objective—This study aimed to develop a new mouse model for peanut allergy and to investigate 

the immunological mechanisms involved in peanut allergen sensitization.

Methods—To mimic environmental exposure, naïve mice were exposed to peanut flour by 

inhalation for up to 4 weeks. We then analyzed serum levels of IgE antibody and challenged mice 

with peanut proteins. Immunological mechanisms involved in sensitization were analyzed using 

cytokine reporter mice, an adoptive cell transfer model, and gene knockout mice.

Results—When exposed to peanut flour by inhalation, both BALB/c and C57BL/6 mice 

developed peanut allergy, as demonstrated by the presence of peanut-specific IgE antibodies and 

manifestation of acute anaphylaxis upon challenge. A large number of follicular helper T (Tfh) 

cells were also detected in draining lymph nodes of allergic mice. These cells produced IL-4 and 

IL-21, and more robustly promoted peanut-specific IgE production than Th2 cells. Genetic 

depletion of Tfh cells decreased IgE antibody levels and protected mice from anaphylaxis, without 

affecting Th2 cells. Furthermore, peanut flour exposure increased lung levels of IL-1α and IL-1β, 

and mice deficient in the receptor for these cytokines showed a significant decrease in Tfh cells 

compared to wild-type mice.

Conclusion—Tfh cells play a key role in peanut allergy, and the IL-1 pathway is involved in the 

Tfh response to peanut allergen exposure.
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INTRODUCTION

Food allergy is a growing public health concern that impacts approximately 4% of adults 

and 8% of children in the U.S.1, and frequencies of food allergies are on the rise 

worldwide2. In particular, the incidence of peanut allergy has more than tripled in U.S. 

children, increasing from 0.4% in 1997 to 1.4% in 20083. In contrast to milk or egg allergies 

that are commonly outgrown in childhood, peanut allergy is often life-long2. The majority of 

fatal food-induced anaphylaxis is associated with peanut allergy4, and avoidance of peanut 

exposure is difficult to achieve due to the popularity of peanut in our society5. As a result, 

peanut allergy can negatively impact quality of life, as well as the psychosocial status of 

patients and their families5. Therefore, it is critical to better understand the immunologic 

mechanisms involved in development and persistence of peanut allergy and to identify novel 

strategies to prevent and/or to effectively treat this disease.

Although mice and humans differ in many ways, mouse models provide robust tools to 

elucidate the immunological mechanisms of human diseases. In particular, both the skin and 

oral sensitization models for peanut allergy implicate type 2 helper T (Th2) cells in driving 

the allergic response to peanut6–8. An IL-1-family cytokine, IL-33, has further been shown 

to play an important role in the development of Th2 responses in these models6,7, and long-

lived peanut-specific memory B cells that replenish IgE+ plasma cells likely sustain clinical 

reactivity in mice9. Nevertheless, the molecules and cell types that drive the development of 

peanut allergy in humans are not fully understood. Furthermore, a majority of earlier mouse 

models used mucosal adjuvants, such as cholera toxin (CTX)7 and Staphylococcal 

enterotoxin B (SEB)10, 11, or required genetic alteration of toll-like receptor 4 (TLR4)12 or 

IL-4 receptor13, making it difficult to determine the precise immunological mechanisms 

involved in the initiation of peanut allergy.

Peanut allergen sensitization has previously been thought to occur as a consequence of the 

ingestion of dietary peanut products. However, ingestion of innocuous antigens generally 
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results in oral tolerance14, and the majority of children with peanut allergy experience their 

first allergic reaction upon their first ingestion of peanut15. Additionally, the recent Learning 

Early About Peanut Allergy (LEAP) study found that early dietary introduction of peanut 

prevented development of peanut allergy, whereas a greater proportion of children who 

avoided dietary peanut developed peanut allergy16. These data suggest that patients have 

been sensitized to peanut proteins in their environment. Indeed, peanut proteins are readily 

detectable in house dust at levels comparable to those of inhaled allergens, such as house 

dust mite (HDM)17, 18, and a dose-response relationship between environmental peanut 

exposure and the risk of peanut allergy has been observed19, 20. A number of clinical studies 

have further demonstrated an association between atopic dermatitis and peanut allergy in 

children20, suggesting that allergic sensitization to peanut is mediated through impaired skin. 

Consistent with this, epicutaneous exposure to crude peanut extract was found to promote 

Th2-type sensitization to peanut proteins in mice6.

Despite these studies, and the well-established evidence for the presence of peanut proteins 

in house dust, it remains unclear whether and how non-oral exposure initiates peanut allergy. 

In order to address this question, we developed a mouse model for inhalation-based peanut 

allergen sensitization. To mimic natural environmental exposure, we exposed naïve mice to 

peanut flour by inhalation and found that these animals develop anti-peanut IgE antibodies 

and clinical symptoms resembling peanut allergy in humans. We further determined that 

follicular helper T (Tfh) cells that produce elevated levels of IL-4 and IL-21 are generated in 

draining lymph nodes and that they promote production of peanut-specific IgE. Thus, Tfh 

cells are likely to be critical for the development of peanut allergy in our model.

METHODS

See the Methods section of this article’s Online Repository for more details.

Mice

BALB/c, C57BL/6, C.C3-Tlr4Lps-d/J (Tlr4-d), C.129-Il4tm1Lky/J (4get), Tg(Cd4-cre)1Cwi/

BfluJ (Cd4-Cre), B6.129P2-Tcrbtm1Mom/J (Tcrb−/−), B6Cr.129S4-Tnfsf4tm1Sug/Pgn 

(Tnfsf4−/−), B6;129S1-Il1raptm1Roml/J (Il1rap−/−), and B6.129S7-Il1r1tm1Imx/J (Il1r−/−) mice 

were obtained from The Jackson Laboratory (Bar Harbor, ME, USA). Il1rap−/− mice were 

subsequently backcrossed onto the BALB/c background for 10 generations. Il1rl1−/− 

(ST2−/−) mice and Crlf2−/− (Tslpr−/−) mice (both BALB/c background) were kindly 

provided by Dr. Andrew McKenzie (MRC Laboratory of Molecular Biology, Cambridge, 

UK) and Dr. Steven F. Ziegler (Benaroya Research Institute, Seattle, WA, USA), 

respectively, and were bred under specific pathogen-free (SPF) conditions at the Mayo 

Clinic (Rochester, MN, USA)21, 22. Bcl6fl/fl mice were previously described23. Animals 

used in this study were female and ranged from 6–12 weeks of age. All protocols and 

procedures for handling of the mice were reviewed and approved by the Mayo Institutional 

Animal Care and Use Committee, Mayo Clinic.
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Allergens

Peanut flour (14.4% protein) was purchased from the Golden Peanut Company (Alpharetta, 

GA, USA) as a bulk raw material; endotoxin was undetectable (<0.5 EU/mg flour) in the 

product by Limulus Amebocyte Lysate assay (Lonza, Walkersville, MD, USA). Crude 

peanut extract (70.2% protein) and Alternaria alternata extract (20.0% protein) were 

purchased from Greer Laboratories (Lenoir, NC, USA). Corn flour and rice flour were 

purchased from Bob’s Red Mill Natural Foods (Milwaukie, OR, USA).

Inhalation peanut allergy model

Naïve BALB/c and C57BL/6 mice were exposed intranasally (i.n.) to 100 μg peanut flour in 

50 μl sterile phosphate-buffered saline (PBS) or PBS alone twice/week for up to 4 weeks. 

Three days after the last exposure (i.e., on day 27), serum was collected via retroorbital 

bleeding under isoflurane anesthesia to determine levels of peanut-specific 

immunoglobulins. One day later (i.e., on day 28), mice were challenged systemically by 

intraperitoneal (i.p.) injection of 1.0 or 2.5 mg crude peanut extract in 500 μl sterile PBS. 

Immediately before challenge (0 min), and every 10 minutes afterward for one hour, rectal 

temperature was monitored by an electronic thermometer (Oakton Instruments, Vernon 

Hills, IL, USA) equipped with a RET-3 rectal probe (Physitemp Instruments, Clifton, NJ, 

USA). Clinical symptoms based on published criteria were scored as follows24: 0, no 

symptoms; 1, scratching of ear and mouth; 2, puffiness around eyes and mouth, pilar 

erection, labored breathing; 3, prolonged period of motionlessness; 4, severely reduced 

motility, tremors, severe respiratory distress; 5, death. At 60 minutes, blood was obtained to 

measure plasma levels of mast cell protease-1 (MCPT-1).

ELISA for peanut-specific antibodies, MCPT-1, and cytokines

Serum levels of peanut-specific IgE antibodies were measured by enzyme-linked 

immunosorbent assay (ELISA). Plasma levels of MCPT-1 were determined using a 

commercial mouse MCPT-1 ELISA Kit (eBioscience, San Diego, CA, USA) according to 

the manufacturer instructions. The concentrations of IL-4, IL-5, IL-13, IL-21, TSLP, IL-1α, 

and IL-1β in supernatants from in vitro T cell cultures, BAL fluids, or lung homogenates 

were determined using commercial ELISA kits (R&D Systems, Minneapolis, MN, USA) 

according to manufacturer instructions.

FACS analyses

T and B cell populations in mLNs were measured after peanut flour exposure by FACS 

analysis, as described25. Flow cytometric analysis was performed on a FACSCalibur or 

Canto X cytometer (BD Biosciences, San Jose, CA), and data were analyzed with FlowJo 

software (Tree Star, Ashland, Oregon).

Statistical analysis

The statistical significance for differences between the various treatment groups was 

calculated using a Student’s t-test, with P<0.05 considered statistically significant. All 

numerical data are presented as the mean ± standard error of the mean (SEM).

Dolence et al. Page 4

J Allergy Clin Immunol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS

Airway exposure to peanut flour induces peanut allergy in mice

To mimic exposure to peanut proteins in environmental house dust, naïve BALB/c mice 

were exposed to peanut flour via i.n. administration twice per week (Fig 1, A). Endotoxin 

was undetectable in the flour (<0.5 EU/mg flour), and no exogenous adjuvants were used 

throughout this study. Mice exposed i.n. to peanut flour (100 μg/dose) developed peanut-

specific IgE antibodies in their sera, as evidenced by a titration curve on individual samples 

(Fig 1, B) and plots from individual mice (Fig 1, C). These animals also developed IgG1 and 

IgG2a isotypes of peanut-specific antibodies. Time-course studies further demonstrate that 

anti-peanut antibodies are detectable in sera as early as 1–2 weeks after initiation of peanut 

flour exposure (Fig 1, D).

Peanut-sensitized mice were then challenged systemically by i.p. injection of crude peanut 

extract, and we found that they develop clinical symptoms consistent with acute anaphylaxis. 

Specifically, core body temperature began to drop 10 minutes after challenge and reached a 

nadir at 60 minutes (Fig 1, E). Mice also developed other clinical symptoms of anaphylaxis, 

including scratching of ears, puffiness around eyes and mouth, labored breathing, and 

reduced activity, which peaked 40 minutes after challenge. Notably, clinical symptoms were 

more severe in mice challenged with a higher dose of crude peanut extract (Fig 1, E). We 

further observed a significant increase in serum levels of MCPT-1 in mice challenged with 

peanut extract (Fig 1, F). Collectively, these findings demonstrate that inhalation of peanut 

flour induces symptoms consistent with peanut allergy in mice, resulting in an acute 

anaphylactic response when these animals are challenged systemically with peanut proteins.

To assess the reproducibility of these observations among different strains of mice, we 

exposed naïve C57BL/6 mice i.n. to peanut flour using the same protocol as described above 

and in Fig 1, A. These animals also developed peanut-specific IgE, IgG1, and IgG2a 

antibodies (Supplemental Fig E1, A), at levels roughly comparable to BALB/c mice. 

Further, C57BL/6 mice challenged by i.p. injection of crude peanut extract, underwent an 

acute anaphylactic response, including a decrease in core body temperature and 

manifestation of clinical symptoms (Fig E1, B). We note, however, that some strain 

differences were observed, as C57BL/6 mice developed a more modest anaphylaxis than 

BALB/C mice (i.e., a 3.5°C vs. 7.0°C decrease in core body temperature, respectively). 

Although endotoxin was undetectable in peanut flour, we examined the potential 

involvement of contaminating endotoxin using a genetic model. We found that Tlr4-d 

BALB/c mice, which are deficient in TLR4 signaling, develop serum levels of peanut-

specific IgE antibodies comparable to those of wild-type (WT) mice (Supplemental Fig E2), 

suggesting that TLR4, and consequently endotoxin, are unlikely to be involved in this 

response.

Peanut flour inhalation induces IL-4-competent follicular helper T (Tfh) cells

Using this mouse model, we next sought to investigate the immunological mechanism(s) 

involved in the initiation of peanut allergy. Because peanut-specific IgE was detectable in 

sera as early as 2 weeks after exposure, we focused on cellular events occurring in the first 2 

Dolence et al. Page 5

J Allergy Clin Immunol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



weeks. IL-4 is indispensable for IgE class switch of B cells, and among the CD4+ T cell 

subsets, both prototypic Th2 cells, as well as Tfh cells, are capable of producing this 

cytokine26–28. Th2 cells have long been known to function in allergic immune responses29, 

and Tfh cells have been shown to promote B cell differentiation into memory B and plasma 

cells26, 27.

Therefore, to identify IL-4–producing cells in sensitized mice, we exposed naïve 4get IL-4 

reporter mice30 i.n. to peanut flour on days 0 and 7 and analyzed mLN cells on day 11 by 

FACS analysis (Fig 2, A). We found that IL-4eGFP+CD4+ T cells were present in mLNs 

from mice exposed to peanut flour (Fig 2, B). The IL-33 receptor ST2 and the chemokine 

receptor CXCR5 are considered reliable markers for differentiated Th2 cells31 and Tfh 

cells27, respectively. Approximately 35% of CD4+IL-4eGFP+ cells were CXCR5+ and ST2−, 

suggesting that a large proportion of them consist of differentiated Tfh cells. A smaller 

proportion of Th2 cells (i.e. CXCR5−ST2+) were also identified. In contrast, minimal 

expression of ST2 or CXCR5 was observed in CD4+IL-4eGFP+ cells in PBS-exposed mice; 

ST2+ cells and CXCR5+ cells were 6.0±1.3 and 7.4±1.0 % of CD4+IL-4eGFP+ cells, 

respectively (mean ± SEM, n=5). Quantification of cell populations revealed that peanut 

flour exposure induces a 6-fold increase in the total number of lymphocytes and a 20-fold 

increase in IL-4eGFP+CD4+ T cells in mLNs, as compared to levels found PBS-exposed 

mice (Fig 2, C). We further see that IL-4+ Tfh cells outnumber IL-4+ Th2 cells by 5.5-fold 

(Fig 2, D, P<0.01). These data suggest that inhalation of peanut flour induces Tfh cells, and 

a smaller number of Th2 cells, which are both capable of producing IL-4 in draining LNs.

Tfh cells mediate a robust peanut-specific IgE antibody response

We next compared the immunological functions of peanut exposure-induced Tfh and Th2 

cells using both in vitro and in vivo approaches. First, we isolated the 

CD3+CD4+ST2+CXCR5− (Th2) and CD3+CD4+ST2−CXCR5+ (Tfh) cell populations by 

FACS sorting, and cultured them with B cells isolated from the same mLNs in the presence 

of crude peanut extract for 7 days (Fig 3, A, Supplemental Fig E3 for the gating strategy). 

Double-negative CD3+CD4+ST2−CXCR5− cells were used as a control. Whereas both Tfh 

and Th2 cells exhibit robust and comparable production of IL-4, Th2 cells produce 

significantly larger amounts of IL-5 and IL-13, as compared to Tfh cells (Fig 3, B, P<0.01 or 

0.05). In contrast, Tfh cells produce significantly more IL-21 than Th2 cells (P<0.01). 

Double-negative cells produce small amounts of these cytokines than either population.

We then compared the capacity of Tfh and Th2 cells to support IgE antibody production in 
vivo, using an adoptive transfer approach. Tfh and Th2 cells were isolated by FACS sorting 

from C57BL/6 mice that had been previously exposed to peanut flour, and an equal number 

of each population (i.e., 1.25×105 cells) was i.v. transferred to naïve T cell-deficient Tcrβ−/− 

mice (C57BL/6 background), which have an intact B compartment32 (Fig 3. C). In the 

absence of T cell transfer, Tcrb−/− mice do not produce detectable levels of peanut-specific 

IgE antibodies, even when they are subsequently exposed to peanut flour (Fig 3, D). In 

contrast, after transfer of Tfh cells, Tcrb−/− mice produce a high titer of peanut-specific IgE 

antibodies. Transfer of Th2 cells also induces IgE antibody production, although the titer is 

approximately one-fortieth of that induced by Tfh cells. Transfer of Tfh cells further induces 
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production of IgG1 antibodies at levels 8× higher than is induced by Th2 cells. No apparent 

differences were observed in levels of the IgG2 isotype. When challenged by i.p. injection of 

crude peanut extract, mice that received either Tfh cells or Th2 cells developed clinical 

symptoms of acute system anaphylaxis (Supplemental Fig E4). From these observations, we 

conclude that Tfh cells produce IL-4 and IL-21 and are superior to Th2 cells in supporting 

production of peanut-specific IgE and potentially IgG1 antibodies in vivo.

Tfh cells are indispensable for peanut allergy

To investigate the role of Tfh cells in peanut allergy, we utilized a genetic approach. The 

transcriptional repressor BCL6 is considered to be the master regulator for the Tfh cell 

lineage27, 33. We therefore used a floxed Bcl6 mouse model, in which Bcl6 is conditionally 

depleted in CD4+ T cells via action of the Cre recombinase expressed from the Cd4 
promoter [Bcl6fl/flCd4-Cre mice]23–25. When these animals are exposed to peanut flour 

using the same protocol as describe above (Fig 2, A), Tfh cell populations (ST2−CXCR5+ or 

PD-1+CXCR5+) are nearly eliminated, whereas the Th2 cell population is unaffected (Fig 4, 

A). In contrast, control mice lacking CD4-Cre (i.e. Bcl6f/fl) develop both ST2+CXCR5− Th2 

cells and ST2−CXCR5+ Tfh cells (Fig 4, A), and PD-1+CXCR5+ mature Tfh cells34 are also 

clearly detectable in these mice. Quantitative analyses further demonstrate that total numbers 

of CD4+ T cells and Th2 cells are similar in Bcl6fl/flCd4-Cre and control Bcl6fl/fl mice, 

whereas the number of ST2−CXCR5+ and PD1+CXCR5+ Tfh cells are reduced by 70% and 

80%, respectively, in Bcl6fl/flCd4-Cre mice as compared to controls (Fig 4, B).

GCs are essential for production of high-affinity, class-switched antibodies35. We found that 

the frequencies of B220+ B cells within mLNs were similar in Bcl6fl/fl mice and 

Bcl6fl/flCd4-Cre mice (Fig 4, C, D). However, a marked decrease in both the frequency and 

total number of FAS+PNA+ GC B cells was observed in Bcl6fl/flCd4-Cre mice, as compared 

to control animals. Thus, deletion of Bcl6 in CD4+ T cells results in striking decrease in both 

Tfh cells and GC B cells, but Th2 cell numbers appear to be unaffected.

To further investigate the role of Tfh cells in peanut allergy development, Bcl6fl/flCd4-Cre 

mice and littermate controls (Bc6fl/fl) were exposed i.n. to peanut flour for 4 weeks. We have 

previously performed a comprehensive analysis of Th2 cells in Bcl6fl/flCd4-Cre mice, and 

found that Th2 cell function is not impaired in these mice (Figures 6 and 7 of reference25). 

As expected, Bcl6fl/flCd4-Cre mice treated with PBS alone did not develop IgE antibodies to 

peanut (Fig 4, E), whereas peanut flour-exposed Bcl6fl/fl control mice develop serum IgE 

antibodies to peanut proteins, as well as IgG1 and IgG2a isotypes. In contrast, peanut-

specific IgE antibodies were nearly undetectable in Bcl6fl/flCd4-Cre mice exposed to peanut 

flour (P<0.01). Similarly, a significant decrease in the levels of peanut-specific IgG1 and 

IgG2 antibodies was observed in Bcl6fl/flCd4-Cre mice (P<0.01), as compared to Bcl6fl/fl 

controls. Consequently, when challenged with peanut extract, Bcl6fl/flCd4-Cre mice were 

completely protected from acute anaphylaxis, whereas Bcl6fl/fl mice develop a robust 

response, including a drop in core body temperature and manifestation of clinical symptoms 

(Fig 4, F, P<0.01).

The tumor necrosis factor (TNF) family ligand, OX40 ligand (OX40L), and its receptor, 

OX40, are thought to play a key role in development of Th2 cells36. Further, a role for 
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OX40L in peanut allergy was found in mice that were sensitized by oral administration of 

peanut proteins in conjunction with the mucosal adjuvant, CTX37. Conversely, in our model, 

we found that mice deficient in OX40L (i.e. Tnfsf4−/− mice) develop serum levels of peanut-

specific IgE and IgG1 antibodies comparable to those of control animals (Supplemental Fig 

E5). Collectively, our data suggest that Tfh cells play a critical role in the development of 

peanut allergy in response to i.n. peanut flour exposure in mice, although OX40L are not 

required for this process.

IL-1-family cytokines are rapidly induced in the airway by peanut flour exposure

Although the immunological mechanisms for development of Th2-type immune responses 

have been well-studied38, 39, little is currently known regarding how Tfh cells develop 

during allergic immune responses. Evidence suggests that several cytokines produced in the 

mucosal epithelium, including TSLP and an IL-1-family cytokine, IL-33, promote 

differentiation and proliferation of conventional Th2 cells38, 39. Other IL-1-family cytokines, 

such as IL-1α and IL-β, are considered prototypic innate cytokines with diverse 

immunological activities40. We therefore sought to determine whether any of these cytokines 

are involved in the Tfh cell response. To this end, we performed a time-course analysis of 

the levels of these cytokines in BAL fluid and lung tissues in mice exposed to peanut flour, 

using extract from an asthma-related airborne allergen, the fungus, A. alternata41, as a 

positive control.

After a single exposure to peanut flour, IL-1α and IL-1β were present in BAL fluids from 

naïve BALB/c mice, with levels peaking at 6 hours post-exposure and declining thereafter 

(Fig 5, A); conversely, neither IL-33 nor TSLP was detectable. When these mice were 

exposed to Alternaria extract, a rapid increase in IL-33 was detected in BAL fluids within 1 

hour; however, the levels of IL-1α or IL-1β were lower, as compared to those induced by 

peanut flour. Further, IL-5 was detectable only in Alternaria-exposed mice. In lung tissues, 

levels of IL-1α, IL-1β, IL-33, and TSLP increased after challenge in mice exposed to either 

peanut flour or Alternaria; expression peaks at 6 hours post-exposure and declines by 24 

hours. However, cytokine levels induced by Alternaria were generally higher than those 

induced by peanut (Fig 5, B).

We next examined whether the ability of peanut flour to induce IL-1α is unique among food 

products. We observed a significant increase in lung levels of IL-1α at both 6 and 24 hours 

in naïve BALB/c mice exposed to peanut flour (Fig 5, C). In contrast, elevated IL-1α was 

not detected in mice exposed to corn or rice flour. Similarly, crude peanut extract did not 

induce IL-1α, although it contains more peanut proteins than peanut flour (70.2% vs. 14.4% 

protein content, respectively). Consistent with this observation, peanut flour promoted 

stronger IgE antibody production to the model antigen ovalbumin (OVA) than did crude 

peanut extract (Supplemental Fig E6). Overall, these data demonstrate that although 

numerous innate cytokines are elevated in lungs after inhalation exposure to peanut flour or 

Alternaria extract, induction of IL-1α/IL-1β in BAL fluid is unique to peanut flour, whereas 

IL-33/IL-5 is specific to Alternaria.
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IL-1-family cytokines are involved in production of peanut-specific IgE

To determine the roles of IL-1 and IL-33 in peanut allergy development, we utilized a series 

of mice that are deficient in their receptors, including Il1r1−/− (i.e. IL-1α and IL-1β receptor 

deficient), ST2−/− (i.e. IL-33 receptor deficient), and Tslpr−/− mice (TSLP receptor 

deficient). WT or receptor deficient mice were then exposed to peanut flour for 4 weeks. As 

compared to WT animals, Il1r1−/− mice showed a 45% reduction in serum levels of peanut-

specific IgE antibodies (P<0.01, Fig 6, A), whereas ST2−/− mice displayed a slight (i.e. 

27%), but significant, decrease in anti-peanut IgE (P<0.05, Fig 6, B). Conversely, there was 

no difference in anti-peanut IgE levels in Tslpr−/− vs. WT control mice (Fig 6, C). Likewise, 

Il1r1−/− and ST2−/− mice showed a 51% and 64% decrease, respectively, in serum levels of 

anti-peanut IgG1 antibodies, vs. WT, whereas a paradoxical increase in IgG1 antibodies was 

observed in Tslpr−/− mice (P<0.01).

Based on these observations, we hypothesized that IL-1-family cytokines, such as IL-1α, 

IL-1β, and IL-33, but not TSLP, play key roles in peanut allergy development. Further, 

because IL-1R1- and ST2-deficient mice exhibit partial phenotypes, we suspected these 

molecules might function complementally to promote peanut allergy. IL-1-family cytokine 

receptors are heterodimers, consisting of a specific receptor (e.g., IL-1R1 and ST2) and a co-

receptor, such as IL-1R-associated protein (IL-1RAcP), which together form a high-affinity 

receptor complex42. Because IL-1RAcP is shared by IL-1R1 and ST2, we speculated that 

this co-receptor might be critical for peanut allergy formation. Indeed, mice deficient for 

IL-1RAcP (i.e. Il1rap−/−) showed approximate reductions in anti-peanut IgE and IgG1 

antibodies of 82% and 93%, respectively (Fig 6, D).

IL-1 is involved in the Tfh cell response in mice exposed to peanut

To determine whether IL-1RAcP is involved in development and/or expansion of Tfh cells, 

we exposed Il1rap−/− mice i.n. to peanut flour and examined CD3+CD4+ T cell populations 

in mLNs (Fig 7, A, Supplemental Fig E7). WT BALB/c control mice generated 

CD3+CD4+ST2+ Th2 cells, as well as CD3+CD4+CXCR5+ and PD-1+CXCR5+ Tfh cells 

(Fig 7, B). However, in Il1rap−/− mice, the proportion of Tfh cells was decreased, whereas 

Th2 cells were unaffected (Fig 7, B). By cell number, the total number of CD4+ T cell 

decreased by 50% in Il1rap−/− mice as did Th2 cells (Fig 7, C). Strikingly, in Il1rap−/− mice, 

the numbers of CD3+CD4+ST2−CXCR5+ and PD1+CXCR5+ Tfh cells were reduced more 

by 80% and 95%, respectively, as compared to WT (P<0.05 and P<0.01). We also found that 

both the proportion and total numbers of FAS+PNA+ GC B cells was decreased by 95% in 

Il1rap−/− mice (Fig 7, D, E, P<0.05).

To further dissect the roles for IL-1 and IL-33 in the Tfh response, we exposed naïve Il1r1−/− 

and ST2−/− mice i.n. to peanut flour using the same protocol as described in Figure 7A. 

Il1r1−/− mice showed a striking decrease in the total numbers of PD1+CXCR5+ Tfh cells as 

well as FAS+PNA+ GC B cells (p<0.01, Fig 7, F, G), similar to observations in Il1rap−/− 

mice. In contrast, ST2−/− mice showed no difference in the numbers of Tfh cells or GC B 

cells compared to WT (Fig 7, H, I). From these observations, we conclude that IL-1-family 

cytokines, in particular IL-1α and/or IL-1β, are critical for development and/or expansion of 
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Tfh cells and GC B cells in response to peanut exposure, and consequently for the initiation 

of peanut allergy in mice.

DISCUSSION

The LEAP study16 has suggested that oral consumption of peanut is tolerogenic in humans. 

Further, peanut proteins are readily detectable in household dust17, 18, and their levels 

correlate with peanut allergy prevalence19, 20. Based on this information, we took a 

straightforward approach to establish a mouse model for peanut allergy development in 

which we exposed naïve animals to peanut flour by inhalation without exogenous adjuvants. 

These mice produced anti-peanut IgE antibodies, and when challenged systemically with 

peanut proteins, they developed acute anaphylaxis and increased serum levels of MCPT-1. 

Several studies have investigated the immunological mechanisms associated with 

development of peanut allergy in mouse models of disease. However, a majority used either 

mucosal adjuvants, such as CTX7, 10, 37 and SEB10, or genetically-modified mice deficient 

in TLR4 signaling (e.g., C3H/HeJ mice)12 or carrying a disinhibited form of the IL-4 

receptor13. More recently, a humanized mouse model was developed by engrafting human 

hematopoietic stem cells into immunodeficient mice43. Our model is unique in that WT 

mice were utilized, and no adjuvants were provided; therefore, we predict it will be 

particularly useful for elucidating the immunological mechanisms involved in peanut allergy. 

Furthermore, our results also suggest that although epicutaneous exposure is generally 

considered to be the route of sensitization44, airway inhalation may need to be considered as 

an alternative or additional route(s) of exposure in peanut allergy development.

IL-4 was initially identified as a prototypic Th2 cytokine45, and for this reason, Th2 cells 

have been assumed to be the main facilitator of IgE antibody production by B cells. Our 

study suggests, however, that Tfh cells, rather than Th2 cells, play a key role in peanut 

allergy based on the following lines of evidence; 1) Tfh cells outnumber Th2 cells by >5-

fold in draining LNs (Fig 2), 2) Tfh cells produce both IL-4 and IL-21 in vitro, which are 

two major cytokines that assist B cells34, and Tfh cells were superior to Th2 cells for 

promoting IgE antibody production in vivo (Fig 3), 3) genetic depletion of Tfh cells (e.g. 

Bcl6fl/flCd4-Cre) completely protected mice from developing peanut allergy, without 

affecting the Th2 cell compartment (Fig 4), and 4) depletion of OX40L, which is presumed 

to play an important role in development of Th2 cells36, does not affect IgE antibody levels. 

Finally, in a previous study, Bcl6fl/flCd4-Cre mice showed nearly abolished production of 

IgE antibody while the function of Th2 cells was not impaired25.

An earlier study of epicutaneous sensitization in mice reported the development of peanut-

specific Th2-type CD4+ T cells6; however, it is unknown whether these cells play any role in 

the induction of peanut-specific IgE antibodies. During allergic immune responses, IL-4-

producing Th2 cells localize to lung tissues, whereas IL-4-producing Tfh cells reside in 

draining LNs25, 46, suggesting distinct anatomic locations for these cell subsets. Persistent 

IgE antibody production requires memory B cells in GCs that are supported by IL-4 

producing CD4+ T cells in the LNs9. Therefore, it is reasonable to conclude that Tfh cells 

provide a unique niche in allergic immune responses, in particular, those involving IgE-

mediated acute responses, such as peanut allergy. Indeed, a meta-analysis of genome-wide 
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association study data identified BCL6 and IL21, critical regulators of Tfh cells34, as 

susceptibility loci for allergy47.

Similar to other mucosal organs, respiratory exposure to innocuous proteins in the absence 

of adjuvants generally induces immune tolerance48. In spite of this, mice that inhaled peanut 

flour without any adjuvants developed Tfh cells and peanut allergy in our model. 

Epithelium-derived cytokines, such as IL-25, IL-33 and TSLP, are involved in antigen-

specific Th2-type CD4+ T cell development38, 39, 49. However, little information is currently 

available on how Tfh cells form, and the mechanisms for Tfh cell development appear to be 

rather complex. For example, Il6−/−, Il21−/−, and Il21r−/− mice, as well as Stat3-deficient 

mice, exhibit minimal to no defects in Tfh cell development in vivo50, 51, while blockage of 

IL-6 in Il21−/− mice or Il6/Il21 double-knockout mice display a partial decrease in Tfh 

cells52. This suggests that IL-6 and IL-21 work together to drive Tfh cell formation. Our 

study demonstrates that, in response to inhaled peanut flour, IL-1-family cytokines, in 

particular IL-1α and/or IL-1β, likely function to promote allergy development, as Il1rap−/− 

mice and Il1rl−/− mice show a marked reduction in Tfh cell number (Fig 7). These 

observations are consistent with the previous finding that IL-1β alone serves as an effective 

airway adjuvant to promote development of Tfh cells and IgE antibodies against the 

innocuous ovalbumin (OVA) protein in mice25. Further, cord blood cells from patients with 

food allergy produce IL-1β, which could promote generation of IL-4-expressing and 

GATA3-negative CD4+ T cells53. A more recent study also suggests that IL-1 plays a key 

role in activation of Tfh cells in mice immunized systemically by intraperitoneal injection of 

OVA plus alum adjuvant54. It remains to be determined whether IL-1 acts directly on Tfh 

cells, or if its effects are through activation of other cell types, such as airway epithelial 

cells, which may provide signals (e.g. IL-6) required for development and/or expansion of 

Tfh cells. Notably, microarray and NanoString assays showed mRNA expression of the IL-1 

receptor (i.e. Il1r1) by Tfh cells25, 54, suggesting a possible direct action of IL-1α or IL-1β 
on Tfh cells. Selective knockout of IL-1R1 in Tfh cells should help address these remaining 

questions in the future.

In this study, IL-1α and IL-1β were clearly detectable in BAL fluids from mice exposed to 

peanut flour (Fig 5, A). In particular, the IL-1α response was unique in that an asthma-

related airborne allergen Alternaria failed to induce this cytokine in BAL fluids. A recent 

study showed that alveolar macrophages produce IL-1α in response to aluminum hydroxide 

and silica55, suggesting a role for inhaled fine particles in promoting IL-1α production in the 

airway. Here, however, neither rice nor corn flour was able to induce IL-1α in the lungs (Fig 

5, C), suggesting that the physical presence of particles alone is insufficient. Indeed, glycan 

structures of a major peanut allergen, Ara h1, have been implicated in activation of C-type 

lectin dendritic cell-specific ICAM-grabbing nonintegrin (DC-SIGN) on dendritic cells56. In 

contrast, peanut flour was superior to peanut extract in inducing IL-1α production in the 

lungs (Fig 5, C) and promoting allergy sensitization to a bystander antigen, OVA, 

(Supplemental Fig E6), suggesting both the physical properties and biochemical 

composition of peanut flour are likely to be crucial. Therefore, in future studies, it will be 

important to elucidate the cellular and molecular mechanisms involved in recognition of 

peanut flour and in the production of cytokines by immune cells in the airway.
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A potential caveat of this study is the noted immunologic differences between mice and 

humans57. We were unable to demonstrate acute systemic anaphylaxis when peanut was 

administered orally to the sensitized animals (data not shown). Clinical evidence directly 

demonstrating that patients with peanut allergy have been sensitized by inhalation of peanut 

proteins in house dust is also scarce, although it has been speculated that environmental 

peanut protein levels are sufficient to induce sensitization in humans18. Furthermore, the 

dose of the peanut flour used for this study (100 μg/day) may exceed the levels of human 

exposure. We note, however, that our pilot study also found that a 10-fold smaller dose of 

peanut flour (e.g. 10 μg peanut flour/day or 2.1 μg peanut protein/day) is sufficient to 

sensitize some animals (data not shown). Finally, the perinatal alveolization period (~3 years 

in humans)58 provides a vulnerable time for the lungs to develop long-lasting allergen 

sensitization due to activated CD11b+ dendritic cells59. These points need to be taken into 

consideration when translating the information of this study to peanut allergy in humans.

In summary, Tfh cells have been implicated in autoimmune diseases, such as systemic lupus 

erythematosus, arthritis, and type I diabetes60–62. This study adds to this field by 

demonstrating that Tfh cells play a critical role in peanut allergy formation. A vast majority 

of Tfh cells are found within the B cell follicles of secondary lymphoid tissue63, making it 

difficult to investigate the roles of Tfh cells in human diseases. However, there is increasing 

evidence suggesting the presence of circulating CXCR5+ CD4+ memory T cells in 

peripheral blood cells that are committed to the Tfh lineage64, 65. Therefore, we believe it 

will be feasible to study Tfh cells in patients with peanut allergy. We propose that enhanced 

understanding of the molecular and immunological mechanisms involved in differentiation 

and function of Tfh cells, as well as methods to disrupt these pathways, will be of central 

importance in the development of new treatments and preventive strategies for the 

potentially life-threatening disease of peanut allergy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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BAL bronchoalveolar lavage

BSA bovine serum albumin

CTX cholera toxin

eGFP enhanced green fluorescent protein

FACS fluorescence-activated cell sorting
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GC germinal center

HDM house dust mite

IL interleukin

IL-1RAcP IL-1R-associated protein

i.n intranasally

i.p intraperitoneal

i.v intravenously

MCPT-1 mast cell protease-1

mLN mediastinal lymph node

LEAP Learning Early About Peanut Allergy

LNs lymph nodes

OVA ovalbumin

PD-1 programmed cell death protein 1

PN peanut

PBS phosphate-buffered saline

RT room temperature

SEB staphylococcal enterotoxin B

SEM standard error of the mean

SNPs single nucleotide polymorphisms

SPF specific pathogen-free

Tfh follicular helper T

Th2 type 2 helper T

TLR4 toll-like receptor 4

TSLP thymic stromal lymphopoietin

WT wild-type
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Key Messages

• Inhalation of peanut flour induces naïve mice to develop clinical responses 

consistent with peanut allergy in humans.

• IL-4-producing Tfh cells develop in draining lymph nodes when mice are 

exposed to peanut flour.

• Tfh cells are essential for IgE antibody production and peanut allergy 

symptoms.

• IL-1 plays key roles in the Tfh response to peanut allergen exposure.
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Figure 1. 
Airway exposure to peanut flour induces peanut allergy phenotypes in mice. (A) 

Experimental model. (B) Titers of anti-peanut antibodies in sera were determined on day 27. 

**P<0.01 compared to mice exposed to PBS. Data are a pool from three experiments and are 

presented as the mean ± SEM (n = 12–15 in each group). (C) Levels of anti-peanut 

antibodies in each mouse are shown. (D) Kinetic changes in levels of anti-peanut antibodies 

are shown. **P<0.01 compared to mice exposed to PBS. Data are presented as the mean ± 

SEM (n = 6 in each group). (E) Changes in rectal temperature (left) and clinical scores 

(right) in mice challenged by intraperitoneal (i.p) injection of peanut extract are shown. Data 

are presented as the mean ± SEM (n = 9–15 in each group) and are a pool of three 

experiments. *P<0.05 and **P<0.01 compared to mice exposed to PBS. (F) MCPT-1 levels 
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in plasma are presented as the mean ± SEM (n = 9–12 in each group). Data are a pool of 

three experiments. *P<0.05 and **P<0.01 between groups indicated by horizontal lines.
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Figure 2. 
Airway exposure to peanut flour promotes development of follicular helper T (Tfh) cells in 

draining lymph nodes. (A) Experimental model: naïve 4get mice (BALB/c background) 

were exposed i.n. to peanut flour or PBS. On day 11, mediastinal lymph nodes (mLNs) were 

analyzed by FACS. (B) mLN cells were gated on lymphocytes, and expression of CD4, 

IL-4eGFP, ST2, and CXCR5 was measured. Representative scattergrams showing 

expression of CD4 and IL-4eGFP in the total lymphocyte population (left panels), and the 

expression of ST2 and CXCR5 in CD4+IL-4eGFP+ lymphocytes (right panels). (C) 

Proportions and numbers of IL-4eGFP+CD4+ T cells are presented as the mean ± SEM (n = 
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5–6 in each group, pool of two experiments). *P<0.05 and **P<0.01 between the groups 

indicated by horizontal lines. (D) Proportions and numbers of IL-4eGFP+ Th2 and Tfh cells 

are presented as the mean ± SEM (n = 8 in each group, pool of 2 experiments). **P<0.01 

between groups indicated by horizontal lines.
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Figure 3. 
Tfh cells are superior to Th2 cells for promoting production of peanut-specific IgE 

antibodies. (A) Experimental model: naïve BALB/c mice were exposed i.n. to peanut flour. 

On day 11, mLN cells were sorted into CD3+CD4+ST2−CXCR5− (control), 

CD3+CD4+ST2+CXCR5− (Th2), and CD3+CD4+ST2−CXCR5+ (Tfh) populations and 

cultured with B cells isolated from the same mLNs in the presence of crude peanut extract. 

(B) Supernatant cytokine levels were analyzed by ELISA. Data are presented as the mean ± 

range from duplicate cultures. Figure is representative of three experiments. *P<0.05 and 

**P<0.01 between groups indicated by horizontal lines. (C) Experimental model: naïve 

C57BL/6 mice were exposed i.n. to peanut flour on day 0 and day 7, and Tfh and Th2 cells 

were sorted from day 11 mLNs. Cells (1.25×105) were i.v. transferred to Tcrβ−/− (C57BL/6 
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background) mice, and animals were exposed i.n. to peanut flour for 4 weeks. (D) Titers of 

anti-peanut antibodies in sera were determined by analyzing serial dilutions of the 

specimens by ELISA. Results are the mean ± SEM (n = 3 in each group) and are 

representative of two experiments. **P<0.01 and *P<0.05 compared to mice that received 

Th2 cells.
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Figure 4. 
Tfh cells are critical for peanut allergy formation. (A) Mice were exposed i.n. to peanut flour 

as described in Fig 2, A. Representative scattergrams of the CD3+CD4+ T cell population 

are shown. (B) Cell numbers in each population are presented as the mean ± SEM (n = 3 in 

each group). Data are a pool of two separate experiments. *P<0.05 compared to Bcl6fl/fl 

mice. (C) Representative scattergrams of the B220+ B cell population are shown. (D) Cell 

numbers in each population are presented as the mean ± SEM (n = 3 in each group). Data 

are a pool of two separate experiments. **P<0.01 compared to Bcl6fl/fl mice. (E) Mice were 

exposed i.n. to peanut flour as described in Fig 1, A. Titers of anti-peanut antibodies are 

shown. (F) Changes in rectal temperature (left) and clinical scores (right) in mice challenged 

by i.p. injection of peanut extract are shown. (E and F) Data are presented as the mean ± 

SEM (n = 3–7 in each group) and are representative of two experiments. **P<0.01 and 

*P<0.05 compared to Bcl6fl/fl mice exposed to peanut flour and challenged with peanut 

extract.
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Figure 5. 
The BAL and lung levels of IL-1 family cytokines increase rapidly following airway 

exposure to peanut flour. Naïve BALB/c mice were exposed i.n. to single dose of peanut 

flour (100 μg/dose), Alternaria extract (100 μg/dose), or PBS. Cytokine levels in 

supernatants of BAL fluids (A) and lung homogenates (B) were analyzed. Results are the 

mean ± SEM (n = 3 in each group) and are representative of two experiments. *P<0.05 and 

**P<0.01 compared to mice exposed to PBS. (C) Naïve BALB/c mice were exposed i.n. to a 

single dose of PBS, peanut flour, peanut extract, corn flour, or rice flour (each at 100 μg/

dose). At 6 or 24 hours, levels of IL-1α in the supernatants of lung homogenates were 

analyzed. Results are the mean ± SEM (n = 3 in each group) and are representative of two 

experiments. *P<0.05 and **P<0.01 compared to mice exposed to PBS.
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Figure 6. 
IL-1 family cytokines are involved in the production of peanut-specific IgE and IgG1 

antibodies in mice exposed to peanut flour. Naïve wild-type (WT) mice (BALB/c or 

C57BL/6) or mice deficient in specific cytokine receptors were exposed i.n. to PBS or 

peanut flour for 4 weeks. Titers of anti-peanut antibodies in sera were determined by 

analyzing serial dilutions of the specimens by ELISA. (A, B, C, and D) Data are presented 

as the mean ± SEM (n = 4 or 5 in each group). (A, B, and D) Data are a representative of 

two experiments. *P<0.05 and **P<0.01 compared to WT mice exposed to peanut flour.
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Figure 7. 
IL-1 plays a critical role in the Tfh response in mice exposed to peanut flour. (A) 

Experimental model. (B) Representative scattergrams of the CD3+CD4+ T cell population 

are shown. (C) Cell numbers in each population are presented as the mean ± SEM (n = 8 in 

each group). Data are a pool of two separate experiments. *P<0.05 and **P<0.01 compared 

to WT BALB/c mice. (D) Representative scattergrams of the B220+ B cell population are 

shown. (E) Cell numbers in each population are presented as the mean ± SEM (n = 4 in each 

group). *P<0.05 compared to WT BALB/c mice. (F) Representative scattergrams of the 

CD3+CD4+ T cell population and the B220+ B cell population are shown. (G) Cell numbers 

in each population are presented as the mean ± SEM (n = 4 in each group). **P<0.01 

compared to WT BALB/c mice. (H) Representative scattergrams of the CD3+CD4+ T cell 

population and the B220+ B cell population are shown. (G) Cell numbers in each population 

are presented as the mean ± SEM (n = 4 in each group).
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