
Abstract
In this paper, multiple-model adaptive estimation techniques have 
been successfully applied to fault detection and identification in 
lithium-ion batteries. The diagnostic performance of a battery 
depends greatly on the modeling technique used in representing the 
system and the associated faults under investigation. Here, both linear 
and non-linear battery modeling techniques are evaluated and the 
effects of battery model and noise estimation on the over-charge and 
over-discharge fault diagnosis performance are studied. Based on the 
experimental data obtained under the same fault scenarios for a single 
cell, the non-linear model based detection method is found to perform 
much better in accurately detecting the faults in real time when 
compared to those using linear model based method.

Introduction
The developing battery failure modes can be detected and diagnosed 
accurately using the model based fault diagnosis technique, which 
falls under the analytical redundancy fault detection and diagnosis 
paradigm [1]. The model based fault diagnosis performance depends 
on the accurate representation of the process and fault models while 
maintaining robustness in the presence of unknown disturbances, 
model uncertainties, and noise [2, 3]. In the presence of these 
undesirable conditions, the important fault information carrying 
residuals get corrupted and hence result in loss of accurate fault 
detection and diagnosis.

State estimation [4] [5] and specifically the use of Luenberger 
observer (LO) for fault detection and diagnosis can be found in [6], 
where the fault detection and diagnosis on a string of Li-ion batteries 
using a bank of reduced order observers was implemented. LO 
provides little or no robustness with respect to measurement noise.

The use of Kalman filters under the paradigm of observer based fault 
diagnosis for fault detection and diagnosis in Li-ion batteries is given 
in [7, 8], where the optimal filter shows strong robustness to noise 

and the adaptive nature of the multiple model adaptive estimation 
(MMAE) algorithm ensures accurate fault detection. MMAE is a 
robust fault detection and identification technique with extensive 
applications in the aerospace industry [9, 10] and recently in the fault 
detection of micro electro mechanical systems [11, 12]. With the 
application of Kalman filters and extended Kalman filters under 
multiple model adaptive estimation technique [12, 13, 14], the 
performance deterioration can be minimized to a very large extent. 
While the use of observer based fault diagnosis through MMAE 
offers good li-ion battery diagnosis performance [7], for it to be 
sensitive to minute battery performance shift, as in the case of 
condition monitoring, it is imperative that the li-ion battery model 
offers good fault detection and diagnosis characteristics and the 
system noise is correctly estimated [11]. By avoiding noise over or 
under estimation and appropriate model selection the quality of 
residuals can be enhanced.

In this paper, the linear and non-linear li-ion battery models are 
constructed using the impedance spectroscopy experimental results. 
These models are tested for fault detection and diagnosis (FDD) 
performance in over charge and over discharge failure of the li-ion 
battery cell. Further, the FDD performance as a function of noise 
estimation is also studied.

Battery Model
The li-ion battery is modeled as an equivalent circuit [4][5] and [15, 
16] as shown in Figure 1.

Applying Kirchhoff’s voltage law on the model circuit given in 
Figure 1, the voltage across the capacitor C is given by,

(1)
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where VC is the voltage across the capacitor C, IL is the charge/ load 
current. According to the sign convention used in this study, the 
negative sign of IL represents the discharge, while the positive sign 
indicates the charge. The voltage across the double layer capacitive 
element Cdl is given by,

Fig. 1. Li-ion battery equivalent circuit model, Rb is the bulk electrolyte 
resistance; C, R, are the capacitance and resistance representing local property 
of the electrode. Rct, is the charge transfer resistance, Cdl is the double layer 
capacitance [17, 18]. VOCV is the open circuit voltage (OCV) of the cell, as a 
function of the battery state of charge (SOC) [19].

(2)

where  is the voltage across Cdl.

The terminal voltage, Vt is given by,

(3)

where, ILRb represents voltage drop across the bulk resistance Rb, and 
VOCV represents the open circuit voltage of the cell. The SOC is the 
ratio of the remaining capacity to the nominal capacity of the battery 
cell and is given by,

(4)

where SOC(0) represents the initial state of charge, Cn represents the 
battery cell nominal capacity in Amperehour, and η represents the 
coulomb efficiency given by [8]:

The discrete time counterpart of (4) is given by,

(5)

and the discrete time representation of (1) and (2) can be obtained 
using zero-order hold (ZOH) [20] process as follows,

(6)

(7)

where Δt is the sample time. The difference equations given above 
can be represented in the state space form given by,

where x[k] is the state vector of the system, and at any sample k, is 
given by . 

is the discrete state matrix,

 is the

discrete input vector, C is the output vector, and D is the feed forward 
term. Γ is the models input noise matrix, w is the input noise with 
zero mean and a variance of

(8)

and v is the measurement noise, independent from w, with zero mean 
value as

(9)

Fig. 2. Experimental OCV-SOC curve for LiFePO4 battery cell.



In this formulation, Q and R are the process and measurement noise 
variances, respectively. The process and measurement white Gaussian 
noise is generated using the polar method [21].

As mentioned earlier, the OCV is a function of SOC and can be found 
experimentally [22]. For this study the OCV-SOC trend, shown in 
Figure 2, is used. The data was recorded from a sample LiFePO4 
battery cell operating at room temperature at the Energy Systems and 
Power Electronics Laboratory (ESPEL) at IUPUI.

Over-Charge and Over-Discharge
The over-charge failure of battery cells can be attributed to a 
combination of factors such as excessive temperature along with cell 
construction and design [23] and can lead to violent thermal 
runaways. The over-discharge failures are caused due to detrimental 
copper plating occurring at the negative electrode which can further 
lead to thermal runaways under severe over-discharge [24].With 
over-charge and over-discharge in a li-ion battery, its model 
parameters show marked variation trend from healthy battery 
parameters. This kind of variation is expected and is captured 
excellently using IS on the respective cycled batteries. For example, 
the bulk resistance, Rb, shows a more substantial increase under 
over-charge than in over-discharge; the charge transfer resistance, Rct, 
and constant phase element (CPE) arm resistance, R, increase with 
both failure modes. This increment is more profound under over-
charge than in over-discharge. The double layer capacitance, Cdl, and 
the capacitor representing the CPE, C, increase rapidly with over-
discharge, while under over-charge they show a relatively smaller 
change with a gradual decrease.

Linear Model
Approximating the OCV-SOC behavior by a straight line, as shown 
by the dotted line in Figure 2, results in a linear battery model. The 
linear OCV-SOC relationship is given by,

(10)

where  is the slope of the line and d is the no-charge 

OCV. Using this linear relationship results in a linear li-ion battery 
model where the terminal voltage of (3) can now be given by,

(11)

Comparing (11) with the discrete time state space form, we get, C = 
[m 1 1], D = Rb, and d can be considered as disturbance.

Non-Linear Model
The OCV-SOC relationship can also be captured by fitting a 
polynomial to the experimental curve, as shown by modeled curve in 
Figure 2. Through trial, a ninth degree polynomial gives the best fit to 
the experimental data with RMS error of 0.039. This polynomial is 
given by,

(12)

where α1 = 0.0385, α2 = –0.01936, α3 = –0.169, α4 = 0.06142, α5 = 
0.2328, α6 = –0.05715, α7 = –0.08321, α8 = 0.0005257, α9 = 0.03205, 
α10 = 3.297.

The resulting non-linear battery model can now be represented in the 
general form given by,

(13)

where the function f is given by,

(14)

and the function h is given by,

(15)

For both the linear and non-linear battery models, the lumped 
electrical elements and their associated scalar values represent the 
model of the battery cell at any given time. Considering the different 
values for the electrical elements Rb, R, C, Rct, and Cdl; n distinct 
models can be obtained, each representing a signature fault or the 
health of the battery cell.

Design of Experiments
Faults occurring in the li-ion battery result in appreciable change in 
the battery operation and hence influence the battery model parameter 
values. Considering different health stages of the battery, several 
models can be designed to represent the n signature faults of the 
battery system. In this study we will primarily focus on overcharge 
and over-discharge failure conditions. The model based fault 
diagnosis structure is as shown in Figure 3.

As discussed earlier, the healthy and fault model parameters are 
extracted using IS. The IS technique involves applying a small 
amplitude frequency sweep to the battery system. The frequency 
sweep usually rides on top of a load current or charging current to 
capture the impedance data for over-discharge and over-charge 



respectively. The test subject selected for this study is A123 18650 
LiFePO4 battery cell [25]. Tables I and II give the impedance 
spectroscopy results for the selected circuit parameters fitted to the 
impedance curve for 18650 LiFePO4 battery cell under over-charge 
and over-discharge conditions, respectively. Where, circuit parameter 
R0 is same as the bulk electrolyte resistance, Rb. Interested readers are 
encouraged to read more information on EIS from [17, 18, 26, 27].

Fig. 3. Multiple-model residual generation and probability evaluation.

Table I. Impedance spectroscopy data in nominal discharge/ over-charge

Table II. Impedance spectroscopy data in nominal charge/ over discharge

To mimic the actual operation, the battery is excited using the urban 
dynamometer driving schedule (UDDS) based current profile for an 
electric vehicle which has been scaled appropriately to match the 
nominal capacity of one battery cell. The UDDS profile is obtained 
using Autonomie [28]. The load current profile is as shown in Figure 
4. The duration of cycle considered for the study is 71 seconds.

Fig. 4. Battery cell UDDS current profile.

At each sample, all the models get access to the same load/ charge 
current and terminal voltage measurements. Based on these inputs to 
Kalman filters or the extended Kalman filters, the estimated terminal 
voltage are generated. Further these terminal voltages are used in 
residual generation and evaluation. The corresponding simulated 
terminal voltage profile is as shown in Fig 5.

For effective fault detection, the SOC is lower and upper bound to 
zero and 100% respectively. This measure ensures that the OCV 
remains under permissible limits, thus weighing the polarization 
voltages more [29]. The polarization voltages are the voltage drops 
across the constant phase element, C, and the double layer 
capacitance, Cdl, elements in the equivalent circuit. The initial state of 
the system is considered to be [0.7 0 0]T which implies 70% SOC and 
zero polarization voltages.

Fig. 5. Battery cell UDDS terminal voltage response.

Diagnosis Performance Evaluation
The fault diagnosis technique is introduced in [8, 29]. To simulate the 
degree of effectiveness introduced by the linear and non-linear 
battery model in accurate fault detection and diagnosis, parameter 



variation is induced in the terminal voltage measurement to represent 
the consecutive fault cases. Based on the general trend of parameter 
variation observed during IS along with the degree of fault to be 
studied, the parameter values for over-charge and over-discharge 
conditions are selected. These conditions are further used to generate 
the fault carrying terminal voltage measurements. The total 
simulation time of 71 seconds is divided into four equal parts which 
occur consecutively. 

1. Healthy battery condition: zero to 17.75 seconds.
2. Overcharge battery condition: 17.76 to 35.5 seconds.
3. Over-discharge battery condition: 35.51 to 53.25 seconds.
4. Healthy battery condition: 53.26 to 71 seconds.

Reverting back to healthy battery condition in the end helps to check 
the effectiveness of the algorithm to de-latch itself from a diagnosed 
fault case [14]. The covariance values for system and measurement 
noise are Q = 7 × 10–7, R = 1 × 10–6. It is also assumed that only one 
type of fault can occur in the system at a given point in time.

Linear Battery Model
The terminal voltages for the measured, healthy, overcharge and over 
discharged conditions are as shown in Figure 6. The resulting 
residuals for the healthy, overcharge and over discharged conditions 
are as shown in Figure 7. As discussed earlier, the residuals are the 
direct result of comparing the estimated terminal voltages for each 
system with the measured terminal voltage.

Fig 6. Terminal voltage for linear system models.

Due to the modeling inaccuracies caused by the assuming a linear 
OCV-SOC relationship, the residuals do not behave as expected.

Once these residuals are evaluated in the condition probability 
density block, the resulting system probabilities are as shown in the 
Figure 8.

Initially, during the first 10 seconds, the fault detection results are as 
expected. The system health probability PHL slowly starts to transition 
from 1 towards zero, indicating the departure from healthy battery 
operation. At the same time, the over discharge probability transitions 
from zero towards 1. This behavior is unexpected and indicates 

inaccurate residual signals. From 17.76 to 35.5 seconds, the over-
charge residuals becomes zero mean, and as a result, the fault 
probabilities transition to correct values and over-charge fault is 
indicated. At 35.51 seconds, the over-charge probability, as expected 
according to the evaluation scenario, transitions from zero to 1, 
indicating the presence of over discharge fault condition. The fault 
detection setup then latches on to the over discharge fault condition, 
and fails to acknowledge the performance change at 53.26 seconds, to 
healthy battery operation.

Fig. 7. Residuals for linear system models.

Fig. 8. Conditional probability densities for linear system.

Non-Linear Battery Model
With the non-linear system model, terminal voltage and hence the 
residuals carry more accurate information and indicate the expected 
fashion, as shown in Figures 9 and 10.

For the first and last 17.75 seconds of fault scenario, the healthy 
battery residual rHL shows a zero average value. From 17.76 to 35.5 
seconds and later from 35.51 to 53.25 seconds, the over-charge 
residual rOC and over discharge residual rOD shows zero average 
signal behavior respectively.



Fig. 9. Terminal voltage for non-linear system models.

Due to better approximation of the battery behavior by the non-linear 
models, the resulting estimated terminal voltages match closely the 
simulated terminal voltage measurement. This along with better noise 
approximation, results in minimal fault information loss and hence 
accurate residuals. The resulting conditional probability densities are 
as shown in Figure 11. The overcharge fault was injected at 17.75 
seconds, which results in the healthy battery operation probability 
PHL, reached zero, indicating the presence of a fault or the 
nonexistence of a healthy condition. The fault type was indicated by 
the probability POC when it transitioned from 0 to 1, indicating an 
over-charge fault. At the 35.5 seconds, probability POD transitions to 
1, while POC reached zero, representing an over-discharge fault. The 
healthy cell operation was indicated at 53.25 seconds, when 
probability PHL transitioned to 1 and both POC and POD reached 0.

Fig. 10. Residuals for non-linear system models.

Accurate estimation of system and measurement noise variances has 
proven to profoundly impact on the residual generation process. 
Noise over- or under-estimation can result in loss of information 
during residual generation process, and hence affect the fault 
diagnosis performance [11]. The fault diagnosis performance as a 
function of battery model and the noise estimation is as shown in the 
surface plot of Figure 10. R and Q are the system and measurement 

noise variance, and ppd stands for percentage positive detection. 
Within the performance evaluation scenario, 100% ppd indicates 
perfect fault detection while 0% ppd implies failure to detect the 
designed fault conditions. It is difficult to achieve 100% ppd because 
of the time it takes for the probabilities to transition from one extreme 
state to another, but a higher ppd indicates good fault detection and 
diagnosis performance. From Figure 12, it is clear that the nonlinear 
battery model, at 80 to 85 ppd, resulted in better fault detection and 
diagnosis when compared to its linear counterpart at 55 to 60 ppd. 
This difference can be attributed to better approximation of the 
battery dynamics offered by the non-linear battery model, which 
further leads to accurate estimation of the battery terminal voltage 
and eventually result in more accurate information in the residual 
generation process.

Fig. 11. Conditional probability densities for non-linear system.

The effect of model accuracy in fault detection can be analyzed from 
the performance evaluations presented in Figures 6–9. From time 
zero to 17.75 seconds, residual rHL, for both the linear and non-linear 
models generated a zero average signal. The behavior of the system 
health residual in both the linear and non-linear model case is the 
direct result of the terminal voltage estimation for system health 
showing good agreement with the reference terminal voltage signal. 
In the same time frame, the residual rOC for both linear and non-linear 
models, demonstrated a largely expected deviation mainly because of 
the quality of over-charge terminal voltage estimation.

In overcharge, both models demonstrate a mismatch of probabilities 
during the first scenario. However, in the case of over-discharge, the 
fault residual rOC for the linear battery model showed a zero average 
behavior, which indicated that the terminal voltage estimate for 
over-discharge fault hypothesis in linear model was closer to the 
reference terminal voltage signal. As a result, a confusion was 
observed in the fault detection, and POC incorrectly transitions from 
zero to 1. At the same time, the non-linear model did perform better 
at capturing the fault dynamics and generated a dynamic over-
discharge residual which captured the non-existence of over-
discharge fault. Due to greater degree of parameter shift in over-
charge condition, this fault was timely detected with both the linear 
and non-linear model case in the time range from 17.76 to 35.5 



seconds. A brief but critical loss in POC and other inherently related 
probabilities in the linear case, was observed from 27.2 to 29.2 
seconds where the rOC deviates from zero average behavior.

In the over-discharge region from 35.51 to 53.25 seconds, the 
residuals rOD and rHL for the linear battery model case showed a zero 
average behavior while rOC demonstrated some variations. In the 
non-linear model, the residual rOD became zero average while rHL and 
rOC showed dynamic behavior. This was indication of the fault 
insensitivity that could be caused by model uncertainty introduced by 
the linear battery model. Finally, from 53.26 to 71 seconds, for the 
non-linear model case, rHL became a zero average signal while rOC 
and rOD demonstrated dynamic behavior which was dependent on the 
difference between the estimated terminal voltages and the reference 
terminal voltage signal. This residual behavior led to effective fault 
de-latching as seen in the non-linear model probabilities. For the 
linear model, the faulty residuals rHL and rOD introduced ineffective 
fault diagnosis and hence led to the over-discharge fault probability 
latching.

For both linear and non-linear battery models, the overestimation of 
the process noise adversely affected the fault detection and diagnosis 
process and led to almost 15 to 20 % drop in fault diagnosis 
performance, as shown in Figure 12. For a given magnitude of 
process noise, under-estimation of measurement noise also affected 
the fault diagnosis performance, hence leading to lower values of 
ppd. A combination of inaccurately estimated process and 
measurement noise as a whole resulted in loss of critical fault related 
information and further led to failure of the model-based fault 
detection setup.

Fig. 12. Linear and non-linear battery model performance in fault diagnosis.

Conclusion
This paper investigated model based fault diagnosis using MMAE on 
li-ion battery for over-charge and over-discharge fault detection. Two 
different approaches to modeling the li-ion battery were considered 
and their effects on the diagnosis performance were presented. The 
non-linear battery model performed much better when it came to 

accurate and timely fault detection using multiple model adaptive 
estimation. The effects of noise over- and under-estimation were also 
considered, and their influence on fault decisions was studied. The 
robustness of fault detection technique dropped for both the linear 
and non-linear battery model based methods when the process and 
measurement noise was over- or under-estimated. However, it was 
shown that by reducing the model uncertainties and noise over- and 
underestimations, better fault diagnosis can be achieved for liion 
batteries. The effect of cell-to-cell variation and aging on the 
robustness of detection method, although not a part of this study, is 
currently under investigation by the authors.
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