
Semantic Service Integration

&

Metropolitan Medical Network

A Thesis

Submitted to the Faculty

of

Indiana University

by

Nikeshbhai Patel

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

August 2005

 ii

DEDICATION

To Papa (DAD), Arun Uncle and Meena Auntie.

 iii

ACKNOWLEDGMENTS

I will like to express my gratitude for Dr. Chung-Kuo Chang my advisor for

his valuable guidance. He has been constantly inspiring me for my thesis and

graduate studies. His interest and ideas to explore new realms of research had

constantly motivated me through my thesis. I am very much thankful to him to

encourage me and provide me facilities as well as knowledge and support to

complete my graduate studies and thesis.

I would here take this opportunity to thank Dr. Rajeev Raje for being on

my advisory committee and who has imparted me rich knowledge for one of the

graduate course.

I would like to impart special thanks to Dr. Jeffrey Huang for not only being

on my advisory committee but also for giving me valuable guidance.

I want to impart my special thanks to staff at Department of Computer and

Information Science for guiding me during my graduate studies and support. Also

I sincerely thank to Vickie Bucker & School of Informatics for providing me facility

and support.

At this time I also want to thank Jennifer Stewart and Jeffrey Allen for

being very helpful in my work.

I also cannot forget my family who has been encouraging me and also

providing their full support and wishes so that I can become successful, my

heartiest thanks to all of my family members.

Friends of mine who has acted as my neighbor and comrades; has filled in

me cheer and strength to complete my graduate studies also deserves my

sincere thanks.

 iv

Lastly I would say that this had been a wonderful experience of lifetime; I

am very much thankful to everyone who has made this day possible for me.

v

DECLARATION

This research work is a part of Master’s thesis and Graduate Studies.

Here use of any resources is for academic study only and does not hold any

commercial goal. Moreover no portion of this work has been submitted for any

another degree or qualification.

vi

TABLE OF CONTENTS

 Page
LIST OF TABLES ...ix
LIST OF FIGURES ... x
LIST OF SYMBOLS..xi
ABSTRACT .. xiii
CHAPTER 1. INTRODUCTION.. 1
1.1. Objectives... 1
1.2. Background .. 1
1.3. Motivation ... 2
1.4. Contributions .. 4
1.5. Organization ... 4

PART I .. 6
CHAPTER 2. RELATED WORK... 7
2.1. InfoSleuth ... 7
2.2. ONION.. 7
2.3. COG ... 8
2.4. LARKS.. 8

CHAPTER 3. ONTOLOGY DEVELOPMENT ... 9
3.1. Introduction... 9
3.2. Development Phase ... 10
3.2.1. Language Selection.. 11

3.3. OWL: Web Ontology Language.. 12
CHAPTER 4. MMN SERVICES.. 15
4.1. What is MMN?.. 15
4.2. Problems & Solution ... 16

CHAPTER 5. MMN MULTI-AGENTS ... 18
5.1. User Agent.. 18
5.2. Mediator Agent ... 18
5.3. Service Agent ... 19
5.4. Agent role in MMN.. 20

CHAPTER 6. SERVICE COMPOSITION & INTEGRATION............................... 21
6.1. Service Composition... 21
6.1.1. Service profile... 22
6.1.2. Service model... 24
6.1.3. Service grounding... 24

6.2. Agent formation .. 24

vii

Page

6.3. Semantic Matching ... 25
CHAPTER 7. WORKING & ARCHITECTURE OF MMN 28
7.1. MMN Architecture... 28
7.2. Service Flow ... 28
7.3. Components of MMN.. 31
7.3.1. Information Conversion and Integration System................................. 31

7.4. Service Selection Process.. 33
CHAPTER 8. GLOBAL ONTOLOGY.. 35
8.1. Implementation details.. 36
8.2. Ontology for Medical domain .. 36

Part II .. 38
CHAPTER 9. INFERENCE BASED MATCHING ALGORITHM 39
9.1. Background .. 39
9.2. Description Logic for Matchmaking... 40
9.2.1. Introduction... 40

9.3. Description Logic Background .. 41
9.4. Matching Algorithm... 42
9.4.1. Filtering Techniques ... 44
9.4.1.1. Direct matching... 46
9.4.1.2. Description based matching ... 47
9.4.1.3. Signature Matching... 49
9.4.1.4. Role-based matching.. 51
9.4.1.5. Hierarchical Matching ... 52
9.4.1.6. Axiomatic Matching .. 54

9.4.2. Normalization.. 56
9.5. Matchmaking Modes .. 57
9.5.1. Aggressive mode.. 58
9.5.2. Normal mode .. 58
9.5.3. Lenient mode.. 59

CHAPTER 10. ALGORITHM ANALYSIS.. 60
10.1. Example 1... 60
10.1.1. Aggressive Mode.. 60
10.1.2. Normal Mode .. 65
10.1.3. Lenient Mode.. 65

10.2. Example 2... 65
10.2.1. Aggressive Mode.. 65
10.2.2. Normal Mode .. 70
10.2.3. Lenient Mode.. 70

CHAPTER 11. KNOWLEDGE REPRESENTATION TOOLS 72
11.1. Protégé... 72
11.2. RacerPro .. 73
11.2.1. Shortcoming of RacerPro ... 74

CHAPTER 12. OPEN TERMINOLOGICAL SYSTEM... 75
12.1. Introduction... 75

viii

Page

12.2. Background and related work ... 76
12.2.1. BioMOBY.. 76
12.2.2. OpenGalen ... 76
12.2.3. The Open Terminology Services (OTS) project................................ 77
12.2.4. caBIG.. 77

12.3. MMN Approach for OTS ... 78
CHAPTER 13. CONCLUSION & FUTURE WORKS .. 79
13.1. RECAPITULATION .. 79
13.2. CONCLUSION.. 79
13.3. FUTURE WORK... 80

List of References... 81
APPENDICES
Appendix A. ... 88
Appendix B. ... 88
Appendix C. ... 91

ix

LIST OF TABLES

Table Page

Table 9.1 Description Logic AL ... 41

Table 9.2 Symbolic Notation for ALCQHIR+(D) ... 42
Table 9.3 Concept Assertion Expression.. 50
Table 11.1 Description Logic Axioms vs. Protégé Axioms.................................. 73

Appendix Table
Table A.1 Racer Commands .. 88
Table B.1 Full list of DL vs. OWL Constructs.. 89
Table B.2 Complete List of OWL Constructs .. 90

x

LIST OF FIGURES

Figure Page
Figure 5.1 Multi-Agent Architecture .. 19
Figure 6.1 Service Profile for Nuclear Imaging Center 22

Figure 6.2 N×N wrappers vs. N mappings of MMN .. 27
Figure 7.1 Metropolitan Medical Network ... 29
Figure 7.2 Service Flow between Health Providers .. 30
Figure 7.3 Information Conversion & Integration System 32

Appendix Figure
Figure C.1 Family.OWL ... 91
Figure C.2 Generations.OWL ... 104
Figure C.3 LOINC.OWL.. 114

xi

LIST OF SYMBOLS

Acronym Term

caBIG cancer Biomedical Informatics Grid

CLIPS C Language Integrated Production System

DAML+OIL DARPA Agent Markup Language + Ontology Inference

Language

DGQL Directed Graph Query Language

DIG DL Implementation Group

DL Description Logic

ebXML electronic business eXtensible Markup Language

EMR Electronic Medical Record

FACT Fast Classification of Terminologies

GALEN Generalized Architecture for Languages, Encyclopedias and

Nomenclatures in Medicine

GRAIL GALEN Representation and Integration Language

HL7 Health Level 7

ICD International Codes for Diseases

ICIS Information Conversion & Integration System

KBS Knowledge Base System

KIF Knowledge Interchange Format

KQML Knowledge Query Manipulation Language

LARKS Language for Advertisement and Request for Knowledge

Sharing

LDAP Lightweight Directory Access Protocol

LOINC Logical Observer Identifier Naming Convention

xii

MeSH Medical Subject Headings

MMN Metropolitan Medical network

NLM National Library of Medicine

nRQL new Racer Query Language

OMG Object Management Group

OWL Web Ontology Language

OWL-S Web Ontology Language for Services

PCP Primary Care Physician

RACER Renamed ABox and Concept Expression Reasoner

RacerPro Renamed ABox and Concept Expression Reasoner

Professional

RDF Resource Description Framework

RDFS Resource Description Framework Schema

SNOMED-CT the Systematized Nomenclature of Medicine Clinical Terms

TF-IDF Term Frequency - Inverse Document Frequency

UDDI Universal Description Discovery and Integration

UML Unified Modeling Language

UMLS Unified Medical Language System

XML eXtensible Markup Language

xiii

ABSTRACT

Patel, Nikeshbhai. M.S., Purdue University, August, 2005. Semantic Service
Integration & Metropolitan Medical Network. Major Professor: Dr. Chung-Kuo
Chang.

Medical health partners use heterogeneous data formats, legacy software

and strictly licensed vocabularies which make it hard to integrate their data and

work. Integration of services and data are the two main necessities. The current

architecture used provides partial solution by providing one-to-one mapping

wrappers. This thesis provides discussion on difficulties encountered by the co-

existence of so many medical vocabularies and efforts to provide interoperation.

Also other problems are listed which hinders the interoperation between health

partners.

Solution is proposed for some of these problems by forming semantic

network based on multi-agent technology. Service composition and integration

stages are shown to develop future advance health services. Middle layer is

implemented which performs integration and provides common platform for

sharing information, using global ontology and local domain ontology. Inference-

based matchmaking algorithm proposed in this thesis helps in mapping and

achieving our goal. Six different filtering techniques are selected and used in

matchmaking algorithm. Analysis of these filtering techniques is provided to

understand the integration process. In the ending section an abstract idea is

proposed on basis of network architecture and matchmaking algorithm to

develop Open Terminological System.

1

CHAPTER 1. INTRODUCTION

1.1. Objectives

The overall goal of this thesis or research was to provide a solution to

heterogeneity and implement a method for interoperation between various

terminologies. Other goal is to propose the network architecture based upon

which advance health services can be developed. The specific objectives were

to:

• Analyze the problems which prevent collaboration of research work and

makes hard to share data with other health partners, clinical research, etc.

• Propose solution to the heterogeneity problem by forming a semantic

network of health service providers and provide integration of services and

data in this network.

• Investigate and decide the suitability of the language to develop ontology.

• Create matchmaking algorithm to perform matching and thus provide

search facilities for the mentioned semantic network and also help in

achieving seamless integration between medical terminologies.

• Verify the suitability of filtering techniques used in matchmaking algorithm,

the language used to develop ontology, as well as architecture and

approach suggested for developing highly scalable systems.

1.2. Background

It can be found that in past 15 years several approaches were taken to

bring the enterprises together. Languages such as XML, BPEL, ebXML and

several others provided the platform to communicate and share information.

2

Advance search engines have been developed to satisfy the needs of searching

the information needed. Many efforts are been carried out so that research and

information from any part of world can be made available to others. Advance

search engines have started making use of web ontology language to implement

their internal database. New technologies such as Semantic Web have changed

the looks of today’s web. Semantic web can support both Business-to-Consumer

(B2C) interaction and Business-to-Business (B2B) collaboration. XML-based

frameworks, protocols and standards (e.g., Soap, BizTalk, RosettaNet, cXML,

eCO, WSDL, UDDI) are providing services to develop interactions in business

applications but do not provide advance semantics. Semantic web satisfies need

of providing advance semantics to describe services and structure of enterprise

as well as data. Semantic web is the essential component of building advance

web [BHL01]. Agent architecture has been adopted to build highly fault-tolerant

and resilient structure on the platform provided by semantic web. They provide

human-independent environment for dynamic and critical applications. Business

applications have highly adapted these new technologies. People from

bioinformatics are also using web ontology language and semantic web to build

tools for genomic research and collaborate their work. Certain health providers

have built network to integrate their work and provide advance services using

Semantic web. Research is been carried out to make use of Semantic web at

Stanford medical, at Semantic web research group of Maryland, HP Labs, MIT

and many more places. A complete list can be found at [SwWG]. Semantic Web

and web ontology language are becoming de facto standards to implement web

services.

1.3. Motivation

Data integration is one of the most complex & challenging task not only for

health enterprises but also many other kind of enterprises. Sharing data

between health partners is essential task for providing efficient services to

patients. Sharing clinical data is also required for health surveillance and

3

outbreak detection. Web has become one of the most convenient ways of

exchanging data and finding services. But current web is not efficient for doing

so.

The second challenging task is new technology web demands not only

efficient search technique but also services should be automatically composed &

executed. Web should be made machine-interpretable for composing services

automatically.

Health Enterprises are the rich resources of services. Global view of

enterprise is required for all the health enterprises to work cordially [HuS92].

Heterogeneity exists at several levels of enterprise. At the very basic level the

machines used might be different. The operating system, data processing

method, data-storing format, data sharing and encoding method vary.

Applications program using such data will be incompatible with applications used

in another domain. Additionally expert system, knowledge base and information

repository of each resource vary substantially from other resources. The

resolution to this heterogeneity is, there should be integrated (semantic) way of

exchanging data and services.

Matchmaking facilities implemented to-date is not considering the

meaning or the overall structure of concept while performing match. Hence the

result does not include concepts which are similar in type and behavior. An

algorithm needs to be reformed which also considers semantic meaning while

performing matching.

Large amount of money has been invested by US Government for

developing and modernizing the health strategies. But it was found that money

has not been properly utilized due to lack of interoperation. Gradual adaptation of

the use of EMR and other technology options is hindering the progress of health

enterprises. Interoperation problem is becoming more and more acute as many

health enterprises have started using EMR and other electronic methods to store

and share data. European and Canadian health partners are miles ahead due to

their advance health network. There are so many different approaches carried in

4

different states of US. Merging of these approaches will save millions of dollars

and also help to provide efficient health services.

Advantages of Open Source systems are increasing. Moreover due to

combine effort they will be well supported. There is a need of developing Open

terminological system in health domain to take advantage of openness.

1.4. Contributions

The research performed here provides following contributions:

1. Investigated different needs of health providers and methods to provide

advance technology to improve health services.

2. Provided list of problems that resists interoperation between health

partners.

3. Proposed the network architecture to provide advance health services to

health partners that is well scalable and easy to maintain.

4. Found methods and tools suitable for developing semantic services.

5. Developed ontologies using web ontology language based upon LOINC

and UMLS (medical vocabulary).

6. Investigated various syntactic and semantic filtering techniques and tested

its suitability for semantic matching process.

7. Implemented inference-based matchmaking algorithm using selected

filtering techniques that performs concept-matching. Applied match-

making algorithm to develop semantic services in MMN.

8. Analyzed the working of matchmaking algorithm by providing examples.

9. An abstract idea is proposed on basis of network architecture and

matchmaking algorithm to develop Open Terminological System.

1.5. Organization

This thesis covers numerous aspects of semantic integration process and

is divided into two main parts which is again subdivided into 13 chapters. Part I

5

covers the upper level details relating to MMN, whereas Part II provides lower

level information about matchmaking process. . Part I consists of chapters from 2

to 8 and remaining are under Part II.

 The remainder of this thesis is structured as follows: In chapter 2 we have

provided related work by other groups; in chapter 3, details about ontology

development cycle and ontology language is discussed; in chapter 4 information

about problems faced by health partners and solutions provided by MMN can be

found; chapter 5 shows multi-agent architecture of MMN; in chapter 6 a

discussion about service composition and integration process is provided;

chapter 7 provides details about architecture of MMN and its components; details

about global ontology development is provided in chapter 8.

In chapter 9 we have shown various filtering techniques and

implementation of inference based matching algorithm; chapter 10 details

algorithm analysis using two different examples; in chapter 11 introduction about

tools used for development is provided whereas chapter 12 provides a general

discussion on Open terminological System and chapter 13 provides briefing

about my work and possible future extensions.

6

PART I

Semantic Services
&

Metropolitan Medical Network

7

CHAPTER 2. RELATED WORK

2.1. InfoSleuth

InfoSleuth (Fowler et al., 1999) is a multi-agent system for semantic inter-

operability in heterogeneous data sources. Agents are used for query and

instance transformations between data schemas. An agent is aware of its own

ontology and the mapping between that ontology and the data schema, it is

aware of the shared ontologies and it can map its ontology to those of other

agents. InfoSleuth uses several shared ontologies, made available through the

ontology agents. Individual data sources have (through the resource agents) a

mapping to these shared ontologies. The shared ontologies are linked together

through one-to-one ontology mapping. Note that the user agents use the shared

ontologies as their vocabulary and local ontologies are only maintained by the

resource agents.

2.2. ONION

ONION (Mitra and Wiederhold, 2001) takes a centralized, hierarchical

approach to ontology mapping, where the user views the (global) articulation

ontologies. The source ontologies are mapped to each other via articulation

ontologies that are in turn used by the user to express queries. The articulation

ontologies are organized in a tree structure. An articulation ontology used for the

mapping of two source ontologies can in turn be one of the sources for

articulation ontology. The creation of a hierarchy can be seen as a form of

ontology clustering. But while (Visser and Tamma, 1999) take a top-down

approach (first the root application ontology is specified, then child ontologies are

created as is necessary), ONION takes a bottom-up approach in the creation of

8

the articulation ontologies; furthermore, there is no defined root ontology for the

cluster.

2.3. COG

In the Corporate Ontology Grid [COG] project the aim is to overcome the

problems in semantic heterogeneity between data sources in by semantic

integration of the sources using a central Information Model (i.e. ontology).

Information Model is built using existing applications, data sources (assets) and

input from domain experts. A mapping is then created between each data asset

and the central model, thereby assigning a well-understood meaning to the

concepts in each asset. With the use of Information Model, the location of

information can be discovered throughout the data sources in the enterprise.

Furthermore, because the mappings are created in a formal way, the

transformations are automatically generated between different sources.

2.4. LARKS

The LARKS [SWK+02] is the language for agent advertisements and

requests, and present a flexible and efficient matchmaking process. LARKS uses

Multi-Agent infrastructure to provide services of advertising and searching among

heterogeneous cyberspace. The Larks matchmaking process performs both

syntactic and semantic matching, and in addition allows the specification of

concepts (local ontologies) via ITL, a concept language. The matching process

uses five different filters: context matching, profile comparison, similarity

matching, signature matching and constraint matching. The Global ontology is

dynamically built from computed subsumption relations between the concepts

included in any advertisement.

9

CHAPTER 3. ONTOLOGY DEVELOPMENT

3.1. Introduction

Various knowledge based systems are usually built to store the domain

knowledge. In certain environment, knowledge is accumulated from several

sources. The task to manage and manipulate large KBS is becoming more

complex as they are increasing in size. The structure and schema of data

collected from disparate sources looses the overall structure and meaning,

making it incomprehensible to perform searching. Mechanism has to be

developed to store this data in well structured format along with the relations that

exists between such data in form of rules.

Terminological systems are widely used to store information where data is

accumulated from varied resources. A terminology is collection of terms with

relations between them. The most traditional relation between terms is is-a

relation. Ontology is interchangeably used in place of terminology in field of

information retrieval and considered most important tool in artificial intelligence.

Ontology is the answers to the above mentioned problems. The well known

definition of Ontology provided by [NFF+91] is provided below:

“Ontology defines the basic terms and relations comprising the vocabulary of a

topic area, as well as the rules for combining terms and relations to define

extensions to the vocabulary”.

 Another definition provided by [SPK+97] is “Ontology is a hierarchically

structured set of terms for describing a domain that can be used as a skeletal

foundation for a knowledge base”. We can say from these definitions that in

simple language, ontology is a description of the concepts and relationship that

can exist between these concepts. Thus it is a model of some portion of the

10

world. Ontologies of same domain can vary depending on its structure and

implementation [Den02].

3.2. Development Phase

Often it is confusing for knowledge base architect to decide the approach

for developing ontology. There is a nice tutorial [NoM] which provides guidance

to understand and develop the first ontology. The basic steps to develop ontology

are as follows:

1. Collect Domain Knowledge: Collect information from various

resources about concept terms that describe various entities in the

domain. Also consistently note the relations between these concepts.

2. Arrange concept terms: Identify the concrete domain terms and their

attributes that relates one concept to another. Organize these terms to

form consistent overall structure. Create abstract concepts and provide

reification that is needed to provide clear definition of domain

knowledge. Also link instances to their respective classes. This step is

to provide organization of ontology.

3. Provide structural definitions: Once you have hierarchical class

structure; create classes, properties and relations as needed. Add

constraints to these properties that will link one class to another.

4. Check Inconsistencies: Perform syntactic and semantic consistency

check. Check can also be made on classes related by subsumption

relation. Perform coherency check on the concepts.

5. Instantiating: Finally create individuals for classes. Instances are the

first class objects which are used practically to express domain

knowledge. Perform consistency check on instances.

The above steps are not strictly obeyed during development of ontology and are

intermingled as per the ontology designer.

11

3.2.1. Language Selection

In past description logic language like KIF [GeF92] has been used to

represent knowledge. It has high expressiveness and is able to represent objects

such as symbols, numbers, lists, etc. Also it is able to express relations and

functions of variable arity. KQML [FWW+93] is a communication language used

for building agents. Other effort in this direction is DGQL [Rey01] which was used

to represent knowledge in form of triples. It used Resource Description

framework (RDF) [LaS99] as the language to build up the knowledge structure.

 The basic requirement of language used to describe concepts and relation

between concepts is: It should be expressive enough to express all of the

relations and constraints existing between this concepts. Important requirements

of the language used for building a knowledge base or ontology are:

• Expressiveness: It should be able to express not only concepts but also

meaning related with that concept. The concepts are not seen individually

but all together form the complete hierarchy of concepts and objects. This

structure reveals the domain knowledge. The expressiveness of language

is very important to show how one concept is related to another concept in

the concept hierarchy.

• Subsumption: The subsumption relation is important to reveal the

hierarchy existing amongst the concepts. This hierarchy provides

information about where the concept is lying and which are the parent and

child concepts. Also it tells about the equivalent concepts. Thus the

language should be able to reveal subsumption relations existing between

concepts and its properties.

• Completeness: The language should be complete; it means it should be

able to specify all the restrictions or constraints applicable on the concept.

Axiom relating to concepts should be well specified by such language.

Language is considered complete when it includes above two qualities

and also be able to express other relations such as transitivity, disjoint,

functional property and inverse relations. The other important part of

12

completeness is its ability to demonstrate logical assertion and logical

inference.

Daml+Oil is the ontology development language which has integrated

ontology inference capability. It was the most suitable candidate for building the

knowledge base. As it supports many of the requirements specified above.

Daml+Oil lacks full expressiveness which is necessary in some of the inference

environment. The more complete language existing at present is OWL [McH03].

OWL is the frame based language which supports expressiveness to support

logical inference [HPH03]. OWL is based upon DAML+OIL but it is more

complete and expressive.

3.3. OWL: Web Ontology Language

There are three different flavors of OWL depending on the expressiveness

and completeness [McH03]. OWL is top on the stack built using XML, XML-

Schema, RDF [LaS99], RDF Schema, DAML+OIL. OWL provides constructs to

add more vocabulary for describing properties, relation between classes (e.g.

disjointness), cardinality (e.g. minCardinality, maxCardinality, exactly one) richer

typing of properties, characteristics of properties (e.g. transitive, symmetric) and

enumerated classes.

 Varieties of OWL language:

1. OWL Lite: It fulfills primary need by providing minimum constructs for

classification hierarchy and simple constraints.

2. OWL DL: OWL Description Logic provides all the constructs provided by

OWL Lite. Additionally it provides maximum expressiveness,

completeness and decidability.

3. OWL FULL: This language provides full expressiveness and the syntactic

freedom of RDF. It is hardly possible for RACER [RAC] to support

complete reasoning.

13

We will be interested in using OWL DL for our work as it is able to provide

complete constructs needed to build ontology and expressiveness needed to

provide inference capabilities.

Let us see what type of relations can be expressed by using OWL. If we

want to say that, “A Mother is a person having gender as Female and with at-

least one child”. This can be expressed in OWL using following syntax:

<owl:Class rdf:ID="Mother">

<owl:equivalentClass>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Restriction>

 <owl:onProperty>

 <owl:FunctionalProperty rdf:about="#hasSex"/>

 </owl:onProperty>

 <owl:hasValue rdf:resource="#Female"/>

 </owl:Restriction>

 <owl:Restriction>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="hasChild"/>

 </owl:onProperty>

 </owl:Restriction>

 </owl:intersectionOf>

 </owl:Class>

 </owl:equivalentClass>

 </owl:Class>

14

The OWL syntax adopts XML syntax format as base. The OWL Guide [MWM04]

provides guidance about use of OWL with more examples. The OWL Semantics

and Abstract Syntax provides all the advance information about OWL syntax

[PHH04] for developing ontology. It can be shown that OWL provides construct to

express each of the relation and specification listed in Knowledge Representation

System Specification [PsS93]. A complete table showing one to one mapping

between OWL Construct and Description Logic Axiom is provided in Table B.1 of

Appendix A.

15

CHAPTER 4. MMN SERVICES

4.1. What is MMN?

MMN is a network between health partners, hospitals, clinical laboratories

and medical researchers. This network can be compared to a market place, full

of different service providers, and a new service provider can be integrated with

other service providers with little effort. Authorized entity can use services and

also provide services to others within network. The primary goal of forming MMN

is to provide real time sharing of clinical and syndromic data amongst medical

laboratories and other health entities. Seamless integration of data and services

is possible by semantic mapping of respective domain knowledge. MMN provides

facility of automatic service composition that will help health partners to fulfill

higher-level goals such as health surveillance and disease outbreak detection.

There are multiple uses of MMN; primary to this is patient record collection

and data sharing. Health provider specializing in one category of service may not

be able to efficiently provide health services of other categories or specialization.

This is due to lack of specialty care doctors for certain treatments and diseases.

Appropriate advance facilities, laboratories and machinery for treating patients

are not available or remotely shared. Location also plays a major role; certain

uptown country places are devoid of health facilities. In such conditions they

have to rely upon other health partners in health provider network. It is very

helpful, if there is a semantic network of health service provider, which forms the

services automatically and provides all the required services.

16

4.2. Problems & Solution

Health providers use their own legacy software provided by their preferred

vendors. Different applications uses different vocabularies like DICOM [DIC04] is

used by imaging center and LOINC [MHS+04] codes are used for laboratory

findings. SNOMED Clinical Core terminology [SNO] provides a common

language that enables a consistent way of capturing, sharing and aggregating

health data such as electronic medical records, ICU monitoring, clinical decision

support, medical research studies, clinical trials, computerized physician order

entry, disease surveillance, image indexing and consumer health information

services. HL7 [BHR+99] is the major effort to provided unified message format.

MeSH [MSH] is used as medical meta-thesaurus. UMLS [UKS] is another major

effort from NLM [NLM] that provides platform for medical data representation.

ICD [ICD] families of terminologies are also widely used as medical terminology

dictionary for various diseases. The above mentioned terminologies refer to their

own corresponding underlying domain terms. There are so many standards or

efforts that confusion is created while sharing data amongst medical enterprises.

Thus, the care system cannot fully "understand" and properly file the results they

receive unless they either adopt the producer's laboratory codes (which is

impossible if they receive results from multiple sources), or invest in the work to

map each result producer's code system to their internal code system [RHI].

Health partners share unique data, which cannot be replicated. These

intricacies make it more difficult to share resources (Patient records, images, etc)

or use services from other health providers. Issues like interoperability, scalability

and heterogeneity are the major issues in any healthcare enterprise. Health care

departments are distributed in terms of service administration and location. This

makes more difficult to provide quick services.

Most of traditional health systems are found to have facility of transferring

data through overnight batch process. Data in such system are analyzed after

delay of several hours, which makes surveillance task less efficient. The real time

data sharing capability shares disease data of the patients to the research

17

institutes in real time and thus encourages research activities. Our idea is to

integrate this facility in MMN through automated procedures for exchanging

valuable information and services (e.g. clinical information).

There are countless efforts going on to bring technology in Medical field.

One of the campaigns working in this direction is to use EMR. It was found that

interoperability between EMR failed because of heterogeneous formats of data.

Our effort will provide this semantic interoperability between EMR.

These issues can be solved by forming semantic homogenous network.

Integration of services is done by providing common medium to interchange

information. MMN implements this medium based on Semantic Web [BHL01].

Our effort is to provide method for interoperation between them and not to solve

the confusion created by using many terminological systems together. HL7 is the

de facto standard for message implementation and communication between

medical partners. Software agents cannot process HL7 messages directly. For

automatic service composition the message should be machine interpretable and

so this message has been further mapped to OWL-S [MBH+04] constructs. Web

ontology language (OWL) is used to make these messages interpretable by

agents. Terms from one terminology are mapped to terms in global knowledge

base. The method to perform this mapping is given in matchmaking section (9.4)

of this thesis.

A method using multi agent network is proposed here to achieve the

required goals. Common view of enterprises is very important and can be

achieved through this network. We build ontology for each of the local

information model which needs to be integrated and a “global ontology” [HuS92]

from existing local ontologies.

18

CHAPTER 5. MMN MULTI-AGENTS

A multi-agent architecture is implemented to provide semantic services in

MMN. Agents [Hen01] are the software entities (programs) which are semi-

autonomous, pro-active and adaptive. They are intelligent programs that assist

humans in several operations. We have defined three different types of agents

Figure 5.1 depending on the work they perform. They are User agent, Mediator

agent and Service agent.

5.1. User Agent

 The software agent which performs which assists services users to

perform several operations is known as User Agent. They perform operation

such as building semantic query according to the specification of service seeker

or user. A user agent hides the lower level details of agent communication and

architecture from the users. They provide an easy-to-use platform or interface

through which user can access advance web (health) services provided by MMN.

User agent communicates with mediator agent to perform search for required

services or communicates with service agent [with the help of mediator agent] to

use service provided by them.

5.2. Mediator Agent

 The middle layer application works cordially with mediator agent. The

primary role of mediator agent is to provide platform using which two

heterogeneous agents can understand each other and exchange services. When

a query requiring some service comes from user agent, the mediator agent

19

performs matching with the service profile of various service agent stored in

service registry. Mediator agents then returns best matching results and other

information related to service to the user agent.

Figure 5.1 Multi-Agent Architecture

5.3. Service Agent

The agent which works for service provider is known as Service Agent.

This agent registers the advertisement of service provider in the semantic service

registry of middle layer. For this, service agent has to communicate with the

mediator agent and provide its service profile. Many times one service provider

will need to use services provided by other service provider. In such cases

service agent of service user becomes user agent. Thus agents can change

roles as per the need. Service can also be of interactive type in which service

agent has to communicate with user agent through mediator agent through out

the service execution process.

20

5.4. Agent role in MMN

MMN provides a pool of service providers. This type of network is very

advantageous for health providers, because it not only provides faster method to

search a service, but also provide service accurately matching to service query

description. For e.g. Primary care physicians treating patient showing symptoms

of Parkinson disease may require nuclear imaging scan service. The other

requirement of the service-seeker is nuclear imaging center has to be nearer to

the patient’s residence. Service provider should be able to accept insurance from

“General American Life”. The user agent of the physician will automatically form

the service query with appropriate service parameters or specification and using

the vocabulary terms used by the physician. The service execution engine will

then execute the service on behalf of physician and in return receives the list of

service providers fulfilling the requirements. The list of service providers returned

will be a near or exact match to the requirements of the physician. More about

automatic service composition, semantic integration and agents is discussed in

CHAPTER 6.

21

CHAPTER 6. SERVICE COMPOSITION & INTEGRATION

According to the workflow [WRM] model, services are created and placed

on the web page as per the need and with appropriate specification. This model

describes procedural steps, required input, output information and tools needed

for each step in the integration process. In this section, method for service

composition, agent formation and semantic matching is more deeply discussed.

6.1. Service Composition

Service formation is strictly procedural process. Description about the

needed service has to be provided in the initial step. There are many ontology

oriented efforts to provide service description. Some other initiatives like UDDI

[Bou00], ebXML [ebX] have failed to attain the goal of providing service

description [TBGc01]. The description terms used along with service profile to

advertise about the capabilities of services is also known as “Service parameter”.

Service parameter also includes the parameters needed as input to satisfy

requirements of service provider. Moreover service parameter includes output

parameters that results due to execution of service. Service description very

much depends on type of service offered or required. In this thesis we focus on

medical domain services. Service profile, service model and service grounding

are the three type of information required for the formation of any type of service

[OSC03].

22

6.1.1. Service profile

Service profile answers question like what does service provides. It also

contains information about the requirements of service-seeking agent. Service

profile contains definition of properties such as name of the service, contact

information, quality of the service, and additional information that may help to

evaluate the service [OSC03].

Figure 6.1 Service Profile for Nuclear Imaging Center

The main functional properties of service profile are input, output, precondition

and effects that help with the specification of what the service provides.

Compositional knowledge such as syntactic and pragmatic knowledge [LCG04]

gives the logical meaning to service profile and also governs service formation.

Syntactic knowledge consists of various inputs and outputs that are used in

service composition. Various service parameters are required as an input for the

23

execution of a service. When this service executes the outcome will be in form of

output parameters. This type of knowledge is required by the agents for forming

the service. Pragmatic knowledge deals with extra information that guides

service formation process. It includes rules governing the use of service. Such

rules incorporate restriction on condition in which this type of service can be used

e.g. when a new service is provided by a health partner, they also include

information about how to access that service (Registering resource or taking

appointment with physician) and the restrictions (time frame allocated) in using

that service. Any service-seeking agent interested in using this service has to

abide it with the rules of the service-providing agent.

In Figure 6.1 we have shown Service Profile ontology (explained in more

details in later section) for Nuclear Imaging service provided at “PET (Positron

Emission Tomography) Service Center” of Indiana University, Bloomington. This

ontology is composed using OWL-DL (details in later section). The first class tag

is top-level class and stands for PET service. Service_Profile_PET class is the

second level class. Service profile has sub-class as: “Service_details_PET”,

“Service_input_PET”, “Service_output_PET”, “Service_precondition_PET” and

Service_postcondition_PET. Service detail class holds several properties such

as service_name, location, service charge, accepted insurance provider, field

specializing in and team_members. Service_input class provides list of

parameters required to form the service (insurance detail). Service output class

shows what will be the feedback or service provided (PET images). Precondition

class notes condition necessary for formation of service (Valid insurance plan)

whereas post-condition class lists conditions after execution of service (Bill or

charge). We have taken only single instance for each of them, there can be much

more detail information which we have eliminated to keep example easy to

understand.

24

6.1.2. Service model

Service model contains information about the process of execution of

service. It tells about the consequences that arise due to service execution. The

information gained from this type of knowledge is useful to the service-seeking

agent for performing various analysis tasks or to get the feedback on the current

status of service execution. Service model consist of domain specific semantic

knowledge that helps in service execution.

6.1.3. Service grounding

Service grounding discusses low-level details such as how a service-

seeking agent can use or access the service. This knowledge discusses about

message formats, low-level service specific details and communication protocol,

etc. Grounding performs the mapping from abstract service parameter to

concrete service terms. This mapping has to be done quickly and thus need

efficient semantic mapping method.

6.2. Agent formation

Using the service parameter appropriate query is build by the user

software agents. Agent plays a major role in service composition, service

discovery and automatic service execution. As describe above agent interacts

with the other agents of service providers in the network. During these interaction

agents performs semantic matching between terms in domain of service provider

and in domain of service receiver with the help of common terminological system

or by using matchmaking algorithm. In our case we have a special layer called

‘ICIS’ (section 7.3.1) which performs this operation. Service execution engine

decides upon which results is to be called perfectly matching or partly matching

service agents.

Let us see one more example to learn about agent’s role in providing

service. Patient record retrieval system is the service provided by central

25

authoring system of MMN. When a primary care physician requires access to any

of his patient record, then a software agent is automatically formed to provide this

service. Agent uses input parameters such as patient ID and information like type

of service (i.e. patient retrieval service) desired to compose the query. The

service agent of patient retrieval system will process query parameters provided

by physician’s user agent. Once service-providing agent verifies the input

parameters, the execution of service will start. As a result of this service

execution, physician’s user agent will return with the output parameters to the

physician that will be in form of patient’s record. This is very basic example for

simple services that can be provided by agents.

6.3. Semantic Matching

The two main concept of Semantic Web [BHL01] is service selection and

semantic matching. Service selection is itself a challenging and complex task

[ShS04]. In this thesis I am concentrating on the semantic matching process that

is at lower level then service selection process. Semantic matching is also one

integrated task in the process of service selection. Thus Semantic matching can

be considered the most important process in Semantic Web. Formal task of

semantic matching process is to map service parameters to existing local

medical ontology and vocabularies. Ontology models the medical enterprise and

provides conceptual information about that domain. Matchmaking process then

performs mapping between this ontologies to provide interoperation service.

The terms from local ontology of service-seeking agent are mapped to

terms in global ontology and finally global ontology is mapped to local ontology of

service provider. Concept matching is inevitable process for any semantic

integration. Terms (vocabulary) used to describe same underlying concept

(meaning) may be different for two different domains. Interoperability between

heterogeneous applications highly depends on performance of matchmaking

algorithm. In MMN global ontology is stored in a layer known as Semantic

Integration Layer or ICIS.

26

Traditional method performs this matching by comparing the terms

syntactically. This is not efficient as well consumes large amount of time. Thus if

there are 1000 service providing agent then matching their service profile with

the query will consume more then few seconds. By performing semantic

matching this process is made faster and more efficient. The matchmaking

algorithm implemented in this thesis is based on inference-based matching

(section 9.4).

Figure 6.2 shows two different approaches for forming connections

between health partners. The vocabulary, medical reference system or

terminologies used by each enterprise may vary. In one of the approach

integration server is providing the common platform to communicate. Advantages

achieved by this architecture are very obvious. To understand this let us consider

that health network initially has ‘N’ number of health partners. One way of

achieving interoperability between each application is to provide mapping from

one application domain directly to another application domain. The user of the

system needs to have knowledge of terms used by other service provider to form

the appropriate query for that service provider. Thus total number of wrappers

needed in this case is (N × N). Also adding or modifying an application domain

needs addition or modification of ‘N’ wrappers in the system. Lot of work indeed!!

Another approach is using local and global ontology. Now in the system

with ‘N’ application and a global ontology, there are maximum (N × 1) mappings

in the network. Adding a new application or modifying an application needs

adding or modifying only one connection (instead of ‘n’ wrappers in previous

case). It is very obvious that use of global ontology will provide a highly scalable

system. The advantage of this approach is it provides flexibility while adding or

removing new enterprise domain and thus provides resilient network. This

architecture along with proposed matchmaking algorithm can be together used to

provide the platform to develop Open Terminological System (discussed in

section 12.2.3).

27

Figure 6.2 N×N wrappers vs. N mappings of MMN

28

CHAPTER 7. WORKING & ARCHITECTURE OF MMN

7.1. MMN Architecture

Based upon architecture proposed using global ontology the simple view

of Metropolitan Medical Network is provided in Figure 7.1. It is made up of health

partners like Indiana University Medical Group (IUMG), clinical research centers

(e.g. Regenstrief Health Services), family physicians or primary care physicians

(PCP) and other health providers. MMN provides the platform for sharing

services, facilities and interaction between different health partners. Each

hospital may specialize in specific service and thus patients could benefit by such

network. Moreover Clinical research and laboratories also benefits by obtaining

health related information from large number of hospitals.

7.2. Service Flow

In this section we will like to discuss about flow of service from patient to

family physicians and to all MMN system elements, consider Figure 7.2. Taking

example of a patient suffering from Parkinson disease, he first visits family

physician nearest to his residence. Family physician in general case will perform

basic check-up and provides basic pathology services such as blood/urine tests.

Physician can also refer to advanced pathology services provided by any other

health provider within the network.

If physician needs other special services then he can inform his user

agent to find suitable service. This user agent will then automatically form search

query and send it to mediator agent. Mediator agent performs semantic matching

between advertisements stored in semantic service registry by health service

providers. Outcome of this search will be list of service providers whose service

29

profile matches service query. Physician can even specify user agent to search

as well as register the most suitable service automatically. In this case agent

performs negotiation with other agents and registers required resources and

services.

Figure 7.1 Metropolitan Medical Network

The flow of services is shown by arrows. Mediator agent discovers that IU-

Methodist is providing advance pathological facilities nearby to patient’s

residence and fulfills all the given requirements. Here rating based matching

strategy [ShS04] can be incorporated to break tie between service providers.

Reports of the test performed by IU-Methodist are made available to family

physician through web services provided by MMN.

PCP may see the need of advance diagnosis of the patient. He then

recommends further treatment under specialty care physician such as a

neurologist. User agent performs the search and finds that specialty care center

specializing in neurosurgery located in Riley hospital fulfills all the requirements

of the patient. This center provides several DICOM based services like CT scan,

nuclear imaging, etc. necessary for taking images of brain. The results of these

30

images may reveal need of advance service such as neurosurgery. User agent

once again recommends “Neurology and Surgery Center” in the same hospital.

Family physician can access any CT scan report through Image Retrieval

System. PCP can track all the advance treatments his patient is diagnosed with

using MMN. This information will help him in present as well as future diagnosis

of same patient as well as other patient showing similar symptoms.

A similar project was done at UMKC known as SMS [LCG04] which

provides similar architecture but different matchmaking algorithm. We found that

their matchmaking algorithm is not efficient as they are not performing matching

of meaning achieved through relations between concepts and property

constraints, which are the most important for performing semantic matching.

Figure 7.2 Service Flow between Health Providers

31

7.3. Components of MMN

Some of the important components of MMN are shown in Figure 7.2.

Patient record system is the central database system, which keeps patient

identity information. For using all this services person should be authorized by

MHN Authorizing System. Once authorized, physician can use any semantic

services provided by central Information Conversion & Integration System (ICIS),

patient record system and services from any other provider in the network.

A detailed explanation is necessary for understanding implementation of

this component. In this thesis our main concern is providing information about

ICIS implementation and working (section 7.3.1). Some of the facilities integrated

with ICIS are Medical Research Center, Lab Services, Imaging center, etc.

Different Hospitals and other sources can transfer data in real-time to

Medical research center. Data from various sources can be feeded to Medical

research center by mapping each of them to Global ontology. Lab Services are

integrated in this network and others can use these services using ICIS. Disease

Outbreak Surveillance can get results from laboratories, medical research

centers and other public health partners. All of this heterogeneous information

can now be well understood by the institutes with the help of ICIS. The

components shown here are provided for example and not the complete list of

services that can be integrated in MMN.

7.3.1. Information Conversion and Integration System

 ICIS is the most important component of MMN as it provides

interoperation between heterogeneous applications and data sources. It provides

this by building global ontology from existing local domain ontologies. The

efficiency of integration highly depends on the accuracy in formation of global

ontology and mapping algorithm. When a query from domain ‘A’ wants to send

message to domain ‘B’, the message in form of query first goes to ICIS, it maps

terms from this query to terms in global ontology ‘G’. If there are no matching

term available in global ontology for domain ‘A’ then matchmaking algorithm is

32

applied on these terms. During matchmaking, conceptually matching term from

domain ontology ‘B’ is found for term in query. This mapping is then added to

global ontology. Also converted message is sent to domain ‘B’.

 If query from domain ‘A’ is to find a service provider providing certain

service ‘S’ then ICIS itself provides the service of a registry. UDDI [Bou00] was

designed for providing registry and is implemented using industry standard

language XML, but it is incapable of providing higher-level details. ICIS registers

new services and stores service profile (advertisement of capabilities) of all such

service providers in machine interpretable form using web ontology language.

Matchmaking is performed by mediator agents in ICIS when query is available

from ‘A’. It matches this query against the service profiles in the registry.

Figure 7.3 Information Conversion & Integration System

Thus all the tasks related to semantic integration are concentrated in one place.

It has shortcoming such as ICIS becomes very complex and maintenance thus

33

becomes a complicated process. But this is important task and will provide base

for future open terminological medical system.

The flow of information integration is best understood by Figure 7.3.

Application Domain ‘A’ wants to communicate with Application Domain ‘B’ and

both are using different vocabulary. It can communicate with the help of ICIS

which acts as mediator. Let us see how ICIS provides integration and conversion

facilities. The data sent to ICIS by Application Domain ‘A’ is wrapped in HL7

message format. ICIS is the group of application server and database system

that processes the incoming HL7 messages. Interface to ICIS from the outside

world is provided by web/application server. This server provides the ports that

are listening for the incoming request for exchanging the data. This server then

sends this request to the internal server of ICIS system. Internal application

server is running RacerPro [RAC] server, matchmaking algorithm as well as

other applications useful for conversion process. Application running at this

server will process the incoming request of sending this message to Domain ‘B’.

ICIS performs mapping between two concepts (one from Domain A and the

second is picked from Domain B), by looking if there is information related to

those concepts already available in Global Ontology (Auxiliary DB). If not then

this concepts are passed as argument to matchmaking algorithm. Matchmaking

algorithm will then perform matching using the filtering techniques explained in

section 9.4.1. The results returned by the matchmaking algorithm will be stored in

the global ontology and also a copy will be send back to the web/application

server. Ultimately web/application server will send the converted message to

Application Domain ‘B’.

7.4. Service Selection Process

Service selection is a challenging task and requires multi-step semantic

matching process. Several techniques are discovered in past which provides

rating to commodities and services [HuS92] which helps in selection process.

34

Ratings can be provided by the consumer of service or/and by the matchmaking

algorithm.

Our matchmaking algorithm provides rating of the service provider from

overall score calculated at each step of matching process (E.g. 0 to 5 stars). For

a given new query and list of service providers available in registry, mediator

agent will perform matching between query and service profile of a service

provider. The provider rated highest is declared as the best match and the

provider having rating below threshold are rejected. Tie between providers can

be further broken by the confidence level of the users in the provider established

by past transactions. According to this, service provider is rated based upon the

history of services and quality they have provided.

35

CHAPTER 8. GLOBAL ONTOLOGY

Matchmaking algorithm is time consuming process. In the dynamic

environment such as internet search engine, each new query might be for a new

word or the word already queried in past. If matchmaking algorithm is applied for

each new query regarding of word queried in past then this process will be very

time consuming. The process of matchmaking can be made faster if the concepts

encountered in the past are stored in an auxiliary database along with the

information related to matching. This would help from avoiding redundant

execution of matchmaking process in the case where same concepts are queried

frequently. Certain enterprise domain is less dynamic, and so frequency of

querying new concepts is very less. Even in such cases storing the complete

information about matchmaking of concepts in auxiliary database would

outperform any other fastest matchmaking algorithm. This auxiliary database

could store the concepts along with restrictions and properties associated with it.

Auxiliary database storing lexical knowledge about several domains thus can be

termed as Global Ontology.

Global ontology is not necessarily the union set of local ontological

system, but stores partial domain knowledge from each of the local ontology. For

e.g. In medical enterprise domain; terms used for message implementation are

referenced from available medical dictionaries. Hence the mapping of two

concept or terms necessarily remains the same, unless medical dictionaries are

updated frequently. In this case storing mapping results between terms in global

ontology will make data mapping process much faster as needed.

36

8.1. Implementation details

Global ontology development is a gradual process. In initial stage global

ontology is empty as there is no concept matching performed. When new

concepts are available for mapping; the matchmaking algorithm is applied on

them to find the degree of matching. Results of this matchmaking process along

with complete information about this concepts is then stored in global ontology. A

result of matchmaking is also sent back to the user. Global ontology can be

formed by placing these concepts under the root concept and providing a link

between them which also stores complete rating information. Each new concept

will form new subsumption relation in the existing concept hierarchy. Snapshot of

global ontology at certain point in time will consist of concepts along with

constraints and attributes acquired from different local domain knowledge bases.

8.2. Ontology for Medical domain

Using OWL we have developed partial ontology for LOINC [MHS+04]

database. LOINC database provides set of universal names and ID codes for

identifying laboratory and clinical test results. LOINC consists of 34000 terms

representing different LOINC codes. Moreover efforts are undergoing to add a

field in LOINC message to cross-reference terms in SNOMED-CT [SNO]

vocabulary and HL7 [BHR+99] messages. LOINC ontology prepared by us

currently has 128 direct classes, and 56 slots (attributes). In the future work more

classes and attributes will be added to LOINC.owl file. We have added sample

ontology in APPENDIX C.

We also have UMLS [USN] ontology in OWL format. This UMLS ontology

was initially developed and maintained by NLM [NLM]. This Ontology which is

stored as a terminology in simple text file was later converted to DAML+OIL. Our

efforts was to convert DAML+OIL format file to OWL file format, so that we can

perform mapping between different ontologies in OWL format, one of which is

LOINC.owl. Our idea is to provide mapping initially between few medical

terminologies such as LOINC, UMLS, SNOMED-CT and DICOM [DIC04]. This

37

will help to provide interoperation between them and provide platform to develop

Open Terminological System (detail discussion is available in section CHAPTER

12).

38

PART II

Semantic Mapping

&

Inference-Based

Matchmaking Algorithm

39

CHAPTER 9. INFERENCE BASED MATCHING ALGORITHM

9.1. Background

Matchmaking is an important process for integration of business

applications, and in heterogeneous environment where interoperability is the

principal concern. This problem is long known and several new techniques are

realized to perform efficient integration. [Trastour, D et al] Advance matchmaking

requires rich and flexible metadata that are not supported by current available e-

commerce standards such as UDDI [Bou00] and ebXML [ebX]. Success of

integration of data and application depends on language used to describe

services and data. Secondly performance of this process highly depends on

matchmaking algorithm.

Matchmaking process can be described as a process through which a

semantically similar value or concept is found for the given concept. This can be

carried out by matching features of one concept to that of another. In most cases

middle layer or mediator provides this service. Software agents based technology

is widely adopted for integration of services [NFK+00, NBN99].

Basically matchmaking techniques can be divided as: Syntactic matching

and semantic matching. Although there are different levels of matching such as

exact, plug-in, subsume, intersection and disjoint, all of them fall under the one of

the basic matchmaking type. Most of the search engines use syntactic method

based on string distance for finding the match between words along with some

semantic matching. Such techniques can be considered to find a match but at

the same time performs poorly by missing out complex concept structure which

reveals behavior and meaning of the concept. Also the search results missed out

those search results where syntactic words are unlike but concepts related to

40

them are alike. If we don’t want to miss such results then word context as a

whole should also be compared.

In this thesis we propose inference based technique based upon

description Logic AL for performing matchmaking. Our main goal is to achieve

interoperation between heterogeneous data existing in medical domain. The

complete information of language which supports inference capabilities is

discussed in “Ontology Development” section of this thesis.

9.2. Description Logic for Matchmaking

9.2.1. Introduction

Description Logic languages gives power to provide reasoning capability

on the structured knowledge. They are considered an important formalism

unifying and giving a logical basis to the well known traditions of frame-based

systems, semantic networks and semantic data models. DL systems have been

used in Information Integration, Query Processing and conceptual modeling.

The building blocks of DL is concepts, roles and individuals {C, R, I}.

Concept is the generic entity that ensembles all the entities having similar

behavior and attributes. Concepts can be considered as first class objects or

unary predicates. Role is the binary relation between concepts. DL provides

language constructs such as intersection, union etc which is used to define new

role or concept. The main part of DL language is to provide classification,

satisfiability and instance checking.

 Subsumption relations are widely used in reference systems, search

engine and match-making algorithms. A concept C subsumes another concept C’

if the extension of C’ is a subset of that of C. This means, that the logical

constraints defined in the term of the concept C’ logically imply those of the more

general concept C. Thus subsumption relations specified is-a relation existing

between concepts. Classification is the process of computing this subsumption

41

relation. Computing the concepts and individual which satisfies certain

constraints is known as satisfiability. Instance finding process finds all of the

individuals of certain concept.

Selection of DL language is important to achieve full expressiveness and

reasoning capability. Every DL language trades off representational

expressiveness with computational tractability.

9.3. Description Logic Background

The Description Logic AL is the most preliminary language that can

express relations or concept description formed with DL building blocks:

expr � C |

⊥ |

T |

¬ |

Π |

∀ |

∃ |

(Atomic Concept)

(Universal Concept)

(Bottom Concept)

(negation)

(intersection)

(allValues Restriction)

(someValues Restriction)

Table 9.1 Description Logic AL

The name for Description Logic language is given by the feature they

provide. The reasoner RacerPro1 we use for our purpose uses logic

ALCQHIR+(D) [HST00] which was extended from ALCNHR+[HaM00]. Let

us how AL is augmented with the constructs used to build ALCQHIR+(D):

42

Symbol Type of Construct

C negation of arbitrary concepts

Q qualifying number restriction

H role hierarchies

I inverse roles

R+ transitive roles

(D) restricted form of concrete domains;

Table 9.2 Symbolic Notation for ALCQHIR+(D)

Restricted form of concrete domains includes facilities for algebraic

reasoning including concrete domain such as:

• min/max restrictions over integers

• linear polynomial equations over the real or cardinals with order relations

• non-linear multivariate polynomial equation for complex numbers and

• equalities and inequalities of strings.

ALCQHIR+(D) is also termed as SHIQ [HST00] More information about

evolution of description Logic, types of DL and its features is available at

[HaM01a] [HaM01b] [BMN+02]. The complete knowledge representation

specification [concept syntax, role syntax, attribute syntax, statement syntax,

assertion syntax and semantics] is available at [PsS93].

9.4. Matching Algorithm

Using the above described description logic language we have

implemented a matching algorithm that will provide rating on the basis of

computed degree of matching between two concepts. Different filtering

43

techniques were studied to find the appropriateness and performance for this

purpose. The techniques which poorly performed were then eliminated.

One of such technique is bigram approach where two strings are matched

on the basis of sequences of two letters. This method is an example of static

syntax based method. It is found that matching of character pairs is inefficient

because it gives incorrect results if words are homographs. Moreover contextual

information is lost when such matching is done. Second technique that was

discarded is matching properties on the basis of its “types”. Because it was

researched that two properties of same name can have different data type. Thus

matching of data type is irrelevant and we have avoided the fact that property

types are derived through solipsism.

Quality and speed are the two major attributes related to the matching

process. A user demands the quality or speed desirable for their application.

Different environment has different performance and speed requirement. Number

of filtering levels used for matchmaking algorithm is decided by the speed and

quality of matching desired. Based upon the number of levels of filtering used

quality of matching can be differentiated as follows:

1. Best: As the name suggests the quality of matching acquired through this

approach is the best. All the filtering techniques described later in this

thesis are used which makes this approach most restrictive. Restrictive

means the less matching concepts are eliminated and so at the end of the

whole process only few best matching concepts will be available. It

becomes very slow because of applying all the techniques. This approach

is used in the environment such as health, military and domains where

matching quality is the critical factor.

2. Better: The quality of matchmaking desired for this approach is less critical

then “Best” approach. Also this approach performs matching quicker then

the previous approach. Hence fewer filtering methods are applied and less

number of concepts is eliminated. This type of approach is highly

44

preferred as it is less strict and achieves speed needed in most

applications.

3. Good: In some applications speed is the most critical factor. In such cases

results returned by faster syntactic matching with “Good” enough quality of

matching is satisfactory. Least number of filtering techniques is applied to

achieve speed and matching of concepts. This approach will return

maximum number of matching results.

9.4.1. Filtering Techniques

The inference based matchmaking algorithm consists of six filtering

techniques as described below:

1. Direct matching: Matching the words directly using middle layer reference

system, also conditionally match labels (alternate name of the concept).

2. Description-based matching: The annotations of each concept are

matched. Thus matching is based upon the description provided along

with the concept definition.

3. Signature matching: Matching concepts1 that are equivalent to concept C

with concepts that are equivalent to concept C’.

4. Role-based matching: Matching roles associated with the concept C to the

roles associated with concept C’.

5. Hierarchical Matching: Matching parent/child concepts of C which can be

computed using subsumption relations with that of C’.

6. Axiomatic-rule matching: This technique computes concepts related to

concept C by the assertions and constraints. Also it computes concepts

1 Concept A is considered to be matching Concept B (denoted as A≡B) if for all interpretations I ;

AIIII=BIIII Interpretations I consist of a non-empty set ∆I (the domain of the interpretation) and an

interpretation function, which assigns to every atomic concept A, a set A
I
 ⊆ ∆

I
.

45

that are related to concept C’ with its corresponding constraints. Matching

is done between these computed concepts.

Each of the above techniques provides the rating depending on the

degree of matching calculated in the respective step. The accumulated rates

from each filtering step are then normalized to calculate final star rating. This star

rating is compared against the cut-off or threshold value. If they are out of

threshold range then it will be concluded that concepts are distant concepts.

 From the above given filtering techniques, first two techniques are syntax

based matching as they directly matches words. Third technique falls under

semantic matching category, as equivalent concepts are computed by logically

reasoning the classified form of ontology. Role-based matching, hierarchical

matching and axiomatic-rule matching are considered as semantic matching

techniques. It involves matching of roles, concepts related with subsumption

relation and matching of concepts related through logical assertions (constraints)

respectively which are all computed by inference queries on the ontology.

 For practical application and explanation of filtering techniques we

compare concepts from family ontology [CHR] which we will refer as ont-A and

generation ontology [Hor] as ont-B.

Let us match the concept ‘Father’ denoting it as C from ont-A and concept

‘Father’ denoting as C’ from ont-B. Although the name of the concepts looks alike

it is possible that their underlying concepts might be distant concepts e.g. For

homographs (two words with the same spelling) or polysemy and contronyms,

the meaning of word depends on the context in which it is used. This meaning

and context of the word can be well understood by taking into consideration the

relation of this concept with other domain concept and comparing the constraints

relating it to other concepts.

46

9.4.1.1. Direct matching

To perform this type of filtering concept C is matched against concept C’

directly. Concepts can also be matched on the basis of labels which are the

alternate name given to a concept. Let L = {l1, l2, l3...} list of labels for concept C

and L’ = { l1’, l2’, l3’…}. Then filtering technique operates in two steps:

1. Direct matching is done between concept C and concept C’

2. Direct matching is done between list of labels L and list of labels L’. Also it

is possible to match concept C directly with the labels in L’ and vice-versa.

If step 1 is fully successful then step 2 can be skipped as strong matching

is found between concepts C and C’. If step 1 fails then step 2 is conditionally

executed to match their corresponding labels. If in step 2 labels of these

concepts are matching, then those concepts can be considered as near

concepts. For e.g. if step 1 fails and both the concepts C and C’ are having label

as “DAD”. In that case step 2 will be able to find the match and rate these

concepts as near concepts. There cannot be direct matching of spelling and thus

requires some technique to perform matching of words.

The strategy we are implementing here is to map the concept C to the

concept in online lexical referencing system such as WORDNET® [WOR]. Find

the best matching synset from WORDNET for concept C and match that synset

with concept C’. By using middle layer consisting of open widely used

dictionaries, heterogeneity between domains of concepts C and C’ can be

resolved. We term above process as “reference matching”. As global dictionaries

are complete mostly all terms related to concepts C and C’ can be found.

Search of a word “Father” in WORDNET® resulted into 8 polysemy count

or senses in noun category and 1 sense in verb category. Performing syntactic

comparison between word “Father” and these senses, 1 sense found is a “male

Parent” which can be considered nearest match. The word “Woman” was found

as antonym to sense 1. Our algorithm works by finding all the related hypernyms,

47

hyponyms, and words related with estimated frequency. This search is

meaningful to map two concepts with each other.

There is another famous technique know as trigger-pair model [Ros94]

which can be used to determine the real-valued word distance between roots and

attached concepts of the word pairs does not exceed certain threshold value.

Here if the word pairs are having the similar semantic domain then they are given

the name as trigger-pairs. Stars are given depending on the real-valued distance.

Command Statements:

a) Query to fetch label names. Get the label (rdf:label) for the concept C and C’.

Using method from Protégé-Owl API [POA]:

edu.stanford.smi.protegex.owl.model.impl.AbstractOWLModel

 |

 |__getRDFSLabelProperty()

Returns: DAD

b) All the Concepts from the OntB. Using TBOX [GiL96] query of RacerPro:

(all-atomic-concepts tbox-name)

[Note: When we want to a find matching concept for C among concepts in Ont-b,

then the initial step is to get list of all the concepts in Ont-b which we is done by

this command]

9.4.1.2. Description based matching

For this filtering technique annotation property is extracted. This

annotation property provides textual description about the concepts,

understandable by the humans. Annotation property can be considered as a

document. The document matching technique that we implement is on the basis

48

of famous technique from Information Retrieval area, known as Term frequency-

inverse document frequency weighting (TF-IDF) [SaB87].

If we denote a word as α then frequency of α in all the documents together

is termed as Document Frequency df(α). Similarly we can term wf(α,d) as the

number of times word appears in a document ‘d’. So now the relevance of

document ‘d’ on basis of α is directly proportional to wf(α,d) and can be

considered inversely proportional to df(α).

Each word α in document ‘d’ holds different significance. Significance of

classification of word α for document ‘d’ from set of ‘D’ documents can be

denoted as wt(α, d). It can be calculated as follows:

() 









∗=

α
αα

df

D
dwfdwt

log
),(),(

Equation 9.1

If there is more then one document to be compared another formulae can

be used to find the weight of the word as below:









∗=

n

N
dwfdwt 2log),(),(αα

Equation 9.2

[where ‘N’ is total number of documents and ‘n’ is number of documents where

the word ‘α’ is used at-least once.]

As a result for a document ‘d’ we can form weighted keyword

representation wkv(d,V) contains for every word α in a given dictionary V the

weight wt(α,d) as an element. Here V is the medical dictionary which can contain

large vocabulary. We can cut down the dimension of the vector by heuristically

deciding fixed set of words and set of words pertaining to particular medical

domain [for e.g. considering words only for Neurology domain].

49

Finally the distance between document d1 provided by annotation of

concept C and document d2 provided by annotation of concept C’ can be

calculated as:















⋅

⋅
−=

21

21
)2,(1

dd

dd
dist ddi

Equation 9.3

Here d1. d2 is the inner product of weighted keyword vectors. If dist d1,d2 increases

beyond threshold value β then those concepts are considered distant concepts,

otherwise those concepts are assigned stars depending on the value dist d1,d2.

Command statements: Get the annotation property (rdfs:Comments) for the

concept C and C’. Using method from Protégé-Owl API:

edu.stanford.smi.protegex.owl.model.impl.AbstractOWLModel

 |

 |__ getRDFSCommentProperty()

 Returns: Father is a Person having atleast 1 child and is a male.

9.4.1.3. Signature Matching

This filtering technique is categorized as semantic matchmaking

technique. For concept C, all the equivalent concepts CL = {c1, c2, c3…} are

extracted using assertions. Similarly equivalent concepts for concept C’ is

computed using assertions applied on concept C’. If the assertions applied as

necessary and sufficient condition to the concept C are same as assertions

applied as necessary and sufficient condition to another concept then both these

concepts are having same semantic structure. The concepts related to each

other with similar assertion values are termed as equivalent concepts.

50

Each assertion consists of expression constructed using qualifier and/or

cardinality constraints and/or value constraints. Role specifier and other concept

can also be in specification of assertion.

Assertion �

expr |

 C

 expr �

C U C |

C ∩ C |

expr U expr |

expr ∩ expr |

{role}{hasValue}{value2} |

{owl-restriction}{role}{C} |

{role}{cardinality constraint}{value1}

 owl-restriction � ∃ |

 ∀

cardinality-constraint �

>= |

<= |

 =

 value1 � Integer

 value2 �

C |

 Individual

Table 9.3 Concept Assertion Expression

Command Statements: Get the equivalent concept for the concept C and C’.

Using RacerPro Tbox query:

(concept-synonyms

|http://health.informatics.iupui.edu/ontology/matching/family.owl#Father|)

Results: (|http://health.informatics.iupui.edu/ontology/matching/family.owl#Dad|

|http://health.informatics.iupui.edu/ontology/matching/family.owl#Father|)

51

[Future extension: Comparing two concepts related by owl:sameAs (OWL

construct)]

9.4.1.4. Role-based matching

All the concepts have their distinct features which distinguishes them from

other concepts. These features are known as attributes of the concept. Role is

the more generic term which includes attributes and “is-a” kind of relations. Role-

based matching filtering technique is to match roles of concept C with roles of

concept C’.

Different kinds of roles exists and can be applied to concept, such as

Object-type properties, Datatype properties, properties inherited from parent

concepts, sub-properties of directly applied property.

For this technique; direct role of concept C such as “hasChild” is matched

against direct role of concept C’ such as “hasChild”. Matching attributes this way

helps to check whether concept C is sibling concept of C’. Because it can be

noticed that many times concept having uncommon parents or ancestors have

substantial different properties e.g. concept “Person” have two sub-concepts as

“Father” and “Mother”. Both of these concepts have same roles “hasChild” and

“hasSex” so we can conclude that these concepts are near concepts. Whereas

the concept “Brother” having super-concept as “Person” has attribute “hasSex”

but not “hasChild”. We can find that “Father” and “Brother” have one common

attribute and thus consider that they have partially near. If we consider other

concept such as “Plant” it doesn’t contain attributes “hasChild” or “hasSex”

attribute and thus we can say that concept “Plant” and “Father” are the far

concepts.

Nearness of two concepts can also be proved by comparing property of

one concept with sub-property of another concept. To understand let us consider

concept C (Father) has property “hasChild” which has sub-property “hasSon". Let

us consider that John is son of Dave. We can say Dave is related to John by

52

“hasSon” role or alternatively can be related to John by “hasChild” relation. Thus

it is sometimes important to perform match between properties and sub-

properties of concepts.

 This filtering technique can be applied in four steps:

1. Perform direct matching between direct roles of concept C with direct roles

of concept C’.

2. Perform matching between direct roles of concept C and sub-roles of

concept C’.

3. Perform matching between sub-roles of concept C and sub-roles of

concept C’.

4. Perform match between equivalent roles of concept C and equivalent

roles of concept C’.

Command Statements: Get all the direct properties for concept C. Using method

from Protégé-OWL API:

edu.stanford.smi.protegex.owl.model

 |

 |__RDFSNamedClass.getUnionDomainProperties(Boolean

transitive)

Results: Inherited Properties (transitive = true):- hasChild, hasSex, hasAunt,

hasBrother, hasConsort, hasDaughter, hasFather, hasMother, hasNephew,

hasNiece, hasParent, hasSibling, hasSister, hasSon, hasUncle, name

[Future extension: Perform matching between concepts by matching equivalent

properties of direct properties]

9.4.1.5. Hierarchical Matching

This filtering technique is categorized as semantic matching strategy.

Ontology is mainly organized into concept hierarchy. Large quantity of

53

information can be inferred from such class-subclass relationship. This hierarchy

provides information about where the concept stands in the hierarchy. Such

categorization provides view of information related with particular category or

sub-category. Hierarchy provides information about the parent concepts and

child concepts for the given concept

This subsumption relation addresses the semantic meaning associated

with the given concept hierarchy. It can be easily inferred that concepts having

strong match between their structures are necessarily near concepts. The

concept hierarchy for concept C can be computed using Tbox commands

provided by RacerPro.

This filtering technique is executed in two steps:

1. For the concept C; parent concepts are obtained and matched along the

parent concepts of C’.

2. For the concept C; child concepts are obtained and matched along the

child concepts of C’.

The above filtering steps computes the degree of matching and rates

accordingly. The depth until which such matching has to be done is the matter of

observation and performance quality required.

Command Statements:

Step-1: Get all the concepts subsuming the concept Father. Using RacerPro

Tbox Query:

(concept-parents

|http://health.informatics.iupui.edu/ontology/matching/family.owl#Father|)

Results:

((|http://health.informatics.iupui.edu/ontology/matching/family.owl#Parent|)

(|http://health.informatics.iupui.edu/ontology/matching/family.owl#Man|))

Step-2: Get all the concepts “directly” subsumed by the concept Father

54

(concept-children

|http://health.informatics.iupui.edu/ontology/matching/family.owl#Father|)

Results: ((*BOTTOM* BOTTOM))

BOTTOM is the lower most concept attached automatically to the concept

hierarchy.

9.4.1.6. Axiomatic Matching

This is the most complex level of filtering technique and should be applied

when speed is not the major concern. Restrictions or constraints are the

assertions applied to the properties of concept to restrict the range of values that

property can have. These values can be cardinal, XML Datatype, another

concept or individual. Let us say set of properties related to concept C:

X = {xi | xi(d)∈ C, xi(r)∈V}

V = {XML Datatype | String | Concept | Individual}

where C is list of concepts, V is the list of values.

xi(d)= domain of property xi

xi(r) = range of property xi

This filtering technique finds out all the values related to the given concept

C using constraint applied on the given restricted property of the concept.

Constraint relates one concept in the concept hierarchy to another concept in the

concept hierarchy. The importance of this step can be well understood by the

following example: Concept “Father” has the properties such as: “hasChild” and

“hasSex”. The property “hasChild” is restricted by cardinality constraint “>=” and

“hasSex” is restricted by “∋”(hasValue). Concept “Mother” also holds the same

attributes and restrictions, but what really distinguishes both of these concepts is

the value related with the constraint “hasSex”. For the concept “Father” this value

55

is another concept “Male” whereas for the concept “Mother” value of the

constraint is “Female”.

The following sequence should be followed for this technique:

1. Get all the properties or roles for given class C.

2. Get Collection of all Restrictions that are defined on a given property.

3. For each Restriction on given property get the corresponding filler value

which can be RDFSDatatype, OWLDataRange or RDFS Class (concept).

4. Compare values obtained in step 3 with corresponding values obtained for

Class C’.

Command Statements:

Step 1: edu.stanford.smi.protegex.owl.model

 |
 |__RDFSNamedClass.getUnionDomainProperties(Boolean
transitive)
Step 2: edu.stanford.smi.protegex.owl.model

 |
 |__

getOWLRestrictionsOnProperty(RDFProperty property)

Step: 3

 If restriction is of type ‘∋’ (hasValue) then it can be obtained by:

edu.stanford.smi.protegex.owl.model

 |
 public Object getHasValue()

 else restrictions are Quantifier restrictions such as ∃ or ∀

edu.stanford.smi.protegex.owl.model

 |
 public RDFResource getFiller()

The performance of the above mentioned filtering techniques can be

measured by applying these techniques on different ontology models. We

56

haven’t showed any quality analysis results in this thesis as that will be one of the

future tasks. In all of the above filtering techniques a need arises for matching

concept words, roles or constraints syntactically in final stage of matching.

Whenever such matching has to be done, we use the reference matching

technique described in our first filtering technique.

The important aspect of our inference based filtering technique is there is

no need of human intervention. Previous methods such as LARKS [SWK+02]

needed human presence to initialize the matrix and thus were not been able to

perform well. Speed can be achieved by if this task is executed automatically in

machine interpretable manner. All the above techniques are applied directly on

ontology without any infrastructure to be initialized. Our goal is to make

matchmaking process capable of mapping concept from one terminological

system into other terminological system of medical domain.

Note: A detail example is given in CHAPTER 10, which shows matching process

between two similar concepts. Also we have provided an example that

demonstrates matching process of two far concepts.

9.4.2. Normalization

The final degree of matching depends on the normalized value computed

by combining rates from all the above mentioned filtering techniques. Each

filtering technique can be assigned weight depending on its importance in

matchmaking process. The weight considered is strictly heuristic value and

mostly found through observation. Equation 9.4 calculates final rating R(c,c’) by

multiplying rating from different filtering technique with its corresponding weight

from weight vector. The final summation is then normalized by dividing it with the

number of filtering steps used.

57

i

j

i

icc jR λ∑Φ= *
1

)',(

Equation 9.4

where Φi = weight assigned to filtering technique i

λi = degree of matching after applying technique i

j = number of filtering steps (mode)

The value for R(c,c’) lies between 0 and 5. If the value of R(c,c’) is above

threshold value β then concepts are considered as matching concepts. Value for

threshold can be heuristically decided. The best way to select suitable threshold

value is, to initially allocate a very high value to β. So the number of matches

found will be very less, and then slowly decrease this value to include more

concepts. Final value of β will be the one which returns required number of

matching concepts.

j
j

i

i ≅Φ∑
=1

Equation 9.5

The Equation 9.5 is the necessary condition for rating. It checks that the

sum of weights used in Equation 9.4 is not less then or greater then total number

of filtering techniques used for rating the matchmaking of concepts.

9.5. Matchmaking Modes

Matchmaking process can be categorized in several modes depending on

the severity of filtering done. Severity of filtering is directly related to quality of

matching and inversely related to process speed. Different environment demands

different quality and speed as discussed earlier. We broadly derive matchmaking

modes from the approaches they follow and are presented below.

58

9.5.1. Aggressive mode

This mode adopts the “BEST” approach and so the number of matching

results returned is quite few. This mode eliminates retains strongly matching

concepts and so the result of matching is highly qualified. This mode of operation

is used where quality of matching is the major concern whereas speed is the

least concern. Here all the above discussed filtering techniques are applied. This

technique is most suited for health enterprise domain. In medical domain,

disease and surveillance data are mostly exchanged; such data are very critical

and should be properly mapped. Our main focus is to implement this strategy to

provide service like interoperation between health enterprises.

9.5.2. Normal mode

It is found that aggressive mode is too strict for certain uses and such

modes are rarely used. The more frequent need is of less strict mode which can

perform well along with quick matching. At the same time such filtering technique

should not be too lenient and thus should work efficiently. We term such mode as

Normal mode which can provide both quality and speed performance. “Better”

approach is been obeyed by this mode and thus only selective filtering

techniques are applied. This mode is most suitable for dynamic environment

such as Internet where both quality and speed is of concern. Majority of search

engines implements this mode.

Techniques selected to be used for this mode is decided by observation of

speed and filtering quality. We use direct filtering, description-based filtering,

signature matching, role-based matching and hierarchical matching in normal

mode. As axiomatic matching technique was dealing with behavioral aspect

matching it was more complex to calculate and consumes lot of time.

59

9.5.3. Lenient mode

This mode of matchmaking is needed to be less time consuming and only

few concepts are filtered out. Thus the amount of matches found is large. We

haven’t tried to test the working of this mode of operation in case of concepts

which are homographs and tautology. As less number of filtering techniques is

used; it obeys “Good” strategy which is explained earlier. The filtering techniques

selected for this mode has to be quick. Hence we use direct matching,

description-base matching and signature matching techniques. This mode can be

used in document search methods, file based searching as well as search facility

provided by desktop PCs.

60

CHAPTER 10. ALGORITHM ANALYSIS

Considering the same example of “father” used to explain different filtering

techniques, we will provide detail comparison results and rates provided on the

basis of degree of matching. Here concept C is from “father.owl” file ontology and

concept C’ is from “generations.owl” ontology. Also we will show how the

matchmaking results can change across different modes. The first example is for

showing working of filtering techniques on concepts which are similar. In the

Second example we will test matchmaking algorithm on distant concepts.

10.1. Example 1

We are considering concept “Father” from father.owl as C, and concept “Father”

from generations.owl as C’.

10.1.1. Aggressive Mode

Under this mode we will be using all the six filtering techniques.

Step: - 1 Direct matching

Command Concept C Concept C’

Direct Match Father Father

getRDFSLabelProperty() Pater Daddy

Results: Concept C matches strongly with concept C’ using direct match and so

this step succeeds fully.

61

Stars allocated: �����

Step: - 2 Description-based matching

Command Concept C Concept C’

getRDFSCommentProperty() Father is a person having

at-least one child and has

gender as male.

Father is a male and also

person having a child

who is a person too.

Results: The complete inverse document frequency weighting (TF-IDF) strategy

is not included or tested and will be the one of the topic of future extension.

Note: There is alternate solution to obtain the comments associated with

concepts using TBOX-Retrieval query and data-substrate layer in RacerPro.

Step: - 3 Signature matching

Command Concept C Concept

C’

(concept-synonyms

|http://health.informatics.iu

pui.edu/ontology/matchin

g/family.owl#Father|)

(|http://health.infor

matics.iupui.edu/o

ntology/matching/f

amily.owl#Dad|)

(concept-synonyms

|http://health.informatics.iu

pui.edu/ontology/matching/

generations.owl#Father|)

-

Results: It can be seen that there are no equivalent concept for concept C’. In

such cases this filtering step can be skipped from final normalization. Alternately

the rating is done heuristically or a special value can be allocated which denotes

that no decision was taken. The approach taken is implementation specific.

Step: - 4 Role-based matching

62

Command Concept C Concept C’

Father.getUnionDomainProperties

(true)

hasChild, hasSex,

eas Aunt, hasBrother,

hasConsort,

hasDaughter,

hasFather,

hasMother,

hasNephew,

hasNiece, hasParent,

hasSibling, hasSister,

hasSon, hasUncle,

name

hasChild, hasSex

Results: matching direct properties succeeds, while some properties are not

found.

Stars allocated: ����

Step: - 5 Hierarchical Matching

Command Concept C Concept C’

(concept-parents

|http://health.inform

atics.iupui.edu/onto

logy/matching/famil

y.owl#Father|)

((|http://health.inform

atics.iupui.edu/ontolo

gy/matching/family.o

wl#Parent|)

(|http://health.informa

tics.iupui.edu/ontolog

y/matching/family.owl

#Man|))

(concept-parents

|http://health.inform

atics.iupui.edu/ontol

ogy/matching/gener

ations.owl#Father|)

((|http://health.inform

atics.iupui.edu/ontolo

gy/matching/generati

ons.owl#Parent|)

(|http://health.informa

tics.iupui.edu/ontolog

y/matching/generatio

ns.owl#Man|))

63

(concept-children

|http://health.inform

atics.iupui.edu/onto

logy/matching/famil

y.owl#Father|)

- (concept-children

|http://health.inform

atics.iupui.edu/ontol

ogy/matching/gener

ations.owl#Father|)

((|http://health.inform

atics.iupui.edu/ontolo

gy/matching/generati

ons.owl#GrandFathe

r|))

Results: The first row computes the concepts subsuming concept C and C’. The

match is found between computed concepts and so this filtering step fully

succeeds. In the second row we are fetching concepts subsumed by concept C

and C’. For concept C there are no subsuming concepts and so results from first

row is only considered.

Stars: ����

Step: - 6 Axiomatic Matching

Command Concept C Concept C’

Father.getUnionDomainProperties(true)

(STEP-1)

hasChild, hasSex,

eas Aunt,

hasBrother,

hasConsort,

hasDaughter,

hasFather,

hasMother,

hasNephew,

hasNiece,

hasParent,

hasSibling,

hasSister, hasSon,

hasUncle, name

hasChild, hasSex

64

getOWLRestrictionsOnProperty(hasChild)

(STEP-2)

>= ∃

getOWLRestrictionsOnProperty(hasSex)

(STEP-2)

∋ ∋

getHasValue() for ∋ restriction

(STEP-3)

Male MaleSex

Results: It is found in step 2 that the restriction applied on “hasChild” property of

C differs from restriction on “hasChild” property of C’ and thus step-3 is not

executed for such properties. Restriction on “hasSex” property of each concept is

same and as a result step-3 provides the values related to this restriction. The

match is found as Male ≅ MaleSex.

Stars: ����

Normalization:

Let us use the Equation 9.4 derived earlier to find the final rating of

matchmaking algorithm on the given concepts.

() () () ()[] 25.4
4

1741414151
4

1
),(

==∗+∗+∗+∗=R FatherFather

Here stars from direct, role-based, hierarchical and axiomatic matching

are considered. For simplicity we assign same weight-age (Φi) to all of the

filtering techniques and that is equal to 1. Heuristically we can decide the

threshold of matchmaking algorithm. Let us for our purpose consider 2.75 as

threshold value. Here we get final rating value as 4.25. Final rating value is

certainly greater then threshold limit and thus concepts C and C’ are considered

matching.

65

10.1.2. Normal Mode

Using filtering results of direct matching, role-based matching and

hierarchical matching, the final rating value of matchmaking algorithm used under

normal mode is:

() () ()[] 33.4
3

13414151
3

1
),(

==∗+∗+∗=R FatherFather

The result R(Father,Mother) for normal mode is showing higher rates then

aggressive modes because normal mode is less strict and so doesn’t consider

the partial matching of behavior.

10.1.3. Lenient Mode

Using filtering results of direct matching, the final rating value of

matchmaking algorithm used under lenient mode is:

()[] 0.5
1
551

1

1
),(

==∗=R FatherFather

This mode gives 5 stars to the matching process of given concepts. It can be

seen that results are consistent with the theory provided earlier. As this mode is

lenient it only considers the syntactic matching.

10.2. Example 2

Now we take two concepts which might be distant concepts to

demonstrate working of matchmaking algorithm. The first concept C’ is “Woman”

from generations.owl and let the second concept C be “Father” from family.owl

10.2.1. Aggressive Mode

Under this mode we will be using all the six filtering techniques.

66

Step: - 1 Direct matching

Command Concept C Concept C’

Direct Match Father Mother

getRDFSLabelProperty() Pater Mater

Results: Direct match fails as Father and Mother are considered antonym by our

reference system.

Stars allocated: �

Step: - 2 Description-based matching

Command Concept C Concept C’

getRDFSCommentProperty() Father is a person having

at-least one child and has

gender as male.

Mother is a female and

also person having a

child who is a person too.

Results: The complete inverse document frequency weighting (TF-IDF) strategy

is not included or tested completely and will be the one of the topic of future

extension.

Note: There is alternate solution to obtain the comments associated with

concepts using TBOX-Retrieval query and data-substrate layer in RacerPro

Step: - 3 Signature matching

Command Concept C Command Concept C’

(concept-synonyms

|http://health.informat

ics.iupui.edu/ontolog

y/matching/family.ow

l#Father|)

(|http://health.informa

tics.iupui.edu/ontolog

y/matching/family.owl

#Dad|)

(concept-synonyms

|http://health.inform

atics.iupui.edu/ontol

ogy/matching/gener

ations.owl#Mother|)

(|http://health.infor

matics.iupui.edu/o

ntology/matching/

generations.owl#

Mummy|)

67

Results: “Dad” is the equivalent concept of “father” and “Mummy” is the

equivalent concept of “mother”. Match cannot be found between “Dad” and

“Mummy”. Hence this step fails.

Stars allocated: �

Step: - 4 Role-based matching

Command Concept C Concept C’

Father.getUnionDomainProperties

(true)

hasChild, hasSex,

hasAunt, hasBrother,

hasConsort,

hasDaughter,

hasFather,

hasMother,

hasNephew,

hasNiece, hasParent,

hasSibling, hasSister,

hasSon, hasUncle,

name

hasChild, hasSex

Results: matching direct properties succeeds, while some properties are not

found.

Stars allocated: ����

Step: - 5 Hierarchical Matching

Command Concept C Command Concept C’

68

(concept-parents

|http://health.infor

matics.iupui.edu/

ontology/matchin

g/family.owl#Fath

er|)

((|http://health.inform

atics.iupui.edu/ontolo

gy/matching/family.o

wl#Parent|)

(|http://health.informa

tics.iupui.edu/ontolog

y/matching/family.owl

#Man|))

(concept-parents

|http://health.inform

atics.iupui.edu/ontol

ogy/matching/gener

ations.owl#Mother|)

((|http://health.inform

atics.iupui.edu/ontolo

gy/matching/generati

ons.owl#Parent|)

(|http://health.informa

tics.iupui.edu/ontolog

y/matching/generatio

ns.owl#Woman|))

(concept-children

|http://health.infor

matics.iupui.edu/

ontology/matchin

g/family.owl#Fath

er|)

- (concept-children

|http://health.inform

atics.iupui.edu/ontol

ogy/matching/gener

ations.owl#Mother|)

((|http://health.inform

atics.iupui.edu/ontolo

gy/matching/generati

ons.owl#GrandMothe

r|))

Results: The command in first row computes the concepts subsuming concept C

and C’. The match is not found as “Man” and “Woman” is disjoint concepts and

so this step fails. In the second row we are fetching concepts subsumed by

concept C and C’. For concept C there are no subsuming concepts and so

results from first row is only considered.

Stars: �

Step: - 6 Axiomatic Matching

Command Concept C Concept C’

69

Father.getUnionDomainProperties(true)

(STEP-1)

hasChild, hasSex,

hasAunt,

hasBrother,

hasConsort,

hasDaughter,

hasFather,

hasMother,

hasNephew,

hasNiece,

hasParent,

hasSibling,

hasSister, hasSon,

hasUncle, name

hasChild, hasSex

getOWLRestrictionsOnProperty(hasChild)

(STEP-2)

>= ∃

getOWLRestrictionsOnProperty(hasSex)

(STEP-2)

∋ ∋

getHasValue() for ∋ restriction (STEP-3) Male FemaleSex

Results: It is found in step 2 that the restriction applied on “hasChild” property of

C differs from restriction on “hasChild” property of C’ and thus step-3 is not

executed for such properties. Restriction on “hasSex” property of each concept is

same and as a result step-3 provides the values related to this restriction. “Male”

is related to “Father” and “FemaleSex” is related to “Mother”. As “Male” and

“FemaleSex” are distant concepts this filtering step fails.

Stars: �

Normalization:

Let us use the Equation 9.4 derived earlier to find the final rating of

matchmaking algorithm on the given concepts.

70

() () () () ()[] 8.1
5
91111411111

5

1
),(

==∗+∗+∗+∗+∗=R MotherFather

Here stars from Direct, signature-based, role-based, hierarchical and

axiomatic matching is considered. For simplicity we assign same weight-age (Φi)

to all of the filtering techniques and that is equal to 1. Heuristically we can decide

the threshold of matchmaking algorithm. Let us for our purpose consider 2.75 as

threshold value. Here we get final rating value as 1.8. Final rating value is

certainly smaller then threshold limit and thus concepts are considered distant

concepts.

10.2.2. Normal Mode

Using filtering results of direct matching, signature-based, role-based

matching and hierarchical matching, the final rating value of matchmaking

algorithm used under normal mode is:

() () () ()[] 75.1
4
711411111

4

1
),(

==∗+∗+∗+∗=R MotherFather

The result R(Father,Mother) for normal mode is lower rates then aggressive

modes because normal mode gives equal importance to syntactic matching as

semantic matching, whereas in aggressive mode we are stressing on semantic

meaning of word and relations.

10.2.3. Lenient Mode

Using the results obtained by applying filtering technique 1, 2 and 3 is

used here.

() ()[] 0.1
2
21111

2

1
),(

==∗+∗=R MotherFather

71

This mode gives 1 star to the matching process of given concepts. It can be seen

that results are consistent with the theory provided earlier. As this mode only

considers the syntactic matching the words “Father” and “Mother” are treated as

totally disjoint.

72

CHAPTER 11. KNOWLEDGE REPRESENTATION TOOLS

In this section we give details about tools that provide interface and

facilities to develop knowledge base and perform several operations on it. The

two primary tools used in our work are Protégé [Pro] and RacerPro [RAC].

11.1. Protégé

There are several tools available for building and editing ontologies. Few

well-known amongst them are OilEd [HOE] and Protégé. The complete survey

and capabilities of tools can be found at [Den04].

Protégé is an easy-to-use graphical interface for creating and editing

ontologies and knowledge base. Primary feature important to our work is:

• It provides support for RDF [LaS99], RDFS [BrG00], DAML+OIL

[CHH+01], XML, OWL, CLIPS [Gia02] and UML [UML].

• Concept subsumption and satisfiability via a DIG-compliant [Bec03]

reasoner such as RacerPro or FaCT.

• It has facilities to provide full, extensible metamodel and metaclass

support, multiple inheritance. OWL language elements including named

classes, properties, restrictions, logical class expressions,

enumerations, individuals, metaclasses, ontology metadata and other

annotations. Some of them are shown in Table 4.

• Protégé is available in Java API class format which allows user to

integrate Protégé with their application.

73

• Protégé can be widely extended by Protégé plug-ins. The complete

listing of such plug-ins can be found here [PPL].

Description Logic constructs Protégé elements

 Concept C Class

 Role R Slot

 Individual I Individuals

 Number, integer, string XMLSchema#Datatype

 (and C1…Cn) (C1ΠC2Π…..Cn)

 (or C1…..Cn) (C1∪C2…….Cn)

 (not C) (¬C)

 (all R C) ∀ R:C

 (some R C) ∃ R.C

 (at-least n R) ≥ n R

 (at-most n R) ≤ n R

 (exactly n R) = n R

Table 11.1 Description Logic Axioms vs. Protégé Axioms

The plug-ins developed on top of Protégé, provides connection between

Protégé and other tools. RacerPro server is one of such tool which can work with

Protégé client. The RQL tab available in Protégé enables it to load owl ontology

in RacerPro. It also enables to send the inference queries to the server.

Protégé is written completely in Java and is maintained by Open Source

community which makes is extensible and powerful.

11.2. RacerPro

RACER [RAC] and FaCT [FaC98] are two well known DL reasoners

available. RacerPro is the commercial form of RACER systems which is very well

74

known from long time for providing inference system facilities. It is a knowledge

representation system that implements a highly optimized tableau calculus for

very expressive description logic. It provides reasoning facilities for Tbox and

Abox querying. The new extended query language nRQL [HMW04] provides

large library of commands to query Abox.

RACER implements the description logic ALCQHIR+(D) as described in

DL section of this thesis. RacerPro implements the HTTP-based quasi-standard

DIG for interconnecting DL systems with interfaces and applications using an

XML-based protocol. The primary types of inference [HaM01a] provided are:

• Consistency of Abox and Tbox

• Subsumption relation

• Classification of Tbox

• Coherence check for Tbox

• Instance checking

• Retrieval of individuals

RacerPro internally converts OWL code into DIG code. This code can be

viewed from Protégé editor. RacerPro server supports multi-connection

capabilities and thus can accept queries from many clients running on different

machines. Each client can send query to RacerPro Server.

11.2.1. Shortcoming of RacerPro

Problem with RACER is if the ontology or owl file is modified then ontology

has to be reloaded into RacerPro server [GcTB01]. This reloading results into re-

classification of the taxonomy. This limitation can be resolved externally by

generating an application thread that will perform full reset on RacerPro server as

soon as ontology is modified. Also this application thread will command RacerPro

to re-classify the taxonomy.

75

CHAPTER 12. OPEN TERMINOLOGICAL SYSTEM

12.1. Introduction

'Open Source' software is now ubiquitous. The notion that software can be

both free, reliable, and supported, is no longer at issue. But how does this relate

to clinical terminology?

In today’s world abundant research is been done on patient’s health data,

syndromic outbreak data and in clinical laboratories in different parts of world.

Many European countries and Asian countries have developed a strong network

amongst the health providers. This network ties up all the medical health partners

and also different medical domains together.

A terminological system which has capability of integrating any medical

terminology seamlessly and performs virtual conversion of data to be send from

one domain to another is termed as Open Terminological System. Need for this

system is increasing as research is performed in many parts of world and can

prove important to other medical researcher and public health providers and so it

is important that they should be able to share their research. By collaboration of

work, amount of redundant research efforts can be significantly reduced.

Currently investigators from one medical domain are unable to get

important results and data from different medical domain, because the

vocabularies used by both domains are different. Most of the medical

vocabularies are strictly licensed; some of them allow partial use of this

vocabulary. Moreover legacy systems used by institutes make it harder to share

data. Our concept is to develop a middle layer which performs conversion of data

transparently.

76

Making this system open to everyone will allow medical investigators to

integrate terminology used by them with others and thus form a virtual “Global”

terminology. Let us see some of the projects and initiatives carried out in this

direction.

12.2. Background and related work

12.2.1. BioMOBY

The BioMOBY Project is an open-source, simple, extensible platform to

enable the discovery, representation, integration, and retrieval of biological data

from widely disparate data hosts and analysis services [BIO]. They use MOBY-S

(MOBY-Services) central registry server for services. MOBY-S registry uses

ontologies to determine the structure and relationships between data-types and

services to provide service discovery. The S-MOBY (Semantic-MOBY) branch of

BioMOBY encompasses a minimal set of reserved-word assertions to allow the

construction of ontological relationships. Clients and providers communicate

through middle-layer vocabulary.

12.2.2. OpenGalen

OpenGalen [OGa] is a new approach to the development of clinical

systems and the sharing of medical knowledge. GALEN [RSN+94] has developed

a Terminology Server to support the development and integration of clinical

systems through a range of key terminological services, built around a language-

independent, re-usable, shared system of concepts - the CORE model. The

focus is on supporting applications for medical records, clinical user interfaces

and clinical information systems, but also includes systems for natural language

understanding, clinical decision support, management of coding and

classification schemes, and bibliographic retrieval. The Terminology Server

77

integrates three modules: the Concept Module which implements the GRAIL

[RBG96] formalism and manages the internal representation of concept entities,

the Multilingual Module which manages the mapping of concept entities to

natural language, and the Code Conversion Module which manages the mapping

of concept entities to and from existing coding and classification schemes. The

OpenGalen model contains a well defined set of relationships between medical

concepts based on description logic (DL) theories of generation and subsumption

of composite concepts.

12.2.3. The Open Terminology Services (OTS) project

The Open Terminology Services (OTS) [SAC03] project provides a

common, well-specified mechanism to access terminological content in a vendor

and platform neutral fashion. The project includes a freely available API

specification and an open source reference implementation. The API

specification defines mechanisms for browsing, querying and import

terminological content. The Java-based reference implementation uses the LDAP

[WHK97] for a back end, and provides a mechanism to query and distribute

heterogeneous terminological content using a common format. The project

includes the CTS (Central Terminology Services) subset under HL7.

12.2.4. caBIG

The cancer Biomedical Informatics Grid [caBIG], is a voluntary network or

grid connecting individuals and institutions to enable the sharing of data and

tools, creating a World Wide Web of cancer research. The goal is to speed the

delivery of innovative approaches for the prevention and treatment of cancer.

Researchers from around the world will have open access to the common

platform of caBIG, be able to use common tools, and rapidly convert, relate, and

analyze data from different sources. The Globus Tool Kit and the Open Grid

Services Architecture-Data Access Integration (OGSA-DAI) were selected as the

78

basis for the development of a prototype system that satisfied simple data

integration and sharing use cases.

12.3. MMN Approach for OTS

MMN architecture is scalable and has the capability to include new

terminological system easily. The Matchmaking algorithm explained in this thesis

can be used to achieve immense interoperability.

 The main need of an Open Terminological System is one vocabulary should be

able to map to any other vocabulary. This can be achieved by concept of Global

Ontology and mapping using matchmaking algorithm. From the experience

earned from learning above mentioned system, it is found that the language used

for building global ontology should be able to structure these terminologies

effectively together. This can be achieved by using OWL and upcoming version

of OWL. Also there is need of backbone which is scalable and this requirement is

well fulfilled by architecture of MMN.

79

CHAPTER 13. CONCLUSION & FUTURE WORKS

13.1. RECAPITULATION

In this thesis the work done; to investigate about different needs and

problems of health providers; develop solution to provide integration of services

and data. We have discussed here about multi-agent based Metropolitan Medical

Network which is abstract model for providing advance health services. In this

research we have developed a inference based matchmaking algorithm to

perform mapping between various vocabularies and provide matching services

for MMN. Lastly a discussion on Open Terminological System is provided.

13.2. CONCLUSION

 The investigation about the needs and problems is very helpful and gives

in-depth idea about hurdles obstructing the development of health care industry.

The proposed architecture and the lower level details of components of this

architecture is well thought system that can remove some of the hurdles.

 Study of web ontology language is very helpful for building large

knowledge base system or domain ontology. Also suitability of web ontology

language about expressing and openness capability was explored; which helps

to inference knowledge and fetch metadata. The complete cycle of building and

using ontology is developed.

 Using the ontologies along with the description logic system such as

RacerPro helped us to implement inference-based matchmaking algorithm. This

algorithm is applied on sample ontology which provides proof of its working.

Suitability of inference-based method for matching concepts to provide advance

80

health services and interoperation is proved here. Also we have shown how the

proposed network architecture, language and matchmaking algorithm will help to

achieve our goal of developing Open Terminological System.

13.3. FUTURE WORK

There is plenty of room for development and future extension. Such as:

• Development of complete LOINC ontology containing all LOINC codes

representing laboratorial results is needed.

• Also developing ontologies for other medical domain vocabularies is

needed to perform mapping between them.

• Provide mapping between HL7 tags and OWL language constructs. This

is needed as currently most of the health entities use this message format

to exchange data.

• While explaining about some of the filtering techniques we have provided

a note which says which other domain knowledge can be compared.

Hence refine this matchmaking algorithm.

• Simulate the MMN network with the real data from health partners.

Implement registry to register all the health service providers and develop

communication links between them and middle layer.

• Providing implementation of multi-agent architecture i.e. develop an user

interface application and the agents (discussed in this thesis).

• Provide facilities of automatic service composition and execution.

• Implementing the matchmaking algorithm provided here using the Protégé

API and RacerPro commands. Performing matching between various

different kind of ontologies to perform quality and performance analysis of

this algorithm.

• After implementation phase, performing model and performance analysis

on complete architecture.

81

LIST OF REFERENCES

[Bec03] Bechhofer, S., The DIG Description Logic Interface: DIG/1.1,
February 2003.

[BIO] Wilkinson, MD., Gessler, D., Farmer, A., Stein, L., BIOMOBY,

Proceedings of the Virtual Conference on Genomics and
Bioinformatics (3):16-26, 2003.

[BHL01] Berners-Lee, T., Hendler, J., Lassila, O., “The Semantic Web.”

Scientific American, 284(5), pp. 34-43, May 2001.

[BHR+99] Beeler, G. W., Huff, S., Rishel, W., Shakir, A-M., Walker, M., Mead,

C., Schadow, G., HL7 Version 3 Message Development
Framework, December 1999.

[BMN+02] Baader, F., McGuinness, D., Nardi, D., Patel-Schneider, P. F.,

editors, Description Logic Handbook: Theory, Implementation and
Applications, Cambridge University Press, 2002.

[BrG00] Brickley, D., Guha, R. V., Resource Description Framework

Schema Specification (RDFS) 1.0. W3C Candidate
Recommendation, 27th March 2000.

[Bou00] Boubez, T., et al., UDDI Data Structure Reference V1.0. September

2000. HTTP://WWW.OASIS-OPEN.ORG.

[caBIG] cancer Biomedical Information Grid,

HTTPS://CABIG.NCI.NIH.GOV/GUIDELINES_DOCUMENTATION/CAGRIDWHI

TEPAPER.PDF.

[CGS00] COHN, A. G., Giunchiglia, F., Selman, B., editors, “International

Conference on Knowledge Representation and Reasoning (KR’
2000)”, April 2000.

[CHH+01] Connolly, D., Harmelen, F. V., Horrocks, I., McGuinness, D., Patel-

Schneider, P., Stein, L. A., DAML+OIL (March 2001) reference

82

description. W3C Note, 18th December 2001. Available at
HTTP://WWW.W3.ORG/TR/2001/NOTE-DAML+OIL-REFERENCE-20011218.

[CHR] Golbreich, C., A SWRL/OWL demo ontology about family

relationships, HTTP://PROTEGE.STANFORD.EDU/PLUGINS/OWL/OWL-

LIBRARY/INDEX.HTML.

[COG] Corporate Ontology Grid Project, HTTP://WWW.COGPROJECT.ORG/.

[Den02] Denny, M., Ontology Building: A Survey of Editing Tools, November

2002.

[Den04] Denny, M., Ontology Tools Survey,

HTTP://WWW.XML.COM/PUB/A/2004/07/14/ONTO.HTML, July 2004.

[DIC04] Digital Imaging and Communications in Medicine (DICOM), Part 6:

Data Dictionary, Published by National Electrical Manufacturers
Association, 2004.

[ebX] ebXML: electronic business eXtensible Markup Language,

HTTP://WWW.EBXML.ORG/ .

[FaC98] I. Horrocks, FaCT: DL Classifier,

HTTP://WWW.CS.MAN.AC.UK/~HORROCKS/FACT/, 1998.

[FEL98] Fellbaum, C., Wordnet: An electronic lexical database for the

English language. The MIT Press, 1998.

[FWW+93] Finin, T., Weber, J., et al., Specification of the KQML Agent

Communication Language, by The DARPA Knowledge Sharing
Initiative External Interfaces Working Group, June 1993.

[GcTB01] Gonzalez-Castillo, J., Trastour, D., Bartolini, C., Description Logics

for Matchmaking of Services, HP Labs Technical Report, 2001.

[GeF92] Genesereth, M., Fikes, R., Knowledge Interchange Format Version

3.0 Reference Manual. Report Logic 92-1 Computer Science
Department. Stanford University, 1992.

[Gia02] Giarratano, J., CLIPS: Users Guide, v6.20, March 2002.

[GiL96] Giacomo, G., Lenzerini, M., TBox and ABox reasoning in

expressive description logics. In Luigia C. Aiello, John Doyle, and
Stuart C. Shapiro, editors, Proc. of the 5th Int. Conf. on the

83

Principles of Knowledge Representation and Reasoning (KR-96),
pp. 316-327. Morgan Kaufmann, Los Altos, 1996.

[HaM00] Haarslev, V., Möller, R., “Expressive ABox reasoning with number

restrictions, role hierarchies and transitivity closed roles”, In Cohn
et al. [CGS00], pp 273-284. [Hen01], James Hendler, “Agents and
the Semantic Web”; IEEE Intelligent systems, vol. 16, pp. 30-37,
March 2001.

[HaM01a] Haarslev, V., Möller, R., Description of the racer system and its

applications, In Proceedings of the International Workshop in
Description Logics 2001 (DL2001), Stanford, USA, August 2001.

[HaM01b] Haarslev, V., Möller, R., Turhan, A.-Y., Exploiting pseudo models

for TBox and ABox reasoning in expressive description logics.
Lecture notes, [Mas01].

[HeM00] Hendler, J., McGuinness, D.L., The DARPA Agent Markup

Language, IEEE Intelligent Systems, vol. 16, no. 6, Jan/Feb 2000,
pp. 67-73.

[HMW04] Haarslev, V., Möller, R., Wessel, M., new Racer Query Language,

2004.

[HOE] Horrocks, I., OiLed Ontology Editor, HTTP://OILED.MAN.AC.UK/.

[Hol95] Hollingsworth, D., The Workflow Management Coalition: The

Workflow Reference Model, document number TC00-1003, issue
1.1, January 1995.

[Hor] Horridge, M., An ontology about family relationships,

HTTP://PROTEGE.STANFORD.EDU/PLUGINS/OWL/OWL-

LIBRARY/INDEX.HTML.

[HPH03] Horrocks, I., Patel-Schneider P. F., Harmelen F. V., From SHIQ

and RDF to OWL: The Making of a Web Ontology Language,
Journal of Web Semantics, Volume 1, 2003.

[HST00] Horrocks, I., Slatter U., Tobis, S., “Reasoning with the individuals

for description logic SHIQ”, In David MacAllester, editor,
Proceedings of the 17th International Conference on Automated
Deduction (CADE-17), number 1831 in lecture notes in Computer
Science, Germany, 2000, Springer-Verlag.

84

[HuS92] Huhns, M., Singh, M., “The Semantic Integration of Information
Models”, AAAI Workshop on Cooperation among Heterogeneous
Intelligent Agents, Washington-D.C., July 1992.

[ICD] ICD: International Code for Diseases,

HTTP://WWW.WOLFBANE.COM/ICD/.

[LaS99] Lassila, O., Swick, R., Resource Description Framework (RDF)

Model and Syntax specification. W3C Recommendation, 22nd
February 1999.

[LCG04] Lee, Y., Patel, C., Chun, S., Geller, J., “Compositional Knowledge

Management for medical services on Semantic web”, International
World Wide Web Conference, Proceedings of the 13th international
World Wide Web conference, pp. 498-499, May 2004.

[Mas01] Massaci, F., editor, International Conference on Automated

Reasoning (IJCAR’ 2001), June 18-23 2001, Siena, Italy, Lecture
Notes in Artificial Intelligence, 9(2):135-196, 1977.

[McH03] McGuinness D. L., Harmelen, F. V., “OWL Web Ontology

Language Overview, HTTP://WWW.W3.ORG/TR/2003/PR-OWL-

FEATURES-20031215/, December 2003.

[MBH+04] Martin, D., Burstein, M., Hobbs, J., et al., OWL-S: Semantic Markup

for Web Services – Overview, v1.1,
HTTP://WWW.DAML.ORG/SERVICES/OWL-S/1.1/OVERVIEW/, December
2004

[MHS+04] McDonald, C., Huff, S., Suico, J., Mercer, K., Logical Observation

Identifier Names and Codes (LOINC) User’s Guide, Regenstrief
Institute, Indianapolis, 2004.

[MSH] MeSH: Medical Subject Headings,

HTTP://WWW.NLM.NIH.GOV/MESH/MESHHOME.HTML

[MWM04] Smith M. K., Welty, C., McGuinness D. L., OWL Web Ontology

Language Guide, HTTP://WWW.W3.ORG/TR/OWL-GUIDE/, February
2004.

[NFF+91] Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T.,

Swartout, W.R., Enabling Technology for Knowledge Sharing. AI
Magazine, pp. 36-56, 1991.

85

[NFK+00] Nodine, M., Fowler, J., Ksiezyk, T., Perry, B., Taylor, M., Unruh. A.,
Active information gathering in Infosleuth. International Journal of
Cooperative Information Systems, 9(1-2):3–28, 2000.

[NoM] Noy, N., McGuinness, D. L., Ontology development 101: a guide to

creating your first ontology,
HTTP://PROTEGE.STANFORD.EDU/PUBLICATIONS/ONTOLOGY_DEVELOP

MENT/ONTOLOGY101-NOY-MCGUINNESS.HTML.

[NLM] NLM: National Library of Medicine, HTTP://WWW.NLM.NIH.GOV/.

[OGa] OpenGalen, HTTP://WWW.OPENGALEN.ORG/.

[OSC03] The OWL Services Coalition, editors, “OWL-S: Semantic Markup

for web services”, HTTP://WWW.DAML.ORG/SERVICES/OWL-S/1.0/OWL-
S.HTML, December 2003.

[PHH04] Patel-Schneider P. F., Hayes, P., Horrocks, I., OWL Web Ontology

Language Semantics and Abstract Syntax,
HTTP://WWW.W3.ORG/TR/OWL-SEMANTICS/, February 2004.

[POA] The Protégé Owl API. Created and maintained by: Stanford

Medical Informatics,
HTTP://PROTEGE.STANFORD.EDU/PLUGINS/OWL/API/INDEX.HTML.

[PPL] Protégé Plug-in Library,

HTTP://PROTEGE.STANFORD.EDU/DOWNLOAD/PLUGINS.HTML.

[Pro] The Protégé ontology editor and Acquisition system, Stanford

Medical Informatics, HTTP://PROTEGE.STANFORD.EDU/.

[PsS93] Patel-Schneider P. F., Swartout, B., Description Logic Knowledge

Representation System Specification from the KRSS Group of the
ARPA Knowledge Sharing Effort, November 1993.

[RAC] Racer Systems, HTTP://WWW.RACER-SYSTEMS.COM/.

[RBG96] Rector, A. L., Bechofer, S., Goble, C., Horrocks, I., Nowlan, W.,

Solomon, W., The GRAIL Concept Modeling Language for Medical
Terminology. In: Medical Informatics Group, Department of
Computer Science, University of Manchester, 1996.

[Rey01] Reynolds, F., An RDF Framework for Resource Discovery,

Proceedings of the Second International Workshop on the
Semantic Web (SemWeb’2001), May 2001.

86

[RHI] Regenstrief Health Institute, HTTP://WWW.REGENSTRIEF.ORG/.

[Ros94] Rosenfield, R., Adaptive statistic language model, Ph.D. thesis,

Carnegie Mellon University, 1994.

[RRM05] RacerPro Reference Manual, v1.8, April 2005.

[RSN+94] Rector A. L., Solomon W. D., Nowlan W. A., Rush T. W., A

Terminology Server for Medical Language and Medical Information
Systems”, IMIA Proceedings, Geneva, May 1994.

[SaB87] Salton, G., Buckley, C., Text weighting approaches in automatic

text retrieval, Cornell University Technical Report, pp. 87-881,
1987.

[SAC03] Solbrig H.R., Armbrust D. C., Chute C. G., The Open Terminology

Services (OTS) project, AMIA Annu Symp Proc. 2003:1011.

[ShS04] Shreenath, R., Singh, M., Agent-Based Service Selection, Journal

on Web Semantics (JWS), vol. 1, number 3, pp. 261-279, April
2004.

[SNO] SNOMED-CT, HTTP://WWW.SNOMED.ORG/SNOMEDCT/.

[SPK+97] Swartout, B., Patil, R., Knight, K., Russ, T., Toward Distributed Use

of Large-Scale Ontologies Ontological Engineering, AAAI-97,
Spring Symposium Series, pp. 138-148, 1997.

[SwWG] Semantic Web Working Group, HTTP://WWW.W3.ORG/2001/SW/.

[SWK+02] Sycara, K., Widoff, S., Klusch, M., Lu, J., “Larks: Dynamic

Matchmaking Among Heterogeneous Software Agents in
Cyberspace,” ACM Portal, Source: Autonomous Agents and Multi-
Agent Systems, v5, issue 2, pp. 173–203, June 2002.

[TBGc01] Trastour, D., Bartolini, C., Gonzalez-Castillo, J., “A Semantic Web

Approach to Service Description for Matchmaking of Services”,
Journal of Semantic Web, sec. Services and Application, 2001.

[UKS] UMLS Knowledge Source,

HTTP://WWW.NLM.NIH.GOV/RESEARCH/UMLS/UMLSDOC.HTML.

87

[UML] OMG Unified Modeling Language Specification (draft) Feb 2001,
For further info see: HTTP://WWW.OMG.ORG/UML [USN], The UMLS
Semantic Network, HTTP://SEMANTICNETWORK.NLM.NIH.GOV/.

[WHK97] Wahl, M., Howes, T., Kille, S., Lightweight Directory Access

Protocol (v3), rfc2251, Network Working Group, December 1997.

88

Appendix A.

Method to start and initialize RacerPro server

1. Start the RacerPro server and load Ontology ‘A’ into RacerPro server
either through command line options or using racer client (Protégé).

2. Load Ontology ‘B’ in racer-client such as protégé editor.
3. Configure Protégé editor to show RQL tab. This tab is used to query

RacerPro.
4. Apply matchmaking algorithm: For concept in ‘B’ find if there is

corresponding concept in ‘A’.

Command Statements Purpose

owl-read-document Load owl file in RacerPro server and

generate t-box and a-box with name

generations

Full-reset Clears all Tboxes and Aboxes, perform

complete reset of Server

Table A.1 Racer Commands

89

Appendix B.

OWL and DL Constructs

The table below shows the constructs in OWL used for relations and

constructs in Description Logic Specification. More complete list of all possible

type of relations in DL and its corresponding OWL syntax can be found at

[HPH03].

DL predicates Abstract OWL DL Constructs

TOP

BOTTOM

T

⊥

 OWL:Thing

 OWL:Nothing

Number

Integer

String

 rdf:Datatype (XMLSchema#int)

 XMLSchema#decimal

 XMLSchema#string

(and C1…Cn)

(or C1…..Cn)

(not C)

(all R C)

(some R C)

(at-least n R)

(at-most n R)

(exactly n R)

(equal R1 R2)

(not-equal R2 R2)

(subset R1 R2)

(fillers R L1…Ln

(C1ΠC2Π…..Cn)

(C1∪C2…….Cn)

(¬C)

∀ R:C

∃ R.C

≥ n R

≤ n R

= n R

R1= R2

R1≠ R2

R1 ⊆ R2

{L1…Ln}

 OWL:intersectionOf

 OWL: unionOf

 OWL:complementOf

 owl:allValuesFrom

 owl:someValuesFrom

 owl:minCardinality

 owl:maxCardinality

 owl:cardinality

 owl:equivalentProperty

 owl:differentFrom

 rdfs:subPropertyOf

 owl:oneOf

Table B.1 Full list of DL vs. OWL Constructs

90

Now we will provide complete list of OWL Constructs for class and roles in Table

B.2.

owl:AllDifferent

owl:allValuesFrom

owl:AnnotationProperty

owl:backwardCompatibleWith

owl:cardinality

owl:Class

owl:complementOf

owl:DataRange

owl:DatatypeProperty

owl:DeprecatedClass

owl:DeprecatedProperty

owl:differentFrom

owl:disjointWith

owl:distinctMembers

owl:equivalentClass

owl:equivalentProperty

owl:FunctionalProperty

owl:hasValue

owl:imports

owl:incompatibleWith

owl:intersectionOf

owl:InverseFunctionalProperty

owl:inverseOf

owl:maxCardinality

owl:minCardinality

owl:Nothing

owl:ObjectProperty

owl:oneOf

owl:onProperty

owl:Ontology

owl:OntologyProperty

owl:priorVersion

owl:Restriction

owl:sameAs

owl:someValuesFrom

owl:SymmetricProperty

owl:Thing

owl:TransitiveProperty

owl:unionOf

owl:versionInfo

Table B.2 Complete List of OWL Constructs

91

Appendix C.

SAMPLE ONTOLOGIES

Here we provide family ontology used for explaining matchmaking algorithm.

Figure C.1 Family.OWL

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rss="http://purl.org/rss/1.0/"
 xmlns="http://health.informatics.iupui.edu/ontology/matching/family.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xml:base="http://health.informatics.iupui.edu/ontology/matching/family.owl">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="Child">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasParent"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Class rdf:ID="Person"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:about="#Person">
 <owl:equivalentClass>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:ID="Man"/>
 <owl:Class rdf:ID="Woman"/>
 </owl:unionOf>
 </owl:Class>
 </owl:equivalentClass>

92

 </owl:Class>
 <owl:Class rdf:ID="Relative">
 <owl:equivalentClass>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Child"/>
 <owl:Class rdf:ID="Parent"/>
 <owl:Class rdf:ID="Aunt"/>
 <owl:Class rdf:ID="Nephew"/>
 <owl:Class rdf:ID="Niece"/>
 <owl:Class rdf:ID="Uncle"/>
 <owl:Class rdf:ID="Sibling"/>
 </owl:unionOf>
 </owl:Class>
 </owl:equivalentClass>
 <rdfs:subClassOf rdf:resource="#Person"/>
 </owl:Class>
 <owl:Class rdf:ID="Father">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Parent"/>
 <owl:Class rdf:about="#Man"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 <owl:sameAs>
 <owl:Class rdf:ID="Dad"/>
 </owl:sameAs>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Father is a Person having atleast 1 child and is a male.</rdfs:comment>
 </owl:Class>
 <owl:Class rdf:ID="Son">
 <owl:disjointWith>
 <owl:Class rdf:ID="Daughter"/>
 </owl:disjointWith>
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Man"/>
 <owl:Class rdf:about="#Child"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

93

 <owl:Class rdf:about="#Daughter">
 <owl:disjointWith rdf:resource="#Son"/>
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Child"/>
 <owl:Class rdf:about="#Woman"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="Gender">
 <owl:equivalentClass>
 <owl:Class>
 <owl:oneOf rdf:parseType="Collection">
 <Gender rdf:ID="Female"/>
 <Gender rdf:ID="Male"/>
 </owl:oneOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="Mother">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Parent"/>
 <owl:Class rdf:about="#Woman"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:about="#Nephew">
 <owl:disjointWith>
 <owl:Class rdf:about="#Niece"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:hasValue rdf:resource="#Male"/>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:ID="hasSex"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:equivalentClass>
 <owl:Class>

94

 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasUncle"/>
 </owl:onProperty>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasAunt"/>
 </owl:onProperty>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </owl:unionOf>
 </owl:Class>
 <owl:Class rdf:about="#Man"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 <rdfs:subClassOf rdf:resource="#Relative"/>
 </owl:Class>
 <owl:Class rdf:ID="Sister">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Sibling"/>
 <owl:Class rdf:about="#Woman"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 <owl:disjointWith>
 <owl:Class rdf:ID="Brother"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:about="#Sibling">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>

95

 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:SymmetricProperty rdf:ID="hasSibling"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Class rdf:about="#Person"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:about="#Woman">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSex"/>
 </owl:onProperty>
 <owl:hasValue rdf:resource="#Female"/>
 </owl:Restriction>
 <owl:Class rdf:about="#Person"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:about="#Niece">
 <owl:disjointWith rdf:resource="#Nephew"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:hasValue rdf:resource="#Female"/>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSex"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

<owl:equivalentClass>

 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty>

96

 <owl:ObjectProperty rdf:about="#hasUncle"/>
 </owl:onProperty>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasAunt"/>
 </owl:onProperty>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </owl:unionOf>
 </owl:Class>
 <owl:Class rdf:about="#Woman"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 <rdfs:subClassOf rdf:resource="#Relative"/>
 </owl:Class>
 <owl:Class rdf:about="#Brother">
 <owl:disjointWith rdf:resource="#Sister"/>
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Sibling"/>
 <owl:Class rdf:about="#Man"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:about="#Aunt">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Woman"/>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 <owl:onProperty>

97

 <owl:ObjectProperty rdf:ID="hasNephew"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Restriction>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasNiece"/>
 </owl:onProperty>
 </owl:Restriction>
 </owl:unionOf>
 </owl:Class>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 <owl:disjointWith>
 <owl:Class rdf:about="#Uncle"/>
 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="#Relative"/>
 </owl:Class>
 <owl:Class rdf:about="#Dad">
 <owl:sameAs rdf:resource="#Father"/>
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Man"/>
 <owl:Class rdf:about="#Parent"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:about="#Parent">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasChild"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Class rdf:about="#Person"/>

98

 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:about="#Uncle">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Man"/>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasNephew"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Restriction>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasNiece"/>
 </owl:onProperty>
 </owl:Restriction>
 </owl:unionOf>
 </owl:Class>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 <owl:disjointWith rdf:resource="#Aunt"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSex"/>
 </owl:onProperty>
 <owl:hasValue rdf:resource="#Male"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="#Relative"/>
 </owl:Class>
 <owl:Class rdf:about="#Man">
 <owl:equivalentClass>

99

 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:hasValue rdf:resource="#Male"/>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSex"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Class rdf:about="#Person"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="hasSon">
 <rdfs:subPropertyOf>
 <owl:ObjectProperty rdf:about="#hasChild"/>
 </rdfs:subPropertyOf>
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Man"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasConsort">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Person"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#SymmetricProperty"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasNephew">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Man"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasParent">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#hasChild"/>
 </owl:inverseOf>
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Person"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasBrother">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:subPropertyOf>
 <owl:SymmetricProperty rdf:about="#hasSibling"/>
 </rdfs:subPropertyOf>
 <rdfs:range rdf:resource="#Man"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasFather">

100

 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:subPropertyOf rdf:resource="#hasParent"/>
 <rdfs:range rdf:resource="#Man"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasDaughter">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:subPropertyOf>
 <owl:ObjectProperty rdf:about="#hasChild"/>
 </rdfs:subPropertyOf>
 <rdfs:range rdf:resource="#Woman"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasChild">
 <rdfs:range rdf:resource="#Person"/>
 <owl:inverseOf rdf:resource="#hasParent"/>
 <rdfs:domain rdf:resource="#Person"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasSister">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Woman"/>
 <rdfs:subPropertyOf>
 <owl:SymmetricProperty rdf:about="#hasSibling"/>
 </rdfs:subPropertyOf>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasNiece">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Woman"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasAunt">
 <rdfs:range rdf:resource="#Woman"/>
 <rdfs:domain rdf:resource="#Person"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasUncle">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Man"/>
 </owl:ObjectProperty>
 <owl:DatatypeProperty rdf:ID="name">
 <rdfs:domain rdf:resource="#Person"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </owl:DatatypeProperty>
 <owl:SymmetricProperty rdf:about="#hasSibling">
 <rdfs:range rdf:resource="#Person"/>
 <rdfs:domain rdf:resource="#Person"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

101

 </owl:SymmetricProperty>
 <owl:FunctionalProperty rdf:about="#hasSex">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Gender"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="hasMother">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Woman"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
 <rdfs:subPropertyOf rdf:resource="#hasParent"/>
 </owl:FunctionalProperty>
 <Woman rdf:ID="F10">
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Whitney</name>
 <hasSex rdf:resource="#Female"/>
 </Woman>
 <Woman rdf:ID="F02">
 <hasParent>
 <Man rdf:ID="M01">
 <hasConsort>
 <Woman rdf:ID="F01">
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Mary</name>
 <hasSex rdf:resource="#Female"/>
 </Woman>
 </hasConsort>
 <hasChild>
 <Woman rdf:ID="F03">
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Elizabeth</name>
 <hasParent rdf:resource="#M01"/>
 <hasSex rdf:resource="#Female"/>
 </Woman>
 </hasChild>
 <hasSex rdf:resource="#Male"/>
 <hasChild rdf:resource="#F02"/>
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Bill</name>
 <hasChild>
 <Man rdf:ID="M02">
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Adam</name>
 <hasSex rdf:resource="#Male"/>
 <hasChild>

102

 <Man rdf:ID="M03">
 <hasParent rdf:resource="#M02"/>
 <hasChild>
 <Woman rdf:ID="F09">
 <hasSex rdf:resource="#Female"/>
 <hasParent rdf:resource="#M03"/>
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Surrey</name>
 </Woman>
 </hasChild>
 <hasSex rdf:resource="#Male"/>
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >George</name>
 <hasConsort>
 <Woman rdf:ID="F08">
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Emily</name>
 <hasSex rdf:resource="#Female"/>
 </Woman>
 </hasConsort>
 </Man>
 </hasChild>
 <hasParent rdf:resource="#M01"/>
 <hasChild>
 <Woman rdf:ID="F05">
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Anna</name>
 <hasSex rdf:resource="#Female"/>
 <hasParent rdf:resource="#M02"/>
 </Woman>
 </hasChild>
 <hasConsort>
 <Woman rdf:ID="F04">
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Marilyn</name>
 <hasSex rdf:resource="#Female"/>
 </Woman>
 </hasConsort>
 <hasChild>
 <Man rdf:ID="M05">
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Michael</name>
 <hasParent rdf:resource="#M02"/>
 <hasSex rdf:resource="#Male"/>
 </Man>

103

 </hasChild>
 </Man>
 </hasChild>
 </Man>
 </hasParent>
 <hasSex rdf:resource="#Female"/>
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Catherine</name>
 </Woman>
 <Man rdf:ID="M10">
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Jack</name>
 <hasParent>
 <Man rdf:ID="M08">
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Jimmy</name>
 <hasConsort>
 <Woman rdf:ID="F06">
 <hasSex rdf:resource="#Female"/>
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Eva</name>
 <hasParent>
 <Man rdf:ID="M04">
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Phillipe</name>
 <hasChild rdf:resource="#F06"/>
 <hasChild>
 <Man rdf:ID="M06">
 <hasSex rdf:resource="#Male"/>
 <hasChild>
 <Man rdf:ID="M09">
 <name
rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Ronald</name>
 <hasSex rdf:resource="#Male"/>
 <hasParent rdf:resource="#M06"/>
 </Man>
 </hasChild>
 <hasParent rdf:resource="#M04"/>
 <hasConsort rdf:resource="#F10"/>
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Tom</name>
 </Man>
 </hasChild>
 <hasConsort rdf:resource="#F03"/>

104

 <hasParent>
 <Man rdf:ID="M07">
 <hasSex rdf:resource="#Male"/>
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >John</name>
 <hasConsort>
 <Woman rdf:ID="F07">
 <name
rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Audrey</name>
 <hasSex rdf:resource="#Female"/>
 </Woman>
 </hasConsort>
 <hasChild rdf:resource="#M04"/>
 </Man>
 </hasParent>
 <hasSex rdf:resource="#Male"/>
 </Man>
 </hasParent>
 </Woman>
 </hasConsort>
 <hasChild rdf:resource="#M10"/>
 <hasSex rdf:resource="#Male"/>
 </Man>
 </hasParent>
 <hasSex rdf:resource="#Male"/>
 </Man>
</rdf:RDF>

Figure C.2 Generations.OWL

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns="http://health.informatics.iupui.edu/ontology/matching/generations.owl#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="http://health.informatics.iupui.edu/ontology/matching/generations.owl"
>
 <owl:Ontology rdf:about="">
 <owl:versionInfo rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

105

 >An example ontology created by Matthew Horridge</owl:versionInfo>
 </owl:Ontology>
 <owl:Class rdf:ID="Offspring">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:ID="Person"/>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Person"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasParent"/>
 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="Daughter">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasParent"/>
 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#Person"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:ID="hasSex"/>
 </owl:onProperty>
 <owl:hasValue>
 <Sex rdf:ID="FemaleSex"/>
 </owl:hasValue>
 </owl:Restriction>
 <owl:Class rdf:about="#Person"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="Male">
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:hasValue>
 <Sex rdf:ID="MaleSex"/>

106

 </owl:hasValue>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSex"/>
 </owl:onProperty>
 </owl:Restriction>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="Grandmother">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:someValuesFrom>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Person"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasChild"/>
 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:someValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasChild"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSex"/>
 </owl:onProperty>
 <owl:hasValue rdf:resource="#FemaleSex"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="Mater">
 <owl:versionInfo rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >TODO: Find command in nRQL to get the owl:sameAs
class</owl:versionInfo>
 <owl:sameAs>

107

 <owl:Class rdf:ID="Mother"/>
 </owl:sameAs>
 </owl:Class>
 <owl:Class rdf:ID="Sex">
 <owl:equivalentClass>
 <owl:Class>
 <owl:oneOf rdf:parseType="Collection">
 <Sex rdf:about="#MaleSex"/>
 <Sex rdf:about="#FemaleSex"/>
 </owl:oneOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="Father">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Father is a male and also person having a child who is a person
too.</rdfs:comment>
 <rdfs:label>Daddy</rdfs:label>
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:hasValue rdf:resource="#MaleSex"/>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSex"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Person"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasChild"/>
 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:about="#Mother">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Person"/>

108

 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasChild"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Restriction>
 <owl:hasValue rdf:resource="#FemaleSex"/>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSex"/>
 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 <owl:sameAs rdf:resource="#Mater"/>
 </owl:Class>
 <owl:Class rdf:ID="Grandfather">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasChild"/>
 </owl:onProperty>
 <owl:someValuesFrom>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Person"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasChild"/>
 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSex"/>
 </owl:onProperty>
 <owl:hasValue rdf:resource="#MaleSex"/>
 </owl:Restriction>
 </owl:intersectionOf>

109

 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="Sister">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Person"/>
 <owl:onProperty>
 <owl:SymmetricProperty rdf:ID="hasSibling"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSex"/>
 </owl:onProperty>
 <owl:hasValue rdf:resource="#FemaleSex"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="Brother">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty>
 <owl:SymmetricProperty rdf:about="#hasSibling"/>
 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#Person"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSex"/>
 </owl:onProperty>
 <owl:hasValue rdf:resource="#MaleSex"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>

110

 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="Woman">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSex"/>
 </owl:onProperty>
 <owl:hasValue rdf:resource="#FemaleSex"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="Man">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:hasValue rdf:resource="#MaleSex"/>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSex"/>
 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="Parent">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Person"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasChild"/>
 </owl:onProperty>
 </owl:Restriction>

111

 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="Mummy">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Person"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasChild"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSex"/>
 </owl:onProperty>
 <owl:hasValue rdf:resource="#FemaleSex"/>
 </owl:Restriction>
 <owl:Class rdf:about="#Person"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="Son">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasParent"/>
 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#Person"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSex"/>
 </owl:onProperty>
 <owl:hasValue rdf:resource="#MaleSex"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

112

 </owl:Class>
 <owl:Class rdf:ID="Sibling">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:onProperty>
 <owl:SymmetricProperty rdf:about="#hasSibling"/>
 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#Person"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="Grandparent">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasChild"/>
 </owl:onProperty>
 <owl:someValuesFrom>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Person"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasChild"/>
 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="Female">
 <owl:equivalentClass>

113

 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSex"/>
 </owl:onProperty>
 <owl:hasValue rdf:resource="#FemaleSex"/>
 </owl:Restriction>
 </owl:equivalentClass>
 </owl:Class>
 <owl:ObjectProperty rdf:about="#hasParent">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#hasChild"/>
 </owl:inverseOf>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasChild">
 <owl:inverseOf rdf:resource="#hasParent"/>
 </owl:ObjectProperty>
 <owl:SymmetricProperty rdf:about="#hasSibling">
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
 </owl:SymmetricProperty>
 <owl:FunctionalProperty rdf:about="#hasSex">
 <rdfs:range rdf:resource="#Sex"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
 </owl:FunctionalProperty>
 <Person rdf:ID="Gemma">
 <hasSex rdf:resource="#FemaleSex"/>
 </Person>
 <Person rdf:ID="Peter">
 <hasSex rdf:resource="#MaleSex"/>
 <hasParent>
 <Person rdf:ID="William">
 <hasSex rdf:resource="#MaleSex"/>
 <hasChild rdf:resource="#Peter"/>
 </Person>
 </hasParent>
 <hasChild>
 <Person rdf:ID="Matt">
 <hasSibling rdf:resource="#Gemma"/>
 <owl:sameAs>
 <Person rdf:ID="Matthew">
 <owl:sameAs rdf:resource="#Matt"/>

 </Person>
 </owl:sameAs>
 <hasParent rdf:resource="#Peter"/>
 <hasSex rdf:resource="#MaleSex"/>

114

 </Person>
 </hasChild>
 </Person>
</rdf:RDF>

We are including only some part of LOINC structure below, as LOINC.OWL is too
big to fit here. The class hierarchy below is part of LOINC.OWL file.

Figure C.3 LOINC.OWL

<?xml version="1.0"?>
<rdf:RDF
 xmlns="http://health.informatics.iupui.edu/ontology/LOINCOWL.owl#"
 xmlns:j.0="http://protege.stanford.edu/plugins/owl/protege#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xml:base="http://health.informatics.iupui.edu/ontology/LOINCOWL.owl">
 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://protege.stanford.edu/plugins/owl/protege"/>
 </owl:Ontology>
 <owl:Class rdf:ID="LOINC_NM_SYS">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="LOINC_NM"/>
 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Fourth subpart from six subparts of fully specified name of test result or
clinical observation. This provides information about sample or system
type.</rdfs:comment>
 </owl:Class>
 <owl:Class rdf:ID="LOINC_SV_QUE_SRC">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Exact name of the survey instrument and the item/question
number.</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Class rdf:ID="LOINC"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="SYS_CD">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >System type codes used in fully specified name.</rdfs:comment>
 </owl:Class>
 <owl:Class rdf:ID="LABORATORYCLASS">

115

 <rdfs:subClassOf>
 <owl:Class rdf:ID="LOINC_CLS"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="LOINC_KB"/>
 <owl:Class rdf:ID="LOINC_MOL_ID">
 <rdfs:subClassOf rdf:resource="#LOINC"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Molecular structure ID, usually CAS number.</rdfs:comment>
 </owl:Class>
 <owl:Class rdf:ID="LOINC_CDC_CD">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Code from CDC Complexity file that maps laboratory tests to the instruments
used to perform them. These codes are at the analyte level, not the test
instrument level.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#LOINC"/>
 </owl:Class>
 <owl:Class rdf:ID="ATTACHMENTCLASS">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#LOINC_CLS"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="TA_TAM">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Time aspect modifier is optional subpart of the time component. It allows an
indication of some sub-selection of the measures taken over the defined period
of time.</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Class rdf:ID="LOINC_NM_TA"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="LOINC_FLA">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Regression equation details for many OB.US calculated
terms.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#LOINC"/>
 </owl:Class>
 <owl:Class rdf:ID="LOINC_MPH_CD">
 <rdfs:subClassOf rdf:resource="#LOINC"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >MetPath Code for future use.</rdfs:comment>
 </owl:Class>
 <owl:Class rdf:ID="PPT">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Properties</rdfs:comment>

116

 </owl:Class>
 <owl:Class rdf:ID="LOINC_PNL_ELE">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >List of individual tests that comprise a panel.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#LOINC"/>
 </owl:Class>
 <owl:Class rdf:ID="LOINC_SET_RT">
 <rdfs:subClassOf rdf:resource="#LOINC"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Used for claims attachments. </rdfs:comment>
 </owl:Class>
 <owl:Class rdf:ID="LOINC_REF">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Contains references to medical literature, product announcements, or other
written sources of information on the test or measurement described by the
LOINC record.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#LOINC"/>
 </owl:Class>
 <owl:Class rdf:ID="CH_POST">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >The challenge that is referred at time of testing component or
analyte.</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Class rdf:ID="CPT_CH_POST"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="LOINC_SMD_CD">
 <rdfs:subClassOf rdf:resource="#LOINC"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >SNOMED Code for future use.</rdfs:comment>
 </owl:Class>

Note: UMLS ontology is not listed here because of its large size. It can be found
at http://health.informatics.iupui.edu/ontology/UMLSOWL.owl

117

LIST OF REFERENCES

118

APPENDICES

