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DAMAGING EFFECTS OF CIGARETTE SMOKE ON ORGANS AND 

STEM/PROGENITOR CELLS AND THE RESTORATIVE POTENTIAL OF CELL 

THERAPY.  

 

Cigarette smoking (CS) continues to be a significant modifiable factor contributing 

to a variety of diseases including cardiovascular, pulmonary and renal pathologies. 

It was suggested that smoking have detrimental effect of the body’s progenitor 

cells of bone marrow and peripheral organs. Since the concept of cell therapy that 

utilizes adipose stem/stromal cells (ASC) is gaining momentum it becomes critical 

to assess the therapeutic activities of the progenitors isolated from smokers. This 

study has revealed that CS negatively impacts the vasculogenic potential of ASC, 

in vitro, as well as weakening their therapeutic activity in vivo when tested in mouse 

model of hindlimb ischemia. We hypothesized that the decrease in vasculogenic 

activity of ASC is attributed to a higher level of expression of an angiostatic factor 

Activin A by ASC from CS donors. These findings clearly suggest that smokers 

should be evaluated for potential exclusion from early clinical trials of autologous 

cell therapies, or assessed as a separate cohort. The donor’s health status should 

be considered when choosing between autologous vs allogeneic cell therapies.  

We then examined the effect of CS on development of kidney pathology in 

mice. CS exposure led to decrease in kidney weights, capillary rarefaction, and 
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cortical blood perfusion, and in parallel led to increase in kidney fibrosis and iron 

deposition. Interestingly, infusion of healthy ASC to the mice following CS-

exposure reversed CS-induced damages. This strongly support the notion that 

ASC-based therapy may provide rejuvenation effect.  

In the other subset of studies, we hypothesized that CS-induced lung 

emphysematous changes are preceded by suppression of bone marrow (BM) 

hematopoietic progenitor cells (HPC). We have revealed that intermittent BM 

mobilization with AMD3100 may mitigate the CS-induced myelo-suppression and 

deterioration of lung function and morphology. We observed that treatment of mice 

with AMD3100, while exposed to CS, preserves HPC at the levels of healthy 

control mice. Furthermore, AMD3100 treatment preserved lung parenchyma from 

pathological changes. These data suggest that while CS has a myelo-suppressive 

effect, administration of AMD3100 preserved BM-HPC and ameliorated lung 

damage.  

Keith L. March, MD., PhD, Chair 
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Chapter 1: Introduction 

 

1.1   Cigarette smoking and the implications on human health 

1.1.1 A brief history of cigarette smoking 

Tobacco has been part of human civilization for over 7000 years, and its 

utilization was first described in the South America region [1, 2]. With the arrival of 

Europeans in the 1500s, tobacco soon spread to other continents to become a 

popular trading commodity [1, 2] and as the human lifespan extended, the effects 

of tobacco became more prominent. Along with increasing popularity of cigarette 

smoking (CS), various opposition groups also emerged that suggested potential 

negative health outcomes of the habit as early as the 1600s. It was not until 1948, 

however, that British researcher, Richard Doll, raised a serious concern about CS 

adverse health effects, publishing a study in 1950 linking CS to development of 

lung cancer [3].  

While the tobacco industry was booming, it took several more years until 

1964 when the United States Surgeon General released the Report on Smoking 

and Health which, pointed out the connection between tobacco use and cancer [4]. 

This precipitated the birth of numerous anti-tobacco advocacy and awareness 

groups and also gave rise to multitude of research projects that revealed not only 

the negative effects of CS on the human body, but also began to shed light on the 

mechanism through which different components of CS affect the physiology [4]. In 

1994, the authors of the Oxford Medical Companion famously stated that  
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“Tobacco is the only legally available consumer product which kills 
people when it is entirely used as intended” [5].  

As estimated by the World Health Organization, there are approximately 1.1 billion 

cigarette smokers worldwide, and almost six million people die each year from 

tobacco-associated diseases. In the United States, the number of smokers 

continues to be alarming: close to 17% of the population, or roughly forty million 

people, are active smokers [6]. Most recently a study published in the New England 

Journal of Medicine revealed that 28% of the 45,971 youth and adult study 

participants used at least one type of tobacco product between 2013 and 2014, 

while 40% of tobacco consumers used more than one tobacco product [7]. In 

addition, a 2015 report by the Centers for Disease Control and Prevention (CDC) 

estimates that approximately 443,000 people die each year in the U.S. from 

diseases linked to CS or second-hand smoke exposure [4]. 

1.1.2  The harmful ingredients 

There are an estimated 4000 chemicals in an average cigarette, 70 of which 

are known to be toxic or carcinogenic to humans [8-10]. Among them are phenols, 

nitrosamines, carbonyls, tar, and various gases, the most well-known being carbon 

monoxide [8]. Nicotine, an alkaloid, is one of the most commonly studied chemicals 

found in cigarettes. Nicotine’s effects on the human body have been assessed in 

numerous studies and are associated with various pathologies [11-14], including 

promoting angiogenesis in animal models of age-related macular degeneration 

[15], atherosclerosis [16, 17] and carcinoma development [17-19]. Often the 

mechanism responsible for these outcomes involves stimulation of nicotinic 

acetylcholine receptors (nAChR), which are members of family of cholinergic 
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receptors, present on the endothelium. It has been shown that nAChR promotes 

endothelial cell migration in vitro thus simulating the action of native pro-angiogenic 

cytokines [15]. In 1996, Carty et al. showed that nicotine, applied at clinically 

relevant concentrations of 10-9 to 10-6 mol/L (similar to plasma levels seen in active 

smokers), stimulates proliferation of smooth muscle cells [20]. It has been 

proposed that one of the mechanisms of nicotine’s mitogenic effect is stimulation 

of fibroblast growth factor (FGF) production by these cells, which then acts in 

autocrine manner to promote smooth muscle cell proliferation [20]. Heeschen et 

al. have shown that nicotine increases progression of plaque formation and tissue 

neovascularization, in addition to intensifying  the progression of pathological 

angiogenesis associated with tumor formation [17].  

In parallel, cotinine, a metabolite of nicotine, also has adverse effects on 

human health. It acts via stimulation of bFGF secretion and upregulation of 

collagenase by 29-fold, promoting hyperplasia as well as aneurysm formation [20, 

21]. Cotinine is known to be oxidized in the liver by one of the cytochromes p450: 

CYP2A6 (which plays a role in metabolism and removal of toxins from the body) 

[22]. It has become a popular biomarker to assess a person’s tobacco use and the 

amount of exposure, since it is easily found in urine, saliva, and blood, and has a 

long half-life of 15-40 hours [23]. Presence of cotinine in the serum has been linked 

to higher hemoglobin 1Ac levels [21]. Taken together, nicotine and cotinine lead to 

or exacerbate numerous pathologies.  

Aside from these two molecules, one of the most bioactive compounds 

found in the gaseous phase of CS is carbon monoxide, an odorless gas. While 
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carbon monoxide for the most part is considered to be toxic, studies have shown 

that it is also produced in the body (e.g. during the process of heme breakdown) 

and plays significant role alongside nitric oxide as a vasodilator [24]. However, it 

is important to note that upon carbon monoxide inhalation, it binds to hemoglobin, 

resulting in carboxyhemoglobin. This decreases the availability of oxygen 

distribution throughout the body with serious negative implications in tissue 

oxygenation, promoting injury of the central nervous system, specifically white 

matter, which most often is the first one to be affected [8, 25, 26].  

As more and more compounds in CS are being identified as toxic, an 

increasing number of studies are also revealing additional biochemical pathways 

that are involved. Several studies have indicated that the aryl hydrocarbon receptor 

(AhR) signaling pathway is activated by CS exposure, linking CS to increased risk 

of cancer [27]. AhR is known to play a role in embryonic development and removal 

of xenobiotic compounds, through cytochrome p450 and induction of enzymes of 

metabolizing processes [28]. However, in some cases, such as in the case of the 

toxic compound benzo[a]pyrene (which is found in tobacco smoke) interaction with 

AhR ultimately leads to generation of metabolites that are toxic and act as 

mutagens [29]. In a study with AhR null mice, it has been revealed that these mice 

are resistant to chromosomal damage upon exposure to CS condensate when 

compared to wild type controls [29].  

1.1.3 Types of smoke exposure 

The majority of studies are focused on so-called “first-hand smoke” 

exposure – the effects of tobacco on the user himself/herself. However, during the 
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past few decades multiple studies have been conducted to evaluate the health 

effects of passive or second-hand smoke (SHS) exposure, which is defined as 

inhaling the smoke exhaled by another person smoking a cigarette [30].  

Similarly to first-hand smoke, exposure to SHS may lead to multiple 

respiratory symptoms such as shortness of breath, coughing, asthma attacks, as 

well as cardiovascular symptoms [31]. Long term exposure to SHS leads to 

increase in risk of developing cancer, chronic obstructive pulmonary disease 

(COPD), and other CS associated diseases [32]. Children exposed to SHS are 

more prone to develop respiratory conditions [33]. Interestingly, a study by 

Yankelevitz et al., has shown that non-smokers who were exposed to SHS in their 

lifetime are 48-69% more likely to develop atherosclerosis compared to those with 

no SHS exposure [34]. A study by Aydogan et al., revealed that passive smokers 

required more analgesia following a surgery compared to non-smokers [35]. 

Collectively, these findings indicate that even indirect CS exposure results in 

significant pathology. SHS, however, is not the only indirect aspect of CS-

exposure: “third-hand smoking” (THS) is defined as exposure to films of toxic CS-

derived compounds deposited on various surfaces including clothing, furniture, car 

interiors, and hair [36]. In the case of THS, absorption of such chemicals occurs 

through skin, inhalation, or ingestion [36]. THS results in increased cellular 

oxidative stress via superoxide dismutase activity as well as in increase in the 

hydrogen peroxide level in mouse quadriceps muscle tissue [37]. The same study 

has also shown that THS decreases levels of glutathione peroxidase in the muscle. 

This enzyme is responsible for breaking down hydrogen peroxide into water and 
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oxygen, resulting in increase in peroxidation and DNA damage, leading in turn to 

hyperglycemia and insulinemia [37]. The toxicity of THS is also conferred via 

activity of a wide range of volatile organic compounds, including acrolein, an 

unsaturated aldehyde and a neurotoxin that recently has been recognized as end 

product of glycerol breakdown following burning of fat [38]. Research by Bahl et 

al., revealed that acrolein in THS causes blebbing, immotility, vacuolization, cell 

fragmentation, severing of microfilaments, and de-polymerization of microtubules 

in mouse neural stem cells [38]. In addition, acrolein alone changed the expression 

of cell cycle regulatory genes and inhibited cell proliferation [38]. A study by Due 

et. al. has shown that acrolein accumulates in the spinal cord of mice exposed to 

CS just for three weeks, and has been linked to increased pain sensitivity [39]. 

These phenomena have also been observed in people with injury to the spinal cord 

and multiple sclerosis [39].  

1.1.4 Health effects of cigarette smoke 

There are numerous studies that establish a link between CS and various 

pathologies, with cardiovascular diseases showing a particularly strong 

correlation. A study by Al-Arifi et al., revealed that CS induces expression of 

cardiac hypertrophic genes like atrial natriuretic peptide, brain natriuretic peptide 

and β-myosin heavy chain (through alteration in mRNA expression), and 

cytochrome P450 (CYP) enzymes, therefore increasing the probability of an 

adverse cardiovascular event [40]. CS has been shown to be one of the primary 

factors contributing to peripheral arterial disease [41] and abdominal aortic 

aneurysm [42]. Myocardial infarction and coronary artery disease are more likely 
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to occur in individuals who have smoked cigarettes in their past or continue to do 

so [4, 43]. Furthermore, it has also been shown that SHS exposure increases the 

prevalence of coronary artery disease by 30%, while active CS does so by 80% 

when compared to non-smokers [43, 44]. 

Numerous studies have linked CS to pulmonary [45-47] and immune [48-

51] pathologies, as well as to increased chances of cancer development [19, 52-

54]. Expectant mothers who continue to smoke are at higher risk for giving birth to 

children with defects [55-58]. Studies assessing the harmful effects of CS and 

evaluating its mechanism of action have revealed that CS correlates with impaired 

vasodilation and, in fact, contributes to immediate vasoconstriction via decreased 

nitric oxide synthesis by endothelial cells [59, 60]. As CS includes various oxidants, 

it is postulated that these molecules cause damage to endothelial cells. CS 

increases heart rate and blood pressure (through nicotine signaling pathway) 

escalating the chances of heart attack and stroke [61, 62]. It also results in delayed 

myocardial relaxation [13], increased concentration of C-reactive protein, and 

inflammatory factors in plasma [63, 64]. A study by Maclay JD et. al. has shown 

that CS exposure is responsible for the stickiness of platelets that may contribute 

to thrombosis [65]. CS has been demonstrated to correlate with elevated serum 

cholesterol levels [60]. Corre et al. has found an increase in blood leukocyte 

concentration (close to 30%) in smokers [66], as well as elevated levels of C-

reactive protein, fibrinogen, and homocysteine [67]. In addition to vascular 

disorders, there is also strong evidence that CS results in impaired wound healing, 

including tissue necrosis, infections, and skin flap detachment [68] in post-surgical 
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period [69-72]. Nicotine by itself causes an increase in arterial stiffness, which in 

turn is associated with arteriosclerosis development [11]. Furthermore CS, as it 

causes a dysfunction of vascular system, leads to delay in tissue functional 

recovery after acute ischemic episodes, demonstrated both in animal models [73] 

and human subjects [74, 75]. Studies have shown that prior exposure to CS has 

long-lasting effects even after smoking cessation [76, 77].  

While a large body of evidence as reviewed briefly above indicates that CS, 

both directly and indirectly, results in numerous pathologies or exacerbates already 

existing diseases, little has been done to elucidate the effect of CS on cell types 

that are considered to offer therapeutic benefit to patients who suffer from a variety 

of diseases, some of which are caused by CS.     
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1.2 Cell therapy offers promise in regenerative medicine 

1.2.1 Variety of cells with therapeutic potential  

During the past several years, multiple pre-clinical and clinical studies have 

shown that local or systemic administration of various stem/progenitor cells results 

in beneficial therapeutic effects, in a variety of pathological conditions [78-82]. Cell 

therapy is based on two major approaches that confer the regenerative activity: 

post-administration differentiation into particular cell types, and paracrine effects, 

characterized by secretion of cytokines with anti-inflammatory, pro-angiogenic and 

anti-apoptotic properties. Such paracrine activity can also increase additional 

recruitment of endogenous stem cells. 

One widely studied cell type is bone marrow derived mesenchymal stem 

cell (BM-MSC). These cells have been tested in multiple clinical trials involving 

subjects with myocardial ischemia [78, 79, 83]. In addition to BM-MSC, other cell 

types have been shown to offer therapeutic benefit in clinical settings. Numerous 

studies have demonstrated that subtypes of BM-MSC [84] as well as circulating 

endothelial progenitor cells [85] play important reparative functions after acute 

injuries, including kidney or limb ischemia. 

In recent years, new attention has been placed on the interaction of 

endothelial cells, which comprise the lining inside blood vessels, and pericytes, 

which wrap around the endothelial cells. This close interaction with endothelial 

cells plays a role in vascular remodeling [86], often involving vascular endothelial 

growth factor (VEGF), transforming growth factor beta (TGFb), platelet derived 
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growth factor BB, and it’s beta receptor (PDGF-BB and PDGFRb), all key factors 

in angiogenesis [87-90]. Studies have also been conducted investigating the 

regenerative capacity of cord-blood derived stem cells [85, 91] and neural stem 

cells [92]. In addition to the mentioned cell types considered for use in regenerative 

medicine, adipose tissue is a repository of cells known for their abundance and 

reparative capacity: adipose derived stem cells (ASC) [89, 93-96].  

1.2.2 Factors affecting stem cells 

Several groups have shown that such factors as aging [97-99], Body Mass 

Index [100, 101], and metabolic syndrome or diabetes [102, 103] affect the 

regenerative potential of ASC. We postulated that multiple other factors would 

likely play a role in modulating the therapeutic efficacy of these cells; and that not 

accounting for these factors might result in unsuccessful outcomes of patient 

treatment. We felt it important to acknowledge that some diseases that are 

considered for treatment with ASC may have arisen through a patient’s own 

modifiable lifestyle choices, and that these factors may have a broader negative 

impact on the overall health and regenerative capacity of the body. Consistent with 

this concept, a recent clinical trial, POSEIDON, led by Hare et al. revealed that 

allogeneic BM-MSC are significantly better in restoring heart health after non-

ischemic cardiomyopathy, compared to autologous donors [78], thus suggesting 

that patients whose health is sub-optimal have also decreased regenerative 

potential of their own stem cells.  

One such prominent factor often implicated in a wide array of illnesses is 

cigarette smoking. Up until now, little has been done to evaluate the effect of CS 
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on regenerative potency of ASC. Although Wahl et al. initiated evaluation of this 

question, their study exclusively focused on assessing the impact of CS extract 

on ASC migration, differentiation, and expression of several factors, which was 

compromised in every instance [104]. Their study also was limited to in vitro 

simulation of CS exposure, and did not fully recapitulate the physiological process 

he vast majority of both in vitro and in vivo prior studies have been done using cells 

obtained from relatively healthy donors, which do not represent the real case 

scenario seen in clinical practice. Most patients who require therapies, especially 

for cardiac and vascular diseases, are of advanced age and suffer from multiple 

comorbidities including diabetes, high blood pressure, dyslipidemia, and metabolic 

syndrome. These patients often have a history of CS. The function of stem cells is 

substantially affected by local and systemic factors including CS and diabetes. A 

study by Xie et al, has demonstrated that even a short-term exposure of mice to 

CS was strongly myelosuppressive [105], and Kim et. al. reported that bone 

marrow-derived mesenchymal stem cells from diabetic donors are ineffective in 

restoring blood flow in ischemic limbs [106]. In parallel, another study has shown 

that high glucose levels result in decreased proliferation and increased apoptosis 

of endothelial progenitors [107]. 

While allogeneic cell therapy approaches are under evaluation in various 

settings, many ongoing clinical trials involve autologous cells [108, 109].  There is 

an urgent need, therefore, to evaluate the therapeutic activity of progenitor cells 

obtained from donors that closely match the patient with have a smoking history. 
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1.2.3 ASC as readily available therapeutic agents  

Enzymatic digestion of adipose tissue produces stromal vascular fraction 

(SVF), composed of ASC, endothelial cells (EC), pericytes, lymphocytes, 

granulocytes, and fibroblasts [110]. Upon in vitro expansion, a pure population of 

ASC can be obtained within days [111]. ASC are multipotent cells that can 

differentiate ex vivo into bone, cartilage, or adipose tissue [110, 112]. Autologous 

ASC are readily obtained in high numbers via minimally invasive liposuction 

(Figure 1).  In clinical settings, ASC administration may occur either locally or 

systemically. Damaged tissue is known to secrete various chemo-attractants that 

aid stem cells in migrating towards the site of injury, which is highly beneficial, 

especially if the site of injury is not well defined or difficult to access [111, 113]. 

ASC exhibit robust pro-angiogenic, anti-apoptotic, and anti-inflammatory 

paracrine properties, and multiple pre-clinical and clinical studies have shown that 

both local and systemic administration of ASC promotes tissue revascularization 

and blood flow perfusion in acute or chronic ischemic tissues [80, 89, 90] including 

brain after stroke [114], infarcted heart [83, 115, 116], emphysema [45], and 

ischemic muscles in case of peripheral arterial disease (PAD) [117]. ASC also 

possess immunomodulatory activity, and have been shown to diminish graft versus 

host disease [118, 119] and arthritis [120] in animal models and humans. In recent 

years it has become commonly accepted that the primary mechanism of many 

ASC therapeutic effects is their paracrine activity, which is defined as secretion of 

biologically active molecules that initiate a response from other cells. This 
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paracrine mode of action has been proposed because very low, if any, persistent 

accumulation of ASC in the area of injection or damage is generally observed.  
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Figure 1. Schematic representation of ASC utilization for clinical use. Upon 

aspiration of adipose tissue (or pannus excision), material is enzymatically 

processed to yield stromal vascular fraction (SVF) which can be subsequently 

infused to the patient (tissue donor), or subject to in vitro cultivation, leading to cell 

expansion, into a homogenous population of ASC, which then can be either 

infused, enriched with conditioned medium or preserved for allogeneic use. Source 

image modified from: [111]  
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1.2.4  ASC in clinical trials 

As ASC have been increasingly recognized as having therapeutic potential, 

numerous clinical trials have been initiated utilizing these cells in the United States 

and around the world (according to the ClinicalTrials.gov website). Studies have 

begun to support the efficacy of ASC in treating vascular disorders including limb 

ischemia [121], fistulas [122], skin ulcers [123], and knee arthritis [120] in human 

patients. The newly emerging therapies are subjected to high scrutiny from 

regulatory agencies in order to ensure their safety. In 2016 the Food and Drug 

Administration (FDA) held a hearing addressing the vision of ASC-based therapies 

[124]. The FDA guidance document currently under consideration categorized 

adipose tissue, from which ASC are isolated, as primarily structural tissue that is 

more than “minimally-manipulated” in order to be used for therapeutic purposes. 

This current proposal could add significant restrictions on ASC-based therapies 

that have been shown to present therapeutic potential and act as more than 

structural tissue, conveying their main regenerative (pro-angiogenic and anti-

inflammatory) functions via paracrine activity [125, 126]. Numerous studies in the 

past several decades have revealed the highly complex role of adipose tissue and 

ASC in the process of regeneration. As the scientific and medical community 

awaits the FDA response, studies involving ASC as therapeutic cells are ongoing 

and will contribute toward our greater understanding of the restorative potential of 

these cells, as well as shedding light on the mechanisms underlying their 

therapeutic capacity.  
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1.3   Research focus 

1.3.1 Study background 

As indicated above, the evidence of harmful effects of CS on body is 

overwhelming [16, 40, 48, 68]. Concurrently, as cell therapies slowly begin to move 

into clinical use, it is increasingly important to evaluate in depth the effect of CS on 

the therapeutic potential of stem/stromal cells. The innate regenerative 

mechanisms of the body may be compromised in patients exposed to systemic 

effects of CS-derived toxins. This habit is known to affect the cardiovascular 

system [16, 43] and it has been shown that certain molecules present in tobacco 

smoke enter the blood stream from the lungs and subsequently are distributed to 

various vital organs.  

With the knowledge that CS has negative effects on various organs and 

subsequently on the individual cells within the body, we felt that it was crucial to 

assess various effects of CS on stem/stromal cells.  While undertaking these 

studies, which involved the chronic exposure of mice to tobacco smoke we 

undertook the assessment of several organs for smoking-induced pathology, 

which led to novel observations concerning renal changes due to smoke exposure, 

and the effects of ASC on these changes.  I also had the opportunity to collaborate 

on related experiments directed to understanding the interplay between 

hematopoietic progenitor cells (HPC) and the effect of CS on lung health which 

had been suggested by prior studies from our laboratory.  
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1.3.2 Interconnection of cigarette smoking, hematopoietic progenitor 

cells, adipose-derived stromal cells, and kidney 

In the following set of studies, CS is the main damage-causing factor. We 

focused on assessing the impact that CS has on both organ and cell 

pathophysiology. We conducted studies involving the effect of CS on lung and 

kidney tissue, as well as hematopoietic progenitor cells (HPC), and ASC. We were 

aware of evidence suggesting that CS may exacerbate kidney damage, and 

desired to explore whether there were chronic renal effects that we might be able 

to address or ameliorate by ASC administration, much as our laboratory had 

previously shown for chronic lung pathology. As we were learning that the ASC 

population in smokers was compromised (Chapter 2), we began to explore 

whether the CS-induced bone marrow damage we had also previously described 

might actually contribute to to the lung damage, or whether these were two 

independent CS-induced effects. We reasoned that if HPC from bone marrow 

played a role in lung repair following smoke exposure, and also could retain this 

activity despite smoke exposure, then enhancing their mobilization with AMD3100 

might be able to limit lung damage.  Conversely, if HPC in smoke-exposed animals 

either were refractory to the mobilizing effect of AMD3100, or were unable to 

augment lung repair in the context of cigarette smoke exposure, then this would 

suggest that allogeneic therapies might be preferred or ever required to address 

lung disease in smokers, much as I now hypothesize for vascular disease in 

smokers. 
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Chapter 2: Effects of cigarette smoking on angiogenic potential of adipose-

derived stem cells 

 

2.1   Introduction 

2.1.1 Cigarette smoking and clinical trials 

Cigarette smoking is undisputedly associated with numerous negative 

health effects. While the progress in the area of regenerative medicine and cell 

therapy continues to move ahead, it is important to recognize that many diseases 

which have the potential to be treated using stem cells or stem cell derived 

products may be caused by CS exposure. Interestingly, the majority of current 

clinical trials listed on the ClinicalTrials.gov website evaluate the therapeutic 

effects of autologous ASC do not list tobacco use as an exclusion criterion. 

Therefore, there is a great need to determine whether exposure to CS adversely 

affects the production of various cytokines and growth factors by ASC, and thus 

alters the overall therapeutic activity of these cells.   

2.1.2 Media conditioned by ASC 

Since stem cells, including ASC, have been shown to mediate their 

regenerative effect via secretion of various paracrine factors [80, 90, 126], the use 

of those very factors while excluding the cells (i.e. utilizing conditioned media) has 

been proposed.  Recently, multiple studies have evaluated mesenchymal and 

adipose stem cell conditioned media (CM) as a replacement sufficient to provide 

key activities of these cells in various in vitro and in vivo models [126-129]. CM is 
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typically generated in protein-poor media in which a confluent monolayer of stem 

cells has been cultured for a specified amount of time, typically 24-72 hours. While 

this media may not favor proliferation, they cells actively secrete therapeutically 

active factors [88, 130]. Such CM has been shown to be able to deliver a 

therapeutic effect, comparable to that of stem cells, in diseases like stroke [131, 

132], myocardial infarction [133, 134] and limb ischemia [126].  

Clinically there is an interest in the possibility of scalable production of CM 

that could be allogeneic in origin, and has been defined via a series of CM assays 

to determine the level of beneficial factors and therefore its therapeutic potency. 

Clinical use of such CM could reduce the practical problems relating to autologous 

cell procurement as well as allogeneic cell cryopreservation.  

Recent studies have shown that the beneficial effect of CM may be 

importantly conferred through processes involving transport and secretion of 

vesicular bodies, often referred to as exosomes; these are small vesicles (70-

100nm in diameter) surrounded by membrane, thought to be released outside of 

the cell via exocytosis of an endosome that encapsulates these micro-vesicles. 

Timmers et al. has demonstrated that systemic administration of exosomes 

improves cardiac function in a mouse model of ischemia reperfusion [135]. 

Cantaluppi et al. has shown that administration of isolated exosomes into a rat 

model of non-ischemic acute kidney injury is able to reverse the damage and 

improve kidney function. In addition, he has demonstrated that exosomes isolated 

from EPC and administered systemically localize to peritubular capillaries, 

presumably aiding in the regenerative process [136].  
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2.1.3 EC/ASC co-culture-based networks 

The interaction of endothelial cells (EC) and pericytes (known to wrap 

themselves around capillaries and venules) has been shown to have a significant 

role in vascular network remodeling [137, 138]. As both bone marrow-derived 

mesenchymal stem cells (MSC) and ASC have been shown to have pericyte-like 

properties [86], their role in blood vessel maintenance has been increasingly 

investigated in the context of regeneration of the cardiovascular system. ASC have 

been shown to play a role in restoration of injured vasculature [80, 89, 93]. 

Numerous in vitro studies have demonstrated that ASC participate in vessel 

network formation and remodeling via EC/ASC interactions when both cells are 

co-cultured together in an appropriate ratio [139]. ASC help to establish these 

networks via secretion of pro-vasculogenic growth factors like hepatocyte growth 

factor (HGF) and vascular endothelial growth factor (VEGF) [80, 90].  

In addition, it has been proposed that for therapeutic purposes, a co-

implantation of EC and ASC offers a more robust regenerative effect of vascular 

network formation due to immediate availability and close proximity of these two 

types of cells [140]. Traktuev et al. demonstrated that subcutaneous co-

implantation of EC and ASC in a collagen plug in mice established robust vascular 

networks comparing to implantation of EC or ASC alone [141].  These seminal 

studies have led to ongoing clinical trials of autologous stromal vascular fraction 

preparations for critical limb ischemia in several countries, including an FDA-

approved clinical trial, NCT02234778. 
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I recognized that subjects enrolled in such trials would likely include a high 

frequency of prior or current smokers. Accordingly, in order to assess the effect of 

CS on vasculogenic properties of ASC we performed in vivo studies utilizing a 

mouse model of hindlimb ischemia to compare the effects of subsequent 

administration of human ASC derived from smoking or non-smoking donors. In 

order to determine the mechanism of observed differences in the efficacy of ASC 

obtained from different donors, I subsequently conducted a series of in vitro studies 

assessing vasculogenic potential of these cells as well as the composition of their 

secretome.   
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2.2   Materials and Methods 

2.2.1 Approvals and patient samples 

Procedures for collecting umbilical cord and adipose tissue were approved 

by the Indiana University School of Medicine IRB. Human cord blood derived 

endothelial cells (CBD-EC) were isolated and expanded as previously described 

[142] and used at passages 5-8. Normal human dermal fibroblasts were purchased 

from Lonza, expanded in EGM-2MV (Lonza), and used at passage 5. 

Pools of non-smoking (4 male, 6 female) and smoking (4 male, 3 female) 

patients for comparison purpose were matched for gender and age (male: 64.1 ± 

5.5 years old, female: 39.6 ± 5.5 years old; mean±SD) and BMI (male: 33.5 ± 6.8, 

female: 22.8 ± 2.2; mean±SD), detailed donor demographics is presented in Table 

4.   

2.2.2 Cell culture 

Human adipose tissue samples were collected during elective liposuction 

procedures. Tissue was digested with collagenase Type 1 (1 mg/ml, Worthington 

Biochemical) for 1 hr at 37ºC under gentle agitation and centrifuged at 300g for 10 

minutes to facilitate separation of stromal vascular fraction (pellet) from adipocytes. 

Pellets were then re-suspended in media, passed through 100 µm filter (Fisher 

Scientific), and centrifuged at 300g for 5 minutes. Final pellets were re-suspended 

in EGM-2MV media and plated. The attached cells have been described as 

enriched in ASC, and were expanded till passages 3-5 and used for experiments. 

Cells were at equal passages across all the donors for any given experiment. 
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Mouse ASC were isolated from subcutaneous fat pads of C57Bl/6 female mice (14 

weeks old, Jackson Laboratories) following the same protocol used to isolate 

human ASC. Mouse ASC were expanded in EGM-2MV media and used at 

passage one. Cord blood-derived endothelial cells were isolated as previously 

described [139, 142], expanded, and used at passages 5-8. 

2.2.3 Adipogenic differentiation of human ASC 

Human ASC were plated at full confluency in EBM-2/5%FBS media. On the 

following day, media on the cells was exchanged to Adipocyte Differentiation 

Medium (ZenBio) for six days with single media exchanged at day three. Then cells 

were incubated in Adipocyte Maintenance Medium (ZenBio) for six days with a 

media exchange at day three. After twelve days, cells were fixed, stained with Nile 

Red dye (to visualize lipid droplets) and Hoechst 33342 (to visualize nuclei), and 

imaged using a fluorescent microscope. For quantitative analysis, plates were 

scanned with a fluorescent plate reader (Acumen Explorer).   

2.2.4 Flow cytometry analysis of human ASC 

Semi-confluent human ASC cultures were detached with 2 mM 

Ethylenediaminetetraacetic (EDTA) / PBS and incubated with fluorescently-tagged 

IgG to cell surface markers: CD13, CD29, CD73, CD90, CD105, CD140a, 

CD140b, CD31, CD34, CD45, Notch 2, Notch 3 (all purchased from BD) for 20 min 

on ice. After incubation, cells were washed and fixed with 1% formaldehyde. 

Labeled cells were evaluated on BD Accuri analyzer and FlowJo software. 
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2.2.5 Mouse cigarette smoke exposure model 

Animal studies were approved by the Institutional Animal Care and Use 

Committee at Indiana University School of Medicine. C57BL/6 mice (female, 10-

week old) were placed into a Teague 10E chamber (Teague Enterprises, Figure 

2) and exposed to 11% mainstream and 89% side-stream CS (Cigarette Smoke 

group) for 5 hrs/day (5 days/week for one month or five months) [105]. CS was 

generated by reference cigarettes (3R4F; Tobacco Research Institute, University 

of Kentucky, Kentucky). The total amount of suspended particulates (on average 

90 mg/m3) and carbon monoxide (on average 350 ppm) within the chamber were 

monitored on a daily basis, as previously described [105]. In parallel, another set 

of mice was maintained in ambient air as Air Control group. After a one month 

smoking regimen was completed, mice were euthanized, subcutaneous adipose 

tissue was collected and used to isolate adipose stem cells. In a study that involved 

5-month smoke exposure, animals were subjected to hindlimb ischemia inducing 

surgery after completion of the preconditioning period. 
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Figure 2. Teague Smoking Chamber (Teague Enterprises). Photo illustrates a 

smoke machine and two exposure chambers 
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2.2.6 Mouse hindlimb ischemia model 

C57Bl/6 mice (male and female, 10-week old) were anesthetized with 2.5% 

isofluorane. A small incision was made at the middle section of the left hindlimb, 

followed by ligation and excision of the femoral artery, vein, and vascular branches 

along the length from inguinal ligament to bifurcation of saphenous and popliteal 

arteries. The incision was closed using 6-0 silk sutures. Animals were randomized 

into two cohorts to test early (two groups A, all female mice, cell or control injection 

24-hours post-surgery; n=6-8) and delayed (two groups B, male and female (ratio 

1:1), cell or control injection 32 days post-surgery; n=6) therapy approaches. Mice 

received injections via tail vein in 120 µl of basal medium. In cohort A, mice 

received either basal medium (EBM2, Lonza) or 5x105 human ASC from either 

smoking or non-smoking donors. The effects of ASC obtained from three non-

smoking and three smoking donors were tested individually here. In cohort B, mice 

received either 5x105 human ASC obtained from either one smoking or one non-

smoking donor. Blood flow in ischemic and contralateral intact limbs was evaluated 

using Laser Doppler Imager (Moor Instruments, Wilmington, DE) [143]. For each 

mouse, three consecutive images were obtained from plantar area, and mean 

perfusion value was calculated. The tissue perfusion value (TPV) in affected limb 

is presented as TPV [%] = (left limb x 100%) / (right limb). Blood flow was assessed 

before the surgery and then on days 1, 4, 7, 14, 21, 28 post surgery for cohort “A”, 

and were further expanding to days 39-74 (will scans every 7th day) for cohort “B”. 

In addition, we conducted a study during which a subset of mice was placed 

in an environmental chamber and exposed to CS for 5 hours/day, 5 days/week for 
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5 months, while the remaining mice were exposed to ambient air for the same time 

course. Two weeks prior to the completion of the preconditioning period, a small 

subset of animals was removed from ambient air group and euthanized in order to 

remove their fat pads to isolate mouse ASC (mASC), following the same protocol 

used for human ASC isolation. Upon completion of the full conditioning period, all 

remaining mice were subjected to the standard hindlimb ischemia-inducing 

surgical procedure. The following day, mice received intravenous administration of 

mASC from non-smoking donors, at passage 1, or vehicle. Blood flow was 

assessed prior to surgery and on days 1, 4, 7, 14, 21, 28 post-surgery.  

2.2.7 Vascular Network Formation Assay 

The EC-ASC co-culture vasculogenesis model was arranged as routine and 

previously described [139]. Briefly, EC (104 cell/cm2) were pre-mixed with either 

human or mouse ASC (6x104 cell/cm2) or normal human dermal fibroblasts (NHDF, 

6x104 cell/cm2) and incubated in either EBM-2/5%FBS media alone or 

supplemented with 50% human ASC-CM. The co-cultures were incubated for six 

days with media exchange at day three. In separate set of experiments, EC-ASC 

co-culture incubation media was supplemented with either vascular endothelial 

growth factor (VEGF-A), or hepatocyte growth factor (HGF), or stromal derived 

growth factor1 (SDF-1), each at 10 ng/ml. To test the role of SDF-1 in network 

formation, EC-ASC co-cultures were supplemented with AMD3100 (an antagonist 

of SDF-1 receptor CXCR-4) at 0.1, 1, 5, or 10 μg/ml or with 5mM of Diprotin A (an 

inhibitor of DPP4), at the time of plating. To test for a role of CD26/DPP4 in 

modulating vascular network formation.  To evaluate the degree of vascular 
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network formation, co-cultures were fixed in methanol (-20°C, for 5 minutes), 

stained with biotinylated Lectin (Ulex Europaeus Agglutinin I, Vector labs) for 1 

hour, followed by incubation with Streptavidin Alexa 488 (Invitrogen) for 30 min. 

Fluorescently stained cultures were imaged using a Nikon Eclipse Ti microscope 

(example of the scanning area is shown in Figure 3). Digital images were acquired 

using a 4x objective (nine images per well) and processed with MetaMorph 

software using the “Angiogenesis Tube Assay” algorithm (Molecular Devices, 

Downingtown, PA).  
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Figure 3. Vascular Network Formation Assay: well assessment. A, 8x8 scan 

of part of 48-well plate. White square inside the well indicates the area of interest 

that is photographed for VNF analysis purposes. B, 3x3, stitched, scanned image 

from within the well, with 5% overlap between each of the 9 individual images.   
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2.2.8 Conditioned media generation 

To generate ASC conditioned media (ASC CM), human ASC (passage 3-

5) confluent monolayers were incubated over EBM-2/5%FBS medium for 48 hours. 

Conditioned media were collected, centrifuged at 400g for 10 minutes, and 

supernatants were aliquoted and stored at -80ºC. For subsets of experiments, CM 

were 2.5-fold concentrated using Amicon Ultra-15 Ultracell 10K columns 

(Millipore). In subset of tests, human ASC we incubated in the presence of 10 

ng/ml of tumor necrosis factor-alpha (TNFα) or interleukin-1β (IL-1β) for 48 hours. 

CM from EC/ASC co-cultures was collected on Day 6, after 72 hours of incubation.  

2.2.9 EC survival assay 

Cord Blood derived (CBD)-EC (passage 5) were seeded at 104 cells/cm2 in 

control EBM-2/5%FBS media. Next day, media on the cells was exchanged to 

control media alone or premixed with human ASC-CM in ratio 1:1. Cells were 

incubated for four days, then fixed and stained with 4′,6-Diamidine-2′-phenylindole 

dihydrochloride (DAPI). Series of images were taking using Nikon Eclipse Ti 

microscope followed by their processing using ImageJ software to calculate the 

cell numbers.  

2.2.10   Proteomic analysis of human ASC conditioned media  

Concentrated samples of media conditioned by human ASC as described 

earlier were transferred to the Indiana University Proteomics Core. Samples from 

one non-smoker and one smoker were solubilized with equal volumes of 8 M 

urea/10mM DTT at room temperature, and protein concentration was determined 
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by the Bradford assay (48). Each sample was processed as previously 

described (49). 

Sample digests were analyzed using a Thermo Scientific Orbitrap Velos Pro 

hybrid ion trap-Orbitrap mass spectrometer coupled with a Surveyor autosampler 

and MS HPLC system (Thermo Scientific). Mass spectral data were collected in 

the “Data dependent MS/MS” mode of Fourier transform-ion trap (MS-MS/MS) with 

the electrospray ionization interface using normalized collision energy of 35% 

(collision induced dissociation). 

The acquired data were searched against the UniProt protein sequence 

database of HUMAN (released on 02/04/2015) using X!Tandem algorithms in the 

Trans-Proteomic Pipeline (http://tools.proteomecenter.org/software.php) (TPP, v. 

4.6.3). The identifications of peptide and protein made by X!Tandem were 

validated by PeptideProphet (50) and ProteinProphet (51) in the Trans-Proteomic 

Pipeline (http://tools.proteomecenter.org). Only validated proteins and peptides 

with protein probability ≥ 0.9000 and peptide probability ≥ 0.8000 of being correct, 

were reported. Protein quantity was determined using a label-free quantification 

software package, IdentiQuantXL (53). 

2.2.11   RayBiotech  

Semi-quantitative assessment of relative protein expression was 

determined using Human Cytokine Antibody Array (C5) (RayBiotech). In principle, 

the capture antibodies from the angiogenic panel were embedded in a “dot-

manner” on a nitrocellulose membrane. The assessment process involved bathing 

http://tools.proteomecenter.org/software.php
http://tools.proteomecenter.org/
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the membranes in the tested ASC CM, application of biotinylated detection 

antibody and subsequent chemiluminescent signal assessment. The membranes 

were photographed and the intensity of each dot was determined using ImageJ 

software.  

2.2.12   ELISA analysis of human ASC conditioned media 

The presence and concentration of hepatocyte growth factor (HGF), 

vascular endothelial growth factor (VEGF), stromal cell-derived factor 1 (SDF-1), 

Angiopoietin-1, Angiopoietin-2, and Activin A in ASC-CM was assessed by ELISA 

using the reagents purchased from RnD Systems and following manufacturer’s 

protocols. Additionally, ASC-CM were analyzed for expression of selected 

cytokines and growth factors using RayBiotech C-Series Human Cytokine 

Antibody Array C5 (RayBiotech Inc.) according to the manufacturer’s instructions.  

2.2.13   Analysis of mRNA expression in human ASC  

ASC semi-confluent monolayers were lysed and total RNA was isolated 

using NucleoSpin RNA II kit (Clontech, Mountain View, CA). cDNA was generated 

using iScript RT kit and polymerase chain reactions were performed using iTaq 

SYBR Green PCR Supermix  (Bio-Rad, Hercules, CA) on StepOnePlus machine 

(Applied Biosystems). Primers were used, as listed in Table 1.  
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Primer Forward Reverse 

βActin caccattggcaatgagcggttc aggtctttgcggatgtccacgt 

HGF gagagttgggttcttactgcacg ctcatctcctcttccgtggaca 

SDF1 gcccgtcagcctgagctaca ttcttcagccgggctacaatct 

VEGF ttgccttgctgctctacctcca atggcagtagctgcgctgata 

Pai1 ctcatcagccactggaaaggca gactcgtgaagtcagcctgaaac 

TSG-6 cggggtaccatgatcatcttaatttactt ggtgatcagtggctaaatcttcca 

CD140a ttcccttggtggcaccc ggtacccactcttgatcttattgtagaa 

CD140b gccttaccacatccgctc tcacactcttccgtcacattgc 

 

Table 1. Forward and reverse primer sequences.   
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2.2.14   Analysis of DPP4 activity in human ASC CM 

The Dipeptidylpeptidase (DPP) 4, protein known as CD26 and expressed 

on the surface of many cell types, has been shown to act as protease by cleaving 

various cytokines and chemokines containing proline or alanine, hence modifying 

their function [144]. Since SDF-1, which was observed to be expressed and 

secreted to a lesser degree in ASC from CS donors, can potentially be cleaved by 

DPP4, therefore rendering it non-functional, the DPP4 activity in ASC CM derived 

from smokers and non-smokers was assessed using DPPIV-Glo Protease Assay 

(Promega, Madison, WI) according to the manufacturer’s instructions. Colorimetric 

change was assessed using a luminometer machine.  

2.2.15   Statistical analysis 

Quantitative data is expressed as mean ± SEM. Statistical analysis of the 

data that include only two experimental groups was performed with an unpaired t-

test. Analysis of data with at least three groups was performed with ANOVA with 

Tukey’s multiple comparisons test. Statistical analysis was performed using Prism 

4 (Graphpad, San Diego, CA). 
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2.3   Results 

2.3.1 Morphological and phenotypic assessment of human ASC from 

smoking and non-smoking donors  

To determine whether CS exposure affects ASC morphology and 

proliferation rate, isolated cells were plated in EGM-2MV media and expanded for 

several passages. Evaluation of ASC at passage 3 using phase contrast 

microscopy revealed no visual differences of CS-ASC (ASC from smoking donors, 

n=3) when compared to non-CS-ASC (ASC from non-smoking donors, n=4) 

(Figure 4A). Furthermore, proliferative rates (doubling time) of ASC of both cell 

types were similar (Figure 4B). To test the effect of CS exposure on cell 

differentiation potential, ASC were subjected to adipogenic differentiation protocol. 

Quantitative analysis performed by staining of differentiated cell monolayers with 

Nile Red to reveal lipid droplets and counterstained with Hoechst 33342 to reveal 

nuclei showed that both CS and non-CS ASC undergo adipogenic differentiation 

to the same degree (Figure 4C, D). Flow cytometric analysis of surface markers 

known to be expressed by ASC revealed that both non-CS-ASC and CS-ASC at 

passage 4 are positive for CD13, CD29, CD73, CD90 and CD105. At the same 

time, cell populations were free of endothelial cells (CD31) and leukocytes (CD45). 

As also expected, samples were negative for CD34, which we previously described 

as expressed only in freshly isolated ASC. These findings are consistent with 

previous observations by many groups [145] in regards to expanded ASC. 

However, we did observe a difference in expression of CD140a (PDGFRα) and 

140b (PDGFRβ, a pericyte marker). Both receptors were expressed to a lower 
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extent in CS-ASC by comparison with non-CS-ASC. The assessment of Notch 2 

and 3 expression revealed a dramatically higher expression of Notch 2 and slightly 

higher expression of Notch 3 in CS-ASC (Figure 4E).   
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Figure 4. Morphological, differentiation and phenotypical assessment of 

ASC from smoking and non-smoking donors. A, Representative images of 
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ASC from nonsmoking and smoking donors at passage 3. B, Analysis of 

proliferative rate of ASC. Cell were plated at semi-confluency and incubated in 

EGM-2MV media for one or four days. Difference in cell counts at these time-points 

was used to calculate cell doubling time. C, Representative images of 

undifferentiated and differentiated ASC at day 12 of adipogenic differentiation 

protocol. Cells were fixed and stained with Nile Red (red) to reveal lipids and 

Hoechst 33342 (blue) to reveal nuclei. D, Quantitative analysis of lipid 

accumulation (intensity of fluorescent signal of Nile red) in ASC, from nonsmoking 

and smoking donors, subjected to adipogenesis differentiation protocol. E, Flow 

cytometric analysis of surface marker expression by ASC at passage 4, from non-

smoking and smoking donors.  
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2.3.2 Analysis of therapeutic effect of ASC from smoking and non-

smoking donors 

  To evaluate whether chronic smoke exposure affects the therapeutic 

potency of in vitro expanded ASC, mice with hindlimb ischemia induced as 

described above received systemic injections of ASC obtained from one of three 

non-CS or one of three CS female human donors (six mice per each donor) next 

day post-surgery. As expected, non-CS-ASC routinely and significantly improved 

blood flow in the ischemic limbs by day seven (p<0.001), whereas CS-ASC were 

ineffective regardless of the CS donor (Figure 5A, B). In the subsequent study I 

evaluated whether ASC would be able to improve the blood flow in chronically 

ischemic limbs. After induction of limb ischemia, mice were allowed to recover for 

one month and then received intravenous infusion of ASC from one non-CS and 

one CS female donors. Similar to the first study, non-CS-ASC significantly 

improved perfusion in affected limbs, whereas CS-ASC were entirely ineffective 

(p<0.001) (Figure 5C).  

In addition we conducted a study during which mice were exposed to CS or 

ambient air for 5 hours/day, 5 days/week for 5 months, followed by immediate 

induction of hindlimb ischemia. Next day after surgery seven mice in each group 

(AC and CS) have received intravenously either AC-mASC, obtained from eight 

months old ambient air-exposed animals, or vehicle. Analysis of blood flow 

restoration in the ischemic limbs revealed that mASC administration was 

ineffective when provided to either AC or CS mice, when compared to vehicle 

treatment. However, in the secondary analysis, where data with blood flow 
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recovery in CS mice, independent of the treatment (ASC+Veh), was evaluated 

against the flow recovery in all AC mice, the statistically significant reduction in the 

rate of recovery in CS mice was detected (p=0.02, Figure 5D).  
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Figure 5. Analysis of therapeutic effect of ASC from smoking and non-

smoking donors. A, Representative Laser Doppler Imager-generated flux images 

from planter area of healthy (H) and injured (I) limbs of mice at day 1 and day 28 

after surgery. Mice were treated with human ASC from nonsmoking (non-CS-ASC) 

and smoking (CS-ASC) female donors. B, Quantitative analysis of blood flow 

restoration in hindlimb in model of acute ischemia. 5x105 ASC were systemically 

administered through tail vein one day after ischemia induction. Graph represents 
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data from three non-CS-ACS donors and three CS-ASC. Each sample of ASC was 

provided to six animals. Control group was composed of seven mice. C, 

Quantitative analysis of blood flow restoration in hindlimb in model of chronic 

ischemia. 5x105 ASC were systemically administered through the tail vein 32 days 

after ischemia induction. Graph represents data from one non-CS-ACS donors and 

one CS-ASC (n=6/group). D, Quantitative analysis of blood flow restoration in 

hindlimb in model of acute ischemia conducted in a CS-pre-exposed mice. Mice 

were pre-exposed to AC or CS for five months, followed by surgical procedure to 

induce limb ischemia. Next day, 5x105 mASC, obtained from 8-month old AC-

exposed mice, or Vehicle were administered through the tail vein. Graph 

represents the combined data (mASC-treated and Vehicle-treated) for AC and CS 

mice (n=14). For all graphs: *p<0.05, **p<0.01, ***p<0.001.      
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2.3.3 Analysis of vasculogenic activity of ASC from smoking and 

non-smoking donors 

To determine whether the marked abnormality found in the ability of ASC to 

influence recovery from hindlimb ischemia was recapitulated in vitro, we employed 

a co-culture model of ASC with EC established by our laboratory. In this model, 

cells are incubated in growth factor-poor media (EBM2/5%FBS), and ASC support 

EC reorganization into vascular structures in a manner which is highly dependent 

on direct as well as paracrine interactions between ASC and EC. In assessing the 

vasculogenic activities of ASC from three non-CS and three CS female donors we 

determined that while EC cultured on monolayers of non-CS-ASC established 

dense vascular cords as expected (Figure 6A), EC cultured on CS-ASC 

established less dense vascular networks. Quantitative analysis revealed a 33% 

decrease in vessel density when formed on CS-ASC (Figure 6B). To evaluate 

whether this detrimental effect of smoking on ASC vasculogenic activity was 

influenced by donor sex, we also conducted this analysis with ASC from male 

donors. In parallel with our findings for female ASC, EC incubated on CS-ASC from 

male donors produced vascular networks 35% lower in density then EC cultured 

on non-CS-ASC male donors (p<0.01) (Figure 6B). To further extend these results 

from human donors, we conducted an additional set of experiments in which 

human EC were co-cultured with mouse ASC isolated either from healthy (Air 

Control) female mice or from mice which had been exposed to CS for one month. 

We found that human EC were able to establish vascular cords when cultured on 

mouse ASC, but the density of vessels was 23% lower in co-cultures containing 
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ASC from CS-exposed mice compared with co-cultures with healthy ASC (Figure 

6C), confirming that the adverse effect of CS on the ability of ASC to support 

vascular network formation was also conserved across species.  
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Figure 6. Analysis of vasculogenic activity of ASC from smoking and non-

smoking donors. A, Representative images of vascular networks formed by EC 

co-cultured with ASC derived from non-smoking or smoking human female donors. 

EC-ASC co-cultures were incubated for six days, then fixed and stained with Ulex 

Europaeus Agglutinin I (white) to reveal vascular cords. B and C, Quantitative 

analysis of vascular network formation (expressed as density of total tube length) 

by EC co-cultured with ASC derived from non-smoking or smoking human female 

and male donors (B) or with ASC obtained from female C57Bl/6 mice after one 

month exposure to either ambient air (Air Control) or CS (C). For all graphs: 

**p<0.01, ***p<0.001. 
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2.3.4 Vasculogenic activity of ASC conditioned media 

To specifically investigate the role of paracrine activity of ASC on 

vasculogenesis, we evaluated the ability of ASC conditioned media (CM) to 

augment vascular network formation by EC when cultured on fibroblast 

monolayers. Fibroblasts, as previously reported [139], are inherently relatively 

weak in the ability to support EC vasculogenesis, rendering the EC-fibroblast co-

culture model suitable as a system in which to test the effects of pro-vasculogenic 

factors, including ASC CM [139]. Exposure of EC-fibroblast co-cultures to 50% 

non-CS-ASC CM increased the density of vascular networks by 74% compared to 

co-cultures incubated in control media, however exposure of the similar co-cultures 

to CS-ASC CM produced a lesser degree (25%) of improvement in network 

density(Figure 7A). 

To address potential mechanisms of this finding, ASC CM was tested for 

ability to promote EC survival. Semi-confluent EC cultures were incubated in EBM-

2/5%FBS media alone or supplemented with 50% of female donor ASC-CM (non-

CS and CS) for four days. non-CS-ASC CM improved EC survival/proliferation by 

150%, whereas CS-ASC CM produced only 94% improvement (Figure 7B). 
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Figure 7. Vasculogenic activity of ASC conditioned media. A, Quantitative 

analysis of vasculogenic activity of 48-hour ASC conditioned media in EC-

Fibroblast co-culture model. EC-Fibroblast co-cultures were incubated in control 

media alone or supplemented with ASC-CM from non-smoking or smoking female 

donors (in ratio 1:1). Co-cultures were incubated for six days with media exchange 

at day 3. B, Analysis of the effect of ASC-CM from non-smoking and smoking 

donors on EC proliferation/survival. Semi-confluent monolayers of EC were 

exposed to control media alone or supplemented with ASC CM (in ratio 1:1) for 

four days, then fixed, stained with DAPI to reveal nuclei, and counted. For all 

graphs: *p<0.05, **p<0.01, ***p<0.001.  
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2.3.5 Proteomic analysis of human ASC CM 

Proteomic assessment of CM derived from one non-CS (healthy non-

smoker) and one CS (most severe smoker) human ASC donor, using MS/MS 

technique, revealed 714 unique proteins. This method allows for quantitative 

identification of proteins in the tested sample. MS/MS, also known as Tandem 

Mass Spectrometry, relies on a generation of ions that are separated by mass-to-

charge ratio to be further photo-dissociated and detected. The detected ions are 

then matched with corresponding peptides via the use of one or more databases. 

Among the identified proteins, 12 were decreased in CS sample, while 13 were 

increased in the CS sample by 3-fold or more. The analysis revealed a decrease 

in SDF-1 in the CS-ASC CM. Notably, presence of pro-angiogenic factor, VEGF, 

was not detected in either of the samples. In addition, certain proteins that are 

associated with smoking history of the donor and can be detected in the patient’s 

serum, were also present in the CS-ASC CM. These include ASAH1, a 

biomarker for emphysema, CTSB, a protein induced by CS and implicated in 

tumor metastasis, LTBP1, a protein correlated with COPD development, SIX3, a 

protein which when downregulated is associated with lung adenocarcinoma, 

APOE, a protein which decreases with aging and is a free radical scavenger. All 

proteins with 2 or more fold difference between the CS and non-CS donors are 

listed in Table 2. Parallel protein analysis of CM media sample from the same 

donors using a semi-quantitative Human Cytokine Antibody Array (C5) has 

revealed a marked decrease of the relative expression level of 10 out of 80 

different cytokines in the sample derived from CS donors including IL6, IL8, 
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MCP1, CCL5, Angiogenin, VEGF-A, CXCL6, HGF, MIP-3a, TIMP1 (Figure 8, 

Table 3).   
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GAS6 Isoform 4 of Growth arrest-
specific protein 6 

1.00 934220 5731400 6.1 

TARS Isoform 2 of Threonine--
tRNA ligase, cytoplasmic 

1.00 1378078 7264500 5.3 

ASAH1 Isoform 3 of Acid 
ceramidase 

1.00 659363 3435175 5.2 

AP2M1 AP-2 complex subunit mu 1.00 2607551 10643975 4.1 

CTSB Cathepsin B 1.00 382262770 1444213400 3.8 

ABI3BP Target of Nesh-SH3 1.00 47295678 175541025 3.7 

CDC37 Hsp90 co-chaperone 
Cdc37 

0.94 688975 2499225 3.6 

CXCL1 Growth-regulated alpha 
protein 

1.00 13973951 47150933 3.4 

COMP Cartilage oligomeric matrix 
protein 

1.00 8492298 26807117 3.2 

RPL8 60S ribosomal protein L8 1.00 726116 2171784 3 

DKK3 Dickkopf-related protein 3 0.94 304992 922000 3 

SERPINE2 Glia-derived nexin 1.00 37743733 114677733 3 

PAPPA Pappalysin-1 1.00 2640993 7950100 3 

COL16A1 Collagen alpha-1(XVI) 
chain 

1.00 4167375 12061634 2.9 

LTBP1 Latent-transforming growth 
factor beta-binding protein 
1 

1.00 7456508 20867643 2.8 

CXCL6 C-X-C motif chemokine 1.00 25652450 71316000 2.8 

ASAH1 Acid ceramidase 1.00 1618546 4519825 2.8 

CLEC11A C-type lectin domain family 
11 member A 

1.00 16081542 42856800 2.7 

ALDOC Fructose-bisphosphate 
aldolase 

1.00 637942 1698375 2.7 
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LTBP1 Isoform 4 of Latent-
transforming growth factor 
beta-binding protein 1 

1.00 15385147 41546988 2.7 

LTBP1 Isoform 3 of Latent-
transforming growth factor 
beta-binding protein 1 

1.00 13546688 36285298 2.7 

AEBP1 Adipocyte enhancer-
binding protein 1 
(Fragment) 

1.00 682938 1743725 2.6 

HIST1H1C Histone H1.2 1.00 1095634 2855117 2.6 

RCN1 Isoform 2 of Reticulocalbin-
1 

1.00 2599323 6753800 2.6 

FAT2 Protocadherin Fat 2 0.97 1487189 3927500 2.6 

PSMA4 Proteasome subunit alpha 
type 

0.97 236484 595261 2.5 

ACTN4 Alpha-actinin-4 1.00 188291467 465277880 2.5 

RPL30 60S ribosomal protein L30 1.00 6212300 14876975 2.4 

STC2 Stanniocalcin-2 1.00 2600795 6123636 2.4 

ARPC1B Actin-related protein 2/3 
complex subunit 1B 

1.00 3648439 8706650 2.4 

GAS6 Isoform 2 of Growth arrest-
specific protein 6 

1.00 35761020 85913700 2.4 

SH3BGRL3 SH3 domain-binding 
glutamic acid-rich-like 
protein 3 

1.00 1679634 3793134 2.3 

AGRN Agrin 1.00 404157 915088 2.3 

ARPC4 Actin-related protein 2/3 
complex subunit 4 

1.00 882865 2055367 2.3 

RPS19 40S ribosomal protein S19 
(Fragment) 

1.00 3389170 7933850 2.3 

LAMA1 Laminin subunit alpha-1 1.00 5562100 12702450 2.3 

ARPC4 Actin-related protein 2/3 
complex subunit 4 
(Fragment) 

1.00 293882 688151 2.3 

ADAMTSL1 ADAMTS-like protein 1 1.00 1182025 2755550 2.3 

RPL23A 60S ribosomal protein L23a 1.00 1301075 2822467 2.2 

CD59 CD59 glycoprotein 1.00 2655434 5715133 2.2 
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RPL11 60S ribosomal protein L11 0.97 753763 1652988 2.2 

WDR1 WD repeat-containing 
protein 1 (Fragment) 

1.00 1163981 2458975 2.1 

RPLP0 60S acidic ribosomal 
protein P0 

1.00 1698298 3553386 2.1 

COL1A1 Collagen alpha-1(I) chain 1.00 1279345230 2682566450 2.1 

RDX Isoform 5 of Radixin 1.00 1349525 2882750 2.1 

CAND1 Cullin-associated NEDD8-
dissociated protein 1 

0.94 383421 813950 2.1 

SIAE Isoform 2 of Sialate O-
acetylesterase 

1.00 9120400 18722125 2.1 

FBN2 Fibrillin-2 1.00 35581622 71356611 2 

OLFML3 Isoform 2 of Olfactomedin-
like protein 3 

1.00 16586451 33384918 2 

ACTR3 Actin-related protein 3 1.00 6342950 12438050 2 

ARPC3 Actin-related protein 2/3 
complex subunit 3 

0.96 871483 1701384 2 

ANXA6 Annexin 1.00 2890500 5848275 2 

NEU1 Sialidase-1 0.96 470940 965375 2 

RPL3 60S ribosomal protein L3 1.00 1363825 2726900 2 

RCN3 Reticulocalbin-3 (Fragment) 1.00 3653517 7129884 2 

RCN3 Reticulocalbin-3 1.00 8529491 17095659 2 

IPO7 Importin-7 1.00 589658 1161600 2 

TIMP1 Metalloproteinase inhibitor 
1 

1.00 1056989900 2079538450 2 

SERPINE1 Plasminogen activator 
inhibitor 1 

1.00 527223650 1060162950 2 

HSPA8 Heat shock cognate 71 kDa 
protein 

1.00 154396703 301719550 2 

ACTN1 Isoform 4 of Alpha-actinin-1 1.00 22156883 45079863 2 

RPS12 40S ribosomal protein S12 1.00 11789600 24042800 2 

LOX Protein-lysine 6-oxidase 1.00 44983450 88717200 2 

CXCL5 C-X-C motif chemokine 5 1.00 52634872 106439400 2 

FKBP1A Peptidyl-prolyl cis-trans 
isomerase FKBP1A 

1.00 11113550 22647750 2 
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GSTO1 Glutathione S-transferase 
omega-1 

1.00 14799064 29595583 2 

GAS6 Growth arrest-specific 
protein 6 

1.00 31038985 63498100 2 

PSAT1 Isoform 2 of Phosphoserine 
aminotransferase 

0.91 580350 1139075 2 

PLAU Isoform 2 of Urokinase-type 
plasminogen activator 

1.00 1207834 591780 -2 

RPS15A 40S ribosomal protein S15a 1.00 6781375 3242625 -2.1 

FLNB Filamin-B 1.00 247657 119933 -2.1 

WISP2 WNT1-inducible-signaling 
pathway protein 2 

1.00 125547550 59272450 -2.1 

MARCKS Myristoylated alanine-rich 
C-kinase substrate 

0.97 6174750 2745675 -2.2 

IGF2 Insulin-like growth factor II 1.00 5333783 2407483 -2.2 

CAP1 Adenylyl cyclase-
associated protein 
(Fragment) 

1.00 574775 255490 -2.2 

RARRES2 Retinoic acid receptor 
responder protein 2 
(Fragment) 

1.00 7131550 3070400 -2.3 

CAPNS1 Calpain small subunit 1 
(Fragment) 

1.00 4313650 1896975 -2.3 

PYGB Glycogen phosphorylase, 
brain form 

1.00 7677900 3372050 -2.3 

PTGDS Prostaglandin-H2 D-
isomerase 

1.00 242410500 101110866 -2.4 

KNG1 Isoform 3 of Kininogen-1 1.00 9457467 3754500 -2.5 

RARRES2 Retinoic acid receptor 
responder protein 2 

1.00 8157315 3277984 -2.5 

HIST1H2BB Histone H2B type 1-B 1.00 2080666 801451 -2.6 

HIST2H2AA3 Histone H2A type 2-A 1.00 98988400 37442717 -2.6 

PDGFRL Platelet-derived growth 
factor receptor-like protein 

1.00 98878912 37245100 -2.7 

C7 Complement component 
C7 

1.00 8682100 2720100 -3.2 

CHI3L1 Chitinase-3-like protein 1 1.00 442732900 139619450 -3.2 
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FN1 Isoform 7 of Fibronectin 1.00 4519341 1375900 -3.3 

AHSG Alpha-2-HS-glycoprotein 1.00 137093000 40643000 -3.4 

ANKRD31 Putative ankyrin repeat 
domain-containing protein 
31 

0.98 30940750 8863750 -3.5 

CSE1L Exportin-2 1.00 47798617 13531001 -3.5 

SFRP2 Secreted frizzled-related 
protein 2 

1.00 7235300 1951672 -3.7 

AP2A1 AP-2 complex subunit 
alpha-1 

1.00 4798470 1279435 -3.8 

APOE Apolipoprotein E 1.00 796471700 210545800 -3.8 

GPX3 Glutathione peroxidase 1.00 13578250 2924893 -4.6 

CXCL12 Isoform Alpha of Stromal 
cell-derived factor 1 

1.00 6112650 1302851 -4.7 

SIX3 Homeobox protein SIX3 0.95 15090500 650732 -23.2 

 

Table 2. Comparative MS/MS analysis of protein composition in media 

conditioned by ASC from one smoking and one non-smoking donor.  

 

 

  



55 

 

Figure 8. Semi-quantitative assessment of pro-angiogenic proteins in human 

ASC CM using RayBio Human Cytokine Assay. A, Semi-quantitative 

membrane-based analysis of angiogenesis relevant cytokines. B, Relative change 

in protein accumulation in CS-ASC CM compared to non-CS-ASC CM. Level of 

specific protein intensity on the membrane for non-CS-ASC CM was considered 

as 100%. 

 

 

 

 

 



56 

Name Change No 
Change 

Not 
Detected 

Name Change No 
Change 

Not 
Detected 

CXCL5  X  VEGF-A X   
G-CSF   X PDGFbb  X  
GM-CSF   X Leptin  X  
GRO  X  BDNF  X  
CXCL1  X  CXCL13  X  
CCL1   X CCL23  X  
IL1 F1   X CCL11  X  
IL1 F2   X CCL24  X  
IL2   X CCL26  X  
IL3   X FGF4  X  
IL4   X FGF6  X  
IL5   X FGF7  X  
IL6 X   FGF9  X  
IL7  X  FLT3-ligand  X  
IL8 X   CX3CL1  X  
IL10   X CXCL6 X   
IL12   X GDNF  X  
IL13   X HGF X   
IL15   X IGFBP1  X  
IFN-g  X  IGFBP2  X  
MCP1 X   IGFBP3  X  
MCP2  X  IGFBP4  X  
MCP3  X  IL16  X  
M-CSF  X  IP10  X  
MDC  X  LIF  X  
MIG   X LIGHT  X  
MIP-1b  X  MCP4  X  
MIP-1d   X MIF  X  
CCL5 X   MIP-3a X   
SCF   X NAP2  X  
SDF1a   X NT3  X  
CCL17  X  NT4   X 
TGFb1   X OPN  X  
TNFa   X OPG   X 
TNFb   X PARC  X  
EGF  X  PLGF  X  
IGF1  X  TGFb2  X  
Angiogenin X   TGFb3   X 
OSM  X  TIMP1 X   
TPO  X  TIMP2  X  

 

Table 3. List of cytokines tested using RayBio Human Cytokine Array (C5). 

CM was tested from one non-CS-ASC and one CS-ASC donor.   
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2.3.6 Analysis of accumulation of selected cytokines in human ASC 

CM 

Analysis of accumulation of selected cytokines in ASC CM revealed that 

concentrations of SDF-1 and HGF were lower in CS-ASC CM by 4.6-fold and 19-

fold respectively compared to their levels in non-CS-ASC CM, whereas secretion 

of VEGF was not affected by prior CS exposure. In addition, secretion of 

Angiopoietin-1 and Angiopoietin-2 was also lower in case of the CS-ASC CM, 

however it did not reach statistical significance (Figure 9A). Parallel analysis of 

expression of mRNA for selected factors revealed that levels of mRNA for SDF1, 

HGF, TSG-6, CD140a and CD140b were lower in CS-ASC vs non-CS-ASC, 

though only the decrease in the SDF-1 level reached statistical significance. 

Surprisingly, the level of VEGF mRNA actually trended higher in CS-ASC, though 

not statistically significant. Similarly we found that level of plasminogen activator 

inhibitor-1 (PAI-1) was also trending higher in CS-ASC CM, compared to CM from 

non-CS donors (Figure 9B).  

To assess whether the reduction in vasculogenic potency of CS-ASC could 

be complemented, co-culture media were supplemented with either complete non-

CS-ASC CM or individual recombinant vasculogenic factors. Introduction of non-

CS-ASC CM to co-cultures with non-CS-ASC led to a 39% increase in vessel 

density, whereas non-CS-ASC CM was ineffective in co-cultures with CS-ASC 

(Figure 10A). Furthermore, neither of the tested recombinant factors (VEGF, HGF, 

SDF-1) provided at 10 ng/ml, concentrations that are higher than expected to be 

present in non-CS-ASC CM, was able to improve vasculogenesis when compared 
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to co-cultures exposed to control media alone (Figure 10B), suggesting that CS-

ASC are compromised in their vasculogenic activity in a manner which cannot be 

effectively ameliorated with growth factor supplementation. One explanation of this 

would be a requirement for several factors, particularly in the context that multiple 

factors appear to be reduced in the crippled CS-ASC secretome,  However, the 

inability to rescue the CS-ASC vasculogenesis suggested the notion that the cells 

might either have intrinsic inability to facilitate normal vascular network assembly, 

were breaking down necessary factors for assembly, or that they were secreting 

some factor or factors that were inhibitory to the assembly process.  The next lines 

of experimentation were directed to address selected factors and some of these 

possibilities.   
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Figure 9. Analysis of accumulation of selected cytokines in human ASC CM. 

A, Analysis of HGF, SDF1, VEGF, Angiopoietin-1 and Angiopoietin-2 

accumulation in media conditioned for 48-hour by ASC from non-smoking (n=3) 

and smoking (n=4-5) female donors. B, Analysis of HGF, SDF1, VEGF, PAI-1, 
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TSG-6, CD140a and CD140b mRNA expression in ASC from non-smoking (n=3) 

and smoking (n=4-7) female donors done by quantitative PCR. For all graphs: 

*p<0.05, **p<0.01, ***p<0.001. 
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Figure 10. Assessment of supplementation of ASC co-culture with 

conditioned media from nonCS-ASC donor or with growth factors. A, 

Quantitative assessment of the effect of 2.5-fold concentrated non-CS-ASC CM 

on vascular network formation by EC/non-CS-ASC and EC/CS-ASC co-culture. B, 

Assessment of the effect of recombinant SDF-1, HGF, and VEGF (all at 10ng/ml) 

on vasculogenesis in EC/CS-ASC co-cultures. The degree of vasculogenesis in 

EC/non-CS-ASC co-cultures was used as 100%. For all graphs: ***p<0.001.  
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2.3.7 Assessment of the effect of modulating SDF-1 receptor binding 

on vascular network formation potential of ASC derived from 

smoking donors  

SDF-1 provides its activity through binding to CXCR-4 receptor. Analysis of 

the effect of CXCR-4 inhibitor, AMD3100, which blocks receptor binding of SDF-1 

revealed that supplementation of AMD3100 on Day 1 of EC/non-CS-ASC co-

culture resulted in decrease of total tube length and therefore network density. To 

further determine whether SDF-1 is important not only for network formation but 

also network maintenance, we supplemented AMD3100 on Day 4 of EC/non-CS-

ASC co-culture. As predicted, addition of the drug resulted in deterioration of the 

established networks in a dose dependent manner (Figure 11). 
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Figure 11. Assessment of SDF-1 inhibitor activity on vascular network 

formation potential of ASC derived from smoking donors. A, Representative 

images of the vascular network formed by EC/non-CS-ASC with and without 

AMD3100 supplementation at 5μg/ml. B, Quantitative assessment of the effect of 

SDF-1 inhibition on Day 1, on vascular network formation by EC/non-CS-ASC co-

culture. AMD3100 was administered at dose 0.1, 1, 10 μg/ml. C, Assessment of 

the effect of SDF-1 inhibition on Day 4 of EC/non-CS-ASC co-culture. AMD3100 

was administered at dose 1, 5, 10 μg/ml. For all graphs: **p<0.01, ***p<0.001. 
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2.3.8 Assessment of DPP-4 activity in human ASC CM 

Dipeptidyl peptidase-4 (DPP-4) is known to cleave SDF-1 to a non-

functional form, therefore inhibiting the regenerative function of SDF-1 [146]. It also 

performs activating cleavage on other factors.  It has been shown to be expressed 

on the surface of various cells and also released in plasma. Luminescent 

assessment of DPP-4 activity (based on luciferase reaction) in CM from human 

non-CS and CS ASC donors revealed no significant difference in its activity 

between both types of donors. There was a measurable drop in the DPP-4 activity 

on EBM2 media (without FBS), as well as EBM2/5%FBS, supplemented with 

Diprotin A, which is a known DPP-4 inhibitor (Figure 12A), confirming the activity 

as not artifactual. Supplementation of non-CS-ASC/EC or CS-ASC/EC co-cultures 

with 5mM Diprotin A (an inhibitor of DPP4 activity) did not lead to a significant 

increase of vascular network density (Figure 12B).    
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Figure 12. Assessment of DPP4 activity in human ASC CM. A, Luminescent 

assessment of DPP4 activity in non-CS-ASC and CS-ASC CM. Diprotin A is an 

inhibitor of DPP4 B, Assessment of the effect of 5mM Diprotein A on 

vasculogenesis in EC/non-CS-ASC or EC/CS-ASC co-culture.    

  



66 

2.3.9 Assessment of Activin A activity of CS-ASC 

It has been previously reported by our laboratory that Activin A, expressed 

by ASC in response to direct contact interaction with EC, exhibits significant 

angiostatic properties [147]. To test whether diminished vasculogenic activity of 

CS-ASC could be due to increased Activin A expression, CM were collected after 

72 hours from co-cultures of both kinds and evaluated for accumulation of Activin 

A. Analysis revealed a 65% higher concentration of Activin A in CM of co-cultures 

with CS-ASC compared to its level in CM from co-cultures with non-CS-ASC 

(Figure 13A). Further testing revealed that neutralizing antibody blockade Activin 

A signaling in co-cultures led to rescue of the impaired efficiency of vessel network 

formation by CS-ASC to the level observed in non-CS-ASC co-cultures (Figure 

13B).  

Local ischemia is associated with systemic and local increase in levels of 

inflammatory factors. Here we assessed whether exposure of ASC to inflammatory 

factors such as TNFα and IL-1β modulates Activin A secretion by ASC. As was 

expected based on our prior work [148], non-CS-ASC do not secret Activin A when 

incubated in control media. Challenging non-CS-ASC with TNFα did not modulate 

Activin A secretion, while non-CS-ASC treated with IL-1β showed low level of 

Activin A secretion. However, CS-ASC incubated in control media show 

measurable expression of Activin A; and its secretion was further increased by 

more than 5-fold with TNFα or IL-1β challenge (Figure 13C). 
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Figure 13. Assessment of Activin A activity of nonCS-ASC and CS-ASC. A, 

Analysis of Activin A accumulation in media conditioned by EC-ASC co-cultures, 

composed of healthy EC and ASC derived from human non-smoking or smoking 

female donors. Media was conditioned for the last 72 hours of day six of incubation. 

B, Assessment of Activin A effect on vasculogenesis (change in density of total 

tube length of vascular network). Co-cultures composed on healthy EC and ASC 

from either non-smoking or smoking female donors  were incubated in control 

media alone or in the presence of anti-Activin A or isotype control mIgG (both at 

10 μg/ml) for the last five days of a six day incubation. C, Analysis of Activin A 

accumulation in media conditioned for 48 hours by ASC from non-smoking or 
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smoking female donors while incubated in control media alone or supplemented 

with either TNFα or IL-1β (both at 10 ng/ml); For all graphs: *p<0.05, ***p<0.001. 
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2.3.9 Choice of individual donors 

Throughout the studies described above, we used either a combination of 

several non-CS and CS donors or the “best” and the “worst” donor. To determine 

which donor should be considered the “best” or the “worst” from the pool of 

available ASC specimens, I opted to determine this based on observation of the 

density of vascular networks that each of the tested donors was able to generate. 

When assessing the three female CS-ASC donors we noted that each of them 

reported smoking a different number of cigarettes per day: quarter of a pack, half 

a pack, or a full pack. Interestingly we observed that the patient who was 

subsequently considered “the worst” female donor (greatest degree of ASC 

impairment) was also the heaviest smoker among the group of three females. This 

donor had the most decreased Angiopoietin-1 concentration based on ELISA as 

well as the the least dense networks as assayed for both the ASC and the ASC 

CM (Table 5). 
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Donor  Gender CS Note Age BMI Collection Area 

F-CS 1 Female ¼ pack 35 22 Lipo-thighs 
F-CS 2 Female ½ pack 47 19 Lipo-flanks 
F-CS 3 Female 1 pack 36 22 Lipo-flanks 
F-non-CS1 Female 0 36 22 Lipo-abdomen 
F-non-CS2 Female 0 37 22 Fat excision-abd 
F-non-CS3 Female 0 34 26 Lipo-flanks/abd 
F-non-CS4 Female 0 38 23 Lipo-thighs 
F-non-CS5 Female 0 46 23 Lipo 
F-non-CS6 Female 0 47 26 Lipo-hips 
M-CS1 Male 2 packs (40 “pack years”) 

  

64 40 Fat excision-groin 
M-CS2 Male 1.5 packs (55 “pack years”) 66 24 Fat excision-groin 
M-CS3 Male 2 packs (60 “pack years”) 70 34 Fat excision-groin 
M-CS4 Male 1.5 packs (40 “pack years”) 63 31 Fat excision-groin 
M-non-CS1 Male 0 82 32 Fat excision-abd 
M-non-CS2 Male 0 53 NA Fat excision-abd 
M-non-CS3 Male 0 66 42 Fat excision-abd 
M-non-CS4 Male 0 70 30 Fat excision-abd 

 

Table 4. Demographics of male and female ASC donors used in the study. 

Definitions: “pack year” = 20 cigarettes smoked every day for one year; abd = 

abdomen  
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2.4 Discussion  

An increasing number of clinical trials have shown that cell therapy offers 

potential new treatment options and hope for patients suffering from a variety of 

pathological conditions [149, 150]. Many trials have been conducted using bone 

marrow mesenchymal stem/stromal cells (BM-MSC), endothelial progenitor cells, 

or ASC [149]. It is important to recognize that many factors, including aging [97-

99] and diabetes [103] negatively affect therapeutic potential of progenitors. Some 

pathologies that can be corrected with cell therapy are results of unhealthy aspects 

of lifestyle, including smoking, alcohol abuse, and a Western diet. It should be 

recognized that these factors may also potentially lower the therapeutic efficacy of 

progenitor cells, leading to suboptimal or no therapeutic effect of the cells when 

used in autologous applications. Thus, it is important to assess the effect of each 

of these factors on therapeutic potential of the ASC. 

One such prominent factor implicated in a wide array of illnesses is cigarette 

smoking [19, 40, 42, 45-58, 69-72, 151-153]. The World Health Organization 

estimates that approximately 1.1 billion people smoke. While the efficacy of 

“healthy” ASC as a therapeutic agent has been shown in multiple animal models 

of human pathologies [80, 93, 96] and in number of clinical trials [83, 114, 117, 

121], little has been done to evaluate the effect of smoking on the regenerative 

potency of these cells. Wahl et al. have conducted studies to address this question; 

they exclusively assessed the impact of CS extract on ASC migration, 

differentiation, and secretion of IL-6 and IL-8, all of which were 

compromised/reduced [104]. Their study was limited to in vitro simulation of CS 
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exposure and did not fully recapitulate processes associated with actual CS 

inhaling. Our study provides a much more clinically-relevant assessment of the 

effects of systemic CS exposure on ASC bioactivity.  

Basic analysis of non-CS and CS ASC donors, including assessment of cell 

morphology, growth rate, and adipogenic potential revealed no significant 

difference in either of the categories. These cells were also, as expected, positive 

for markers ascribed to ASC and negative for endothelial cell and leukocyte 

marker. CD34 was also not expressed as the evaluated cells were at passage 4, 

and CD34 has been shown to be only present freshly isolated ASC. Interestingly 

CS-ASC exhibited lower expression of CD140a and CD140b, also known as 

platelet derived growth factor receptor (PDGFR) α and β. PDGFs and PDGFR 

have been shown to play a significant role in angio/vasculogenesis [81]. While 

PDGF-BB is secreted by EC, PDGFR is expressed on the surface of pericytes as 

well as ASC. This finding suggests a possible receptor-based impairment to the 

angiogenic potential of CS-ASC. In addition, flow cytometric analysis revealed an 

increased expression of Notch 2 and Notch 3 which also play a significant role in 

angiogenesis; specifically inhibition of Notch pathways has been linked to 

increased angiogenesis, as Notch expression has been demonstrated to not only 

lower the number of circulating endothelial progenitors, but also lower VEGF 

expression [154]. The association of Notch pathway and angiogenesis continues 

to be investigated by various groups, however our finding intuitively appears to 

correlate with the findings of others in respect to vasculature formation.      
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In order to assess the usefulness of the non-CS-ASC vs CS-ASC as a 

therapeutic option we chose to first conduct an in vivo study. We, and others, have 

previously shown that systemic or local administration of ASC promotes blood flow 

restoration in mouse ischemic limbs [80, 155]. Similar to the previous findings, in 

the current study we observed that non-CS-ASC efficiently improved blood flow in 

the ischemic limbs, whereas ASC from age and gender matched smoking human 

donors were ineffective (Figure 5A, B). Most of the prior studies tested the effect 

of ASC therapy in models where cells were delivered immediately or 24-hours after 

ischemia induction, the stage of recovery associated with active inflammatory 

processes. To assess whether ASC therapeutic applicability can be broadened to 

chronic conditions, the effect of ASC therapy on blood flow improvement was 

tested in the model where cells were delivered to the mice 32 days after femoral 

artery removal. This study demonstrated, for the first time, that non-CS-ASC 

produce therapeutic effect in a model of chronic ischemia (Figure 5C). We 

speculate that inflammation is no longer a prominent factor in this model, therefore 

the beneficial effect of ASC is more particularly attributed to cell’s angiogenic, 

rather than anti-inflammatory activities. However, same as in the acute scenario, 

CS-ASC were ineffective in this model (Figure 5C). 

In addition to the studies involving administration of human ASC, we have 

also conducted a study in which mice were exposed to CS for a period of 5 months 

(5 hours/day, 5 days/week), and then received mouse ASC (isolated from control 

group consisting of mice exposed to ambient air for 5 months) to treat 

subsequently induced hindlimb ischemia. Interestingly, no benefit was observed in 
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the group treated with ambient air-exposed mouse ASC, compared to vehicle. 

Most of the mouse studies utilize animals that are 8-12 weeks old. However, in the 

case of this particular study, both the donors of mouse ASC as well as recipients 

were over 8 months old. This created a confounding factor whether such advanced 

age could have played an overriding role in the process, negating the beneficial 

effect of mouse ASC administration that would have otherwise been seen in 

younger animals. Studies have shown that ASC and MSC from aged donors 

exhibit decreased therapeutic potential [97]. Furthermore, several investigators 

have demonstrated before that mouse ASC do have therapeutic potential in mice 

[156]. However, since the regenerative capacity of mouse ASC was not the primary 

goal of the study, we have chosen to not pursue this avenue in search of the 

answer for the observed effect. Also noted, not surprisingly, is that mice exposed 

to CS showed lesser recovery from hindlimb ischemia overall, compared to 

animals exposed to ambient air, indicating the damaging effect of CS (Figure 5D). 

Due to the complexity of in vivo models, to assess angio-/vasculogenic 

activities of the tested ASC, an in vitro model of vasculogenesis was then used, to 

further assess the cell potency. This model, based on co-cultivation of EC with 

ASC, primarily relies on paracrine cross-talk between EC and ASC, leading to EC 

reorganization into stable luminal cords. Using this model, marked impairment in 

CS-ASC ability to support EC-cord formation was observed in both male and 

female donors (Figure 6B). The finding with human ASC was strengthened by 

observations that mouse ASC, isolated from animals pre-exposed to CS for one 

month, also provided diminished support to EC in cord formation (Figure 6C). Use 
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of mouse ASC eliminated variables in lifestyles which are hard to fully account for 

when studying samples from human donors. 

We hypothesized that decreased vasculogenic activity of CS-ASC was 

attributed to compromised secretion of vasculogenic cytokines. Media conditioned 

by CS-ASC promoted EC-tubulogenesis in EC-fibroblast co-cultures and 

augmented survival of EC incubated in growth factor-reduced media to a lesser 

degree than media conditioned by non-CS-ASC, suggesting that perhaps CS-ASC 

CM is not only less abundant in pro-angiogenic factors, but also contains factors 

that inhibit angiogenesis.   

It has been shown before that ASC secretome has therapeutic potential. 

We have confirmed the beneficial activity of non-CS-ASC; however, there was a 

significant drop in the activity of CS-ASC CM. As a result, we decided to conduct 

a comprehensive evaluation of the proteome found in the CM from one CS (most 

severe smoker, female) and one non-CS (non-smoking, female) donor. The 

MS/MS assessment detected 714 unique proteins present in the CM. This 

technique, which allows both: for identification of the proteins present in the tested 

sample and for quantitative analysis, revealed a particularly interesting decrease 

in the abundance of SDF-1, which plays a role in angiogenesis and therefore is 

critical for the regenerative capacity of ASC (Table 2). Notably, presence of pro-

angiogenic factor VEGF, which has been shown on many occasions to be secreted 

by ASC, was not detected. Lack of VEGF detection, does not however signify that 

this protein was not present in the CM; the MS/MS technique assesses a multitude 

of ions and short peptides which are subsequently matched with various 



76 

databases. The accuracy of the final comprehensive list of proteins is dependent 

on the sensitivity of the assay, as well as the robustness of the database. 

Interestingly, proteins which were 3-fold or more up or down regulated in smokers 

often correlated with what would typically be observed in a smoker. For example, 

ASC CM demonstrated increases in lung adenocarcinoma-associated proteins, 

biomarkers for emphysema, and proteins that are correlated with autoimmune 

disease. 

In order to conduct a more angiogenesis-focused analysis of proteins 

present in the CM, and further confirm and strengthen the MS/MS results, we 

employed a human cytokine array tool, a much more cost-efficient and faster 

method for detecting a wide range of proteins of special interest even at low 

abundance. Out of 80 factors assessed, 10 were present at evidently different 

levels in the two CM tested (one non-CS and one CS donor). Furthermore all 10 

of the proteins were less abundant in the CM from CS-ASC; at the same time 

cross-validating the proteomic findings and further supporting the observation that 

ASC CM from smokers is lower in levels of pro-angiogenic and therapeutically 

relevant factors. Levels of some proteins which were revealed to be present via 

MS/MS proteomic assessment and ELISA were not detected with this technique 

(Figure 8, Table 3). It is, however, important to mention that the proteomic 

assessment relied on only one CM sample from smoker and non-smoker-derived 

ASC. This limits the findings to only those two specific donors, and their particular 

physiology and health history. Including more donors would help establish a more 

robust representation of smoking vs non-smoking donor population and the 
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respective CM, however the large expense that associated with assessing the 

complete protein composition of CM from more donors was limiting factor.   

Equipped with this information about the compromised pro-angiogenic 

secretome, we decided to narrow down the number of cytokines to a few key 

options and assess those via ELISA and mRNA analysis. A substantial drop in 

secretion of HGF, SDF-1, Angiopoietin-1 and Angiopoietin-2 was observed in CS-

ASC CM. We have previously reported that blocking HGF activity decreases EC 

vasculogenesis, whereas Mirshahi et. al. has shown that SDF1 stimulates EC 

tubulogenesis in vitro [157]. Angiopoietin-1 and Angiopoietin-2 has been shown to 

protect endothelial cells and help promote and stabilize vessel formation [158, 

159]. Hence a drop in the secretion of both proteins signifies a limited pro-

angiogenic profile of CS-ASC. Interestingly, secretion of VEGF was similar 

between the groups, indicating that VEGF was not affected by CS exposure 

(Figure 9A). It is worth noting, however, that there have been studies that reported 

the levels of VEGF to increase, decrease, or remain unchanged when exposed to 

CS, indicating that there is no clear consensus within the scientific community 

regarding VEGF secretion. In addition to elevated VEGF, PAI-1 level of expression 

was also revealed to be higher in CS-ASC comparing to non-CS-ASC. PAI-1, an 

inhibitor of urokinase (activator of plasminogen) is an inhibitor of angiogenesis, 

hence increased levels of this protein may further indicate a decreased pro-

angiogenic potential of the system [160]. Moreover, with respect to in vivo 

observations, we previously reported that silencing expression of HGF in ASC 

abolishes cell therapeutic effects in limb ischemia model [80]. Kondo et. al. 
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demonstrated that intraperitoneal injection of SDF-1 neutralizing antibodies 

prevented beneficial effect of ASC, which was associated with decrease in 

circulating progenitor cell homing to the site of injury [156]. In recent years, it has 

been demonstrated that administration of SDF-1 to treat myocardial infarction 

results in recruitment of stem/stromal cells to the site of injury [161]. As SDF-1 is 

known to be expressed by EC and stromal cells residing in various organs, an 

injury to those organs has been shown to result in upregulation of SDF-1 

expression and subsequent influx of bone marrow stem cells to repair the injury 

[162-164]. We have shown in this study as well that expression levels of SDF-1, 

HGF, TSG-6, CD140a and CD140b, were decreased in CS-ASC donors, with 

SDF-1 showing the only statistically significant difference. Xie et al, has shown that 

TSG-6, an anti-inflammatory factor secreted by ASC, is able to rescue BM cells 

from CS-induced myelosuppression [105]. Decrease in TSG-6 expression, 

however, appears to be linked with CS exposure, and furthermore it may explain 

the decreased therapeutic potential of the CS-ASC. In addition, we have shown 

via flow cytometric assessment a reduced level of expression of CD140a and 

CD140b. Here we additionally confirmed these findings through mRNA analysis, 

further solidifying the observation that the expression and secretion of pro-

angiogenic factors is limited in CS-ASC.  

Since CS-ASC exhibited a decreased expression of HGF and SDF-1, we 

anticipated that enrichment of the incubation media with recombinant forms of 

these factors would improve the density of vascular network in EC/CS-ASC co-

cultures. However, no beneficial effect was observed with either of these factors 
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nor with non-CS-ASC CM that contains a wide spectrum of pro-angiogenic factors 

and alone is able to confer the regenerative effect (Figure 10). Interestingly, 

supplementation of CS-ASC CM, which has been shown to contain less 

therapeutic factors, was also able to slightly increase the total tube length 

comparing to incubation media alone in EC/non-CS-ASC co-cultures, however not 

surprisingly it was not able to provide the same effect in EC/CS-ASC co-cultures. 

Since both types of CM (non-CS and CS) resulted in an increasing vasculogenic 

trend, compared with the control group, in the EC/non-CS-ASC, yet no effect was 

observed in the EC/CS-ASC group, it may be that supplementation of single factor 

will not be able to improve the network density established with CS-ASC. 

Furthermore we postulate that the negative effect of CS goes beyond the 

proangiogenic cytokine poor CM generated by the CS-ASC, but it also affects the 

cells and the intracellular signaling as well.   

In order to further elucidate the mechanism via which CS might affect ASC 

and since the assessment of the composition of CS-ASC CM revealed that SDF-1 

expression and secretion is significantly reduced, we hypothesized that this 

observation is at least in part responsible for the decrease in vasculogenic potential 

of CS-ASC. In order to confirm this concept, we have conducted two studies using 

an SDF-1 inhibitor, AMD3100, also known as a bone marrow hematopoietic stem 

and progenitor cell mobilizing agent [165]. First we administered AMD3100 to the 

EC/non-CS-ASC co culture on Day 1, while in the second study we administered 

the drug on Day 4 of co-culture, after majority of the networks were already 

established. Data revealed that SDF-1 is important for establishing as well as 
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maintenance of dense networks. Administration of AMD3100 at the initiation of 

network formation resulted in inhibited network development, while providing the 

drug once the networks were established resulted in disintegration of the vascular 

structures. Furthermore, this effect was concentration dependent (Figure 11). This 

is a significant finding as SDF-1 is known to facilitate EC incorporation into the 

vascular structures, and supports prior observations by Newey et al. [166].  

To test whether a change in surface enzymatic activity of ASC might play a 

role in modulating the activity of CS-ASC we conducted two studies aiming to 

determine whether DPP-4 may be overexpressed on the surface of CS-ASC, 

therefore contributing to the decrease in active SDF-1, through cleavage of the 

protein [167, 168]. In non-pathological conditions, DPP-4 is responsible for 

degradation of various chemokines [167]. We hypothesized that if overexpression 

of this protein (also known as CD26) was observed in CS-ASC, the decrease in 

SDF-1 presence in CM and therefore drop in network density could potentially be 

ameliorated via inhibition of DPP-4. Interestingly, luminescent assessment of DPP-

4 activity in non-CS-ASC CM and CS-ASC CM revealed no significant difference 

between the non-CS and CS donors. The CMs were generated in the presence of 

5% FBS; when assessing the DPP-4 activity in EBM2 media alone (no FBS), the 

activity was markedly reduced, suggesting that most of the detected DPP-4 activity 

comes from the FBS. Importantly, adding DPP-4 inhibitor, Diprotin A, resulted in 

reduction of DPP-4 activity to very similar level as seen in the EBM2 media group 

alone, validating the system. It may be that there is an abundance of DPP-4 in the 

FBS, which then masks the relatively slight presence of the protein in the CM, or 
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truly the level of DPP-4 expression is very similar between all donors. Interestingly, 

supplementing Diprotin A inhibitor to the non-CS-ASC/EC and CS-ASC/EC co 

cultures resulted in no significant improvement in network formation.  

In order to further elucidate the mechanism of compromised CS-ASC 

therapeutic activity, we sought to assess the role of Activin A, which has been 

shown in our laboratory, to exhibit induction in ASC when in an EC/ASC co-culture 

[148]. Activin A plays a central role in vasculogenesis by affecting bioactivity of 

both EC and ASC: it induces a smooth muscle cell phenotype in ASC [148] and 

shifts ASC secretome net activity from pro-angiogenic to angiostatic [147]. Activin 

A inhibits HGF and SDF-1 expression, stimulates VEGF expression, and in parallel 

upregulates expression of VEGF scavenger receptor Flt-1 [147]. In the current 

study, we observed that media conditioned by EC/CS-ASC co-cultures had 65% 

more Activin A than EC/non-CS-ASC co-culture media (Figure 13A). We thus 

hypothesized that the decrease in CS-ASC vasculogenic activity might be partially 

attributed to increase in Activin A secretion, and tested the concept by blocking 

Activin A activity in EC/CS-ASC co-cultures. Remarkably, this was sufficient to 

rescue the efficiency of vasculogenesis to that recorded for EC/non-CS-ASC co-

cultures (Figure 13B).  

Acute ischemia is associated with systemic and local increase in 

inflammatory cells and cytokines. One of the prominent mechanisms underlying 

ASC therapeutic effect is anti-inflammatory/immunomodulatory paracrine activity 

[119, 169]. To further explore the cause of CS-ASC failure to produce beneficial 

effect in the models of limb ischemia, the effect of inflammatory factors TNFα and 
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IL-1β on Activin A expression was tested. Unlike non-CS-ASC, CS-ASC secrete 

detectible Activin A at baseline; and its expression markedly increased in response 

to inflammatory factors (Figure 12C). Activin A plays an important role in 

inflammatory processes, by inducing expression of several inflammatory cytokines 

in LPS-induced acute respiratory distress syndrome model [170] and CS-induced 

lung inflammation [171]. Furthermore, it promotes macrophage polarization 

towards pro-inflammatory M1 phenotype [172]. We speculate that non-CS-ASC, 

after systemic injection, produce an anti-inflammatory effect, whereas CS-ASC, 

through an increase in Activin A secretion, may actually have the opposite effect. 

Lastly, it is important to note that the observations of these studies are 

based on a limited number of donors. Each in vitro assessment of co-cultures 

relied on several (5-8) technical replicates per each donor in order to strengthen 

the validity of the data. The limitation was based on the availability of only three 

female smoking donors (all within close age and BMI proximity). The non-smoking 

female donors were age and BMI matched. The female smokers self-reported a 

range of cigarette packs smoked per day: from ¼ through ½ to 1 pack. 

Interestingly, throughout the studies we have observed a trend of the heaviest 

smoker exhibiting characteristics of the least pro-angiogenic potential, while the 

lightest smoker performed the best from the group of three. This implies that the 

smoking status alone is not sufficient to determine donor’s ASC regenerative 

potential. The degree of influence on cellular reparative activity is highly dependent 

on the number of cigarettes smoked per day, as well as the number of years that 

one has been a smoker. A recurring question is one that asks whether quitting 
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smoking may be able to restore, at least in part, the beneficial activity of ASC. We 

predict that such restoration, would depend on the time elapsed since quitting. 

Perhaps importantly, since the ASC used in my studies were passaged cells 

(between passages 3-5), the observation of compromised cell activity once the 

cells have gone through several population doublings indicates that they retain a 

“memory” of being exposed to the smoke-exposed in vivo environment, perhaps 

implicating epigenetic modifications that may have taken place. A robust and 

reliable assessment of the therapeutic potential of a specific donor’s autologous 

ASC relies on an interplay between the number of cigarettes smoked, time of 

exposure, subsequent time of no exposure, as well as potential second and third 

hand smoke exposure. We also recognize that our findings underscore an 

important goal for the field of autologous cellular therapeutics: identifying donor 

characteristics including age, presence of comorbidities and specific lifestyle 

choices; and evaluating for interaction of these variables with activities manifested 

by outcomes of pre-clinical and clinical trials. While studies have been conducted 

to determine the effect of age and co-existing diseases like diabetes on ASC/MSC, 

more studies need to be carried out to determine the effect of other factors, using 

a large number of donors, or alternatively a reasonably sensitive and feasible high-

throughput assay is needed to aid clinicians in concluding which patient would 

benefit from autologous cell therapy.   

Cigarette smoking continues to be a serious problem globally, but since 

2009 a solid drop in this activity in the U.S has been observed from 20.6% to 15.2% 

in 2015, which translates to approximately 37 million Americans [173]. Regardless 
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of these great initiatives, CS remains a serious health hazard and those exposed 

to tobacco will need medical attention.  

In conclusion, our study has revealed that CS exposure in humans leaves 

many facets of the ASC phenotype apparently unaltered, yet has a profound 

detrimental effect on ASC therapeutic activity in vivo and vasculogenic activities in 

vitro.  This effect coincides with higher level of Activin A secretion at baseline and 

in response to inflammatory factors and direct interaction with EC, and is at least 

partly reversible by blockade of this increase in Activin A. These findings should 

be considered when designing clinical trials: I suggest that smokers should be 

excluded from the initial clinical trials with autologous cell therapies or be evaluated 

as a separate population. Furthermore, smokers may benefit to a greater degree 

from allogeneic cell therapies.  
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Chapter 3: Contribution of cigarette smoking to renal pathology and the 

beneficial effect of adipose-derived stem cell therapy on ameliorating renal 

damage 

 

3.1   Introduction  

3.1.1 Effect of cigarette smoking on kidney damage 

The continuous prevalence of smoking within the American society and 

especially within certain populations, like veterans, provides relevance for 

additional studies assessing the effects of cigarette smoking (CS) on various organ 

systems and the interplay between smoking and the efficacy of the currently used 

and prospective treatments. CS is known to lead to emphysema [174, 175], cancer 

[176, 177], myelosuppression [105], and cardiovascular diseases [178, 179]. 

Several studies have recently indicated a link between CS and kidney pathology 

[180-182]. Smokers are at a higher risk to develop kidney disease or worsen pre-

existing symptoms of renal pathology [183], oftentimes resulting in progression to 

end-stage renal failure, for which the only effective treatments are kidney 

transplant or dialysis [184]. CS is associated with development of proteinuria [185] 

progression of nephropathy in patients with diabetes [186], chronic kidney disease 

(CKD) [187] as well as with higher risk of renal transplant graft failure [188, 189].  

Few studies have reported correlations between CS and nicotine and 

kidney damage [190-193]. Since nicotine is a substrate of the cation transporter 

OCT2, expressed on the basolateral membrane of the cells comprising the renal 
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proximal tubules, this transporter is responsible for allowing nicotine to access the 

renal epithelial cells, leading to injury in the form of oxidative stress [194]. Oxidative 

stress in the kidney also results in compromised vascular stability [195]. Chin et al. 

has demonstrated that patients who smoke manifest impaired creatinine clearance 

[196]. They also observed a correlation between the number of cigarettes smoked 

and decreased creatinine clearance [196]. Arany et al. has indicated that CS 

predisposes kidneys to ischemia and may facilitate progression of acute kidney 

injury (AKI) into CKD [197]. Therefore, prior studies suggest that it is important to 

further assess the effects of smoking on progression of renal pathology, as well as 

to develop treatments that will protect the kidneys in patients who may be at higher 

risk for renal pathology development. Additionally, patient’s history of CS should 

be take into consideration when proposing the most optimal therapy regimen [192, 

198].  

3.1.2 Chronic kidney disease overview 

The number of patients with kidney disease, especially with end stage renal 

failure, has increased in the recent decades. Due to increasing costs associated 

with treatment of the patients with renal damage, focus has been placed on both 

methods to prevent kidney disease, and treatment options to address the already 

existing injury [199].  

Deterioration of renal function is associated with a decrease in the 

glomerular filtration rate (GFR), increased serum creatinine levels, and severity of 

albuminuria [199]. Each progressive stage of renal damage is associated with 

complications that further intensify the damage, like cardiovascular disease 
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(arterial calcification) [200]. Advancement of kidney damage together with other 

complications can result in death of the patient [199].  

Chronic kidney disease (CKD) has been predominantly associated with 

interstitial fibrosis, as well as capillary rarefaction which has been noted to occur 

even several weeks post initial ischemic event. Acute kidney injury (AKI), defined 

as a loss of kidney function that develops over just a few days has been shown to 

lead to CKD [201]. AKI has been demonstrated in rodent models to be associated 

with microvascular alterations like endothelial cell damage and apoptosis, and 

changes in endothelial cell-cell contact, leading to generalized disruption of the 

endothelial monolayer [202, 203].  

3.1.3 Mechanism of renal fibrosis development 

Fibrosis development is often associated with pre-existing local 

inflammation and influx of macrophages and lymphocytes [204]. These cells 

secrete pro-fibrotic cytokines, including TGFβ and FGF-2, which convert resident 

fibroblasts into myofibroblasts [205]. As the kidney is subjected to ischemic events, 

some renal epithelial cells undergo apoptosis [204]. Affected tissue will attempt to 

rebuild the structures by increasing cell proliferation that may alternatively lead to 

new and functional epithelium or may result in upregulation of TGF-β secretion by 

macrophages  which will stimulate proliferation of resident myofibroblasts [204], 

defined as alpha-SMA positive cells, as well as fibrosis development, 

characterized by collagen type I and III deposition in the interstitium [204]. It has 

been proposed that such collagen production is carried out by renal fibroblasts, as 

well as by renal pericytes [204, 206]. While collagen type I production is a critical 
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step in wound healing, the presence of tubulointerstitial fibrosis leads to 

compromised kidney function and therefore increased likelihood of progression to 

end-stage renal disease [184, 204].  

Renal pericytes and resident fibroblasts have been shown to transform into 

myofibroblasts during AKI [207]. Another set of studies has explored the role of 

epithelial and endothelial cells’ participation in fibrosis formation. Epithelial-to-

Mesenchymal Transition (EMT) contributes to fibrosis formation via loss of cell-cell 

adhesion as well as production of extracellular matrix by tubular epithelial cells 

[208]. Interestingly, recently several studies have indicated that epithelium may not 

be a major contributor to myofibroblasts, and only 5% (or less) of kidney 

myofibroblasts come from epithelial cells [204, 209-212]. At the same time, 

Endothelial-to-Mesenchymal Transition (EndMT), has been shown to play a major 

role in fibrosis development [213, 214]. EndMT is characterized by loss of cell-

specific markers by endothelial cells (e.g. VE-Cadherin and CD31+) and 

acquisition of mesenchymal cell markers (e.g. alpha-SMA, FSP-1) [215], along 

with endothelial cell detachment, transformation into spindle-shaped cells, 

migration into parenchyma and contributing to matrix deposition [213]. Studies 

conducted by Basile et al., have shown that AKI leads to capillary rarefaction and 

precedes EndMT, which can be inhibited by VEGF therapy [214].  

Remarkably, in recent years it has been shown in various animal models 

that reversal of fibrosis is possible, contrary to previous notions that fibrotic lesions 

are permanent [216-220]. New studies have demonstrated that fibrosis of kidney, 

liver and heart can be reversed with the use of cell therapy or growth factor rich 
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media [221-225], yet data about prevention or reversal of CS-induced fibrotic 

changes in the kidney is lacking. Similarly, no studies have been done to assess 

the effect of CS exposure on kidney pathology and subsequently no optimal 

treatments are proposed to mitigate CS-induced kidney damage.  

Therefore, I decided to assess the effect of CS on formation of kidney 

pathology, specifically fibrosis and capillary rarefaction, by conducting histological 

assessment of kidney tissue as well as renal blood perfusion using Laser Doppler 

Imager. These animals were available during several of the ischemia and 

pulmonary experiments with which I was engaged; and it was of interest to pursue 

parallel experimental outcomes in these readily available groups. We were then 

poised to evaluate the potential beneficial effect of ASC to ameliorate CS-induced 

kidney damage.  
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3.2   Materials and Methods 

3.2.1 Mouse model of cigarette smoke-induced kidney damage 

(kidney harvest and weight assessment) 

Animal studies were approved by the Institutional Animal Care and Use 

Committee at Indiana University School of Medicine. Three separate animal 

studies were conducted using 8-10 weeks old NSG or C57Bl/6 female mice that 

were subjected to cigarette smoking (CS) or ambient air (AC) regimen. Mice were 

placed into Teague 10E chamber (Teague Enterprises) and exposed to 11% 

mainstream and 89% side-stream CS (CS group) for 5 hrs/day (5 days/week for 

five or six months) as previously described [105]. CS was generated by reference 

cigarettes (3R4F; Tobacco Research Institute, University of Kentucky, Kentucky, 

USA). The total amount of suspended particulates (on average 90 mg/m3) and 

carbon monoxide (on average 350 ppm) within the chamber were monitored on 

daily basis. In parallel, another set of mice was kept at ambient air (Air Control 

group). 

Study subsets:  

Study 1: NSG mice were exposed to CS for six months, followed by a two-month 

recovery period during which a subset of mice received weekly 

intraperitoneal (IP) injection of human ASC at dose of 1x105 cells. At the 

completion of the treatment regimen mice were euthanized and organs 

were collected.   
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Study 2: C57Bl/6 mice were exposed to 5 months of CS, followed by immediate 

euthanasia and organ harvest. The weights of the mice and their kidneys 

were recorded.  

Study 3: C57Bl/6 mice were exposed to 5 months of CS, followed by a weekly 

intraperitoneal infusion of 3x105 human ASC for 4 weeks. One week after 

the final treatment, left kidney blood flow was measured using Laser 

Doppler Imager, followed by animal euthanasia and organ harvest. Mouse 

body and kidney weights were recorded.  

 

3.2.2 Histological and immune-histochemical assessment of kidney 

damage 

Kidneys were preserved in 10% buffered neutral formalin overnight and 

then processed for paraffin embedding, sectioned at 5 µm thickness, and 

processed using histochemistry or immuno-histochemistry technique.  

Detection of collagen deposition using PicroSirius Red staining 

PicroSirius Red (PSR) staining was used to detect collagen type I and III, which 

appears red in the bright-field microscopy. Tissue was deparaffinized and 

rehydrated, followed by immersion into PSR solution (0.5g Sirius red F3B in 500 

ml aqueous solution of picric acid) for 60 minutes. The slides were then quickly 

dipped in two changes of acidified water (0.5% acetic acid), dehydrated and 

mounted with resinous medium. Collagen presence (appearing red on a yellow 

background) was evaluated under unpolarized light (bright field).  
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 Detection of renal capillaries using Cablin staining 

Cablin antibody detects the capillary basal lamina and has been previously used 

to reveal renal capillaries [226]. Following deparaffinization and hydration of the 

tissue, antigen retrieval was performed using Tris-EDTA Buffer (10mM Tris base, 

1mM EDTA, 0.05% Tween 20). Slides were immersed in the buffer and boiled for 

20 minutes, follow by 10-minute cool-down period. Blocking solution (10% goat 

serum, 1% BSA in PBS) was applied for 2 hours. Primary rabbit anti-Cablin 

antibody (provided by Robert Bacallao, MD, Indiana University) was applied for 30 

minutes, followed by secondary goat anti-rabbit antibodies application for 10 

minutes. 3,3’-diaminobenzidine (DAB) solution (Sigma) was applied on each 

section to reveal the antigen.  

 Detection of renal vessels using Lycopersicon Esculentum (Tomato) Lectin 

Thin sections of kidney tissue were rehydrated and incubated with Carbo-Free 

solution (Vector Labs), to block non-specific binding, for 30 minutes. Biotinylated 

Lycopersicon Esculentum lectin (Vector Labs) was applied for 30 minutes, followed 

by incubation of the sections with peroxidase H-Avidin DH complex (Vector Labs) 

for 30 min. DAB was used to reveal antigen-lectin complexes.  

  Detection of myofibroblast using Alpha-Smooth Muscle Actin 

Thin sections of kidney tissue were treated with 2% hydrogen-peroxide for 10 

minutes to inhibit endogenous peroxidase activity and then with M.O.M.™ Mouse 

IgG Blocking Reagent (Vector Labs) for 1 hour, to block endogenous mouse IgG, 

followed by incubation with M.O.M. protein solution for 5 minutes, to blocking 
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nonspecific binding sites. Mouse anti-αSMA IgG were applied for 1 hour, followed 

by incubation of the sections with biotinylated anti-mouse IgG for 10 minutes, and 

then with peroxidase H-Avidin DH complex.  Antigen-antibody complexes were 

revealed with DAB and nuclei were detected with hematoxylin counterstain.  

 Detection of M1 and M2 macrophages 

M1 and M2 macrophage staining was done to assess macrophage polarization 

(CD68 for M1 macrophage and CD206 for M2 macrophage). Tissue sections were 

rehydrated and treated with antigen retrieval buffer (pH 9.0) at 90oC for 30 minutes. 

To block nonspecific binding sites, sections were incubated with 2.5% normal 

horse blocking serum (Vector Labs) for 20 minutes. Then, sections were incubated 

with either rabbit anti-CD68 (Abcam, ab125212 1μg/ml) or rabbit anti-CD206 

(Abcam, ab64693, 0.1μg/ml) for 1 hour, followed by incubation with ImmPRESS 

HRP anti-rabbit IgG (Vector Labs) for 20 minutes and then with peroxidase H-

Avidin DH complex. Antigen-antibody complexes were revealed with DAB. Nuclei 

were detected with hematoxylin counterstain.   

 Detection of iron deposition in renal tissue using Perl’s Iron Stain 

Tissue was deparaffinized, rehydrated, and immersed in working solution of 10% 

Potassium Ferrocyanide/ 20% HCl for 30 minutes, then rinsed in distilled water. 

Slides were counterstained with Nuclear Fast Red solution for 5 minutes, washed 

in tap water, dehydrated and coverslipped. The ferric iron appears bright blue. 

All histology sections were viewed under the microscope and several, randomly 

selected images at 100x magnification were taken (6-10) from each section, within 
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renal cortex. The analysis of the staining was performed using ImageJ software to 

determine the relative color intensity within each photograph.    

3.2.3 Laser Doppler Imager (LDI) assessment of superficial renal 

blood flow 

LDI assessment of left kidney perfusion was performed in C57Bl/6 female 

mice in Study 3. Mice were anesthetized with 4% isoflurane and then maintained 

at 2%. A small incision was made on the left side of the abdomen and left kidney 

was exposed.  

The tissue perfusion of the left kidney was analyzed using infrared (830nm 

wavelength) Class 3B Laser Doppler Imager (MOOR Inc, UK) at 4ms/pixel scan 

speed with image acquisition rate of 15KHz (for the upper cut-off frequency). The 

camera and laser source was positioned 30cm directly above the tissue of interest. 

The penetration depth of LDI is 2mm and corresponds to measuring the perfusion 

within cortical region of the mouse kidney. Three consecutive images were 

obtained in approximately 2.5 minutes each. Acquired data was analyzed using 

mLDIMainV53 Software and the mean of the three measurements was calculated.  
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3.3   Results 

3.3.1 Kidney weight assessment 

Study 1: NSG mice were exposed to CS for 6 months, followed by a two-month 

recovery period during which a subset of mice received weekly 

intraperitoneal (IP) injection of human ASC at dose of 1x105 cells. 

Study 2: C57Bl/6 mice were exposed to 5 months of CS, followed by immediate 

euthanasia and organ harvest.  

Study 3: C57Bl/6 mice were exposed to 5 months of CS, followed by a weekly IP 

injection of human ASC at dose of 3x105 for each of 4 weeks.  

The weights of the kidneys from C57Bl/6 mice in Studies 2 and 3 were 

analyzed. The weight of kidneys in Study 1 was omitted. The combined weight of 

both kidneys (left and right) from animals in Study 2 revealed a significant 20% 

drop (p<0.01) from the CS cohort compared to that of the AC group (Figure 14B). 

The analysis of the combined kidney weight in Study 3 demonstrated a 12% 

decrease in the kidney weight in CS animals, and a slight increase in the weight in 

the group treated with ASC (compared to CS group), though it did not reach 

statistical significance (Figure 14C). Assessment of kidney-to-body ratio did not 

yield a significant difference between the groups in Study 2 and 3 (data not shown). 

Mice exposed to CS have lost weight, as determined based on weight 

measurement immediately post CS regimen, but gain weight after CS cessation. 

The drop in weight immediately post CS (Pre-ASC Treatment) and despite of ASC 

treatment remained significant. (Figure 14D).  
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Figure 14. Assessment of the kidney weights. A. Image of kidneys from NSG 

mice in Study 1. B. Combined weight of both kidneys from C57Bl/6 female mice in 

Study 2. C. Combined weight of both kidneys from C57Bl/6 female mice in Study 

3. D. C57Bl/6 mouse body weight (Study 3) assessment immediately before and 

after ASC treatment period. For all graphs: *p<0.05, **p<0.01   
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3.3.2 Assessment of fibrosis and capillary rarefaction  

Study 2: C57Bl/6 mice were exposed to 5 months of CS, followed by immediate 

euthanasia and organ harvest.  

Kidney tissue of mice from Study 2 was used for histological assessment. 

Analysis of renal fibrosis, using PicroSirius Red stain, revealed a 53% increased 

deposition of Collagen Type I and III in cortical region (p<0.02), in mice exposed 

to CS, compared to AC group (Figure 15A-C). Assessment of renal capillary 

density, using of Cablin antibodies, demonstrated a remarkable decrease in 

capillary number (by 86%) in the cortex in that same group of CS-exposed mice 

(p<0.0001) (Figure 15D-F). These findings were further supported by staining with 

Tomato Lectin, which also revealed a major decrease (by 45%) in endothelial cell 

density in CS mice (p<0.05) (Figure 15G-I).  

Histological analysis of the presence of myofibroblasts, assessed via 

detection of alpha-SMA, revealed no alpha-SMA positive cells in either CS or AC 

groups. (Data not shown). M1/M2 macrophage polarization analysis, carried out 

by staining for CD68 (M1) and CD206 (M2) markers demonstrated absence of 

macrophages in the renal tissue in both mouse cohorts (Figure 16).  

Assessment of pathological changes within medullary area of the kidney 

revealed no statistically significant difference for any of the stain outcomes.  
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Figure 15. Assessment of fibrosis and capillary density in renal cortical 

tissue of C57Bl/6 mice exposed to cigarette smoke or ambient air (from Study 

2). A-C, Representative images of collagen deposition in renal parenchyma 

revealed by PicroSirius Red stain. D-F, Assessment of cortical capillary density 

using Cablin antibodies. G-I, Assessment of cortical capillary density revealed by 

Tomato lectin. CS group: n=6 mice, AC group n=5 mice. 6-10 images were taken 

at random from the cortex region of each kidney. For all graphs: *p<0.05, 

***p<0.001  
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Figure 16. Assessment of M1 and M2 macrophage presence in the renal 

cortical tissue of C57Bl/6 mice exposed to cigarette smoke or ambient air 

(Study 3). A-B, Representative images of spleen as positive control for M1 and M2 

macrophages. C-F, Representative images of renal cortex stained for CD68 and 

CD206 positive cells.   
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3.3.3   Assessment of the iron deposition in the kidney tissue and iron 

clearance following ASC administration 

Study 1: NSG mice were exposed to CS for six months, followed by two-month 

recovery period during which a subset of mice received weekly IP infusion 

of 1x105 human ASC. 

Free iron molecules have been shown to be cytotoxic and are thought to 

assist in Reactive Oxygen Species (ROS) production [227]. Presence of free iron, 

stored as hemosiderin, in the kidney could indicate hemolysis of red blood cells 

[228, 229]. Increased iron accumulation has been correlated with increased urinary 

protein excretion and can lead to acute kidney failure [227].  

Assessment of the presence of iron in the form of hemosiderin, conducted 

via Perl’s Iron staining in NSG mice from Study 1 showed nearly a 9-fold increase 

in the group of animals exposed to CS, compared to mice breathing ambient air. 

Interestingly and remarkably, the NSG mice treated with intraperitoneal 

administration of 1x105 human ASC showed clearing of the iron deposits in the 

kidney tissue, with 3.4-fold decrease comparing to the control group (Figure 17).     
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Figure 17. Assessment of iron presence in the kidney tissue of NSG mice 

using Perl’s Iron stain (Study 1). A-C, Histological assessment of iron deposition 

in mice exposed to ambient air, CS, and CS + ASC treatment. Human ASC 

treatment was administered intraperitoneally with cell concentration of 1x105. D, 

Quantitative assessment of histological findings (using arbitrary units) was done 

using an average score value for each of the kidneys assessed (n=6 images per 

kidney). ***p<0.001.    
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3.3.4 Assessment of the effects of cigarette smoke exposure on renal 

blood flow and therapeutic effect of ASC 

Study 3: C57Bl/6 mice were exposed to 5 months of CS, followed by a weekly 

infusion of IP human ASC at dose of 3x105 for 4 weeks.  

C57Bl/6 female mice (Study 3) were exposed to CS for a period of 5 months 

(5 hours a day for 5 days a week). Upon completion of this exposure, mice received 

intraperitoneal administrations of basal media or human ASC (3x105 cells), once a 

week for four weeks. Effect of cell therapy on tissue perfusion was evaluated by 

LDI in left kidney (due to ease of access). Analysis revealed a significant drop of 

37% in the cortical blood flow in the kidneys of mice exposed to CS, compared to 

air control cohort. However, mice that were exposed to CS, and received ASC 

treatment, showed substantial recovery of blood flow (32% increase), when 

compared to the flow rate in CS-exposed mice that received vehicle as a treatment 

(p<0.01). Furthermore, no statistically significant difference between the control 

mice and the ones receiving the ASC treatment was observed (Figure 18), 

importantly indicating the restoration of normal blood flow even after several 

months of smoke exposure.  
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Figure 18. Assessment of superficial cortical renal blood flow in C57Bl/6 

mice using LDI. Mice were exposed to ambient air or CS for 5 months (5 

hours/day, 5 days/week). Upon completion of CS conditioning, subset of mice 

exposed to CS, received human ASC treatment (3x105, IP) or vehicle, once a week 

for 4 weeks. (**p<0.01, ***p<0.0001) 
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3.4 Discussion  

Cigarette smoking is a preventable, but significant, factor contributing to 

increased morbidity and mortality. The association between smoking and decline 

in the cardiovascular and pulmonary health is well known [4, 43, 46, 67], as is the 

increased risk of cancer development [4, 17]. The correlation between smoking 

and decline in renal function, however, has not received much attention. It has 

been demonstrated that smoking negatively impacts endothelial cells, 

homeostasis (due to oxidative stress) leading to decrease in tissue perfusion and 

impairment in vascular dilation [59, 61], eventually resulting in deterioration of renal 

function over time [192]. However, the exact mechanisms of detrimental effect of 

CS on kidney physiology remain to be elucidated.  

Our study revealed a significant decrease in the kidney weight in C57Bl/6 

mice exposed to CS (Figure 14). However, kidney-to-body ratio did not appear to 

be significantly different between the groups. This may be a result of the 

proportional decrease of body weight of the animals exposed to CS. Indeed, our 

laboratory previously found that chronic CS exposure results in marked decrease 

in the total body weight [45], perhaps because it decreases appetite [230]. Taking 

this observation into consideration, the kidney-to-body ratio may be masking the 

effect of CS on the renal tissue and therefore may not be applicable in the mouse 

model of CS. We postulate that despite organ-to-body ratio being considered a 

common way to assess potential organ damage, assessment of kidney weight 

alone in our animal model should be taken into consideration as indicator of injury. 

Furthermore, we have previously demonstrated that CS results in decreased fat 
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tissue (measured as subcutaneous fat area) [45]; it is possible that skeletal muscle 

weight is also lost due to CS-exposure, as has been shown in the past [231, 232].   

While the analysis of the kidney weight does not allow for full understanding 

of the underlying pathology, the evaluation of presence of fibrotic tissue in the 

kidneys sheds light on the renal changes due to CS exposure. Fibrosis formation 

is typically considered to be a response to injury [233]. It is characterized by 

deposition of large amounts of extracellular matrix (ECM) proteins, however 

excess deposition results in a pathological state, altering the tissue architecture 

and function of the affected organ [233]. Renal fibrosis, resulting from activation of 

renal fibroblasts has been shown to lead to functional impairment [233]. It is also 

associated with CKD [233]. Studies revealed that the greater the extent of kidney 

fibrosis, the smaller the likelihood of recovery from CKD [234, 235]. One of the 

commonly studied pro-fibrotic factors, TGF-β, aids in fibroblast transition into 

myofibroblasts [234, 236, 237]. In our study, PicroSirius Red stain, commonly used 

for renal fibrosis analysis, revealed a striking increase in Collagen I and III 

deposition, a hallmark of fibrosis. Quantification of the stained area can indicate 

the severity of the renal damage; with a higher score (larger area stained with 

RSR) corresponding to greater pathology. Two approaches to fibrosis assessment 

are common: percent of fibrotic tissue and percent of tissue affected by pathology 

[238]; we have focused on assessment of the extent (percent) of the fibrosis within 

the organ. While Epithelial and Endothelial-to-Mesenchymal Transition (EMT and 

EndMT) have been increasingly elucidated as the main driving force behind 

fibrogenesis, other cells have also been proposed to act as fibroblast precursors, 
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e.g., pericytes [212] and leukocytes [209], especially in cases where CKD is 

immune-mediated. Surprisingly, while extensive collagen deposition has been 

observed in the CS mouse cohort, no myofibroblasts were detected in the kidneys, 

when probed for α-SMA.  

In addition to pathological fibrosis as a result of specific insults, ECM 

deposition is also observed in the context of aging, which is associated with 

progressively impaired cell turnover and less effective resorption of the ECM. 

Aging is a critical factor to consider in light of the pathological findings in the 

kidneys of mice used in this study, as the path to the observed fibrosis relies on 5 

or 6-month long CS-exposure. Such prolonged pre-conditioning resulted in 

animals that were not only affected by the exposure to toxic environment, but also 

characterized by advanced age (8 months old) compared to mice commonly used 

in research (2.5 months old). Therefore, we recognize that aging may play a 

confounding role and that at least part of the observed renal changes may be 

attributed to this process.  

Aside from fibrosis, a different, yet critical injury of the kidney is associated 

with endothelial cell apoptosis and subsequent decrease in renal capillary density. 

We have shown that CS-exposure results in significant loss of renal endothelial 

cells, as assessed via staining with Cablin and Tomato Lectin. Such phenomenon 

could be ascribed to either endothelial cell apoptosis or impaired proliferation or 

both. Basile et al. have demonstrated that renal endothelial cells have a minimal 

proliferative potential in kidneys subjected to ischemic insult, and administration of 
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VEGF-121 aids tissue recovery, which has been shown to be an effective 

treatment option immediately post-injury [239].  

While, ASC treatment of kidney injury has been shown to be effective [93], 

multiple studies have been unable to find these cells in the kidney following the 

infusion [240], suggesting that the therapeutic benefit is conferred via paracrine 

activity. Recently, bone morphogenic protein-7 (BMP-7) has emerged as a 

promising candidate for fibrosis amelioration [240]. BMP-7 has been shown to be 

secreted by ASC and has been shown to be a strong inhibitor of EndMT-mediated 

fibrogenesis [240-242].  

Assessment of M1 and M2 macrophage polarization revealed their absence 

from the renal tissue. While M1 macrophages are known as pro-inflammatory and 

are typically present in a greater amount than M2 during the initial stages of injury, 

M2 type is characterized by the opposite, anti-inflammatory properties and take 

part in the regenerative processes [243]. Interestingly, when an insult persists for 

an extended period of time, M2 macrophages have been shown to activate 

resident fibroblasts which leads to increased fibrosis [243]. Absence of these cells 

can be attributed to a chronic model of CS-exposure in which the inflammatory 

milieu is differs markedly between the start and end of the CS regimen. 

Interestingly, none of the histological or immune-histochemical stainings 

revealed any significant changes in the renal medulla, suggesting that cortex, with 

the glomeruli, proximal and distal convoluted tubules is more sensitive to CS-

induced damage, fibrosis and capillary rarefaction.       
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Maintenance of sufficient tissue perfusion is critical for maintaining healthy 

tissue. Studies in recent years have increasingly shown association between 

ischemic damage to the kidney, as observed in the AKI case and subsequent 

decline in the function of cardiovascular system [244]. AKI predisposes to future 

development of chronic kidney disease (CKD) [245]. Furthermore, it has been 

postulated that the effect of CS may further exacerbate such decline. Interestingly, 

a recently published abstract titled “Cigarette smoking partially negates the kidney 

protective effect of angiotensin converting enzyme (ACE)  inhibition in stage 2 non-

diabetic hypertension-associated CKD” revealed that CS-exposure at least in part, 

negates the benefits conferred by ACE inhibitors, in patients exhibiting CKD. 

Therefore it is important to investigate the interplay between CS, decline in the 

renal vascular health and decline in overall kidney function. Taking into 

consideration our new data revealing decrease in endothelial cell density within 

cortical region, we hypothesized that with drop in viable renal vasculature, a drop 

in the blood flow within kidney may be observed as well. Our assessment of renal 

tissue perfusion in the cortical region indeed indicated decrease in blood flow in 

mice exposed to CS; however, that effect was ameliorated (and in fact reversed) 

in the cohort treated with intraperitoneal (IP) injection of human ASC, indicating 

that cell therapy may be a very important and viable tool to improve kidney health. 

Importantly administration of cell treatment in the group of mice exposed to CS, 

after they finished preconditioning, did not merely show a protective effect, but also 

appeared to reverse damage caused by smoking. Collett et al., has recently shown 

that endothelial colony forming cells (ECFC) as well as ASC are able to ameliorate 
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renal vascular dysfunction in an AKI rodent model [246]. The therapeutic effect of 

ASC in ischemia/reperfusion injury models was also supported by the studies of 

several other groups [247, 248]. These studies suggest that ASC may represent a 

promising therapeutic option to a growing number of patients with kidney damage, 

at the same time offering a solution to the growing costs associated with the large 

population with renal pathologies [249].  

It is notable that intravenous infusion is a common method of cell delivery 

at least in part based on the desire to deliver cells directly via vascular supply to 

the site of injury. However, studies are being conducted to determine the most 

effective route of cell administration for maximum therapeutic efficacy. In 

conjunction of growing evidence that IP injections are at least just as effective as 

intravascular ones, indicating that the regenerative effect of stem cells is conferred 

via paracrine mechanism. Considering the technical difficulty to access mouse 

vasculature in the tail following repeated weekly injections, we attempted to use 

the IP route. Additionally, an advantage of IP route could be the avoidance of 

pulmonary trapping for the cells (occasionally associated with increased chances 

of mouse death due to pulmonary embolism).  

Interestingly, the assessment of intrarenal iron deposition revealed a 

significant increase in cytoplasmic iron and hence a potential mechanism for 

marked damage to the kidneys of mice exposed to CS. Free iron molecules are 

cytotoxic and are thought to aid in generation of Reactive Oxygen Species (ROS) 

[227]. Iron can be delivered to kidney via hemoglobin, myoglobin or transferrin. 

Presence of free iron detected in the kidney could be indicative of hemolysis of red 
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blood cells; released hemoglobin then deposits into the cytoplasm of renal 

proximal tubular cells [228, 229]. Degradation of hemoglobin releases iron 

molecules which are then stored as hemosiderin in the lysosomes [250, 251]. 

Significant accumulation of iron as hemosiderin can lead to acute kidney failure, 

associated with hemoglobinuria or hemolytic anemia [227-229, 251]. It has been 

observed that increased iron accumulation correlates with increased urinary 

protein excretion [227]. Our study has revealed that CS exposure facilitates 

hemosiderin deposition and therefore increases renal pathology.  

It is important to mention that this study relied on data from two mouse 

strains: NSG and C57Bl/6. It has been shown before that induction of emphysema 

as well as the native response to the CS-induced changes, including the response 

of the immune system, differs between the strains. [252] The inflammatory 

response, involving macrophages and T-cells, may play a significant role in the 

severity of pathology caused by CS. Similar observations were made by the same 

group regarding expression of pro-inflammatory cytokines and the observed 

weight loss following CS exposure [252]. Despite certain discrepancies related to 

strain variability in response to CS, these mouse models of emphysema and CS-

induced damage continue to help shed light on important biological processes that 

are involved in CS-induced organ damage.  

Our study included two different mouse strains with and without ASC 

administration. The histological assessments that were conducted for Study 2 

(C57Bl/6) will need to be also carried out in the remaining two groups, while iron 

deposition analysis will need to be evaluated in C57Bl/6 mice, with additional KIM-
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1 (kidney injury molecule-1) assessment and serum creatinine analysis for mice in 

Study 3. This will allow to compare the data across different species and treatment 

options.  

The data on the link between CS and kidney damage has started to 

accumulate in the past few years, however more studies are needed to determine 

the mechanisms through which smoking affects kidney. Taking into account some 

of those emerging data, it is becoming clear that CS contributes to decline in renal 

health and patients who smoke, may experience an increased severity of the 

symptoms associated with kidney damage. In addition to studies assessing the 

effect of CS on kidneys, analysis of the effects of smoking cessation on 

improvement of renal function are needed.   
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Chapter 4: Smoking-induced myelosuppression and emphysema 

development in mice are ameliorated by AMD3100 administration 

 

4.1   Introduction  

4.1.1 Pathogenesis of chronic obstructive pulmonary disease 

(COPD) and the role of cigarette smoke 

Chronic obstructive pulmonary disease (COPD) is a progressive, 

irreversible, and devastating condition characterized by obstruction of airflow to 

the lungs and injury to the microvasculature [253]. It results in shortness of breath, 

coughing, chest tightness, exhaustion, and sometimes cyanosis (blue lips). These 

symptoms, which tend to worsen with time, severely decrease the quality of life of 

COPD patients. Each year, 174 million cases of COPD are being diagnosed 

globally, and 3.4 million in the United States alone. One of the major factors 

implicated in COPD pathogenesis is cigarette smoking (CS) [253], which is also 

associated with increased chances of developing lung cancer [52, 53] and 

cardiovascular diseases, like atherosclerosis and impairment of vasodilation [43, 

67]. These CS-induced pathologies contribute to increased mortality of COPD 

patients and, to date, there is no known cure for this condition [253].  

One of the diseases associated with COPD is emphysema, the 

development of which is correlated with increased morbidity and mortality [254]. 

COPD/Emphysema is classified as the third most common cause of death globally 

directly behind ischemic heart disease and cerebrovascular disease [253], all of 
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which can be exacerbated by CS [253]. Important goals of COPD management 

include reducing disease progression, preventing exacerbations, and decreasing 

the mortality rate. Patients who continue to smoke are enrolled in smoking 

cessation programs. These patients mostly rely on treatments targeting their 

individual symptoms and provide support in breathing, like non-invasive ventilator 

support (oxygen therapy), bronchodilators (associated with adverse 

cardiovascular events (e.g. prolonged QT interval) in patients with heart disease), 

and corticosteroids (shown to increase the risk of pneumonia in patients with 

compromised lung function) [253]. Another often practiced treatment option is 

gradual introduction of physical activity, which has been shown to reduce COPD-

related complications and decrease the risk of hospital admission as well as 

treating other existing comorbidities like cardiovascular disease or diabetes. 

Although recent medical advances were shown to help alleviate the symptoms and 

improve the quality of life, current therapies fail to substantially improve patient 

survival [255, 256]. While it has been shown that quitting smoking can slow the 

progression of the disease and ease some of the symptoms, this continues to be 

insufficient in restoring the quality of life.  

There is a currently unmet medical need for a therapy which will stop the 

progression of COPD by improving lung regeneration. Pre-clinical studies using 

rodent models of CS-induced emphysema have shown that the use of 

mesenchymal stem cells is able to ameliorate the lung pathology and improve its 

function [257-259]. Our group has demonstrated that a 3-day CS exposure is 

sufficient to induce myelosuppression [105] which is defined as a decrease in the 
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number of hematopoietic progenitor cells (HPC: BFU-E, CFU-GM, CFU-GEMM). 

While CS-induced emphysematous changes require a longer period of time to 

manifest, we postulated that there may be cross-talk between bone marrow (BM) 

and lung; and pathology associated with one of the organs affects the other.  

4.1.2 The role of bone marrow (BM) in the regenerative process 

Hematopoietic stem cells (HSC, CD34+ cells) reside in the bone marrow 

(BM) and give rise to hematopoietic progenitor cells (HPC) that ultimately 

differentiate into all of the functional cells of the immune system. Lymphoid 

progenitors give rise to B- and T-lymphocytes. Myeloid cells, which are the focus 

of this study, include burst-forming unit erythroid (BFU-E), colony forming unit-

granulocyte and macrophage (CFU-GM), and colony forming unit-granulocyte, 

erythroid, macrophage and megakaryocyte (CFU-GEMM). A more detailed lineage 

tracking of the HSC is presented in Figure 19.  

An increasing body of evidence suggests that there is an interplay between 

BM and lung: several reports have proposed that some populations of bone 

marrow cells engraft in lung and support tissue repair [260]. Adachi et al. has 

shown that transplanting healthy BM cells into the mouse model of emphysema is 

able to reverse the disease progression [261]. They postulate that emphysema 

development is associated with damage of BM. Huertas et al. demonstrated a 

reduced number of BM progenitor cells in severe COPD [262]. Interestingly, it has 

been revealed that patients with COPD who take steroids for their condition (eg. 

glucocorticoids) are likely to experience a decrease in bone mass and number of 

osteoblasts as well as colony forming units contributing to increased incidence of 
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osteoporosis [263, 264]. In addition, Xie et al., recently documented that exposure 

of mice to CS, for as short as 3 days, results in significant myelosuppression [105]. 

This finding is important as it has been shown that a decrease in BM HPC is 

associated with increased morbidity and mortality in patients with COPD and 

cardiovascular disease [265-267]. Based on the findings presented above that 

show a correlation between decrease in circulating HPC and severity of COPD in 

patients [268-270], we hypothesized that circulating HPC play a role in 

maintenance and repair of lung function, and that HPC reduction is linked to lung 

inability to counteract CS-induced damage.  

Since it has been shown that CS is damaging to BM, new methods to boost 

BM repair are necessary in light of repairing lungs and protection from additional 

damage. Currently, in order to ameliorate BM pathologies like leukemia and 

aplastic or Fanconi anemia, patients are subject to BM transplants. This procedure, 

however, is highly invasive and associated with a set of potential complications 

like graft versus host disease (GVHD), infections, graft failure, and slow recovery, 

as well as relapse of the disease [271]. In recent years it has been shown that 

infusion of mesenchymal stem cells accompanying BM transplant can help reduce 

the risk of GVHD, speed up recovery, and minimize graft failure [271]. However 

the ideal treatment option would be to enhance or rejuvenate the patient’s own BM 

without the need for transplant.  
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Figure 19. Hematopoiesis model in a human [272]. Cartoon representing 

development of various blood cells from single hematopoietic stem cell. This 

process is taking place in the bone marrow. Differentiated cells are represented on 

the right.  
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4.1.4 AMD3100 as a therapeutic agent 

The bicyclam AMD3100, known as plerixafor or mozobil, is an FDA-

approved mobilizer of HPC and HSC to peripheral blood for collection and 

subsequent transplantation in patients with non-Hodgkin lymphoma and multiple 

myeloma [165, 273]. AMD3100, which has been proposed to serve as a BM 

mobilizing alternative to granulocyte colony stimulating factor (G-CSF), is capable 

of releasing BM cells into peripheral blood within hours of administration, 

compared to a much longer process involving G-CSF [274].  

AMD3100 has been identified as an antagonist of the CXCR4 receptor 

therefore affecting the CXCR4/SDF-1 (CXCL12, stromal derived factor-1) axis that 

is known to play an important role in homing and survival of HSC/HPC, as well as 

preventing the release of these cells from BM niche (Figure 20). The SDF-1 

chemokine is abundantly expressed within mouse and human BM environment, 

predominantly by the endothelial cells, osteoblasts, and reticular cells (type of 

fibroblasts) [275]. Its receptor, CXCR4, is found on the HSC surface, and upon 

binding of SDF-1, HSC retention within the BM niche is achieved. Since HSC is 

sensitive to high SDF-1 gradient present in BM, homing of BM stem and progenitor 

cells is observed [275]. As AMD3100 is able to modulate this CXCR4/SDF-1 

interaction (via antagonizing of SDF-1 binding to CXCR4), it is considered to be a 

great approach in BM mobilization and transplant studies. While it is known that 

CXCR4/SDF-1 interaction is crucial to retain BM HSC and HPC within BM niche, 

interruption of such interactions with AMD3100 results in BM HSC and HPC 

release, and as shown in mouse studies, the drug mobilizes immature progenitor 
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cells rather than mature leukocytes (white blood cells) during the fast acting 

mobilization process, as shown by Dar et al [274]. In addition to the BM HSC and 

HPC mobilizing properties of AMD3100, Kim et al., has shown that the drug 

mobilized endothelial progenitor cells (EPC) and helped ameliorate diabetic 

peripheral neuropathy [276]. Interestingly, Matthys et al. demonstrated that daily 

administration of AMD3100 for one week prior to the observation of initial 

symptoms resulted in improvement of indicators of collagen-induced arthritis in 

mice. He postulated that presence of SDF-1 at the site of injury results in attraction 

of leukocytes and further propagation of the inflammatory process resulting in joint 

inflammation and autoimmunity [277]; therefore suggesting that AMD3100 may be 

useful in targeting diseases mediated by inflammation.  

Taken together, these studies demonstrate that AMD3100 shows potential 

as a therapeutic capable of fostering tissue and organ regeneration. Therefore, we 

hypothesized that CS-induced myelosuppression as well as emphysema 

development in mice (as determined by bone marrow colony formation and 

pulmonary function test) can be ameliorated via AMD3100 administration.  
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Figure 20. Schematic representation of AMD3100- mediated HSC 

mobilization into peripheral blood. Modified figure from [278].  
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4.2   Methods and Materials 

4.2.1 Animal model of emphysema and treatment groups 

Animal studies were approved by the Indiana University Animal Care and 

Use Committee. Female C57Bl/6 mice (8-10 weeks, Jackson Laboratories, Bar 

Harbor, Maine) were exposed to 11% mainstream and 89% side-stream smoke 

using Teague 10E whole body exposure apparatus (Teague Enterprises, 

Woodland, CA) for 3 weeks, or 24 weeks for 5 hours/day, 5 days a week, as 

described previously [45]. CS was generated using 3R4F reference cigarettes 

(Tobacco Research Institute from Lexington, KY). Control mice were exposed to 

ambient air for the same duration. Groups of CS-exposed mice received daily 

subcutaneous injections of 5 mg/kg AMD3100 (Sigma) or PBS (5 consecutive days 

during week 1, week 12, and week 22 of CS exposure (Figure 21)). Following 

completion of the treatment, mice were anesthetized and pulmonary function test 

was conducted, then euthanized prior to BM and lung harvest.  

Bone marrow analyses were performed at week 3 and 24 to assess CS-

induced effects on HPC. Lung function and MLI were analyzed at week 24 to 

assess CS-induced lung damage. Inflammatory cells in lung were analyzed at 

week 3.  
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Figure 21. Timeline for AMD3100 injection and analyses. AMD3100 (5 

mg/kg/day, subcutaneous) or vehicle were administered daily for 5 consecutive 

days, Arrows indicate AMD3100 administration. Black squares indicate time of 

sacrifice and analysis.  
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4.2.2 Clonogenic progenitor cell assay 

Absolute numbers of HPC, as well as individual numbers of granulocyte-

macrophage colony-forming units (CFU-GM), erythroid burst-forming units (BFU-

E), and multipotential progenitors (CFU-GEMM) were determined, as previously 

described [165, 279]. To obtain BM cells, left and right femurs were flushed with 

DMEM. Number of mononuclear cells were assessed using Hemavet 950FS 

device (Drew Scientific, Dallas, TX). Cells were plated at 4.5 × 104 cell/mL per 

35mm dish in 0.9% methylcellulose culture medium, supplemented with 30% FBS 

(HyClone), 2 mM Glutamine (Gibco), 50ng/ml recombinant mouse stem cell factor 

(rmSCF; R&D Systems), 1 U/ml recombinant human erythropoietin (EPO, Amgen 

Corp), 100 µM 2-mercaptoethanol (Fisher Scientific), 0.1mM hemin (Sigma-

Aldrich) and 5% vol./vol. pokeweed mitogen mouse spleen cell conditioned 

medium (mSCM). mSCM was prepared as previously described [165, 279]. Cells 

were incubated at 37oC in 5% O2 and 5% CO2 for one week and analyzed.  

4.2.3 Assessment of lung pathology using Pulmonary Function Test 

(PFT)  

To perform PFT, mice were anesthetized, intubated, and mechanically 

ventilated with the FlexiVent system (Scireq, Montreal, PQ, Canada) as previously 

described [280, 281]. An incision was made along the throat area to expose the 

trachea in order to intubate. A suture was passed under the trachea; the trachea 

was incised close to larynx. A cannula was inserted into the trachea and secured 

with the suture. The mouse was then connected to the ventilator. A baseline 

reading of 30cm H2O over a period of 3 seconds was performed to confirm the 
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system setup. Following baseline measurement, the lung performance was 

assessed.  

4.2.4 Assessment of lung pathology using histology  

At the completion of PFT, mice were euthanized and their BM, and lungs 

were collected. For histological analysis, lungs were inflated with 0.25% (v/v) 

agarose in 10% (v/v) formalin/PBS. Tissues were embedded in paraffin and five 

micron sections were stained with hematoxylin and eosin. To perform mean linear 

intercept (MLI) scoring, images of the lungs were generated and then 

superimposed over a grid and subsequently the number of times that alveolar wall 

crossed the grid line was counted [282]. 

4.2.5 Assessment of lung pathology using Bronchoalveolar Lavage 

(BAL). 

For BAL analysis, lungs were flushed 3 times with ice-cold PBS. Obtained 

BAL was spun down at 600g for 5 min. Supernatant was transferred to fresh tubes 

and snap-frozen. Pelleted cells were treated with 1 ml of red blood cell lysing buffer 

(NH4Cl 8 g/l, KHCO3 1 g/l, EDTA 0.1mM) for 10 min to remove erythrocytes. After 

incubation, 10 ml of PBS was added and the content was centrifuged at 600g for 

5 min.  Cells were re-suspended in PBS. Aliquots of 28,000 cells were loaded into 

cytospin slides, stained with Three-Step Stain Set (Thermo Scientific), and number 

of inflammatory cells (macrophages, lymphocytes and polumorphonuclear 

cells/granulocytes) was determined by counting 300 cells per slide. 
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4.2.6 Statistical analysis 

All results are shown as mean ± SEM. The analyses were performed with 

Prism software using one way ANOVA with Tukey Post-hoc. p<0.05 was 

considered statistically significant. 
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4.3   Results 

4.3.1 AMD3100 ameliorates CS-induced myelosuppression 

In patients, AMD3100 induces temporary release of HPC/HSC to peripheral 

blood followed by a return to baseline after four hours when cells are likely to home 

to their BM niche [283]. Based on this information, we assessed whether daily 

mobilization is able to deplete BM pool of HPC. In order to address this question, 

we assessed the number of HPC in BM of mice subject to CS for three weeks, 

receiving daily delivery of AMD3100 over a period of 5 days, during the first week.  

The data revealed, consistent with prior findings [105], that short term CS 

exposure results in 60% decrease in mouse BM HPC (Figure 22A). Administration 

of AMD3100 to a subset of CS-exposed mice restored CS-induced reduction of 

total HPC (combined numbers for CFU-GM, CFU-GEMM, BFU-E) by 103% (Figure 

22A). This treatment effect was noted following two weeks of treatment withdrawal 

period. 

To assess the effect of extended AMD3100 administration on BM HPC, 

mice were exposed to 24 weeks of CS, three five-day long administrations of 

AMD3100 were conducted during week 1, 11, 21. The data revealed that CS-

induced reduction of total HPC (by 65%), CFU-GM (by 65%), BFU-E (by 58%), 

and GEMM (by 61%) levels was significantly suppressed by AMD3100 (increase 

in HPC by 159%, CFU-GM by 155%, BFU-E by 185% and CFU-GEMM by 214%) 

(Figure 22B, C).   
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Figure 22. AMD3100 limits CS-induced suppression of BM hematopoietic 

progenitor cells. C57BL/6 mice were exposed to ambient air or CS for 3 weeks 

(A) or 6 months (B-C). A-B) Total number of colony forming units. C) Total number 

of colony forming unit-granulocyte, monocyte (CFU-GM), burst forming unit-

erythroid (BFU-E) and colony forming unit-granulocyte, erythrocyte, monocyte, 

and megakaryocyte (CFU-GEMM). Data presented as Mean ± SEM; *p<0.05, 

**p<0.01, ***p<0.001 by ANOVA with Tukey post-hoc. 

 

 

 

  



127 

4.3.2 AMD3100 ameliorates CS-induced lung damage 

To analyze whether AMD3100 ameliorates CS-induced emphysematous 

changes in lungs, we assessed both compliance and inspiratory capacity 

(maximum volume of air inspired) of lungs of mice exposed to CS for 6 months.  

A decline in the inspiratory capacity has been used as a predictor of 

mortality in COPD patients [284]. Compliance is an indicator of the ability of lung 

tissue to expand and stretch. Loss of that elastic recoil (shown to be mouse strain 

dependent [285]), increase in compliance and decrease of resistance is attributed 

to emphysematous changes [286]. While the same observation of compliance 

increase in emphysematous lung of both human and mouse, the inspiratory 

capacity increases in mouse lung with emphysema, which is opposite to the human 

lung. This is due to the anatomical differences [286].  

As seen in emphysema development [287, 288], CS exposure increased 

compliance and inspiratory capacity of mouse lungs by 17% and 30% respectively. 

Remarkably, administration of AMD3100 significantly decreased CS-induced 

increases in both parameters by 14% and 11% respectively (Figure 23A, B). 

Analysis of mean linear intercept (MLI) confirmed that AMD3100 

suppressed by 11% the emphysematous enlargement of alveoli induced by CS 

(Figure 23C). 
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Figure 23. AMD3100 limits CS-induced emphysematous changes in lungs. 

C57BL/6 mice were exposed to ambient air or CS for 24 weeks. Lung function 

(lung compliance, A, and inspiratory capacity normalized to mouse weight, B) and 

histological changes (MLI, C) were assessed 2 weeks after the last AMD3100 

injection. Mean ± SEM is plotted. *p<0.05 **p<0.01, ***p<0.001, ****p<0.0001 by 

ANOVA with Tukey post-hoc. 
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4.3.2.1 The effect between AMD3100 administration and influx of 

inflammatory cells to the lung 

To analyze whether suppression of emphysematous changes by AMD3100 

is associated with a decreased recruitment of inflammatory cells to the lung, we 

assessed levels of macrophages, lymphocytes, and neutrophils two weeks after 

the last administration of AMD3100. The data revealed a trend of suppression of 

the influx of macrophages, lymphocytes, and PMN, however none of the values 

reached the level of significant difference (Figure 24). 
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Figure 24.  Assessment of the inflammatory cells in BAL (MΦ - macrophages, 

Lymph - lymphocytes, PMN - polymorphonuclear cells) were assessed 2 weeks 

after the last AMD3100 injection. Mean ± SEM is plotted. 
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4.4   Discussion 

Recently, we reported that even short-term CS exposure results in 

myelosuppression and hence reduction of HPC populations in BM [105]. 

Interestingly, myelosuppression due to CS happens even prior to detectable lung 

pathologies, including emphysema development, which, based on pulmonary 

function tests and lung histology, become apparent around fifth or sixth month of 

CS exposure. Our laboratory has previously shown that a 3-day CS-exposure 

resulted in significant decrease in frequency of BFU-E, CFU-GM and CFU-GEMM 

in BM, whereas a single intravenous administration of human ASC day 2 showed 

ability to preserve the levels of these cells to levels essentially equivalent to those 

present in the air control group [105]. Furthermore, the group that received infusion 

of ASC recovered to a greater extent when compared to the CS-exposed group 

that was allowed to recover in CS-free environment for seven days, but did not 

receive cell therapy [105]. In addition to this promising finding demonstrating that 

ASC therapy ameliorates CS-induced BM damage, our laboratory has also shown 

that intermittent ASC systemic infusion during the course of CS-exposure lessened 

the severity of emphysema [45]. Taken together, this data suggests that ASC 

administration produces a regenerative effect on both BM and lungs in mouse 

model of emphysema.      

The goal of current study was to determine whether intentional mobilization 

of bone marrow progenitors (CD34 positive cells) in the animals chronically 

exposed to CS, using the FDA-approved drug AMD3100, would produce the 

protective effect of the lung function and morphology, which are the primary 
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characteristics of patients with COPD/emphysema. Since effects of prolonged 

HPC mobilization on BM pool of cells has never been studied, we analyzed BM 

HPC levels in mice receiving either brief 5-day long or three intermittent courses 

(week 1, 12, and 22) of AMD3100 administration. Remarkably, based on the 

colony assay analyses for three BM lineages, the levels of HPC in AMD3100-

treated mice were at the similar level as in the control group (AC) and were 

independent of treatment regimen: mice receiving a single 5-day administration 

and mice receiving three five-day administrations.  

The mechanism responsible for the protective effect of AMD3100 on HPC 

in BM is yet to be elucidated. Mobilization of HPC with AMD3100 to peripheral 

blood has been shown to be short-lived, with peak at one hour post-administration 

[165]. The number of HPC in the peripheral blood at the time of BM harvest was 

not assessed in this study, therefore it is unclear whether the intermittent 

administration of AMD3100 led to extended persistence of BM cells in circulation. 

The fact that mobilized HPC are mostly in G0 cell cycle suggests that no 

proliferation takes place while HPC are in peripheral blood [283].  

Independent of the nature of protective mechanism, our findings 

demonstrate that intermittent administration of AMD3100 is sufficient to preserve 

HPC levels in BM of mice exposed to CS. The protective effect of AMD3100 on 

BM cells was observed together with its protective effect on lungs via reduction of 

the emphysematous changes. This finding suggests that lung rejuvenation may be 

dependent on the ability of BM to supply sufficient amounts of circulating HPC. 
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AMD3100 is a known antagonist of CXCR4, a receptor of SDF-1, a chemokine 

shown to be secreted in tissues subjected to injury, and subsequently attracting 

inflammatory cells. It has been demonstrated that daily administration of AMD3100 

over a short duration results in improvement of symptoms of arthritis in mice, a 

disease known to have an inflammatory component [277]. The same study also 

showed that increased expression of SDF-1 at the site of injury contributed to influx 

of leukocytes, propagating further the inflammatory processes [277]. The 

overexpression of SDF-1 in tissues has been associated with conditions mediated 

by inflammatory response, while diseases that are not inflammation-caused (like 

osteoarthritis) have not been correlated with increased SDF-1 secretion [277, 289]. 

This ties with the observation that COPD and emphysema are strongly associated 

with influx of inflammatory cells. Studies have demonstrated that upregulation of 

SDF-1 is commonly observed in the emphysematous lung tissue [290]. Such 

increased expression is thought to lead to influx of cells aiding in restoring the 

damage, and has been beneficial in studies infusing mesenchymal stem cells in 

order to address lung injury [291]. Whether overexpression of SDF-1 is a truly 

desirable phenomenon has not reached a consensus yet. Rafii et al. has shown 

that lung regeneration can be mediated via platelet-derived SDF-1 which promotes 

neo-alveolization, while SDF-1-deficient platelets were unable to repair the 

damage [292]. Similarly, ablation of CXCR4 hindered lung damage repair [292]. A 

study assessing pulmonary hypertension in mice has demonstrated that inhibition 

of CXCR4/SDF-1 signaling pathway with either AMD3100 or anti-SDF-1 

neutralizing antibody improved lung rejuvenation, including alveolization [293]. 
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Makino et al. revealed that pulmonary fibrosis is mediated by CXCR4/SDF-1 

signaling mechanism, which is responsible for the accumulation of circulating 

fibroblasts and lymphocytes in damaged lung parenchyma [294]. The same group 

postulated that administration of AMD3100 inhibited pulmonary fibrosis and 

reduced the number of lymphocytes in BAL. It has also been shown that 

recruitment of macrophages and neutrophils to the lungs could be prevented by 

AMD3100 [295] or another CXCR4 antagonist 4F-benzoyl-TE14011 [296]. Since 

inflammatory cells are known to play a critical role in emphysema development 

[297, 298], whether the observed therapeutic effect of AMD3100 is attributed to its 

ability to decrease local inflammation requires future investigation.   

Taken together, mobilization of HPC may not be the only mechanism 

mediating lung protection by AMD3100. Inhibitory activity of the drug on 

CXCR4/SDF-1 axis, potentially reducing the infiltration of the damaged tissue by 

inflammatory cells and therefore reducing tissue damage may also play a role.   

The ability of AMD3100 to limit emphysema progression in mice clearly 

indicates that AMD3100 may have potential therapeutic value for COPD patients. 

Although it has been shown that repetitive administration of AMD3100 is 

associated with various side effects [299, 300], optimization of dose and regiment 

of treatment may limit the development of side effects while delivering optimal 

effects to patients with COPD. Based on these findings, AMD3100 may be 

considered as a candidate for an entirely new indication in treatment and 

preservation of lung function as a result of exposure to CS. 
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Chapter 5: Future directions 

 

My studies as described above have addressed several important topics 

related to the effects of CS on development of pathology and on the potential for 

therapies based on cellular administration or modulation to treat these pathologies. 

We have shown that ASC derived from patients with a history of CS, are 

compromised in their potential to form dense vascular networks and this 

effect is due to increased secretion of an inhibitor, the angiostatic factor 

Activin A. During our in vivo studies we have not assessed the efficacy of 

administration of ASC from non-CS donors, in mice exposed to CS and 

subsequently subjected to hindlimb ischemia procedure. While we investigated the 

therapeutic efficacy of the cells from smokers, we recognize the importance to also 

assess the physiological environment in patients who smoke, and their response 

to therapy using cells from healthy donors. Further studies involving Activin A 

knock-down models are needed to fully elucidate on the mechanism and determine 

the extent to which Activin A plays a role in limiting vasculogenic potential of ASC 

from smoking donors.  

 Our further assessment of CS-induced pathology in a distinct organ system, 

the kidney, revealed fibrosis formation, capillary rarefaction and iron deposition. 

While administration of ASC has shown promise to reverse such renal damage, 

it remains important to determine the mechanism of CS-induced fibrosis formation. 

We hypothesize that this effect is due to EndoMT processes and studies utilizing 

inducible Tie-2-creER-YFP mouse strain (Tie2 gene is known to drive the 
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expression of endothelial cells. If eYFP-expressing cells undergo transition into 

smooth muscle cells, they will continue to express the fluorescent protein) will help 

address these questions. Incorporating ASC treatment into the study design will 

allow to determine whether ASC therapy is able to diminish EndMT-associated 

fibrosis formation.  

 Finally, our analysis of amelioration of CS-induced myelosuppression and 

emphysema in mice using AMD3100 showed a very promising finding that an 

already approved bone marrow hematopoietic stem and progenitor cell 

mobilizing agent may offer a promising treatment in patients with 

compromised bone marrow and lung function. The mechanism involved in the 

therapeutic activity of AMD3100 to ameliorate the observed damage still needs to 

be elucidated. Studies to assess dose response of AMD3100 will be needed to 

determine the most optimal time points as well as frequency of the drug 

administration.  

 While our studies add a significant amount of new information to the general 

body of knowledge related to the pathological effects of CS, a long-term study 

involving a large cohort of smokers is still needed to elucidate the relationships 

among the number of cigarettes smoked in a lifetime, the number of years during 

which smoking was ongoing, as well as the length of time since smoking cessation 

and the level of tissue damage and subsequent regeneration.       
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