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ABSTRACT 

Ash, Jordan R. M.S., Purdue University, December 2016. Design and Implementation of 
Gas Chromatography/Mass Spectrometry (GC/MS) Methodologies for the Analysis of 
Thermally Labile Drugs and Explosives. Major Professor: John V. Goodpaster. 

Don’t use copy & paste in personal info paragraph 
 

Type and use drop down boxes 
Gas Chromatography/Mass Spectrometry (GC/MS) is an analytical technique that 

sees frequent use in labs across the world. It is also one of the most common 

instruments found in forensic science laboratories. This technique can efficiently and 

accurately separate and identify a broad range of compounds that may be present in 

evidence submitted for analysis. In this work, the versatility of this instrument was 

applied to new methodologies for the detection of explosives and illicit drugs. 

The analysis of explosives by GC/MS is common but can be problematic. The 

thermally sensitive nature of some explosives can cause them to degrade when 

introduced to the high temperatures of a GC/MS inlet. This project looked at the design 

and implementation of a way to separate and detect a variety of nitrate ester explosives 

in a short amount of time. In addition to this, a new technique known as Total 

Vaporization-Solid Phase Microextraction (TV-SPME) was utilized as a pre concentration 

technique. The parameters for TV-SPME were statistically optimized for a 
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low level of detection. The combination of these areas allowed for the separation of 

ethylene glycol dinitrate, nitroglycerin, erythritol tetranitrate, and pentaerythritol 

tetranitrate with a detection limit as low as 50 parts per trillion (ppt). Degradation 

products such as 1-mononitroglycerin, 1-3-dinitroglycerin, and 2-mononitroglycerin 

were also successfully identified. 

The problem of thermally labile compounds extends to the world of illicit drugs. 

In the second project, several derivatization schemes were developed for common 

controlled substances. N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% 

trimethylchlorosilane (TMCS) was used for silylation, trifluoroacetic anhydride (TFAA) 

was sued for acylation, and (N,N-Dimethylformamide dimethyl acetal (DMF-DMA) for 

alkylation. Three different compound classes totaling 15 different drugs were 

investigated. N,N-Dimethylformamide dimethyl acetal (DMF-DMA) is presented as a 

novel way of derivatizing several drugs of interest. Primary amines and zwitterions were 

derivatized with this reagent to much success, specifically: amphetamine, 2-(4-Iodo-2,5-

dimethoxyphenyl)ethan-1-amine (2C-I), pregabalin, and gabapentin. 
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CHAPTER 1. DESIGN AND OPTIMIZATION OF A GAS CHROMATOGRAPHY/MASS 
SPECTROMETRY METHOD FOR THE SEPARATION AND IDENTIFICATION OF NITRATE 

ESTERS 

1.1 Introduction 

 

The utilization of Improvised Explosive Devices (IED’s) to perform acts of terrorism 

has been well documented1. These devices vary widely in their size, explosive potential, 

and components. For example, the Olympic park bombing in 1996 used smaller pipe 

bomb devices that could be concealed and utilized dynamite as the explosive1. The 

Boston marathon bombing used a slightly larger device than the pipe bombs used in the 

Olympic park bombing. A pressure cooker in a backpack using a pyrotechnic 

composition as the accelerant was used. In both of the instances the devices were easily 

carried and hidden from view. This is not always the case. The bombing of the World 

Trade Center in 1993 used a van that was loaded with urea nitrate as the main charge. 

The broad range of explosives and devices that can be used can cause issues for forensic 

scientists, particularly in a post-blast investigation. After a device is set off it consumes 

most explosive that was present, as well as spreads the components of the device
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around the blast area2. Hence, there is a need for methods to detect explosives at low 

concentrations and from various substrates.  

Depending on the suspected explosive filler that was used in a device, the type 

of analysis will differ. The Environmental Protection Agency has standard procedures for 

the analysis of organic explosives using both High-Performance Liquid Chromatography 

(HPLC) and Gas Chromatography (GC). HPLC is typically used with an Ultraviolet (UV) 

detector3, whereas a GC will typically use an Electron Capture Detector (ECD). Both of 

these methods are sensitive and relatively selective4. Specificity is a necessity due to the 

vast range of explosive fillers that could be used. Specificity becomes of particular 

concern with nitrate esters. These are compounds that are not very active in the 

traditional UV range and cannot be differentiated using an ECD2, 5. This then suggests 

the need for a sufficient separation technique prior to detection using a mass 

spectrometer (MS). Both HPLC and GC adequately separate a large range of explosives 

of interest, however; HPLC is better suited to some that are more thermally unstable6.  

Using a Mass Spectrometer (MS) coupled to a GC can add specificity as well as 

sensitivity to analysis, specifically using a MS in the Negative Ion Chemical Ionization 

(NICI) mode4. Like an ECD, NICI is particularly sensitive to electronegative and/or 

electron withdrawing functional groups like nitrated explosives7. This can further 

increase the sensitivity of the experiment. CI is also considered a “softer” ionization 

technique than traditional Electron Impact (EI) MS. This is due to the creation of lower 

energy electrons by the reagent gas in chemical ionization as compared to the 70 eV 

electrons produced in an EI source. Because of this there is less fragmentation. The 
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appearance of CI spectra depends heavily on the conditions used; hence 

database/library searches are not typically available. However, with nitrate esters, they 

will all fragment reliably into a m/z 46 (NO2-) and a m/z 62 (NO3-)8. Because of this, NICI 

can be used reliably in the analysis of nitrate esters.  Utilizing a NICI MS increases the 

sensitivity, but it does not eliminate the problems with thermal stability or identical 

fragmentation. Thus the goal of this project was to find a method that is able to 

adequately separate various nitrate esters while preventing thermal degradation at 

concentrations commensurate with residue recovered from exploded devices.  

By adjusting the way that the sample is introduced to the GC, the analyst can 

increase sensitivity and potentially decrease thermal degradation. The reduction of 

thermal degradation is based primarily on the temperatures that the sample encounters 

prior to the oven program on the GC. By using various forms of sampling and pre-

concentration, an analyst can attempt to increase the sensitivity of the instrument. 

Liquid injection, Solid Phase Microextraction (SPME), and traditional headspace are all 

common ways to introduce a sample to a GC and are all used in the analysis of 

explosives4. 

Traditional headspace has been used in the analysis of intact explosives due to 

the volatility of the analytes9. Specifically, headspace SPME has been used to determine 

the volatiles present in explosives such as C-4 and Semtex for use in determining the 

profile that an explosive sensing canine is sensitive to10. A vial containing a small amount 

of intact explosive is sampled at room temperature for a sufficient amount of time to 

allow the volatiles present to adsorb onto a SPME fiber prior to being desorbed in the 
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inlet of a GC/MS. However, due to the nature of this sampling technique the space 

above the sample must be relatively saturated with analyte and is thus not agreeable 

with the low concentrations normally found on device residue.  

SPME is a pre-concentration technique where a sample is adsorbed onto a 

coated fiber and then desorbed in the inlet11. SPME can be done in headspace or 

immersion modes. Headspace SPME would be where the vial is partially filled with an 

amount of liquid and then the fiber is exposed to the headspace until equilibrium occurs 

between the fiber, the gaseous phase above the sample, and the liquid sample10, 12. 

Immersion SPME is a 2-phase system where the fiber is completely immersed into a 

liquid so that equilibration only must occur between the fiber and the liquid sample. 

Both of these techniques have been applied to a variety of different analytes and due to 

the nature of being a pre-concentration technique have an increase in sensitivity over 

liquid injection. However, both of these SPME techniques have their downsides. 

Headspace SPME has to rely on the analyte being able to escape the matrix that it is in 

and reach the headspace on the vial. This can be of concern depending on the type of 

sample that is being analyzed. Equilibrium present in the sampling vial is explained by an 

equation specific to the type of sampling. The equations for simple headspace, 

headspace SPME, and immersion SPME are explained below in equations 1-1, 1-2, and 

1-3 respectively11.  

 

ீܥ = ܭ)ைܥ +  (Equation 1-1) (ߚ
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CG is the concentration of analyte present in the headspace, CO is the 

concentration of the sample prior to analysis, K is the partition coefficient of a given 

compound between the liquid and gaseous phase, and β is the phase ratio. This can be 

helped by using immersion SPME, as previously stated. However immersion SPME does 

not fully eliminate potential matrix effects, but it does eliminate the need for the 

analyte to partition from the liquid phase to the gaseous phase prior to adsorption. 

However, a downside to immersion SPME is the decrease in lifespan of SPME fibers.  

With immersion SPME and headspace SPME the fiber must also be taken into account as 

well as the mass diffusion of the sample to the fiber and the phases that are involved. 

This relationship for immersion SPME is described by the following:  

 

݊ = ௙௦ܭ ௦ܸ ௙ܸܥ଴ܭ௙௦ ௙ܸ + ௦ܸ ≈ ௙௦ܭ ௙ܸܥ଴ (Equation 1-2) 

 

Where n is the mass of analyte on the fiber, Kfs is the distribution coefficient between 

the sample and the fiber, Vs is the volume of sample, Vf is the volume of the fiber 

coating, and C0 is the initial concentration of analyte in the sample. 

 

݊ = ௛௦ܭ௙௛ܭ ௙ܸܥ଴ ௦ܸܭ௙௛ܭ௛௦ ௦ܸ + ௛௦ܭ ௛ܸ + ௦ܸ (Equation 1-3) 
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Where n is mass of analyte extracted; Kfh is the coating/gas distribution constant; Khs is 

the gas/sample matrix distribution constant; Vf, Vh, and Vs are the volumes of the 

coating, the headspace, and the matrix respectively; and C0 is the original concentration 

of sample in the sample.  

A new technique that has been pioneered by the Goodpaster group takes some 

of the benefits of simple headspace and immersion SPME and combines them together. 

Eliminating the matrix in traditional headspace has been done by utilizing total 

vaporization headspace sampling. Total vaporization headspace is a technique that 

takes a small amount of sample and completely vaporizes it inside of the sample vial, 

thus eliminating any effects that various matrices may have on preventing the analyte 

from partitioning into the gaseous phase13-14. This matrix eliminating practice has been 

coupled with the increase in sensitivity that SPME offers to give rise to a new sampling 

technique known as Total Vaporization Solid Phase Microextraction (TV-SPME)15. With 

TV-SPME, like total vaporization headspace sampling, a small amount of sample is 

completely vaporized prior to sampling. The amount of sample that can be analyzed is 

explained via the following equation: 

 

௦ܸ = ൬10஺ି ஻்ା஼൰ ܸܴܶ ߩܯ) ) (Equation 1-4) 

 

where Vs is the volume of the sample in the vial (mL),  A, B, and C terms are the Antoine 

constants that describe the vapor pressure of the solvent being used at the incubation 
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temperature T, V is the volume of the vial (L), M is the molar mass of the solvent (g/mol), R is the ideal gas constant (8.3145 X 10-2 L bar/K mol), and ρ is the density of the solvent 

at the temperature it was placed into the vial (e.g. room temperature) (g/mL). TV-SPME 

has been used in quantitation of explosive residue and on nicotine present in hair15-17. 

TV-SPME is most analogous to immersion SPME in that it is only a 2-phase system. An 

illustration of the TV-SPME process can be seen in Figure 1-1.  

 

Figure 1-1: Illustration of TV-SPME (right) compared to headspace SPME (left) 

 

By completely vaporizing the sample prior to equilibration the matrix is longer 

present to prevent the analyte from reaching the gaseous phase. This also allows for the 

added benefit of eliminating the need for a sample clean-up step.  

EPA Method 8095, Explosives by Gas Chromatography, references EPA Method 

3535, Nitroaromatics and Nitramines by High Performance Liquid Chromatography 

(HPLC), for extraction procedures of explosives from soil18-19. When a device goes off the 

ground around the device will now contain residue from the explosive filler. This soil is 
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then collected, extracted and filtered prior to analysis18. With TV-SPME the filtration 

step may not be necessary as only volatile compounds will enter the gaseous phase to 

adsorb onto the SPME fiber, thus any potential contamination will remain on the 

bottom of the vial. Also, matrix effects are eliminated as the entire matrix is dispersed 

upon total vaporization. 

 

1.2 Materials and Methods 

 

1.2.1 Materials 

 

Ethylene glycol dinitrate (EGDN) (1mg/mL), nitroglycerin (NG) (1mg/mL), and 

pentaerythritol tetranitrate (PETN) (1mg/mL) were all purchased in methanolic solution 

from Restek. Dichloromethane, HPLC grade, was purchased from Fisher Scientific. All 

SPME fibers were purchased from Sigma Aldrich. Erythritol tetranitrate (ETN) in 

acetonitrile (1mg/ml), 1-monitroglycerin in 50:50 methanol acetonitrile (1mg/mL), 1-3-

dinitroglycerin in 50:50 methanol acetonitrile (1mg/mL), and 2-mononitroglycerin 

(1mg/mL) in 50:50 methanol acetonitrile were purchased from AccuStandard. SPME 

vials and caps were purchased from Gerstel and liquid caps and vials were purchased 

from Fisher Scientific. 
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1.2.1.1 TV-SPME 

 

Total Vaporization-Solid Phase Microextraction (TV-SPME) was used as a pre-

concentration technique prior to GC/MS analysis. TV-SPME is analogous to liquid 

immersion SPME in that both are two-phase systems 15. In TV-SPME, a small aliquot is 

placed in a vial and heated until the sample completely vaporizes. A fiber is then 

introduced to the vial and the sample is adsorbed onto the fiber coating. This method 

has been shown to have increased sensitivity over traditional liquid injection15, 17. Due to 

the sample being completely vaporized there is no need for a filtration or clean-up step 

prior to analysis as any material that is insoluble or non-volatile will stay on the bottom 

of the vial. The sample volume that can be analyzed using this method is directly related 

to the properties of the solvent that contains the analyte as well as the temperature at 

which the sample is being held at prior to extraction. This relationship was previously 

explained in Equation 1-4. 

 

1.2.2 Instrumental 

 

A Thermo Trace GC Ultra coupled to a Thermo DSQ II mass spectrometer (MS) 

was used for all analysis, along with a Thermo TriPlus autosampler. Utilizing the 

incubation station for the autosampler, samples were heated to 60°C for 1 minute prior 

to the introduction of the polydimethylsiloxane (PDMS) fiber for 5 minutes. The fiber 

was then introduced to a programmed temperature vaporization (PTV) inlet for 1 
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minute. The inlet had a temperature program of 40°C ramped at 3°C/second to 160°C, a 

hold for 0.3 minutes, ramped again at 3°C/second to 220°C, and a final hold of 1 minute. 

For liquid injections the same inlet temperature ramp was used, but without a hold at 

160°C. The column used was a Zebron ZB5-MS with dimensions of 10m x 0.18mm x 

0.18µm. Helium carrier gas was utilized at a flow rate of 2.5 mL/min. The oven 

temperature program started at 40°C for 1 minute and was then ramped at 40°C/min to 

300°C and held there for 1 minute. Post desorption, the fiber was conditioned offline at 

240°C for 5 minutes. The mass transfer line into the MS was set to 250°C and the source 

temperature was set to 200°C. The MS was in the negative ion chemical ionization (NICI) 

mode using a methane reagent gas at a flow rate of 1.3 mL/min. Selected ion 

monitoring was used and set at m/z 46 (NO2-) and m/z 62 (NO3- ) for detection of all 

nitrate esters. The total scan time was 0.24 seconds with a dwell time of 100 

milliseconds (ms).  

 

1.2.3 Optimization 

 

In addition to the many parameters that are involved in a traditional liquid 

injection GC/MS method, TV-SPME introduces a number of different variables15, 17. An 

optimization was done for several of these parameters, including desorption 

temperature (160-220°C), desorption time (1-5 min), incubation temperature (40-120°C), 

and extraction time (5-30 min). The variables were tested simultaneously utilizing a 

response surface methodology (RSM) with a face centered central composite design 
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(CCD), utilizing Minitab 17 Statistical Software. This is a statistical method that allows for 

the optimization of a response while varying multiple parameters.  A second order RSM 

was used and is explained via the following equation: 

 

ݕ = ଴ߚ + ෍ ௜௞௜ୀଵݔ௜ߚ + ෍ ௜ଶ௞௜ୀଵݔ௜௜ߚ + ෍ ෍ ௝௜ழ௝ݔ௜ݔ௜௝ߚ + ߳ (Equation 1-5) 

 

Where y is the response, β0 is a constant, k is the number of variable tested, βi is the 

linear term coefficient, xi is the linear variable, βii is the square term coefficient, ݔ௜ଶ is 

the square term variable, βij is the cross term coefficient, ݔ௜ݔ௝ is the cross term variable, 

and ߳ is the error in response17.  

This method of statistical optimization has been applied to TV-SPME previously 

with much success8, 15, 17. A total of 31 experimental runs was determined by an α of 1 

and an ηc of 7. Where α is the distance the axial points are from the center and ηc is the 

number of center points (2). 

 

1.2.4 Sensitivity Comparison 

 

The sensitivity of TV-SPME and liquid injection for EGDN was compared, ranging 

in concentration from 0.05 pg/mL to 1 µL/mL. The same parameters were used for both 

the TV-SPME samples and the liquid injection samples, with the exception of liquid 

injection not having an isothermal hold during the ramp of the PTV inlet during injection. 
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A hold was necessary in TV-SPME due to the interaction of the analyte with the fiber. An 

injection volume of 1 µL was used for liquid injection and 70 µL was used for the sample 

volume of TV-SPME. Both methods used the splitless mode with a splitless time of 1.0 

minute. 

 

1.2.5 Flow-Rate Study 

 

The effect that the flow-rate of the carrier gas (helium) had on the 

chromatography of the analytes of interest was also studied. For this experiment, liquid 

injections of nitroglycerin at 10 ppm were completed at 1.5 mL/min, 2.0 mL/min, and 

2.5 mL/min. 

 

1.2.5.1 PTV vs Isothermal Inlet Temperature 

 

It is well known that nitrate esters will succumb to thermolysis at high 

temperatures7, 17. This process normally occurs quickly in the inlet of a GC. Thus it is 

important to have a method that has a high enough temperature to ensure vaporization 

of the analyte, but at the same time limiting the degradation that can occur. A series of 

studies to determine the effect that inlet temperature has on the detection/degradation 

of PETN and NG were completed. For PETN, the inlet was programmed to several 

constant temperatures between 40-180oC in liquid and 80°C-220°C in TV-SPME.  The 
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temperatures were set in 20°C increments resulting in a total of 8 runs for each 

sampling method. A similar experiment was accomplished for NG; the inlet was held at a 

constant temperature over the range of 40°C-240°C at 20°C increments for a total of 11 

runs using TV-SPME. Additional experiments were done with TV-SPME to determine the 

effect, if any, that a PTV inlet would have on PETN when compared to an isothermal 

inlet temperature. The inlet ramp rate was adjusted to 1.5°C/sec, 3°C/ sec, 7.8°C/ sec, 

and 14.5°C/ sec. In addition to this an isothermal hold of 160°C for 0.3 min was tested. 

This data was then compared to the previous isothermal runs. 

 

1.2.5.2 Nitroglycerin Inlet Temperature Study 

 

In conjunction with the previous study an experiment was conducted to 

determine if it was possible to eliminate the known degradation product, dinitroglycerin, 

of nitroglycerin17. This is known to occur at high inlet temperatures. A study was done 

by increasing the isothermal inlet temperature in 20°C increments from 40°C-280°C. The 

concentration of NG was held constant at 1ppm. This experiment was conducted in the 

TV-SPME mode.  
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1.3 Results and Discussion 

 

1.3.1 Liquid Injection 

 

Initial work was done using TV-SPME, however, it was quickly realized that 

accurate retention times (RT’s) and efficient separation of all four analytes needed to be 

established prior to continuing with further study into TV-SPME. To this end, the 

chromatographic parameters that were used in the initial work were taken and adapted 

to traditional liquid injection. Since liquid injection does not have as many critical 

variables as TV-SPME: extraction temperature, desorption time, adsorption time, and 

desorption temperature, it allowed for efficient development of a GC method able to 

separate and identify the four compounds15. 

The first variable that was examined in liquid injection was the flow rate of the 

carrier gas. NG was analyzed at a flow rate of 1.5 mL/min, 2.0 mL/min, and 2.5 mL/min. 

The results of this experiment can be seen in Figure 1-2. 
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Figure 1-2: Effects of flow rate on the chromatography of NG 

 *Figure 1-2 has not been normalized and is a depiction of the true relative abundance of 
NG and DNG. Peak shape, intensity, and ratio of DNG to NG are all improved as flow rate 
is increased.  
 

PETN is thermally labile and was experimentally determined to be the most 

thermally sensitive of the four primary analytes of interest20. Thus additional 

experimentation was done on PETN to determine appropriate inlet temperature. A 

series of isothermal inlet temperatures, in 20°C increments, were used from 80°C -180°C. 

Figure 1-3  and Figure 1-4 depict the results. The data in Figure 1-3 has been normalized 

for easier visualization.  
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Figure 1-3: Effect of inlet temperature on the chromatography of PETN 

 

 

Figure 1-4: Peak area of PETN as inlet temperature increases 

 

Instrument response for PETN increases as the inlet temperature increases until 

120°C and begins to fall off at temperatures higher than 160°C. This can be seen in 
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Figure 1-4. An additional inlet temperature study was done on NG in an attempt to 

determine at what temperature, if any, degradation of NG to DNG no longer occurs. The 

results of this can be seen in Figure 1-5. This illustrates that at lower inlet temperatures 

the degradation product can be eliminated, however at the expense of instrument 

response to NG. 120°C shows a very small response for DNG, but also a small response 

for NG. The instrument response for NG is vastly improved at 140-160°C. Based on this, 

the temperature recommended by the RSM optimization, and the PETN inlet 

temperature study, the isothermal inlet temperature was established at 160°C. 

 

Figure 1-5: Nitroglycerin vs dinitroglycerin peak area at increasing inlet temperatures 

 

Having one method for the identification of various explosives was of the utmost 

importance throughout experimentation. To ensure that a broad range of nitrate esters 

with various vaporization temperatures and thermal stabilities could be analyzed, a PTV 

inlet was utilized to separate four commonly used explosives as well as identification of 
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three additional compounds that can be found during the analysis of explosives. This 

separation and identification can be seen in Figure 1-6, each chromatogram has been 

normalized. 

 

Figure 1-6: Separation of EGDN (1, RT: 3.02), NG (2, RT: 4.31), ETN (3, 5.06), and PETN (4, 
5.53) in liquid mode with additional identification of 2-mononitroglycerin (5, RT: 3.73), 
1-3-dinitroglycerin (6, RT: 4.15), and 1-mononitroglycerin (7, RT: 3.58) 

 

1.3.2 Optimization of TV-SPME 

 

EGDN, NG, and DNG were the analytes used for optimization. Standards of EGDN 

and NG were analyzed to confirm retention times of each. DNG is a known degradation 

product of NG because of hydrolysis of one of the nitro groups17. Thus the parameters 

of the statistical software were set to maximize the signal for EGDN and NG and 

minimize the signal for DNG. The parameters optimized were as follows: extraction 

temperature (ETemp), extraction time (ETime), desorption temperature (DTime), and 
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desorption time (DTime). The results shown in Table 1-1 are the significant parameters 

for each peak of interest as well as the R2 value for each. The significant parameters 

were determined based upon a high F-value (>10) and a low P-value (<0.05). The R2 

value shows how well the data fits the model that was built by the software. 

Table 1-1: Significant variables and R2 values for EGDN, NG, and DNG 

Analyte 
Significant 
Variables 
(linear) 

Significant 
Variables 
(squared) 

Significant 
Variables       

(2-way 
interaction) 

R2 

EGDN ETemp 
DTime - - 0.827 

NG - ETemp*ETemp 
Dtemp*DTemp - 0.958 

DNG DTemp ETemp*ETemp 
DTemp*DTemp - 0.906 

 

Table 1-2 shows the optimization results for each variable individually as well as 

all variables together.  Each calculated optimum also has a desirability score ranging 

from 0-1. A low desirability score indicates that the optimized parameters given by the 

software generate a signal that is sub-optimal for each variable taken individually. 

Variables that result in optimum values at the minimum/maximum for that variable 

indicate that the true optimum resides outside the range that was tested for that 

parameter, as the software will only give a value that falls within the range tested. The 

higher the desirability score, the closer the suggested set of values is to the true 

optimum for all values. Optimal parameters were produced for EDGN and NG 
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individually as well as parameters for optimizing the signal for both at the same time 

and optimizing them both while minimizing the signal for DNG. 

Table 1-2: Results for the optimizations of EGDN, NG, and DNG 

Analyte Extraction 
Temp (°C) 

Extraction 
Time (min) 

Desorption 
Temp (°C) 

Desorption 
Time (min) Desirability 

Max EGDN 40 5 164 5 1.0 

Max NG 81 27 184 5 0.982 

Max 
(EGDN + NG) 71 7 180 5 0.912 

Max 
(EGDN + NG) 
& Min DNG 

64 9 160 5 0.814 

 

The data in Table 1-1 indicates that the most important variables are those 

involving temperature. Thus, based on the optimal values produced for maximizing the 

signal for EGDN and NG while minimizing the signal for DNG the temperatures were set 

at 60°C for extraction and 160°C for desorption. 60°C was used for extraction 

temperature due to the relatively small increase in instrument response as temperature 

was increased, as well as the increase in degradation products seen as this temperature 

is increased. Desorption time and extraction time were seen to have minimal effect on 

the signal of the samples as well as not being correlated to either extraction 

temperature or desorption temperature. The slope for the instrument response related 

to either time parameter is shallow, and though response can be increased by increasing 
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the value of both parameters it was not significant. This method is designed to be 

utilized in crime laboratories where maximum throughput is a priority, to this end the 

time parameters were set at their minimum values: 1 min for desorption time and 5 min 

for extraction time. 

 

1.3.3 Thermal Degradation in TV-SPME 

 

Initial experiments showed that there was severe degradation of PETN and ETN 

while using TV-SPME. Changing the fiber type from a polar polyethylene glycol (PEG) 

fiber to a non-polar polydimethylsiloxane (PDMS) fiber allowed for the analytes to 

desorb from the fiber more easily, helping to prevent thermal degradation. However, 

thermolysis was still observed, specifically with PETN. An experiment was conducted 

adjusting the inlet temperature in 20°C increments from 80°C-220°C to determine the 

best desorption temperature for PETN in TV-SPME. This experiment was able to provide 

the appropriate isothermal inlet temperature for use with PETN in TV-SPME mode as 

well as demonstrate the severe thermal degradation that it undergoes. Figure 1-7  

shows the results from this, the results have been normalized to 1.   
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Figure 1-7: Chromatograms of PETN (1) in TV-SPME as inlet temperature increases 
(*denotes degradation peak) 

 

Figure 1-8 shows a clearer visualization of the thermal degradation that PETN 

undergoes at higher temperatures. PETN begins to undergo strong degradation around 

200°C before being dwarfed by its’ degradation products at 220°C. 
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Figure 1-8: Demonstration of the thermal degradation products (*) of PETN (1) formed 
at high inlet temperatures 

 

Based on this data the inlet temperature for isothermal experiments was set to 160 

degrees. 

Upon establishing the inlet temperature for TV-SPME the PTV inlet was again 
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PTV inlet, thus PETN was used for this experiment. The results can be seen in Figure 1-9. 

A column graph of peak area verses inlet temperature ramp rate for PETN and the 

primary degradation product of PETN can be seen in Figure 1-10. This shows the thermal 

liability of PETN as well as the direct relationship that PETN and its primary degradation 

product have with each other.  

 

Figure 1-9: Effect that PTV temperature ramp rate has on degradation (*) and peak area 
of PETN (1) 
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Figure 1-10: Comparison of the peak area of PETN and its primary degradation product 
as a function of inlet temperature ramp rate in TV-SPME 

 

Although degradation occurs at all temperature ramps, 3°C/sec causes the least 

amount. Higher ramp rates seem to not allow sufficient time for the analyte to desorb 

off of the fiber prior to reaching temperatures where degradation occurs. The slowest 

ramp exhibits full degradation of PETN lending itself to the idea that prolonged 

exposure to even mild temperatures is enough for analyte loss. In an attempt to further 

limit the destruction of analyte in the inlet a hold at 160°C for 0.3 min was applied 

during the course of a 3°C/sec ramp from 40°C to 220°C. The comparison of these two 

PTV methods can be seen in Figure 1-11. This unconventional temperature progression 

allowed for desorption of all four key analytes from the fiber, with limited degradation, 

while maintaining the versatility that a PTV inlet can provide.  
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Figure 1-11: Comparison of a PTV inlet ramp for PETN (1) and its primary degradation 
product (*) with a mid-method hold at 160°C and without 

 

This final method method was then compared to an isothermal inlet at 160°C to 

confirm the viablitly of the PTV method. Both samples contained EGDN and NG at 1ppm 

and PETN and ETN at 10 ppm. The intensity of instrument response is at the same order 

of magnitude for both methods. The results of this are shown in Figure 1-12. The 

instrument response was not normalized for this data.  
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Figure 1-12: Comparison of Isothermal Inlet Temperature and a PTV Ramped Inlet for 
EGDN (1), NG (2), ETN (3), and PETN (4) 

 

1.3.4 Sensitivity Comparison of Liquid Injection and TV-SPME 

 

The increase in sensitivity that TV-SPME has over liquid injection has been 
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nitroglycerin15, 17. This method directly compares the sensitivity of EGDN and NG over 
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Table 1-3: Comparison of calibration curves for liquid injection and TV-SPME of NG from 
100ppb-1ppm 

Injection Method Slope R2 S/N at 100ppb 

Liquid (splitless, 
1µL) 4.2 X 103 0.975 119 

TV-SPME (70µL) 1.4 X 104 0.999 1394 

 

Lower concentrations were analyzed for both NG and EGDN for comparison 

outside of the calibration curve. The lowest comparable concentration for EGDN was 

100ppt. Liquid injection had a S/N of 6 and TV-SPME had a S/N of 67. Similar results 

were seen for NG. At 500ppt liquid injection had a S/N of 0 (not detected) while TV-

SPME still had a S/N of 35, well above the LOD S/N of 3. TV-SPME experiments were 

done at even lower concentrations. These resulted in detection of analyte as low as 

50ppt for EGDN (S/N of 28) and 100ppt for NG (S/N of 9). These results fall well below 

the levels of explosive commonly recovered during analysis 21. In general, the S/N in TV-

SPME was eleven times higher than in traditional liquid injection. A comparison of the 

S/N generated by liquid injection and TV-SPME can be seen in Table 1-4. 
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Table 1-4: Low concentration signal to noise comparison of NG and EGDN for liquid 
injection and TV-SPME 

Analyte S/N For Liquid S/N for TV-SPME 

EGDN (100 ppt) 6 67 

EGDN (50 ppt) 0 28 

NG (500 ppt) 0 35 

NG (100 ppt) 0 9 

 

Figure 1-13 shows the peak that is seen at a concentration of 50 ppt for EGDN. The 

chromatogram has been zoomed in so that the peak can be clearly seen. The RT of this 

peak matches up with all previous runs of EGDN. 

 
Figure 1-13: Instrument response for EGDN at 50 ppt 
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1.4 Conclusion 

 

A TV-SPME GC/MS method was established and optimized for the trace detection 

of various nitrate esters. In particular, the impact of desorption temperature, desorption 

time, extraction temperature, and extraction time was studied. During a statistical 

optimization, it was determined that the desorption and extraction temperature 

parameters had the most impact on the signal as well as the degradation of the analyte. 

It was also shown how a PTV inlet can be used to cover a broad range of explosives 

while minimizing thermal degradation. TV-SPME was compared to liquid injection and 

was seen to have more than an 11 times greater S/N at low concentrations as well as 

detection of analyte as low at 50ppt.  

This method could be adapted and used for “dirty” samples, such as soil samples 

recovered from the scene of an explosion. Adapting this method would cut down greatly 

on time spent cleaning up each sample for analysis prior to liquid injection as well as 

providing one method for the rapid detection of a broad range of explosives. Future 

steps for this project would be to analyze real world samples and to analyze a broader 

range of explosives to determine the overall versatility of this method. 



31 
 

 

CHAPTER 2.  DESIGN AND IMPLEMENTATION OF DERIVATIZATION SCHEMES FOR 
COMMON ILLICIT DRUGS FOR ANALYSIS VIA GAS CHROMATOGRAPHY/MASS 

SPECTROMETRY (GC/MS) 

2.1 Introduction 

 

Controlled substances make up a large portion of the work for a modern forensic 

laboratory. These drugs can vary greatly, from naturally occurring peyote, a small cactus 

that has psychoactive effects when ingested, to more sophisticated synthetic drugs like 

25C-NBOMe, a synthesized drug made by substituting the amine in 4-chloro-2,5-

dimethoxylphenethylamine (2C-C) with a 2-methoxybenzyl group22. Because of the 

variety of drugs that require analysis, a variety of techniques are in common use5, 23.  

Common screening techniques, also known as presumptive tests, include thin layer 

chromatography (TLC) or color tests.  TLC utilizes a stationary phase typically made of a 

silica-based adsorbent in conjunction with a non-polar solvent as the mobile phase. This 

mobile phase travels up the plate via capillary action. The mobile phase will cause 

substances to travel up the plate at different rates based upon the competitive 

interactions with the mobile and stationary phase. This distance traveled can then be 

measured and compared to a standard. 
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Color tests involve placing a small amount of the suspected drug onto a spot plate and 

adding a drop of the reagent. Depending on the type of test and the drug that is present, 

a visible color will develop indicating a class of drug. The analyst can then decide on the 

next test based upon these results.  

At least one confirmatory test must be done on all samples to identify a specific 

controlled substance. Two common confirmatory tests are Gas Chromatography Mass 

Spectrometry (GC/MS) and Fourier Transform Infrared Spectroscopy (FTIR)5. This project 

focused on GC/MS as the primary means of confirmatory testing.  

The high temperatures that a GC/MS must reach for analysis can cause the 

decomposition of compounds, primarily in the inlet. This can be an issue during drug 

analysis as not every drug is thermally stable. Thus, the purpose of this project was to 

find a means to analyze common controlled substances and thermally labile controlled 

substance via GC/MS. Derivatization is a common way to take a substance that is not 

thermally stable and make it amenable to the high temperatures of a GC/MS23. 

Derivatization removes a labile hydrogen from a compound and replaces it with more a 

stable functional group.  

The three primary mechanisms for this process are silylation, alkylation, and 

acylation. Silylation replaces a labile hydrogen with a silyl group (R3Si-)24. Alkylation 

replaces a hydrogen with an alkyl group; the addition of a methyl group to carboxylic 

acids to form methyl esters is a common substitution with this reaction. Acylation 

substitutes the hydrogen with an acyl group, (R-(CO)-)25. Table 2-1 depicts the overall 
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reaction for each type of derivatization. The bold hydrogens represent the hydrogens 

involved in the reaction and “X” signifies either nitrogen or oxygen.  

Table 2-1: Derivatization reactions for silylation, alkylation, and acylation 

Derivatization Category Reaction Products 

Silylation R - X – H  +  (CH3)3-Si-Cl R - X-Si-(CH3)3  +  HCl 

Alkylation R – (C=O) - O – H   +  CH3OH R – (C=O) - O – CH3  +  HOH 

Acylation R – X – H  +  CH3(C=O)-Cl R – X – (C=O)CH3  +  HCl 

 

There are numerous derivatization reagents on the market for each category of 

reaction22, 24, 26-32. However, this project used one reagent per category. For silylation 

N,O-bis(trimethylsilyl) trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS) 

was used. BSTFA is the derivatization reagent whereas TMCS acts as silylation catalyst 

for the process. Trifluoroacetic anhydride (TFAA) was used for acylation and alkylation 

used N, N-dimethylformamide dimethyl acetal (DMF-DMA). The reagents were chosen 

based upon their use in literature, the high volatility of their products, a rapid single-

phase reaction, and versatility – ability to derivatize more than one type of functional 

group.  

BSTFA is known to be very versatile with a variety of different types of 

compounds24, 26, 30-31, 33-35. The addition of TMCS expands this versatility even more. 

Products of BSTFA are generally more stable and more volatile than their underivatized 

forms. It is useful for both amines and hydroxyls.  TFAA is commonly used with amines, 

such as methamphetamine and amphetamine25, 36-37. DMF-DMA is currently used to a 
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much lesser extent with controlled substances, but has proven effective in the 

derivatization of barbiturates, carbazepine, and artificial corticosteroids38-41. This 

reagent will be used as a novel way of derivatizing drugs of interest.  

This project looked at three different categories of drugs totaling 15 different 

drugs of interest. The drugs chosen were based off common drugs analyzed as well as 

GC/MS “problem children”, meaning drugs that are traditionally difficult to analyze via 

GC/MS or are not currently analyzed via GC/MS42. The drugs involved in this project are 

listed in Table 2-2.  

Table 2-2: Summary of the drugs involved in the project with their structure and 
molecular weight sorted by compound class 

COMPOUND 
CLASS DRUG STRUCTURE MW 

Amines / 
Hydroxylamines 

Amphetamine 

 

135 

Methamphetamine 

 

149 

Ephedrine 

 

165 

Pseudoephedrine 

 

165 

Psilocin 

 

204 
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Table 2-2 Continued 

Amines / 
Hydroxylamines 

2C-I 

 

307 

25I-NBOH 

 

413 

25I-NBOMe 

 

427 

Carboxylic / 
Phosphonic 

Acids 

GHB 

 

104 

Psilocybin 

 

284 

Zwitterions 
(amine + 

carboxylic acid) 

Pregabalin 

 

159 

Gabapentin 

 

171 

Clorazepate 

 

314 

Lorazepam 

 

320 

Vigabatrin 
 

129 
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Several of these compounds are commonly analyzed via GC/MS, such as 

amphetamine and methamphetamine43. However, many are not due to thermal 

instability. Table 2-3 lists these drugs and the issue that causes them to be difficult to 

analyze via GC/MS. 

Table 2-3: Examples of controlled substances for which GC/MS can be problematic 

Compound(s) 
MW 

(amu) 
Issue 

25I-NBOH  413  
converts to 2,5 dimethoxy phenethylamine 

(2C-I)  

Clorazepate  315  decarboxylates to N-desmethyldiazepam  

Gabapentin  171  
zwitterion that decomposes with the loss of 

water  

Gamma Hydroxy Butyric Acid 
(GHB)  

104  converts to Gamma Butyric Lactone (GBL)  

Lorazepam  321  decomposes with the loss of water  

Pregabalin  159  
zwitterion that converts to 4-isobutyl-2-

pyrrolidinone  

Psilocybin  284  converts to psilocin  

Vigabatrin  129  
zwitterion that decomposes with the loss of 

water  

 

Each mode of derivatization requires an agreeable functional group to allow for 

reaction, thus not all compounds will react with all three of the reagents chosen. Some 

will not work at room temperature and some required heating for the reaction to occur. 

TFFA with carboxylic acids is a good example of this. Though this reaction can occur, it 

can require your sample to be basified via liquid/liquid extraction prior to derivatization 

or require a high temperature and/or longer time44. Table 2-4 depicts all drugs and 

derivatization agents that were attempted in this project. 
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Table 2-4: Analytes and derivatization agents used 

Analyte(s) 
Functional 
Group(s) 

Silylation Alkylation Acylation 

  

amphetamine  

methamphetamine  

ephedrine  

pseudoephedrine  
psilocin   

  

-OH  

-RN-H  

-NH2  

BSTFA + 
TMCS  

N,N-dimethylformamide 
dimethyl acetal  

(DMF-DMA)  

TFAA  

25I-NBOH  

25I-NBOMe  

2C-I  

-RN-H  

-RNH2  

BSTFA + 
TMCS  

DMF-DMA  TFAA  

Clorazepate  
-RN-H  

-COOH  

BSTFA + 
TMCS  

DMF-DMA  TFAA  

Gabapentin  
-NH2  

-COOH  

BSTFA + 
TMCS  

DMF-DMA  TFAA  

GHB  -COOH  
BSTFA + 
TMCS  

DMF-DMA    

Lorazepam  
-RN-H  

-COOH  

BSTFA + 
TMCS  

DMF-DMA  TFAA  

Pregabalin  
-NH2  

-COOH  

BSTFA + 
TMCS  

DMF-DMA  TFAA  

Psilocybin  -O-H2PO3  
BSTFA + 
TMCS  

DMF-DMA    

Vigabatrin  
-NH2  

-COOH  

BSTFA + 
TMCS  

DMF-DMA  TFAA  

 

The goal of this project was to complete phase one of a five phase project in 

analyzing difficult drugs via GC/MS. This phase was focused on finding an appropriate 

derivatization scheme for analysis on a GC/MS. 
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2.2 Materials and Methods 

 

2.2.1 Materials 

 

All drugs were in solid form upon receipt. Amphetamine hemisulfate salt, 

Methamphetamine HCl, Ephedrine HCl, Pregabalin, and Lorazepam were obtained from 

Sigma Aldrich. Pseudoephedrine HCl and Clorazepate dipotassium were obtained from 

Grace Chemical. Psilocin, 25I-NBOH HCl, 25I-NBOMe HCl, GHB sodium salt, Psilocybin, 

Gabapentin, Vigabatrin, and 2C-I HCL were obtained from Cayman Chemical. Liquid 

injection vials, caps, and insert were purchased from Phenomenex. BSTFA with 1% TMCS 

was purchased from Thermo Scientific in 1g ampules. Trifluoroacetic Anhydride (TFAA) 

and N,N-Dimethylformamide Dimethyl Acetal (DMF-DMA) were purchased in 1mL 

amounts from Sigma Aldrich. Acetonitrile (ACN) HPLC grade, Methylene Chloride (DCM) 

HPLC grade, and Methanol (MeOH) HPLC grade, were all purchased from Fisher 

Scientific. Chloroform was purchased from Sigma Aldrich. 

 

2.2.2 Instrumental 

 

An Agilent 6890N Gas Chromatogram (GC) coupled to an Agilent 5975 Inert Mass 

Selective Detector with a Gerstel MPS MutliPurpose Sampler was used for all analyses. 

All samples were injected via liquid syringe in either split mode (20:1 split ratio), or 

splitless mode (noted for each sample individually). The method used is based on the 
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standard method used by the Indiana State Police Forensic Science Laboratory with 

modifications. There were 2 methods that were used for all samples. Method 1 used an 

isothermal inlet temperature of 250°C and an oven program beginning at 90°C for 1 

minute, ramp at 15°C/min to 280°C and hold for 1 minute. Method 2  used an 

isothermal inlet temperature of 270°C and an oven program that went to 300°C and 

held for 2 minutes. All other parameters remained the same between the two methods. 

The majority of all samples used Method 1, each sample is annotated with which 

method was used. Both methods also had the following GC parameters: column flow of 

2.5 mL/min of hydrogen, mass transfer line at 280°C, and a solvent delay of 2 minutes. 

The MS was set to the following: source temperature of 230°C, full scan range of 20-550 

in EI mode, normal scan speed, and EMV in the relative mode. The Autosampler used a 

1 μL injection volume with 2 washes in Acetone before each sample, 1 wash with the 

sample itself, and 2 Acetone washes after each run. All samples were kept at room 

temperature during Autosampler procedures. 

 

2.2.3 Sample Preparation 

 

All raw samples were run in ACN, Methanol, or Chloroform, depending on their 

solubility.  For derivatization reactions, 200 μL of each derivatization reagent was used. 

The amount of drug present for each reaction varied from 50 μg to 700 μg, dependent 

on the amount of drug available. The concentration of the solutions analyzed via GC/MS 

is denoted for each sample. Drugs that were dissolved in MeOH prior to derivatization 
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were placed in a blow-down apparatus until all solvent had been removed and only the 

drug was present for derivatization. Reactions with all reagents were done at 60°C for 

the amount of time suitable for each drug then 800 μL of ACN was added to bring the 

final volume of each sample to 1 mL. 

 

2.3 Results and Discussion 

 

2.3.1 Amines and Hydroxylamines 

 

This category of compounds encompasses a large portion of the drugs that were 

investigated, including amphetamine, methamphetamine, ephedrine, pseudoephedrine, 

psilocin, 2C-1, 25I-NBOH, and 25I-NBOMe. Every drug was analyzed in the underivatized 

form as well as after reaction with each of the three reagents: BSTFA, TFAA, and DMF-

DMA. 

 

2.3.1.1 Amines and Hydroxylamines – Underivatized 

 

Amphetamine, methamphetamine, ephedrine, pseudoephedrine, and psilocin 

were prepared in MeOH at 0.5 mg/mL and analyzed using Method 1 in split mode. An 

intense, single peak was produced for all of these samples. Each peak had a retention 

time that differed from the others, except for ephedrine and pseudoephedrine. 
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Ephedrine and pseudoephedrine are diastereomers and are not generally separated 

using GC23. Table 2-5 shows the chromatograms, mass spectra, and major ion 

fragmentations for each of these drugs that were identified successfully. 

Amphetamine fragments due to alpha cleavage, forming a tropylium ion (m/z 91) 

and a fragment containing the side chain (m/z 44). In similar fashion, methamphetamine 

produces a tropylium (m/z 91) and a side chain fragment (m/z 58). 

Pseudoephedrine forms two primary fragment ions at m/z 77 and a m/z 58. This occurs 

via cleavage of the bond connecting the aromatic ring (m/z 77) to its side chain.  There is 

also alpha-cleavage at the nitrogen producing the m/z 58 fragment. Ephedrine 

fragments in the same manner as pseudoephedrine; hence they cannot be 

differentiated from one another.  

Psilocin produces two primary ions when fragmented, m/z 58 and m/z 204, with 

the latter being the molecular ion. The m/z 58 is formed by alpha cleavage at the 

nitrogen.  

25I-NBOH was prepared as a 200 μg/mL solution and was analyzed using both 

methods in split and splitless mode, but produced only a small peak that was identified 

as 2,5 dimethoxy phenethylamine (2C-I), a known degradation product of 25I-NBOH45. 

25I-NBOMe and 2C-I were prepared in the same manner as 25I-NBOH. 25I-NBOMe was 

analyzed using Method 2 in splitless mode and 2C-I was analyzed using Method 1 in 

splitless mode. Both compounds produced appropriate peaks.  

25I-NBOMe is the first compound in this class that undergoes a more 

complicated fragmentation. Initial fragmentation occurs as expected as alpha cleavage 
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from the nitrogen producing the ion at m/z 150. This m/z 150 ion can also be formed 

upon the loss of iodine from the larger of the two fragments formed via the initial alpha 

cleavage. A loss of CNH3 from this ion results in an ion at m/z 12146. 2C-I has a strong 

signal for the molecular ion in EI at m/z 307. Hydrogen rearrangement 46 allows for a loss 

of CH3N resulting in the ion at m/z 278. A methyl group loss from this fragment provides 

the next fragment seen at m/z 263. An iodine ion can also be seen at m/z 127. The lower 

mass fragments at m/z 39, 51, 65, and 77 are representative of aromatics46-47. 

Table 2-5: Chromatograms, mass spectra, and fragmentation patterns for 
amines/hydroxylamines in the underivatized form 

Chromatogram Mass Spectrum and Fragmentation 
Pseudoephedrine 
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Table 2-5 Continued 
 

Amphetamine 

 
Methamphetamine 

 
Ephedrine 
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Table 2-5 Continued 
 

Psilocin 

 
25I-NBOMe 

 
2C-I 
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2.3.1.2 Amines/Hydoxylamines – Derivatized with TFAA 

 

The most widely used derivatization reagent for this class of compounds is TFAA. 

The use of this reagent is well documented and TFAA was also found to be the best 

reagent for this group of compounds in this study. Every sample was derivatized directly 

by adding 200 μL of TFAA to the solid form of the drug. Each reaction was done at 60°C 

until the sample had fully dissolved, then 800 μL of ACN was added to reach the final 

concentration. If a sample did not dissolve after 1 hour, 800 μL of ACN was added to 

help facilitate the reaction per instructions provided with the reagents44. 

The same instrument methods and concentrations used for the analysis of the 

underivatized drugs were used during this analysis. The results are shown in Table 2-6. 

Due to TFFA derivatizing functional groups in s similar way each time, there are common 

ions that are seen as a result of products produced with this reagent. M/z 69 and 118 

are two of the most common ions produced as a direct result of this. 

In amphetamine, alpha cleavage results in m/z 91 (tropylium) and a m/z 140 

base peak. Methamphetamine undergoes the same derivatization process where the 

(CO)CF3 replaces the hydrogen on the nitrogen. Alpha cleavage then occurs resulting in 

the m/z 91 and m/z 154. 

As discussed above, the underivatized forms of ephedrine and pseudoephedrine 

are diastereomers and co-elute. The two derivatized compounds produce the same 

mass spectra, but they have different RT’s and are easily distinguished based upon this 

characteristic. One theory as to why this occurs is that once an additional 112 mass units 
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is added to the amine during the derivatization process, the difference in spatial 

orientation around the chiral center becomes great enough to affect the overall polarity 

of the molecule. This would cause each molecule to interact slightly differently with the 

stationary phase of the GC column and thus affect the RT’s of each allowing for 

adequate separation48. Work has been done in the separation of enantiomers using a 

chiral stationary phase and derivatization via TFAA and Pentafluoropropionic Anhydride 

(PFPA)49. 

The TFAA derivatization of ephedrine and pseudoephedrine occurs at the amine 

nitrogen, replacing the hydrogen with a (CO)CF3. The base peak of m/z 154 is a result of 

the loss of 17 from the hydroxyl and subsequent alpha cleavage at the nitrogen. This is 

seen in both ephedrine and pseudoephedrine. 

Psilocin produced two chromatographic peaks during derivatization. Both peaks 

have similar mass spectra, however; the later eluting of the two shows a greater 

similarity to the raw drug than to the derivatized one. This is shown in the addition of 

higher mass fragments that are not seen in the derivatized product, but are seen in the 

underivatized form. However, the lack of the characteristic m/z 204 seen in the 

underivatized form and the addition of the m/z 69 may indicate partial derivatization. 

These observations together lend to the conclusion of a partially derivatized psilocin 

rather than an additional product being formed because of the derivatization process. A 

higher derivatization temperature, such as 80°C, could assist in encouraging this 

reaction to completion. The TFAA derivative of psilocin has the hydrogen from the 

hydroxyl replaced with (CO)CF3. Upon ionization in the mass spectrometer, cleavage of 
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the perfluorinated carbon results in a m/z 69. The m/z 58 base peak is a result of alpha 

cleavage at the nitrogen.  

The derivatization of 25I-NBOMe with TFAA gives a molecular ion at m/z 523. 

The reaction occurs at the nitrogen joining the two aromatic groups replacing the labile 

hydrogen with (CO)CF3. Alpha cleavage at the nitrogen forms an ion at m/z 277. The side 

chain fragment from alpha cleavage cleaves at the nitrogen resulting in an ion at m/z 

121, the base peak.  This fragment consists of an aromatic ring with a methoxy and a 

methylene. 

2C-I after derivatization with TFAA has a molecular ion at m/z 403. This then 

undergoes alpha cleavage at the nitrogen producing a fragment at m/z 277 and a 

fragment at m/z 126. The fragment at m/z 247 is a result of cleavage of two methyl 

groups from the m/z 277 fragment. 

Table 2-6: Chromatograms, mass spectra, and fragmentation patterns for 
amines/hydroxylamines derivatized with TFAA 

Chromatogram Mass Spectrum and Fragmentation 
Pseudoephedrine 
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Table 2-6 Continued 
 

Amphetamine 

 
 

Methamphetamine 

 
 

Ephedrine 
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Table 2-6 Continued 
 

Psilocin 
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2C-I 

 
 

 

 

69 

58 

523 M·+ 

121 

277 

403 M·+ 

277 

247 

69 



50 
 

 

2.3.1.3 Amines/Hydoxylamines – Derivatized with BSTFA 

 

BSTFA is a derivatization reagent that is known to work well for this class of 

compounds, though not to the same extent as TFAA. BSTFA worked well with 

pseudoephedrine and methamphetamine and less so with the other drugs in this class, 

as seen in Table 2-7.  25I-NBOH produced several peaks while using BSTFA, none of 

which could be identified as the derivatized compound. The reaction for amphetamine 

with BSTFA was not complete. The target compound was formed and identified, but the 

underivatized form of the drug was still present in the sample. Several attempts were 

made to force the reaction to completion (e.g., increase in reagent concentration, 

increase in temperature for the reaction, increase in the amount of time allocated for 

the reaction to reach completion), but none were successful.  

All compounds that are derivatized with BSTFA have a labile hydrogen removed 

and replaced with a trimethlysilyl (TMS) group. This process produces an m/z 73 upon 

fragmentation common to TMS derivatives. Pseudoephedrine gains two TMS groups 

when reacted with BSTFA, one for the amine nitrogen and the other for the hydroxyl. 

The cleavage of one of these groups’ results in an ion at m/z 73 and alpha cleavage at 

the nitrogen producing the base peak of m/z 130. Methamphetamine undergoes the 

same process where the hydrogen on the amine gets replaced with a TMS group. The 

same cleavage is seen here as it was in pseudoephedrine. The addition of the fragment 

at m/z 91 from the tropylium is the main difference. 
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Table 2-7: Chromatograms, mass spectra, and fragmentation patterns for 
amines/hydroxylamine’s derivatized with BSTFA 

Chromatograms Mass Spectra and Fragmentation 
Pseudoephedrine 

 
Methamphetamine 

 

2.3.1.4 Amines/Hydoxylamines – Derivatized with DMF-DMA 

 

DMF-DMA is not widely used and therefore represents a novel way of 

derivatizing amphetamine and 2C-I, as illustrated in Table 2-8. This process can produce 

ions during fragmentation common to many compounds, similar to BSTFA and TFAA, the 

most prevalent of these being m/z 44. Both compounds produced a main peak with 

several minor peaks; however the derivatized product could be identified by the mass 
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spectra. 25I-NBOH produced several peaks while using DMF-DMA, none of which could 

be identified as the derivatized compound. 

Table 2-8: Chromatograms, mass spectra, and fragmentation patterns for 
amines/hydroxylamines derivatized with DMF-DMA 

Chromatograms Mass Spectra and Fragmentation 
Amphetamine 

 
2C-I 

 

The identification of the reaction products of DMF-DMA with amphetamine and 

2C-I both rely heavily on appropriate mass spectra interpretation, as these products are 

not currently known. These compounds follow the same derivatization reaction seen in 

amino acids50. This means that the primary amine will lose two hydrogens, which are 

replaced with a dimethylaminomethylene (DMAM) group. A carbon-nitrogen double 

bond is thus formed, making the derivative an imine48. In amphetamine there is no 
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molecular ion seen, but alpha cleavage at the nitrogen originally present in 

amphetamine results in a fragment at m/z 91 (tropylium) and m/z 99, the base peak. 

The peak at m/z 44 is alpha cleavage from that same nitrogen but cleaving after the 

carbon in the DMAM.  

2C-1 undergoes the same reaction that amphetamine does. The same alpha 

cleavage paths results in the base peak of m/z 85 and the characteristic m/z 44. There is 

no molecular ion seen in 2C-I, however there is an ion at m/z 331. This fragment is a 

result of the molecular ion losing 31 mass units in the form of methoxy loss from the 

aromatic ring. 

 

2.3.2 Carboxylic/Phosphonic Acids 

 

2.3.2.1 Carboxylic/Phosphonic Acids – Underivatized 

 

Carboxylic and phosphonic acids make up the smallest category of compounds 

studied during this study - GHB and psilocybin. GHB and psilocybin were each prepared 

as a 0.5mg/mL solution in MeOH and analyzed using Method 1 with a splitless inlet. As 

has been previously reported 31, 33, GHB converts to gamma-butyrolactone (GBL) in the 

GC inlet.  Only psilocybin could be identified in the underivatized form.   

A surprising result was that the RT for psilocybin shown in Table 2-5 is 9.73 min 

whereas the RT for psilocin in Table 2-9 is 10.15 min. Differentiating these two 
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compounds in the underivatized form by GC/MS is generally considered to be 

impossible.  The mass spectra for psilocin and psilocybin can also be differentiated, 

although this depends upon examining the relative intensities of the ions that are 

present in both mass spectra. In psilocybin, the phosphate group is lost first as a neutral 

loss46, leaving a hydroxyl group. This generates the same structure as psilocin, thus the 

difficulty in differentiating the two. However, there are differences in the intensities of 

ions as a result of psilocybin having a positive charge on the amine. This causes far more 

fragmentation and thus higher intensities of each of the fragments as they are more 

abundant than what is seen with psilocin. Psilocin displays very low intensities for most 

fragments outside of m/z 58, the base peak formed, and m/z 204, the molecular ion. 

Psilocybin shows similar ion formation, but with a much more intense 204, 146, and 130. 

Lastly, the differences between psilocybin and psilocin also reflected in the spectra from 

the NIST MS database. 

Table 2-9: Chromatograms, mass spectra, and fragmentation patterns for 
carboxylic/phosphonic acids in the underivatized Form 

Chromatograms Mass Spectra and Fragmentation 
Psilocybin 
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2.3.2.2 Carboxylic/Phosphonic Acids – Derivatized (All Reagents) 

 

GHB is commonly derivatized by BSTFA to form GHB-TMS251. This can be seen in 

Table 2-10. GHB was not successfully derivatized by DMF-DMA. GHB was derivatized 

directly by 200 μL of BSTFA until dissolution was observed. 800 μL of ACN was added to 

bring the concentration of the solution to approximately 0.5 mg/mL. GHB-TMS2 seems 

to undergo degradation when held at higher temperatures; this was seen during initial 

analysis of the compound. Due the short retention time of this compound, the initial 

oven temperature was lowered to 50°C for all experiments involving any form of GHB, in 

order to allow the compound to elute at a lower temperature. All other parameters 

remained the same.   

The structure of GHB-TMS2 is well understood, but the fragmentation of this 

derivative is generally not. Both the carboxylic acid and hydroxyl groups lose their 

hydrogen to a TMS group in this reaction. The first ion at m/z 233 is a result of cleavage 

of a methyl group on one of the TMS groups. The base peak of m/z 147 is a resultant of 

rearrangement causing a loss of C5H13Si (m/z 101)46-47. The m/z 73 is the TMS fragment 

common to all compound derivatized with BSTFA. 

No successful derivatization of psilocybin was accomplished using the 3 reagents 

in this study. Reaction with DMF-DMA produced virtually no signal and reaction with 

BSTFA produced several peaks, none of which could be contributed to the target 

compound. However, the successful derivatization of psilocin using TFAA allows for the 

differentiation between the two compounds. 
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Table 2-10: Chromatograms, mass spectra, and fragmentation patterns for 
carboxylic/phosphonic acids derivatized with BSTFA 

Chromatograms Mass Spectra and Fragmentation 
GHB 

 
 

2.3.3 Zwitterions 

 

2.3.3.1 Zwitterions – Underivatized 

 

Zwitterions were the last class of compounds that was examined. The 

compounds in this class have both a positive and a negative charge resulting in an 

overall neutral molecule. The majority of these compounds contain both an amine and a 

hydroxyl group and both BSTFA and DMF-DMA were effective at converting these 

compounds into a derivative that was amenable to GC/MS.  

The only compounds to produce an appropriate peak in the underivatized form 

were gabapentin and lorazepam. This was not expected as both are said to decompose 

with the loss of water in the inlet.  However, both were clearly identified with 

appropriate match scores in the NIST database. Each compound exhibits a loss of water 
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in the mass spectrometer, forming an ion at (M-18). Purchasing standards of the 

dehydrated forms of these drugs would allow for determination of the point of 

decomposition. If the RT’s for the dehydrated standards line up with the RT’s already 

seen then it could be concluded that dehydration is occurring in the inlet. If they do not 

line up then dehydration would be happening at the point of ionization.   

Specifically, gabapentin undergoes a loss of water resulting in an ion at m/z 154, 

the remaining structure cyclizes via hydrogen rearrangement46 prior to the cleavage of 

the cycloalkane. The low mass ions seen in the mass spectrum are characteristic of the 

fragmentation of cycloalkanes46.  

Lorazepam has a low mass ion series that is indicative of aromatic compounds 

(m/z 50, 51, 63, 64, 74, 75, and 76)46.  This most likely arises from fragmentation of the 

aromatic ring following the alpha cleavage from the nitrogen. Based on the isotopic 

ratio of chlorine the number of chlorines present in each ion can be determined46. 37Cl is 

approximately 1/3 the abundance of 35Cl, therefore an ion at two mass units higher than 

the target ion that is roughly 1/3 the abundance of the target ion would contain 1 Cl. If 

this fragment is 2/3 the abundance then it would contain 2 Cl. Thus it can be seen than 

the first Cl is lost when forming the m/z 239 ion. Therefore, the base peak involves a loss 

of 1 Cl and an additional 48 coming from cleavage at the 2 nitrogen’s.   

Vigabatrin, pregabalin, and clorazepate did not produce any results in the 

underivatized form.  All drugs were prepared as 0.5 mg/mL solutions in MeOH using 

Method 1 with a splitless inlet; the results are shown in Table 2-11 for gabapentin and 

lorazepam. 
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Table 2-11: Chromatograms, mass spectra, and fragmentation patterns for zwitterions in 
the underivatized form 

Chromatograms Mass Spectra and Fragmentation 
Gabapentin 

 
 

Lorazepam 

 
 

2.3.3.2 Zwitterions – Derivatized With BSTFA 

 

Using BSTFA for derivatization with zwitterions worked well with clorazepate, 

lorazepam, and vigabatrin. Each drug was derivatized directly with 200 μL of BSTFA and 

held at 60°C until dissolution was completed. Once completed 800 μL of ACN was added 

to bring the concentration of each analyte up to approximately .5 mg/mL. The results of 

the successful reactions are shown in Table 2-12. 

153 

239 
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Pregabalin produced several peaks because of derivatization with BSTFA. The 

target compound was able to be identified, but due to the presence of small amounts of 

the underivatized drug and many additional peaks, it was not considered a successful 

reaction. This drug shows the ability to be derivatized via this method, but ultimately 

may require a different reaction scheme than what was used in this project.  

In clorazepate the TMS group preferentially silylates the amine. The ion at m/z 341 

shows the same pattern previously discussed with the chlorines in lorazepam, indicating 

m/z 341 contains one chlorine. Cleavage occurring at the carboxylic acid results in the 

m/z 341 ion. The m/z 73 is produced via the cleavage of the TMS group. 

Vigabatrin shows a rare molecular ion for this reagent at m/z 201, this is a result 

of silylation of the carboxylic acid. A loss of a methyl group produces the m/z 186 ion. 

From the m/z 186 a loss of 17 is observed in the form of ammonia following hydrogen 

rearrangement46. The base peak of m/z 56 is formed by alpha cleavage at the nitrogen.  

The first ion in Lorazepam, at m/z 429, is the result of a loss of one of the chlorines. This 

follows the same rules for isotopic ratios as previously seen with an isotopic ion two 

mass units higher and at one third the abundance of the ion of interest. 
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Table 2-12: Chromatograms, mass spectra, and fragmentation patterns for zwitterions 
derivatized with BSTFA 

Chromatograms Mass Spectra and Fragmentation 
Clorazepate 

 
Vigabatrin 

 
Lorazepam 
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2.3.3.3 Zwitterions – Derivatized With DMF-DFA 

 

Derivatizing zwitterions with DMF-DMA, as with all the other compound classes, 

is a new method for derivatizing drugs. Gabapentin and vigabatrin were both 

successfully derivatized with this reagent. The same scheme was used for this reaction 

that was used with the previous reactions. The results can be seen in Table 2-13. 

Gabapentin and vigabatrin contain both a primary amine and a carboxylic acid, 

making these most analogous to the reaction of DMF-DMA with amino acids 50. The 

amine undergoes the same process discussed with the hydroxylamines and the 

carboxylic acid is methylated with the replacement of the hydroxyl group with a 

methoxy.  

Gabapentin produces a singular clean peak, making identification a simple 

process in this case. The first primary fragment that is seen is m/z 209 which is the result 

of the molecular ion, 240 mass units, losing 31 mass units in the form of a methoxy. The 

molecular ion can be seen in a very small abundance. The base peak of m/z 85 is a result 

of alpha cleavage at the original nitrogen. This cleavage also leaves a m/z 196 that is also 

seen in small abundance.  

Vigabatrin produces several peaks during this process, but all of the peaks can be 

accounted for as bi products commonly observed with this reaction. Vigabatrin 

undergoes the same derivatization process that gabapentin does. The molecular ion of 

m/z 198 is seen. The ion at m/z 167 is a result of the loss of a newly formed methoxy, as 
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seen previously. The base peak of m/z 111 is formed via alpha cleavage at the nitrogen 

originally present. 

Table 2-13: Chromatograms, mass spectra, and fragmentation patterns for zwitterions 
derivatized with DMF-DMA 

Chromatograms Mass Spectra and Fragmentation 
Gabapentin 

 
Vigabatrin 

 

2.4 Conclusion 

 

The goal of this phase was to determine a derivatization technique that would 

work for each of the drugs listed and if one scheme could theoretically work for an 

entire class of drugs. Overall, amines/hydroxylamine’s worked well with the TFAA 

reagent, as was expected. BSTFA was also seen to work well. A new derivatization 

reaction was found for amphetamine and 2C-I via DMF-DFA. All the compounds 
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analyzed in this class, apart from 25I-NBOH, were successfully derivatized using at least 

one of the reagents. Due to the successful use of TMS derivatives in this class, N-Methyl-

N-tert-butyldimethylsilyltrifluoroacetamide (MTBSTFA) could be looked at as a viable 

alternative to BSTFA. MTBSTFA forms products more slowly, but the dimethyl tert-

butylsilane derivatives are known to be much more stable than their TMS analogs.  

GHB was the only carboxylic/phosphonic acid that formed a successful derivatized 

product. BSTFA was used to form the well documented GHB-TMS2. Psilocybin did not 

form a derivatized product, however.  The key issue with this drug is the ability to detect 

it and differentiate it from psilocin. This was accomplished in two ways. The first of 

these being the ability to differentiate between the two in the raw form based on 

retention time and differences in the relative abundances of the fragment ions. If the 

analyst cannot reach a conclusion based on these results, the compound can be further 

verified by derivatizing it with TFAA.  Only psilocin can be derivatized with this reagent. 

Both of these methods successfully demonstrate the differentiation that was sought 

between these two compounds.  

Zwitterions were able to be derivatized by a greater variety of reagents. A novel 

way of derivatizing some of these compounds was found with DMF-DFA. In some cases, 

these reactions formed several peaks, but all were able to be accounted for as common 

bi-products seen when using this reagent. BSTFA also worked well with the majority of 

the compounds in this class, with the exceptions of gabapentin and pregabalin. The 

appropriate derivative was formed when attempting to derivatize pregabalin with 
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BSTFA, however the reaction was incomplete. This is another scenario where utilizing 

MTBSTFA could prove beneficial in forming a complete derivative.  

DMF-DFA was found to be a novel way of derivatizing some drugs to much 

success. Any compound that contains a primary amine in this study undergoes the same 

process with this reagent. Both of the hydrogens from the primary amine are lost and 

one of the hydrogens from the alpha carbon in the DMAM group are lost, forming a 

nitrogen-carbon double bond. In compounds that contained both a primary amine and a 

carboxylic acid the carboxylic acid underwent a replacement of the hydroxyl group with 

a methoxy group. The initial loss of 31 mass units from the methoxy group was common 

followed by traditional alpha cleavage at the original nitrogen from the primary amine.  

Table 2-14 presents a summary of all compounds that were successfully analyzed, 

both in the raw form and derivatized.  In each case, the primary fragments that are 

formed in EI are also listed. 

Table 2-14: Table of all compounds successfully analyzed and their primary fragments 
formed sorted by compound class 

Compound Derivatization Reagent Primary Fragments Formed (m/z) 

Amphetamine 

Raw 44, 91 
BSTFA 116, 73, 91 
TFAA 140, 118, 91 
DMF-DFA 99, 44, 91 

Methamphetamine 
Raw 58, 91 
BSTFA 130, 73, 91 
TFAA 154, 42, 118 
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Table 2-14 Continued 
 

Ephedrine 
Raw 58, 77 
BSTFA 58, 73, 91 
TFAA 154, 110, 69 

Pseudoephedrine 
Raw 58, 77 
BSTFA 130, 73 
TFAA 154, 110, 69 

Psilocin Raw 58, 204 
TFAA 58, 69, 42 

2C-I 

Raw 278, 128, 91 
BSTFA 174, 73, 86 
DMF-DFA 85, 44, 331 
TFAA 290, 277, 403 

25I-NBOH Raw Not Detected 

25I-NBOMe Raw 121, 150, 91 
TFAA 121, 91, 290 

GHB Raw Not Detected 
BSTFA 147, 73, 117 

Psilocybin Raw 58, 130, 204 

Pregabalin Raw Not Detected 
BSTFA 174, 73, 147 

Gabapentin 
Raw 81, 153, 30 
DMF-DFA 85, 44, 167 
TFAA 178, 81, 67 

Clorazepate Raw Not Detected 
BSTFA 341, 73, 327 

Lorazepam Raw 239, 75, 274 
BSTFA 73, 429, 147 

Vigabatrin 
Raw Not Detected 
BSTFA 56, 75, 73 
DMF-DFA 111, 44, 42 

*Grey boxes indicate multiple peaks present or incomplete derivatization 
**All ions are listed in decreasing order of abundance, with the base peak being listed 
first and in bold 
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CHAPTER 3. FUTURE DIRECTIONS 

3.1 Explosives Project 

 

During this project a method was developed for the separation and identification 

of 7 nitrate ester explosives. This method is yet to be proven with real world samples 

and this is the next logical step to be taken. Samples have been collected with the help 

of the Indiana State Police from devices utilizing Semtex 10 (PETN), Semtex 1H (PETN 

and RDX), and Detasheet (PETN). Soil samples as well as pieces of the devices were 

recovered from the scene and are being stored for analysis. Instrument difficulties did 

not allow for the examination of these samples during the duration of this project. EPA 

Method 8095, Explosives by Gas Chromatography, outlines traditional GC procedures 

for identification of explosive residue. This coupled with EPA Methods 3500 (Organic 

Extraction and Sample Preparation), 3600 (Cleanup), 5000 (Sample Preparation of 

Volatile Organic Compounds) and 8000 (Determinative Chromatographic Separations) 

would provide a solid foundation for designing a procedure for the analysis of soil and 

debris samples. These methods outline extraction procedures for a variety of types of 

samples. Within this falls explosive residue found in soul19. The procedure involves a 
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solvent extraction, filtration, and concentration prior to experimentation. By using TV-

SPME the clean-up steps of these methods could be eliminated. The nature of TV-SPME 

and its inherent increase in sensitivity over traditional liquid injection could also 

potentially provide the sensitivity necessary to analyze samples directly without the 

need for pre-concentration.  

This method shows extreme sensitivity for both NG and EGDN using Chemical 

Ionization (CI). Determining the true LOD of these analytes and all other nitrate esters 

would not only be beneficial but necessary for this method to be used in a forensic 

science laboratory. The detectable levels for NG and EGDN, as seen in this project, fall 

well below the average level of NG that is recovered from pipe bombs 21. Coupled with 

this, the LOD of each analyte in EI mode should be investigated to determine the 

viability of this method in EI. This is due to the fact that EI is the preferred ionization 

source used by forensic science laboratory. Prior to attempting to determine the true 

LOD of the method an additional optimization should be done. All four analytes can be 

analyzed as standards, establishing their retention times (RT) as well as the RT’s of their 

degradation products, prior to optimization. This would allow for parameters that would 

theoretically be closer to ideal for all four analytes.  

The application of this method to analytes outside of the seven examined here 

would be necessary prior to adoption by forensic science laboratories. Additional 

nitramines, such as HMX, RDX, and Tetryl should be analyzed via this method to 

determine their viability with it, as well as explosives such as trinitrotoluene (TNT), 

hexamethylene triperoxide diamine (HMTD), and triacetone triperoxide (TATP). HMTD 



68 
 

 

and TATP are thermally labile and are traditionally analyzed using LC/MS 4. However, 

this method has been seen to analyze other thermally sensitive explosives like 

pentaerythritol tetranitrate (PETN) and erythritol tetranitrate (ETN) to much success.  

The original goal of this project was to take a separation technique and apply it to 

samples that are collected using the M-Vac system. The M-Vac system is a device that 

was designed for the extraction of DNA from porous material. The system applies a 

buffer to the material and suctions it off into a container. This buffer then can be 

utilized by a laboratory technician to extract the DNA that could be potentially present. 

This system would be of great use to a forensic scientist in scenarios like the Boston 

bombing where a device was placed in a backpack prior to deflagration. The pieces of 

the backpack could be gathered and extracted by this system. During this extraction, it is 

hoped that DNA would not be the only thing recovered, theoretically residue from the 

explosive filler used would be recovered in this buffer. After the extraction of DNA from 

the buffer this could then be transferred to an explosive analyst for potential 

identification of explosive residue.   

An additional area that could be explored would be utilizing a Vacuum Ultraviolet 

(V-UV) detector in place of or in addition to the mass spectrometer. The UV spectrum 

obtained by traditional UV-Vis detectors is limited by the amount of interference 

present in air. This then results in a low end wavelength of around 250 nm. Nitrate 

esters do not show a great deal of unique absorbance at this level. Applying a vacuum to 

the system allows for the detector to utilize shorter wavelengths in the UV spectrum, 

around 120 nm. Nitrate esters produce a much more active absorbance spectrum at 
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these lower wavelengths. This includes transitions between the highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of σ and 

σ* bonds of the carbon backbone.  Preliminary work with a V-UV detector from VUV 

Analytics shows that it is possible to distinguish between nitrate esters using this type of 

detector. This is seen in Figure 3-1. Nitrate esters will fragment into a m/z 46 and a m/z 

72 during EI fragmentation and into m/z 46 and m/z 62 during CI fragmentation.  

Regardless, these compounds cannot be differentiated via mass spectral analysis alone. 

This problem is not seen with a VUV detector. This is due to the change in absorbance 

that is seen based on spatial orientation of functional groups and the number of 

functional groups present. These together allow for an analyst to distinguish between 

identically fragmenting nitrate esters using a VUV detector as opposed to a mass 

spectrometer.  
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Figure 3-1: V-UV spectra of EGDN PETN and NG 

 

3.2 Controlled Substances Project 

 

This project devised various derivatization schemes for many different illicit drugs, 

the most novel of which was the use of DMF-DMA. Success was seen with primary 

amines and zwitterions (primary amines with a carboxylic acid). Moderate success was 

also seen with other types of compounds, specifically with secondary amines and 

hydroxyl’s. The chromatograms for these substances had many peaks produced and not 

all of them were able to be identified. This suggests that with more work the procedure 

could be altered to facilitate the full reaction of DMF-DMA with these drugs. Using a 
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different solvent or a higher reaction temperature could help facilitate this. If a higher 

temperature is attempted, 100°C is recommended as this temperature has been 

documented as helping to facilitate the complete reaction of amino acids that prove 

difficult to derivatize with this reagent52. The addition of pyridine is also commonly seen 

with derivatization reaction to help encourage the process. Table 3-1 depicts the results 

of clorazepate. 

Table 3-1: Chromatogram and mass spectrum of assumed DMF-DMA derivative of 
clorazepate 

Chromatograms Mass Spectra and Fragmentation 
Clorazepate 

  
 

TV-SPME, that was used in the analysis of explosives, and has been used for 

other forensically relevant samples, could be used for the analysis of illicit drugs. TV-

SPME has been proven to yield a significant increase in instrument response when 

compared to liquid injection. It also has the added benefit of being able to introduce 

“dirty” or unfiltered samples into a GC/MS. This would be able to help eliminate work 

up required by analysts and reduce solvent waste due to the small amount of volume 

needed for TV-SPME. Using an automatic sampler coupled to a GC/MS using SPME 

would also help limit the amount of analyst time that is needed to perform analysis on 
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each sample. This is due to the ability of SPME to do on-line derivatization33, 53. The 

SPME fiber can be exposed to the derivatization agent prior to being exposed to the 

analyte, thus causing the derivatization to occur on the fiber. This could also have the 

added benefit of decreasing the amount of time needed for derivatization. By placing 

both the analyte and the reagent in the gaseous phase, and thus in a higher energy state, 

the reaction should proceed much quicker than what was seen during bench-top wet 

chemistry reactions. 

 Preliminary work has also been in the direct derivatization of 

phenethylamines with derivatization agent. Specifically, 50 mg of amphetamine hemi-

sulfate was added to a headspace vial. Separately 200 µL of TFAA derivatization agent 

was added to a different vial and placed in the incubator at 60°C. A 

Polydimethylsiloxane/Divinylbenzene (PDMS/DVB) fiber was exposed to the reagent for 

0.1 minutes. The vial containing the amphetamine hemi-sulfate was then incubated for 

60 seconds at 60°C prior to the SPME fiber being exposed to it for 20 minutes. The 

appropriate peak for Amphetamine-TFA was observed in extreme abundance. 

Continued experimentation with additional compounds that worked adequately with 

TFAA as well as incorporating common adulterants and cutting agents into analysis is 

highly encouraged.  
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3.3 Hydrogen Sulfide Project 

 

Necrotizing Enterocolitis (NEC) is a disease that causes bacteria to enter into the 

intestines and can cause inflammation and infection. This can then spread throughout 

the bowels and intestines. It is an issue that affects approximately 16% of all very low 

birth weight infants that are born at Riley Children’s Hospital54. Currently the primary 

mode of correction is an intestinal resection at the site of the diseases. This can cause 

issues later in life for the child. Thus, a way to correct this disease without the removal 

of part of the intestines would be highly advantages.  

A working theory of Dr. Troy Markel at the Indiana University School of Medicine 

is that by encouraging the paracrine release of hydrogen sulfide a decrease in 

proapoptotic signaling and a decrease in proinflamatory cytokine production would be 

seen. This would then lead to an improved recovery without surgical removal of the 

diseased tissue. To do this, a quantitative way of determining minute changes in 

hydrogen sulfide concentrations would need to be established.  

There are many established ways to quantitate hydrogen sulfide, the majority of 

which fall into the photometric class55-60. The Methylene blue test is the most common 

photometric approach used55. This test involves aqueous hydrogen sulfide reacting with 

N, N-dimethylphenyl-1, 4-diamine in the presence of ferric ions to cause a quantifiable 

blue color to be produced. The blue color is a result of the formation of heterocyclic 

thiazine dye that is formed as a result of this reaction. This can then be measured 

through a variety of techniques, such as: UV-Vis spectroscopy, fluorescence, or HPLC. 
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This methodology has been seen to have a limit of detection of 0.01 parts per million 

(ppm) using traditional UV-Vis Spectroscopy.  

Hydrogen sulfide is volatile, but breaks down rather quickly in solutions. Also, 

due to its extreme volatility, there is sample loss as long as it is in open air. Both of these 

lend to the idea that hydrogen sulfide should be converted into something more stable. 

By converting this into something more stable it also makes it more amenable to 

analytical techniques such as GC/MS.  

Preliminary work has been with quantifying this compound using GC/MS. 

Pentafluorobenzyl Bromide (PFBBr) was chosen as an alkylation reagent for hydrogen 

sulfide due to its previous applications to sulfur containing compounds. Converting H2S 

into a much larger thermally stable molecule via PFBBr allowed for analysis by GC/MS. 

Samples were obtained from the Markel group for analysis and quantitation. The 

samples were in Minimum Essential Medium Alpha (1X) from gibco and contained cell 

lines that were either stimulated or not stimulated with several different kinds of drugs 

thought to increase the production of hydrogen sulfide. 900 µL of sample was frozen 

immediately after being allowed to grow overnight. The frozen samples were what were 

received. These samples were then processed through a derivatization reaction prior to 

analysis. Since the samples were provided as an aqueous solution, the analyte needed 

to partition into an organic layer for derivatization via PFBBr. Thus 1 mL of a basic 

solution containing a Phase Transfer Catalyst (PTC) was added to the 0.9 mL of sample. 

Making the solution basic causes the hydrogen sulfide to become sulfide ions that can 

then be “carried” to the organic layer via the PTC. Several PTC’s were tested: 
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benzalkonium chloride, hexadecyltrimethylamonium bromide, and 

tetrabutylammoniumhydrogen sulfate. Benzalkonium chloride was selected due to it 

being the only PTC that did not cause precipitation when used in conjunction with the 

growth media. To this solution 2 mL of a 2% v/v solution of PFBBr in toluene with 

decafluorobiphenyl as an internal standard was added to form two distinct layers. This 

internal standard was used based on its non-interaction with PFBBr and its solubility in 

the sample matrix. Toluene, dichloromethane, and acetone were all tried as potential 

solvents. Acetone did not form two distinct layers, dichloromethane is denser than the 

media, and thus toluene was used for ease of extraction. This two layer system was then 

vortexed for 15 seconds prior to being placed on a shaker table for 1 hour. After one 

hour an aliquot of the organic layer was added to a GC vial for analysis via liquid 

injection GC/MS.  

The derivatization of hydrogen sulfide with PFBBr produced a compound 

containing one sulfur and two pentafluorobenzyl rings. This compound is depicted in 

Figure 3-2. 
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Figure 3-2: Depiction of the compound produced via PFBBr alkylation of hydrogen 
sulfide 

 

Once retentions times were determined for this compound and the internal 

standard all future analysis was run in Selected Ion Monitoring (SIM). The SIM 

parameters were set to m/z 334 for the internal standard and m/z 181 and m/z 394 for 

the analyte. Initial work was promising due to the ease of detection of this analyte. The 

concentrations present in the sample fell well above the limit of detection for this 

method.  

The potential issues that were experienced were with extraction efficiency, 

sample degradation, and background levels of hydrogen sulfide. Background levels of 

hydrogen sulfide are a confirmed issue that was faced. The media that was used to grow 

the cells has an inherent background signal of hydrogen sulfide of around 0.1ppm. 

However, the level of background analyte was not consistent from sample to sample. 

This could be a result of extraction efficiency, sample degradation, or inconsistencies in 

sample preparation. Because of this, accurate quantitation was not possible as there 
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was no way to subtract the background signal from the signal purposefully produced. 

Attempts were made to account for variations in background signal by running multiple 

media blanks, but the error bars produced for these samples overlapped with the 

concentration determined to be in the stimulated samples. Preliminary data with 

various media and means of inducing sulfide production were collected, however the 

data was inconclusive.  

The next step for this project is recommended to be Total Vaporization Solid 

Phase Microextraction. This method of sample introduction was previously discussed in 

Chapter 1. As discussed in section 3-2, TV-SPME can be adapted to use on-line 

derivatization. This could potentially be of great benefit to this project. The two main 

issues seen with the initial work were with extraction efficiency and sample degradation. 

Extraction efficiency could essentially be eliminated as an issue by informing the lab 

techs at the time of sample prep to freeze a smaller amount of sample, as decided upon 

by the equation defining TV-SPME sample volume, and heating that sample directly until 

total vaporization. This would cut down immensely on the time that the sample has to 

degrade prior to derivatization as well as eliminate the matrix effects that could be 

affecting extraction efficiency. The sample could also be spiked with an internal 

standard prior to thawing. The SPME fiber would then be exposed to the headspace of a 

vial containing PFBBr that has been heated. The fiber, now having PFBBr adsorbed onto 

it, would then be exposed to the vial containing the vaporized analyte and internal 

standard. Derivatization with PFBBr is a fast process and this should be sufficient to 

derivatize the analyte for analysis. This would also increase the sensitivity of the method. 
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By increasing the sensitivity the slope of a calibration curve would increase dramatically, 

thus potentially allowing for the differentiation of concentrations that reside close 

together on a calibration curve, such as 0.10 ppm and 0.15 ppm.  

Using TV-SPME introduces several parameters not previously investigated as part 

of method development. Through initial experimentation with on fiber derivatization of 

illicit drugs, the following parameters are recommended: incubation temperature of 

110°C, pre-fiber derivatization time of 0.1 minutes, 

polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber type, adsorption time of 20 

minutes, desorption time of 60 seconds. All incubated samples should be agitated at the 

rate of 10 seconds on and 1 second off for the duration of incubation. Initial incubation 

of the sample should 60 seconds. This will allow sufficient time for thawing and 

vaporization to occur. The formula for volume of sample for TV-SPME at 110°C using 

water calls for 16 µL of sample. To this, 10 µL of the internal standard would be added at 

a concentration of 20 ppm in acetone.
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