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ABSTRACT 

We recently reported the identification of a GroEL/ES inhibitor (1: N-(4-

(benzo[d]thiazol-2-ylthio)-3-chlorophenyl)-3,5-dibromo-2-hydroxybenzamide) that exhibited in 

vitro antibacterial effects against Staphylococcus aureus comparable to vancomycin, an 

antibiotic of last resort.  To follow-up, we have synthesized 43 compound 1 analogs to determine 

the most effective functional groups of the scaffold for inhibiting GroEL/ES and killing bacteria.  

Our results identified that the benzothiazole and hydroxyl groups are important for inhibiting 

GroEL/ES-mediated folding functions, with the hydroxyl essential for antibacterial effects.  

Several analogs exhibited >50-fold selectivity indices between antibacterial efficacy and 

cytotoxicity to human liver and kidney cells in cell culture.  We found that MRSA were not able 

to easily generate acute resistance to lead inhibitors in a gain-of-resistance assay, and that lead 

inhibitors were able to permeate through established S. aureus biofilms and maintain their 

bactericidal effects.
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INTRODUCTION:  

In 2013, the Centers for Disease Control and Prevention (CDC) released a report 

highlighting the dangers posed by multi-drug resistant bacteria, in particular a group of six that 

have been termed the ESKAPE pathogens: Enterococcus faecium (Gram-positive), 

Staphylococcus aureus (Gram-positive), Klebsiella pneumoniae (Gram-negative), Acinetobacter 

baumannii (Gram-negative), Pseudomonas aeruginosa (Gram-negative), and the Enterobacter 

species (Gram-negative).1  The report estimated that these bacteria infect over two-million 

people in the U.S. annually, leading to ~23,000 deaths.  Of the ESKAPE pathogens, methicillin-

resistant strains of S. aureus (MRSA) were found to be the deadliest, causing ~80,000 infections 

and ~11,000 deaths annually.  Unfortunately, the development of new antibiotics over the past 

four decades has continually declined, and continuing research programs tend to focus on re-

derivatizing already known antibacterial classes.2-4  In addition, many bacteria are intrinsically 

able to evade antibiotic effects by forming biofilms, which are often hallmarks of chronic 

infections.5  While vancomycin is effective at treating planktonic S. aureus, it is not able to 

penetrate and kill bacteria within biofilms.6, 7  Thus, to circumvent these resistance mechanisms, 

there is an urgent need for antibacterials that function through new mechanisms of action and 

previously unexploited pathways. 

While disrupting protein homeostasis has proven to be an effective antibacterial strategy 

in the context of inhibiting the transcriptional and translational machineries, perturbing protein 

folding pathways has gone largely unexplored.3  To facilitate newly synthesized polypeptides 

folding into their active/native structural conformations, cells utilize a class of accessory proteins 

termed molecular chaperones, also known as Heat Shock Proteins (HSPs).8  When molecular 

chaperone functions are compromised, non-native polypeptides could misfold and aggregate, 
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which is detrimental to cell viability.9-12  Thus, targeting molecular chaperones with small 

molecule inhibitors should be an effective strategy for killing bacteria that is unique from the 

mechanisms of current antibiotics.  While significant efforts have been made to target HSP70 

and HSP90 chaperones for developing anti-cancer agents, researchers are now beginning to 

explore these chaperones as antibiotic targets.13-20  However, targeting HSP60 chaperonin 

systems, called GroEL chaperonins in bacteria, has gone largely unexplored.  GroEL is a homo-

tetradecameric protein complex that consists of two, seven-membered rings that stack back-to-

back with each other.  GroEL functions to refold nascent polypeptides through a mechanism 

unique from other molecular chaperones.  To facilitate the folding of substrate polypeptides, 

GroEL requires binding of ATP and a co-chaperone, called GroES.  GroES binding to the GroEL 

apical domains encapsulates the substrate polypeptides within the central cavity of GroEL, where 

they can attempt to fold while being sequestered from the outside environment.  Details of the 

GroEL/ES-mediated folding cycle have been extensively investigated and reported elsewhere.21-

27

Since the GroEL/ES system is essential for bacterial viability under all conditions, we 

hypothesize that blocking its functions with small molecule inhibitors should be an effective 

antibacterial strategy.28, 29  A caveat to this strategy is that human HSP60 is moderately 

conserved with the bacterial homologs (48% identity with the prototypical GroEL chaperonin 

from Escherichia coli), which raises the question of potential off-target effects against human 

cells.  However, HSP60 is localized within the mitochondrial matrix of human cells, which is 

highly impermeable to small molecules.  Thus, even if compounds can inhibit HSP60 in vitro, 

they may not reach and inhibit it in the mitochondrial matrix, permitting selective targeting of 

bacteria over human cells. 
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In a previous study, we performed high-throughput screening and identified 235 

inhibitors of the GroEL/ES folding cycle.30  In a follow-up study evaluating a subset of these 

GroEL/ES inhibitors for their antibacterial effects against the ESKAPE pathogens, we identified 

compound 1 (Figure 1A) as a hit candidate for further antibacterial development.31  In particular, 

compound 1 exhibited bactericidal effects against S. aureus that were comparable to vancomycin 

(i.e. sub-M EC50).  While compound 1 exhibited low-to-moderate cytotoxicity against human 

liver (THLE-3) and kidney (HEK 293) cell lines, it still had >50-fold selectivity indices for 

killing S. aureus bacteria.  Intriguingly, compound 1 has been reported to have anthelmintic 

activity against Trichocephalus muris, and two anthelmintic drugs used to treat parasitic 

infections in livestock, closantel and rafoxanide (Figure 1B), bear striking resemblances to the 

compound 1 scaffold.32, 33  In addition, Cheng et al. reported similar analogs that exhibited anti-

MRSA activities, although the reported structure-activity relationships (SAR) suggested that 

their antibacterial effects were not entirely through targeting transglycosylase activity.34  Thus, 

there is a high probability that targeting the GroEL/ES chaperonin system could be contributing 

significantly to its antibacterial effects, which warrants further investigation. 

While compound 1 itself is a promising GroEL/ES inhibitor to take forward as an anti-

bacterial candidate, there is room for further optimization before proceeding into a proof-of-

principle anti-bacterial efficacy models in animals (e.g. mice systemically infected with S. 

aureus).  As a first step in our optimization strategy, rather than adding various substituents and 

substructures to the scaffold as is often done in drug development, we chose an opposite 

approach and employed a molecular deconstruction strategy where we systematically removed 

the various substituents and substructures (R1-R5 – Figure 1A) to evaluate their contributions to 

inhibitor potency and selectivity.  Thus, we synthesized a library of 43 analogs that contained all 
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the different ± combinations of the R1-R5 groups.  We then tested them in a series of assays to 

achieve three primary objectives: 1) determine which groups are crucial to inhibit GroEL/ES and 

HSP60/10 folding function in vitro; 2) identify groups that expand the therapeutic window 

further between antibacterial efficacy and human cell cytotoxicity; and 3) determine if inhibitors 

are effective against bacteria in biofilms, and whether or not bacteria will be able to generate 

acute resistance to this molecular class.  Results from these assays would then allow us to 

identify the smallest effective inhibitor analog that maintains potency against bacteria while 

reducing cytotoxicity to human cells.  Knowing this information would then allow us to build 

upon this base scaffold in a more rational approach to improve the pharmacological properties of 

this antibacterial series. 

 

RESULTS AND DISCUSSION

Evaluating the effectiveness of compound 1 analogs for inhibiting the GroEL/ES-mediated 

folding cycle.

As a first step in this study, we synthesized analogs 1-44 using well-established chemistry 

as outlined in Scheme 1.  A nucleophilic aromatic substitution reaction between 2-

mercaptobenzothiazole and 3,4-dichloronitrobenzene was employed to give the nitro-

intermediate 45 (containing the chloro-group in the R2 position), which was subsequently 

reduced to the amine 46 using tin powder in a 10% mixture of HCl in AcOH.32, 35-38  The 

intermediate amine 47, lacking the chloro-group at the R2 position, was synthesized in one step 

by a nucleophilic aromatic substitution reaction between 2-chlorobenzothiazole and 

aminothiophenol.39  Compounds 17-44 were prepared by reacting the respective aryl-acid 

chlorides (where commercially available) with amines 46 or 47 with pyridine in anhydrous 
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dicloromethane.36, 37  If only the respective aryl-carboxylic acids were commercially available, 

we either converted them to their acid chloride counter-parts by reacting with thionyl chloride, or 

coupled the acids directly to the amines using amide coupling procedures with DDC, DMAP, 

and pyridine, or EDC, HOBt•H2O, and TEA in dichloromethane.37  The methoxy-bearing 

analogs (29-44) were then further de-methylated to analogs 1-16 using BBr3 in anhydrous 

dichloromethane.36-38, 40  Detailed synthetic protocols and compound characterizations (e.g. 1H-

NMR, MS, and RP-HPLC) are presented in the Experimental Section and Supporting 

Information.  We also purchased the two highly related anthelmintic drugs used in veterinary 

medicine, closantel and rafoxanide, to determine whether they would also inhibit the GroEL/ES 

chaperonin system.  While their mode of action is reported to involve uncoupling of the proton 

gradient of oxidative phosphorylation, which drives ATP production in the mitochondria of 

parasites, it is possible that targeting GroEL/ES or HSP60/10 chaperonin systems could be 

contributing to their antibiotic properties.41, 42  

After generating the compound library, we next employed a series of well-established 

biochemical assays to evaluate compound inhibitory effects against the GroEL/ES chaperonin 

system.  As in previous studies, we used E. coli GroEL/ES as the surrogate chaperonin system 

for refolding of the reporter enzymes malate dehydrogenase (MDH) and rhodanese (Rho).30, 31, 40  

Briefly, binary complexes are formed between GroEL and denatured MDH or Rho, which are 

then refolded to their native states upon addition of ATP and the GroES co-chaperonin.  

Enzymatic activities of refolded native MDH or Rho act as coupled reporters of  GroEL/ES 

refolding functions since in the presence of chaperonin inhibitors, no functional reporter 

enzymes are generated.  Inhibition IC50 results for testing of compounds in these two refolding 

assays are compiled in Table 1, and visually presented in the correlation plot in Figure 2A.  The 
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log-transformations of IC50 results and standard deviations are presented in Table S1 in the 

Supporting Information.  As seen in Figure 2A, there is a strong correlation between compounds 

inhibiting in the GroEL/ES-dMDH and dRho refolding assays (Spearman correlation coefficient 

comparing log(IC50) values in each assay is 0.9663, p < 0.0001), suggesting they are acting on-

target against the chaperonin system.  As we do not know where the binding sites are for this 

series of inhibitors, precise structure-function interpretation of the results remains elusive.  In 

general, though, the R1-benzothiazole coupled with the R3-hydroxyl are required for potent 

inhibition.  Halogenation at the R2-position (Cl) and R4/R5 positions (Br) further increases 

inhibitor potency, likely through a combination of increased hydrophobic interactions of the 

halides themselves, coupled with the electron-withdrawing capability of the bromines lowering 

the pKa of the salicylate hydroxyl, which could enhance polar interactions within the binding 

sites.  Perhaps not surprisingly, we found that closantel and rafoxanide were, indeed, potent 

GroEL/ES inhibitors; thus, an intriguing question to address in future studies will be how much 

does targeting chaperonin systems contribute to the anthelmintic effects of these two veterinary 

antibiotics? 

To further support on-target effects, we evaluated inhibitors against the native MDH and 

Rho enzymes to identify false-positives that simply inhibit the reporter reactions of the coupled 

refolding assays (detailed procedures are presented in the Supporting Information).  While some 

compounds were found to inhibit native MDH (e.g. 1, 5, closantel, and to lesser extents, 9, 13, 

and rafoxanide), none of the analogs were found to inhibit native Rho enzymatic activity (Table 

1 and Figure 2B).  While these results further support that inhibitors are targeting the 

chaperonin-mediated folding cycle, they also indicate that selectivity issues may be a liability 

that future studies would need to address.  Hearteningly, though, a few analogs (e.g. compound 
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2, 3, 6, and 7) are moderate to potent inhibitors in the GroEL/ES-mediated refolding assays yet 

remained inactive against the reporter enzymes, suggesting selectivity concerns are not 

insurmountable.

Determining the antibacterial effects of compounds against the ESKAPE pathogens.

We next evaluated compounds for antibacterial efficacy against the ESKAPE pathogens 

in liquid media culture as per previously reported procedures.38  Inhibition EC50 results for 

testing of compounds in these bacterial proliferation assays are shown in Table 2.  In general, 

this series of analogs was ineffective against the Gram-negative bacteria (K. pneumonia, A. 

baumannii, P. aeruginosa, and E. cloacae), likely owing to drug efflux and/or impermeability to 

the lipopolysaccharide (LPS) outer membranes of Gram-negative bacteria.31  However, with 

regards to A. baumannii, notable exceptions are compounds 2 and 6, which exhibit EC50 values 

of 2.9 and 12 µM, respectively.  This suggests that drug efflux and LPS impermeability issues 

may not be insurmountable with further inhibitor optimization.  As previously observed with 

compound 1, several analogs retained antibacterial efficacy against the Gram-positive bacteria, 

E. faecium and S. aureus, although they were strikingly more effective against S. aureus.  The 

presence of the hydroxyl at the R3 position appears to be integral for potent inhibition of S. 

aureus bacteria, almost regardless of substituents and substructures at the other positions.  

However, it is noted that incorporation of the benzothiazole substructure at the R1 position leads 

to the most potent inhibitors (and generally required to inhibit E. faecium), which may support 

on-target effects since these analogs are able to inhibit GroEL/ES-mediated folding functions.  

Importantly, these analogs are all equipotent against the MRSA strain that we evaluated 
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compounds against (ATCC #BAA-44, HPV107 designation, isolated from a hospital in Lisbon, 

Portugal).   

When comparing the EC50 results of this series of compounds against E. faecium bacteria 

with the IC50 values obtained in the GroEL/ES-dMDH refolding assay (Figure 3A), we note an 

almost linear correlation (Spearman correlation coefficient comparing log(I/EC50) values in each 

assay is 0.9628, p < 0.0001), which may indicate on-target effects against GroEL/ES driving 

antibacterial activity.  When performing the same comparison with MRSA bacteria (Figure 3B), 

although a trend is evident between antibacterial efficacy and GroEL/ES inhibition MRSA 

(Spearman correlation coefficient comparing log(I/EC50) values in each assay is 0.8042, p < 

0.0001), several compounds that are not GroEL/ES inhibitors still remain effective against 

bacteria (e.g. 10-16).  This finding could be a result of S. aureus GroEL/ES functioning 

differently than the E. coli GroEL/ES chaperonin system, which we use as a surrogate in these 

studies; however, we cannot rule out potential off-target effects, especially since we know that 

some analogs could inhibit MDH and also potentially be targeting transglycosylase as reported 

by Cheng et al.34  Further studies are warranted to determine how E. faecium and S. aureus 

GroEL/ES function compared to E. coli GroEL/ES, and to identify the specific mechanisms of 

action of these inhibitors in both E. faecium and S. aureus bacteria.

While some GroEL/ES inhibitors can target human HSP60/10 in vitro, many display 

moderate to low cytotoxicity to human cells.

Knowing which compounds were effective GroEL/ES inhibitors with antibacterial 

properties, we next evaluated whether they would 1) inhibit human HSP60/10, and 2) exhibit 

cytotoxicity to two cell lines that we typically employ for cell viability testing in vitro: THLE-3 
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liver cells and HEK 293 kidney cells.  These assays were performed as previously reported, with 

detailed protocols presented in the Supporting Information.31, 38, 40  Briefly, the HSP60/10-dMDH 

folding assay was conducted analogously to the GroEL/ES-dMDH folding assay so IC50 results 

could be directly compared.  The human cell cytotoxicity assays used Alamar Blue reagents to 

measure the viability of liver and kidney cells that had been incubated with test compounds over 

a 48 h time period.  Biochemical inhibition (IC50) and cell viability (cytotoxicity; CC50) results 

for these assays are presented in Table 3.

While some analogs selectively inhibit E. coli GroEL/ES over human HSP60/10 (e.g. 3, 

4, 7, and 8), IC50 values between the GroEL/ES-dMDH and HSP60/10-dMDH folding assays 

were nearly the same for most analogs (Figure 4A - Spearman correlation coefficient comparing 

log(IC50) values in each assay is 0.8351, p < 0.0001).  We note, though, that comparison of these 

results is convoluted by the fact that some of these analogs also inhibit native MDH, and thus 

could be false positives in the HSP60/10-dMDH folding assay owing to simply inhibiting the 

MDH reporter reaction.  While HSP60/10 inhibition could potentially be teased out by 

employing rhodanese as the denatured reporter enzyme as we do in the case of the GroEL/ES-

dRho refolding assay, in our experience, the equivalent HSP60/10-dRho refolding is not as 

robust, potentially owing to the lower stability of human HSP60 compared to E. coli GroEL.  

When comparing the biochemical and cell-based results, there does not appear to be a 

noticeable correlation between HSP60/10-dMDH refolding assay IC50 values and liver and 

kidney cell viability assay CC50 values (Figure 4B - (Spearman correlation coefficient values are 

0.4791 (p < 0.0008) and 0.3286 (p < 0.0258) when comparing HSP60/10-dMDH refolding assay 

log(IC50) values with liver and kidney cell viability log(CC50) values, respectively).  

Interestingly, compounds that bear the R1 benzothiazole and R3 hydroxyl substructures (1-8) are 
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generally less cytotoxic against the HEK 293 cells than their counterparts without the R1 

benzothiazole (9-16), and also less cytotoxic to the THLE-3 liver cells.  Since inclusion of these 

two substructures generally afforded more potent chaperonin inhibitors, the differences between 

these results may suggest that compound cytotoxicities are predominantly a result of off-target 

effects and not from targeting HSP60/10 itself.  This would not be surprising since some analogs 

are also able to inhibit native MDH (e.g. 1, 5, 9, 13, closantel, and rafoxanide).  When comparing 

EC50 values of compounds inhibiting the proliferation of susceptible and methicillin-resistant S. 

aureus with cell viability CC50 values against the human liver and kidney cells (Figure 4C), we 

note that many analogs exhibit >50-fold selectivity indices.  Considering we have only been 

looking at the effects that removing substituents and substructures have on the potency and 

selectivity of this series of analogs, these are exciting initial results to move forward from in 

future med-chem efforts where we begin to append and optimize the various substituents and 

substructures of this scaffold.

MRSA cannot readily generate acute resistance to lead analogs. 

After identifying which compounds selectively inhibited the GroEL chaperonin system 

and killed bacteria, we next evaluated whether bacteria could quickly develop resistance to lead 

candidate inhibitors.  This was a concern we encountered with another series of GroEL/ES 

inhibitors we have been studying, represented by the bis-sulfonamido compound “28R” shown 

in Figure 5.38  For this experiment, we adapted a liquid culture resistance assay from the 

previously established procedures of Kim et al., and used our MRSA strain as the test bacteria (a 

detailed procedure is presented in the Supporting Information).38, 43  Briefly, test compounds 

were incubated in dilution series with MRSA for 24 h and EC50 values were determined.  The 
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first well exhibiting OD600 readings >0.2 were then sub-cultured for another 24 h with test 

compound again in dilution series.  Serial passage in this manner was conducted for a total of 12 

days, and each day EC50 values for the test compounds were determined: inhibitors to which 

MRSA could rapidly generate resistance would exhibit increasing EC50 results over each 

successive passage.  Rapid resistance was observed for the previously reported bis-sulfonamide 

compound, 28R, but was found to be reversible and likely owing to increased inhibitor efflux.38  

We evaluated two of our lead GroEL inhibitors, 1 and 11, along with vancomycin, and found 

that all three exhibited exemplary antibiotic efficacy to which this MRSA strain was not able to 

easily generate resistance.

 

Compound 1 is bactericidal to S. aureus within established biofilms

While we found that S. aureus is not able to easily generate resistance to compounds 1 

and 11, what remained to be seen was whether this series of inhibitors would be effective at 

preventing bacteria from establishing biofilms and killing bacteria within already established 

biofilms.  Establishing biofilms is another effective mechanism by which S. aureus can evade the 

effects of many current antibiotics, including vancomycin.  To gauge the efficacy of lead 

inhibitors at preventing S. aureus from forming biofilms, we employed an assay similar to the 

liquid culture assay we used to determine inhibition of bacterial proliferation, with a few 

modifications (detailed procedures presented in the Experimental section).  Briefly, test 

compounds (1, 2, 5, 8, 11, and vancomycin) were incubated with S. aureus bacteria in media 

supplemented with 0.5% glucose (to support biofilm formation) for 24 h at 37°C.  After 24 h, the 

supernatant was removed, the wells were gently washed, and the biofilm that had formed on the 

well surfaces were stained with crystal-violet and quantified by UV-Vis spectroscopy.  We found 
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that all of the compound 1 analogs tested, and vancomycin, were able to prevent S. aureus from 

forming biofilms with EC50 values nearly equipotent to antibacterial EC50s we determined 

against planktonic bacterial growth.  Representative dose-response curves for compound 1 and 

vancomycin tested in these assays are presented in Figure 6, with a tabulation of test compound 

EC50 results presented in Table 4.  The high correlation of these results was not entirely 

surprising as compound 1 and vancomycin are bactericidal against S. aureus, and thus dead 

bacteria would not be able to form biofilms.31  

Next, we evaluated whether or not compounds would be bactericidal to S. aureus that 

were within already established biofilms.  In this assay, we first grew S. aureus bacteria for 24 h 

in the absence of test compounds so that they could establish biofilms in the wells.  After 24 h, 

the cultures were removed, the wells were washed gently, and fresh media was added along with 

test compounds or vancomycin.  The cultures were incubated in the presence of test compounds 

for another 24 h, then the wells were gently washed again to remove compounds and any 

planktonic bacteria that had emerged.  Fresh media was then added and the cultures were 

incubated for another 24 h to allow any viable bacteria remaining in the biofilms to emerge and 

grow planktonically again.  While there were 5-15-fold shifts in EC50 values for the compound 1 

analogs killing planktonic vs. biofilm bacteria (Figure 6 and Table 4), these are still exciting 

results considering vancomycin was completely ineffective against biofilm bacteria (EC50 >100 

M), and especially since this class of GroEL/ES inhibitors has yet to be fully optimized.  Thus, 

this scaffold shows considerable promise to take forward for further development as an 

antibacterial candidate.

CONCLUSIONS  
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In the present study, we developed a series of analogs of the previously identified hit 

GroEL inhibitor, compound 1, and employed a molecular deconstruction strategy to 

systematically evaluate the contributions that the R1 to R5 substituents and substructures make 

towards selectively inhibiting the GroEL/ES chaperonin system and killing bacteria.  We found 

that the benzothiazole R1 group and hydroxyl R2 substituent were integral to inhibiting 

GroEL/ES in vitro, but that the hydroxyl was the key determinant for being able to potently 

inhibit S. aureus proliferation.  While trends are noted between IC50 values from the GroEL/ES-

dMDH refolding assay and the E. faecium and S. aureus proliferation assays, further experiments 

are warranted to conclusively determine whether or not inhibitors are on-target in bacteria.  

While some inhibitors were equipotent in the human HSP60/10-dMDH refolding assay, several 

exhibited only moderate to low cytotoxicity to liver and kidney cells.  Importantly, compounds 1 

and 11 did not encounter acute resistance through a 12-day serial passage in MRSA, generally 

maintaining efficacy <1 μM.  Furthermore, compound 1 analogs were effective at killing S. 

aureus bacteria within established biofilms, whereas vancomycin was ineffective.  These 

exemplary results support future med-chem derivatization efforts to optimize the in vitro and in 

vivo pharmacological properties of this class of GroEL/ES inhibitors for antibacterial 

development.

EXPERIMENTAL  

General Synthetic Methods. 

Unless otherwise stated, all chemicals were purchased from commercial suppliers and 

used without further purification.  Reaction progress was monitored by thin-layer 

chromatography on silica gel 60 F254 coated glass plates (EM Sciences).  Flash chromatography 
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was performed using a Biotage Isolera One flash chromatography system with elution through 

Biotage KP-Sil Zip or Snap silica gel columns for normal-phase separations (hexanes:EtOAc 

gradients) or Snap KP-C18-HS columns for reverse-phase separations (H2O:MeOH gradients).  

Reverse-phase high-performance liquid chromatography (RP-HPLC) was performed using a 

Waters 1525 binary pump, 2489 tunable UV/Vis detector (254 and 280 nm detection), and 2707 

autosampler.  For preparatory HPLC purification, samples were chromatographically separated 

using a Waters XSelect CSH C18 OBD prep column (part number 186005422, 130 Å pore size, 

5 m particle size, 19x150 mm), eluting with a H2O:CH3CN gradient solvent system.  Linear 

gradients were run from either 100:0, 80:20, or 60:40 A:B to 0:100 A:B (A = 95:5 H2O:CH3CN, 

0.05% TFA; B = 5:95 H2O:CH3CN, 0.05% TFA.  Products from normal-phase separations were 

concentrated directly, and reverse-phase separations were concentrated, diluted with H2O, 

frozen, and lyophilized.  For primary compound purity analyses (HPLC-1), samples were 

chromatographically separated using a Waters XSelect CSH C18 column (part number 

186005282, 130 Å pore size, 5 m particle size, 3.0x150 mm), eluting with the above 

H2O:CH3CN gradient solvent systems.  For secondary purity analyses (HPLC-2) of final test 

compounds, samples were chromatographically separated using a Waters XBridge C18 column 

(either part number 186003027, 130 Å pore size, 3.5 m particle size, 3.0x100 mm, or part 

number 186003132, 130 Å pore size, 5.0 m particle size, 3.0x100 mm), eluting with a 

H2O:MeOH gradient solvent system.  Linear gradients were run from either 100:0, 80:20, 60:40, 

or 20:80 A:B to 0:100 A:B (A = 95:5 H2O:MeOH, 0.05% TFA; B = 5:95 H2O:MeOH, 0.05% 

TFA).  Test compounds were found to be >95% pure from both RP-HPLC analyses.  Mass 

spectrometry data were collected using either an Agilent analytical LC-MS at the IU Chemical 

Genomics Core Facility (CGCF), or a Thermo-Finnigan LTQ LC-MS in-lab.  1H-NMR spectra 
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were recorded on a Bruker 300 MHz spectrometer at the CGCF.  Chemical shifts are reported in 

parts per million and calibrated to the d6-DMSO solvent peaks at 2.50 ppm.  Synthesis and 

characterization of intermediates 45-49 are presented below.  General amide coupling and 

methoxy deprotection steps are presented as follows using compounds 29 and 1 as representative 

examples.  Specific synthetic procedures and compound characterizations are presented in the 

Supporting Information for the remaining analogs.

45: 2-((2-Chloro-4-nitrophenyl)thio)benzo[d]thiazole.  2-Mercaptobenzothiazole (11.9 g, 71.1 

mmol), 3,4-dichloronitrobenzene (11.8 g, 61.5 mmol), and potassium carbonate (11.7 g, 84.7 

mmol) were stirred together in DMF (60 mL) at R.T. overnight, then at 80°C for 4 h.  The 

reaction was then diluted with water and the precipitate was filtered, rinsed with water, and dried 

to afford 45 as a yellow powder (19.5 g, 98% yield).  1H-NMR (300 MHz, d6-DMSO) δ 8.51 (d, 

J = 2.4 Hz, 1H), 8.23 (dd, J = 8.7, 2.5 Hz, 1H), 8.10 (d, J = 7.8 Hz, 1H), 8.07-8.13 (m, 1H), 7.91 

(d, J = 8.7 Hz, 1H), 7.44-7.59 (m, 2H); MS (ESI) C13H8ClN2O2S2 [MH]+ m/z expected = 323.0, 

observed = 323.1; HPLC-1 = 98%.

46: 4-(Benzo[d]thiazol-2-ylthio)-3-chloroaniline.  Tin powder (5.64 g, 47.5 mmol) was added 

slowly to a stirring mixture of 45 in a 1:10 mixture of HCl:AcOH (15 mL).  The reaction was 

allowed to stir at R.T. for 2 days, then diluted with EtOAc and H2O, neutralized with NaHCO3, 

and filtered. The filtrate was extracted with EtOAc and the organics dried over Na2SO4, filtered, 

and concentrated.  The crude product was then chromatographed over silica (hexanes:EtOAc 

gradient) and concentrated.  The residue was diluted in a 4:1 mixture of hexanes:DCM and the 

precipitate was filtered and dried to afford 46 as a yellow powder (3.73 g, 81% yield). 1H-NMR 
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(300 MHz, d6-DMSO) δ 7.87-7.96 (m, 1H), 7.80 (d, J = 8.1 Hz, 1H), 7.53 (d, J = 8.5 Hz, 1H), 

7.43 (td, J = 7.7, 1.3 Hz, 1H), 7.26-7.34 (m, 1H), 6.87 (d, J = 2.4 Hz, 1H), 6.64 (dd, J = 8.5, 2.4 

Hz, 1H), 6.18 (s, 2H); MS (ESI) C13H10ClN2S2 [MH]+ m/z expected = 293.0, observed = 293.0; 

HPLC-1 = 98%.

47: 4-(Benzo[d]thiazol-2-ylthio)aniline.  2-Chlorobenzothiazole (2.00 g, 11.8 mmol), 4-

aminothiophenol (1.70 g, 13.6 mmol), and potassium carbonate (3.24 g, 23.4 mmol) were stirred 

together in EtOH (15 mL) for 18 h.  The reaction was then diluted with water and the precipitate 

was filtered, rinsed with water, and collected.  Flash chromatographic purification 

(hexanes:EtOAc gradient) afforded 47 as an off-white solid (2.71 g, 89% yield).  1H-NMR (300 

MHz, d6-DMSO) δ 7.85-7.91 (m, 1H), 7.78 (d, J = 7.7 Hz, 1H), 7.37-7.45 (m, 3H), 7.25-7.34 (m, 

1H), 6.66-6.73 (m, 2H), 5.84 (s, 1H); MS (ESI) C13H11N2S2 [MH]+ m/z expected = 259.0, 

observed = 259.0; HPLC-1 = >99%.

48: 3,5-Dibromo-2-methoxybenzoic acid.  Iodomethane (6.30 mL, 101 mmol), 3,5-

dibromosalicylic acid (10.0 g, 33.7 mmol), and K2CO3 (14.0 g, 101 mmol) were stirred at R.T. 

overnight, then at 80°C for 4 h.  The reaction was diluted into water and extracted into DCM.  

The organics were dried over Na2SO4, filtered, and concentrated.  The intermediate ester was 

then stirred overnight with LiOH•H2O (5.70 g, 136 mmol) in a 3:1:1 mixture of 

THF:MeOH:H2O (35 mL).  The reaction was diluted with water and acidified with HCl.  The 

precipitate was filtered, washed with water, and dried to afford 48 as a white solid (9.85 g, 94% 

yield).  1H-NMR (300 MHz, d6-DMSO) δ 13.56 (br s, 1H), 8.09 (d, J = 2.5 Hz, 1H), 7.83 (d, J = 
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2.5 Hz, 1H), 3.81 (s, 3H); MS (ESI) C8H5Br2O3 [M-H]- m/z expected = 308.9, observed = 309.1; 

HPLC-1 = >99%.

49: 5-Bromo-2-methoxybenzoic acid.  5-Bromosalicylic acid (10.0 g, 46.1 mmol), iodomethane 

(8.60 mL, 138 mmol), and K2CO3 (19.0 g, 137 mmol) were stirred at R.T. overnight, then at 

80°C for 4 h.  The reaction was diluted into water and the precipitate was filtered, rinsed with 

water, and dried.  The intermediate ester was then stirred overnight with LiOH•H2O (7.70 g, 184 

mmol) in a 3:1:1 mixture of THF:MeOH:H2O (45 mL).  The reaction was diluted with water and 

acidified with HCl.  The precipitate was filtered, washed with water, and dried to afford 49 as a 

white solid (8.70 g, 82% yield).  1H-NMR (300 MHz, d6-DMSO) δ 12.98 (br s, 1H), 7.72 (d, J = 

2.6 Hz, 1H), 7.66 (dd, J = 8.8, 2.6 Hz, 1H), 7.10 (d, J = 8.9 Hz, 1H), 3.81 (s, 3H); MS (ESI) 

C8H6BrO3 [M-H]- m/z expected = 229.0, observed = 229.0; HPLC-1 = 98%.

General procedure for the amide coupling step using analog 29 as a representative 

example: N-(4-(Benzo[d]thiazol-2-ylthio)-3-chlorophenyl)-3,5-dibromo-2-

methoxybenzamide.  Compound 48 (225 mg, 0.726 mmol) was stirred in SOCl2 (2 mL) at 60°C 

for 1 h, then was concentrated.  Anhydrous DCM (5 mL), compound 46 (148 mg, 0.505 mmol), 

and pyridine (62.0 L, 0.760 mmol) were added and the reaction was stirred at R.T. for 18 h 

(under Ar).  Flash chromatographic purification (hexanes:EtOAc gradient) afforded 29 as a 

yellow solid (58.6 mg, 20% yield).  1H-NMR (300 MHz, d6-DMSO) δ 11.00 (s, 1H), 8.21 (d, J = 

2.1 Hz, 1H), 8.10 (d, J = 2.3 Hz, 1H), 7.97 (t, J = 8.3 Hz, 2H), 7.82-7.87 (m, 2H), 7.78 (dd, J = 

8.6, 2.2 Hz, 1H), 7.47 (td, J = 7.7, 1.3 Hz, 1H), 7.32-7.38 (m, 1H), 3.84 (s, 3H); MS (ESI) 
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C21H12Br2ClN2O2S2 [M-H]- m/z expected = 580.8, observed = 580.7; HPLC-1 = >99%; HPLC-2 

= >99%.

General procedure for the methoxy deprotection step to give hydroxylated compounds 

using analog 1 as a representative example: N-(4-(Benzo[d]thiazol-2-ylthio)-3-

chlorophenyl)-3,5-dibromo-2-hydroxybenzamide.  To a stirring mixture of 29 (51.0 mg, 

0.0872 mmol) in anhydrous DCM (5 mL) was added BBr3 (0.26 mL of 1 M in DCM, 0.26 

mmol).  The reaction was allowed to stir at R.T. (under Ar) for 18 h and then quenched with 

MeOH.  Flash chromatographic purification (hexanes:EtOAc gradient) afforded 1 as an off-white 

solid (34.4 mg, 69% yield).  1H-NMR (300 MHz, d6-DMSO) δ 11.14 (br s, 1H), 8.19 (dd, J = 

6.2, 2.2 Hz, 2H), 7.94-8.05 (m, 3H), 7.82-7.89 (m, 2H), 7.47 (td, J = 7.7, 1.3 Hz, 1H), 7.33-7.40 

(m, 1H); MS (ESI) C20H10Br2ClN2O2S2 [M-H]- m/z expected = 566.8, observed = 566.6; HPLC-1 

= 99%; HPLC-2 = 98%.

Protein Expression and purification.  

E. coli GroEL and GroES, and human HSP60 and HSP10, were expressed and purified as 

previously reported.30, 31, 38, 40, 44  Detailed protocols for these protein purifications are presented 

in the Supporting Information.  

Control compounds for assays.

For all of the biochemical assays (GroEL/ES and HSP60/10-mediated dMDH and dRho 

refolding assays, and native MDH and Rho enzymatic activity counter-screens), DMSO was 

used as negative control, and a panel of our previously discovered and reported chaperonin 
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inhibitors were used as positive controls: e.g. compound 1 herein; compounds 9 and 18 from 

Johnson et. al 2014 and Abdeen et. al 201630, 31; suramin and compound 2h-p from Abdeen et. al 

201640; and compounds 20R, 20L, and 28R from Abdeen et. al 2018.38  For the bacterial 

proliferation assays, control compounds included the aforementioned panel of previously 

reported chaperonin inhibitors as well as vancomycin, daptomycin, ampicillin, and rifampicin.  

For the human cell viability assays,  control compounds include the aforementioned compounds 

as well as other protein homeostasis inhibitors, such as bortezomib (proteasome inhibitor); VER-

155008 (HSP70 inhibitor); and ganetespib and 17-DMAG (HSP90 inhibitors).

Evaluation of compounds in GroEL/ES and HSP60/10-mediated dMDH and dRho 

refolding assays.

All compounds were evaluated for inhibiting E. coli GroEL/ES and human HSP60/10-

mediated refolding of the denatured MDH and denatured Rho reporter enzymes as per previously 

reported procedures.30, 31, 38, 40  Detailed protocols for these assays are presented in the 

Supporting Information. 

Counter-screening compounds for inhibition of native MDH and Rho enzymatic activity.

All compounds were counter-screened for inhibiting the enzymatic activity of the native 

MDH and native Rho reporter enzymes as per previously reported procedures.30, 31, 38, 40  Detailed 

protocols for the assays are presented in the Supporting Information.

Cell information for compound evaluation.  

Page 21 of 49

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



22

The ESKAPE bacteria were purchased from the American Type Culture Collection 

(ATCC): E. faecium (Orla-Jensen) Schleifer and Kilpper-Balz strain NCTC 7171 (ATCC 

19434); S. aureus subsp. aureus Rosenbach strain Seattle 1945 (ATCC 25923); Multi-drug 

resistant S. aureus (MRSA) subsp. aureus Rosenbach strain HPV107 (ATCC BAA-44); K. 

pneumonia, subsp. pneumoniae (Schroeter) Trevisan strain NCTC 9633 (ATCC 13883); A. 

baumannii Bouvet and Grimont strain 2208 (ATCC 19606); P. aeruginosa (Schroeter) Migula 

strain NCTC 10332 (ATCC 10145); E. cloacae, subsp. cloacae (Jordan) Hormaeche and 

Edwards strain CDC 442-68 (ATCC 13047).  Human THLE-3 liver cells (ATCC CRL-11233) 

and HEK 293 kidney cells (ATCC CRL-1573) were used for the cell viability assays.

Evaluation of compounds for inhibition of bacterial cell proliferation.  

All compounds were evaluated for inhibiting the proliferation of each of the ESKAPE 

bacteria as per previously reported procedures.38  Detailed protocols for bacterial growth assays 

are presented in the Supporting Information.   

Evaluation of compound effects on HEK 293 and THLE-3 cell viability.  

All compounds were evaluated for cytotoxicities to THLE-3 liver and HEK 293 kidney 

cells using Alamar Blue-based viability assays as per previously reported procedures.31, 38, 40  

Detailed protocols for these assays are presented in the Supporting Information. 

Evaluation of MRSA resistance generation against lead inhibitors.  

To identify potential resistance toward compounds 1 and 11, a liquid culture, 12-day 

serial passage assay was employed as per previously reported procedures, and using the ATCC 
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BAA-44 MRSA strain.38, 43, 45  A detailed protocol for this assay is presented in the Supporting 

Information.

S. aureus Biofilm Prevention Assay. 

The biofilm prevention assay was carried out with S. aureus Rosenbach (ATCC 25923) 

using a quantitative crystal violet-based adherence assay on 96-well plates as described 

previously by Kwasny et al.46  S. aureus (ATCC 25923) bacteria were streaked onto a Tryptic 

Soy Broth (TSB) agar plate and grown overnight at 37°C.  A fresh aliquot of TSB media was 

inoculated with a single bacterial colony and the cultures were grown overnight at 37°C with 

shaking (250 rpm).  The overnight culture was then sub-cultured (1:5 dilution) into a fresh 

aliquot of TSB media supplemented to a final concentration of 0.5% glucose and grown at 37°C 

for 1 h with shaking, then diluted into fresh TSB media supplemented with 0.5% glucose to 

achieve a final OD600 reading of 0.01.  Aliquots of the diluted culture (100 µL) were dispensed to 

96 well polystyrene plates along with addition of 1 µL test compounds in DMSO.  The inhibitor 

concentration range during the assay was 100 µM to 46 nM (3-fold dilution series).  A second set 

of baseline control plates were prepared analogously, but without any bacteria added, to correct 

for possible compound absorbance and/or precipitation.  Plates were sealed with "Breathe Easy" 

oxygen permeable membranes (Diversified Biotech) and left to incubate at 37°C without shaking 

(stagnant assay) until the biofilm was formed.  After 24 h, the planktonic cultures were removed 

and the plates were washed gently 2-3 times with 200 μl of water.  Next, the plates were air dried 

and the adherent biofilms were stained with 150 μL of crystal violet solution (2.3% crystal violet 

in 20% Ethanol, Sigma Aldrich #HT90132) for 15 minutes at R.T.  The unbound crystal violet 

stain was removed, then plates were gently washed again with running water and air dried for 10 
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min.  Quantitative assessment of biofilm formation was obtained by adding 100 μL of developer 

solution (4:1:5 mixture of MeOH:AcOH:H2O) per well.  Well absorbance was then read at 595 

nm using a Molecular Devices SpectraMax Plus384 microplate reader.  EC50 values for the test 

compounds were obtained by plotting the A595 nm results in GraphPad Prism 6 and analyzing by 

non-linear regression using the log(inhibitor) vs. response (variable slope) equation.  Results 

presented represent the averages of EC50 values obtained from at least triplicate experiments.

S. aureus Biofilm Penetration and Bactericidal Activity Assay. 

The biofilm penetration and bactericidal activity assay was carried out with S. aureus 

Rosenbach (ATCC 25923) as described previously by Kwasny et al.46  S. aureus bacteria were 

streaked onto a Tryptic Soy Broth (TSB) agar plate and grown overnight at 37°C.  A fresh 

aliquot of TSB media was inoculated with a single bacterial colony and the cultures were grown 

overnight at 37°C with shaking (250 rpm).  The overnight culture was then sub-cultured (1:5 

dilution) into a fresh aliquot of TSB media supplemented with 0.5% glucose and grown at 37°C 

for 1 h with shaking, then diluted into fresh TSB media supplemented with 0.5% glucose to 

achieve a final OD600 reading of 0.01.  Aliquots of the diluted culture (100 µL) were dispensed to 

96 well polystyrene plates without any compounds added.  A second set of control plates were 

prepared analogously, but without any bacteria added.  Plates were sealed with "Breathe Easy" 

oxygen permeable membranes (Diversified Biotech) and left to incubate at 37°C without shaking 

(stagnant assay) until biofilm was formed.  After 24 h, the planktonic cultures (or media blanks 

in the control plates) were removed and the plates were washed gently 3 times with 200 μL of 

sterile phosphate buffered saline (PBS).  Then, 100 µL aliquots of fresh TSB media were 

dispensed to the plates along with addition of 1 µL of test compounds in DMSO.  The inhibitor 
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concentration range during the assay was 100 µM to 46 nM (3-fold dilution series).  The plates 

were sealed with "Breathe Easy” membranes and incubated at 37°C without shaking to allow 

compounds to penetrate and kill bacteria in the biofilms.  After 24 h, the cultures were removed 

and plates were washed again gently 3 times with 200 μL of sterile PBS.  The remaining bacteria 

in the biofilms were allowed to recover by adding 100 μL of fresh TSB media per well and 

incubating for 24 h at 37°C.  At the end of this final incubation, bacterial growth was monitored 

by measuring the OD600 nm using a Molecular Devices SpectraMax Plus384 microplate reader.  

EC50 values for the test compounds were obtained by plotting the OD600 nm results in GraphPad 

Prism 6 and analyzing by non-linear regression using the log(inhibitor) vs. response (variable 

slope) equation.  Results presented represent the averages of EC50 values obtained from at least 

triplicate experiments. 

Calculation of IC50 / EC50 / CC50 values and statistical considerations.

All IC50 / EC50 / CC50 results reported are averages of values determined from individual 

dose-response curves in assay replicates as follows: 1) Individual I/E/CC50 values from assay 

replicates were first log-transformed and the average log(I/E/CC50) values and standard 

deviations (SD) calculated; 2) Replicate log(I/E/CC50) values were evaluated for outliers using 

the ROUT method in GraphPad Prism 6 (Q of 10%); and 3) Average I/E/CC50 values were then 

back-calculated from the average log(I/E/CC50) values.  To compare log(I/E/CC50) values 

between different assays, two-tailed Spearman correlation analyses were performed using 

GraphPad Prism 6 (95% confidence level).  For compounds where log(I/E/CC50) values were 

greater than the maximum compound concentrations tested (i.e. >2.0, or  >100 M), results were 

represented as 0.1 log units higher than the maximum concentrations tested (i.e. 2.1, or 126 M), 
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so as not to overly bias comparisons because of the unavailability of definitive values for these 

inactive compounds.
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SUPPORTING INFORMATION 

Supporting Information associated with this article can be found in the online version, 

which includes tabulation of all log(IC50), log(EC50), and log(CC50) results with standard 

deviations; synthetic protocols and characterization data for test compounds (MS, 1H-NMR, and 

HPLC purity); experimental protocols for protein synthesis and purification, and biochemical, 

bacterial proliferation, and human cell viability assays; and SMILES strings of compound 

structures.
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a Reagents and conditions: a) X = Cl: pyridine, CH2Cl2; b) X = OH: SOCl2, 60°C, 1 h, then 

concentrate and add arylamine, pyridine, and CH2Cl2; c) X = OH: DCC, DMAP, CH2Cl2, 1 h, 

then add arylamine and pyridine; d) X = OH: EDC, HOBt•H2O, TEA, CH2Cl2; e) BBr3, DCM; f) 

K2CO3, EtOH; g) K2CO3, DMF, R.T.-80°C; h) Tin powder, 10% HCl/AcOH.  
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Table 1.  Compilation of IC50 results for compounds tested in the GroEL/ES-mediated dMDH 

and dRho refolding assays, and the native MDH and Rho reporter counter-screens.

 

Compound Native Rho Native MDH GroEL/ES-dRho GroEL/ES-dMDH
# / Name Reporter Reporter Refolding Refolding

Closantel >100 6.1 1.5 2.2
R1 R2 R3 R4 R5 Rafoxanide >100 25 2.2 4.3

Cl OH Br Br 1 >100 6.8 1.5 1.7
Cl OH Br H 2 >100 >63 3.8 9.5
Cl OH H Br 3 >100 >63 11 37
Cl OH H H 4 >100 >63 63 42
H OH Br Br 5 >100 8.4 1.3 2.7
H OH Br H 6 >100 >63 14 33
H OH H Br 7 >100 >63 30 38
H OH H H 8 >100 >63 87 40

H Cl OH Br Br 9 >100 27 47 24
H Cl OH Br H 10 >100 >63 >100 >100
H Cl OH H Br 11 >100 >63 >100 >100
H Cl OH H H 12 >100 >63 >100 >100
H H OH Br Br 13 >100 51 >100 61
H H OH Br H 14 >100 >63 >100 >100
H H OH H Br 15 >100 >63 >100 >100
H H OH H H 16 >100 >63 >100 >100

Cl H Br Br 17 >100 >63 >100 >100
Cl H Br (H) H (Br) 18 >100 >63 >100 >100
Cl H H H 19 >100 >63 >100 >100
H H Br Br 20 >100 >63 >100 >100
H H Br (H) H (Br) 21 >100 >63 >100 >100
H H H H 22 >100 >63 >100 >100

H Cl H Br Br 23 >100 >63 >100 >100
H Cl H Br (H) H (Br) 24 >100 >63 >100 >100
H Cl H H H 25 >100 >63 >100 >100
H H H Br Br 26 >100 >63 >100 >100
H H H Br (H) H (Br) 27 >100 >63 >100 >100
H H H H H 28 >100 >63 >100 >100

Cl OCH3 Br Br 29 >100 >63 >100 >100
Cl OCH3 Br H 30 >100 >63 >100 >100
Cl OCH3 H Br 31 >100 >63 >100 >100
Cl OCH3 H H 32 >100 >63 >100 >100
H OCH3 Br Br 33 >100 >63 >100 >100
H OCH3 Br H 34 >100 >63 >100 >100
H OCH3 H Br 35 >100 >63 >100 >100
H OCH3 H H 36 >100 >63 >100 >100

H Cl OCH3 Br Br 37 >100 >63 >100 >100
H Cl OCH3 Br H 38 >100 >63 >100 >100
H Cl OCH3 H Br 39 >100 >63 >100 >100
H Cl OCH3 H H 40 >100 >63 >100 >100
H H OCH3 Br Br 41 >100 >63 >100 >100
H H OCH3 Br H 42 >100 >63 >100 >100
H H OCH3 H Br 43 >100 >63 >100 >100
H H OCH3 H H 44 >100 >63 >100 >100

Vancomycin >100 >63 >100 >100
Daptomycin >100 >63 >100 >100
Ampicillin >100 >63 >100 >100
Rifampicin >100 >63 >100 >100

Compound Substituents & Substructures

Biochemical Assay IC50 (M)
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Table 2.  Compilation of EC50 results for compounds tested in the various bacterial proliferation 

assays.

Compound E. K. A. P. E.
# / Name faecium Sensitive Resistant pneumoniae baumannii aeruginosa cloacae

Closantel 1.2 0.47 0.47 >100 >100 >100 >100
R1 R2 R3 R4 R5 Rafoxanide 0.99 0.32 0.34 >100 31 >100 40

Cl OH Br Br 1 0.52 0.36 0.55 >100 66 >100 >100
Cl OH Br H 2 24 0.45 0.71 >100 2.9 >100 >100
Cl OH H Br 3 15 0.12 0.17 >100 >100 >100 >100
Cl OH H H 4 64 0.31 0.45 >100 >100 >100 >100
H OH Br Br 5 0.88 0.44 0.52 >100 >100 >100 >100
H OH Br H 6 11 0.76 1.1 >100 12 >100 >100
H OH H Br 7 19 0.12 0.14 >100 >100 >100 >100
H OH H H 8 67 0.20 0.41 >100 >100 >100 >100

H Cl OH Br Br 9 73 0.66 1.1 95 46 >100 78
H Cl OH Br H 10 >100 1.3 2.0 >100 >100 >100 >100
H Cl OH H Br 11 >100 0.46 0.53 >100 >100 >100 >100
H Cl OH H H 12 >100 3.1 4.2 >100 >100 >100 >100
H H OH Br Br 13 >100 1.2 2.0 >100 >100 >100 >100
H H OH Br H 14 >100 6.4 10 >100 >100 >100 >100
H H OH H Br 15 >100 2.8 4.1 78 >100 >100 >100
H H OH H H 16 >100 28 51 >100 >100 >100 >100

Cl H Br Br 17 >100 >100 >100 >100 >100 >100 >100
Cl H Br (H) H (Br) 18 >100 >100 >100 >100 >100 >100 >100
Cl H H H 19 >100 43 >100 >100 >100 >100 >100
H H Br Br 20 >100 >100 >100 >100 >100 >100 >100
H H Br (H) H (Br) 21 >100 >100 >100 >100 >100 >100 >100
H H H H 22 >100 >100 >100 >100 >100 >100 >100

H Cl H Br Br 23 >100 14 12 >100 >100 >100 >100
H Cl H Br (H) H (Br) 24 >100 47 68 >100 >100 >100 >100
H Cl H H H 25 >100 >100 >100 >100 >100 >100 >100
H H H Br Br 26 >100 >100 >100 >100 >100 >100 >100
H H H Br (H) H (Br) 27 >100 >100 >100 >100 >100 >100 >100
H H H H H 28 >100 >100 >100 >100 >100 >100 >100

Cl OCH3 Br Br 29 >100 >100 >100 >100 >100 >100 >100
Cl OCH3 Br H 30 >100 >100 >100 >100 >100 >100 >100
Cl OCH3 H Br 31 >100 >100 >100 >100 >100 >100 >100
Cl OCH3 H H 32 >100 >100 >100 >100 >100 >100 >100
H OCH3 Br Br 33 >100 >100 >100 >100 >100 >100 >100
H OCH3 Br H 34 >100 >100 >100 >100 >100 >100 >100
H OCH3 H Br 35 >100 >100 >100 >100 >100 >100 >100
H OCH3 H H 36 >100 >100 >100 >100 >100 >100 >100

H Cl OCH3 Br Br 37 >100 46 >100 >100 >100 >100 >100
H Cl OCH3 Br H 38 >100 >100 >100 >100 >100 >100 >100
H Cl OCH3 H Br 39 >100 >100 >100 >100 >100 >100 >100
H Cl OCH3 H H 40 >100 >100 >100 >100 >100 >100 >100
H H OCH3 Br Br 41 >100 >100 >100 >100 >100 >100 >100
H H OCH3 Br H 42 >100 >100 >100 >100 >100 >100 >100
H H OCH3 H Br 43 >100 >100 >100 >100 >100 >100 >100
H H OCH3 H H 44 >100 >100 >100 >100 >100 >100 >100

Vancomycin 0.60 0.67 0.52 >100 >100 >100 >100
Daptomycin 9.2 0.68 1.0 >100 >100 >100 >100
Ampicillin 6.9 0.19 >100 >100 >100 >100 >100
Rifampicin 0.13 <0.05 0.23 11 1.3 7.8 8.8

Compound Substituents & Substructures

Bacterial Proliferation EC50 (M)
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Table 3.  Compilation of IC50 and CC50 results for compounds tested in the human HSP60/10-

dMDH refolding assay and the liver (THLE-3) and kidney (HEK 293) cell viability assays.

Liver Kidney
(THLE-3) (HEK 293)

Closantel 2.5 52 75
R1 R2 R3 R4 R5 Rafoxanide 2.8 24 >100

Cl OH Br Br 1 4.2 14 76
Cl OH Br H 2 6.9 19 64
Cl OH H Br 3 >100 14 45
Cl OH H H 4 >100 34 64
H OH Br Br 5 4.7 20 66
H OH Br H 6 26 36 71
H OH H Br 7 >100 12 42
H OH H H 8 >100 33 74

H Cl OH Br Br 9 29 9.2 18
H Cl OH Br H 10 >100 16 32
H Cl OH H Br 11 >100 4.1 15
H Cl OH H H 12 >100 16 37
H H OH Br Br 13 63 25 34
H H OH Br H 14 >100 56 82
H H OH H Br 15 >100 16 35
H H OH H H 16 >100 68 >100

Cl H Br Br 17 >100 >100 >100
Cl H Br (H) H (Br) 18 >100 88 >100
Cl H H H 19 >100 82 90
H H Br Br 20 >100 >100 >100
H H Br (H) H (Br) 21 >100 82 74
H H H H 22 >100 >100 >100

H Cl H Br Br 23 >100 45 53
H Cl H Br (H) H (Br) 24 >100 50 51
H Cl H H H 25 >100 >100 >100
H H H Br Br 26 >100 >100 >100
H H H Br (H) H (Br) 27 >100 >100 >100
H H H H H 28 >100 >100 >100

Cl OCH3 Br Br 29 >100 >100 >100
Cl OCH3 Br H 30 >100 >100 >100
Cl OCH3 H Br 31 >100 >100 >100
Cl OCH3 H H 32 >100 >100 >100
H OCH3 Br Br 33 >100 >100 >100
H OCH3 Br H 34 >100 >100 >100
H OCH3 H Br 35 >100 >100 >100
H OCH3 H H 36 >100 >100 >100

H Cl OCH3 Br Br 37 >100 >100 >100
H Cl OCH3 Br H 38 >100 >100 >100
H Cl OCH3 H Br 39 >100 94 >100
H Cl OCH3 H H 40 >100 >100 >100
H H OCH3 Br Br 41 >100 >100 >100
H H OCH3 Br H 42 >100 >100 >100
H H OCH3 H Br 43 >100 >100 >100
H H OCH3 H H 44 >100 >100 >100

Vancomycin >100 >100 >100
Daptomycin >100 >100 >100
Ampicillin >100 >100 >100
Rifampicin >100 72 >100

Compound Substituents & Substructures

HSP60/10-dMDH 
Refolding 
IC50 (M)

Compound 
# / Name

Human Cell Viability CC50 (M)
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Table 4.  Compilation of EC50 values for inhibitors tested in the biofilm formation and 

penetration/bactericidal activity assays.

 

Compound Planktonic
R1 R2 R3 R4 R5 # / Name Growth

Cl OH Br Br 1 0.36 0.72 2.4
Cl OH Br H 2 0.45 1.0 5.6
H OH Br Br 5 0.44 0.54 2.3
H OH H H 8 0.20 0.91 2.0

H Cl OH H Br 11 0.46 0.44 6.9
Vancomycin 0.67 0.54 >100

Compound Substituents & Substructures Preventing Biofilm 
Formation

Killing Bacteria in 
Biofilms

S. aureus Proliferation & Biofilm Assay EC50 (M)

S

N

S

R1

R2

H
N

O

R5

R3
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Figure 1.  A.  Chemical structure of the initial GroEL/ES hit inhibitor, 1, which was previously 

reported to potently inhibit the proliferation of E. faecium (EC50 = 0.15 M) and S. aureus (EC50 

= 0.20 M).31  Analogs of inhibitor 1 have been synthesized and evaluated in this study, where 

the R1 through R5 substituents and substructures have been systematically removed to probe for 

the contributions that each make to inhibiting chaperonin system biochemical functions and 

bacterial and human cell viabilities.  B. Chemical structures of related compounds used as 

anthelmintics in veterinary medicine.
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Figure 2.  Correlation plots of IC50 values for compounds evaluated in the respective 

biochemical assays.  A. Compounds inhibit nearly equipotently in the GroEL/ES-dMDH and the 

GroEL/ES-dRho refolding assays, supporting on-target effects (Spearman correlation coefficient 

comparing log(IC50) values in each assay is 0.9663, p < 0.0001).  B. While some compounds 

inhibit in the native MDH enzymatic reporter counter screen, none inhibit native Rho enzymatic 

activity, further supporting on-target effects for inhibiting the chaperonin-mediated refolding 

cycle.  Results plotted in the grey zones represent IC50 values higher than the maximum 

concentrations listed.
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Figure 3. Correlation plots comparing IC50 values for compounds tested in the GroEL/ES-

dMDH refolding assay with EC50 values for inhibiting E. faecium (A) and MRSA (B) 

proliferation.  While a general trend is observed between inhibiting the GroEL/ES chaperonin 

system and E. faecium proliferation (Spearman correlation coefficient comparing log(I/EC50) 

values in each assay is 0.9628, p < 0.0001), supporting on-target effects in bacteria, inhibitors are 

more potent against MRSA (Spearman correlation coefficient comparing log(I/EC50) values in 

each assay is 0.8042, p < 0.0001), suggesting potential off-target effects and/or greater 

GroEL/ES sensitivity in S. aureus bacteria.  Results plotted in the grey zones represent IC50 and 

EC50 values higher than the maximum concentrations listed.
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Figure 4.  Correlation plots comparing human HSP60/10-dMDH and GroEL/ES-dMDH 

refolding assay IC50, human cell viability CC50, and MRSA proliferation EC50 results.  A. 

Compounds inhibit the HSP60/10 and GroEL/ES chaperonin systems nearly equipotently, 

suggesting binding sites may be highly conserved between the two (Spearman correlation 

coefficient comparing log(IC50) values in each assay is 0.8351, p < 0.0001).  B. Despite 

compounds inhibiting human HSP60/10 in vitro, many exhibit low to no cytotoxic effects against 

human liver (THLE-3) and kidney (HEK 293) in cell viability assays (Spearman correlation 

coefficient values are 0.4791 (p < 0.0008) and 0.3286 (p < 0.0258) when comparing HSP60/10-

dMDH refolding assay log(IC50) values with liver and kidney cell viability log(CC50) values, 

respectively).  C. Lead analogs inhibit MRSA proliferation with high selectivity compared to 

cytotoxicity to human liver (THLE-3) and kidney (HEK 293) cells.  Results plotted in the grey 

zones represent IC50, CC50, and EC50 values higher than the maximum concentrations listed.
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Figure 5.  Exploring adaptive tolerance by MRSA bacteria to analogs 1, 11, vancomycin, and a 

previously-reported GroEL/ES inhibitor, “28R” (structure shown and numbering as previously 

reported).38  Average EC50 values of compounds tested after each 24 h passage are plotted from 

triplicate analyses.  MRSA rapidly evolved resistance to 28R, but retained sensitivity to 1, 11, 

and vancomycin throughout 12 day experiment.  Data plotted in the gray zones represent EC50 

results beyond the assay detection limits (i.e., >100 µM).  
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Figure 6.  Representative dose-response plots for compound 1 (upper panel) and vancomycin 

(lower panel) evaluated in the S. aureus planktonic growth, biofilm formation, and biofilm 

penetration/bactericidal activity assays.  Compound 1 is effective in all three assays, while 

vancomycin is ineffective at killing S. aureus bacteria in established biofilms.  EC50 results for 1, 

vancomycin, and additional lead inhibitors tested in these assay are presented in Table 4. 
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