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Abstract

Platelets are small, anucleated cells that participate in primary hemostasis by forming a hemostatic 

plug at the site of a blood vessel’s breach, preventing blood loss. However, hemostatic events can 

lead to excessive thrombosis, resulting in life-threatening strokes, emboli, or infarction. 

Development of multi-scale models coupling processes at several scales and running predictive 

model simulations on powerful computer clusters can help interdisciplinary groups of researchers 

to suggest and test new patient-specific treatment strategies.
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Multiple Functions of Platelets in Blood Clot Development

First observed through simple microscopy in the nineteenth century, platelets and leukocytes 

interact with blood vessel walls [1, 2]. Since those first observations, an impressive body of 

information has accumulated to establish the centrality of platelets in vascular thrombosis. 

The main steps in thrombosis formation classically include the tethering, rolling/

translocation, and adhesion of leukocytes and platelets to the exposed matrix at the damaged 

blood vessel site. Arterial thrombosis remains the most common cause of myocardial 

infarction and stroke, resulting in significant morbidity and mortality. To prevent thrombosis, 

many patients are treated with antiplatelet agents [3]. By producing chemical messengers, 
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microparticles, and vascular changes, platelets also promote cancer and inflammation [4–6]. 

Therefore, there is a great need to understand more platelet–leukocyte–endothelial 

interactions (Fig. 5.1) and translate that into more effective, less toxic therapies.

A major challenge in quantitative understanding of hemostasis/thrombosis is to integrate 

various processes occurring during thrombus development. To predict how variations of 

multiple factors associated with platelet activity affect thrombus development is of great 

biomedical importance. However, there are significant challenges in developing such 

understandings. For instance, platelet–vessel wall receptor–ligand interactions occur at 

nanometer scale, whereas blood flow dynamics in the vicinity of a thrombus is a 

macroscopic event developing over the scale of hundreds of micrometers to millimeters. 

Coupling various processes is a complex, challenging task.

By reviewing main platelet functions, their roles in hemostasis/thrombosis, and 

computational approaches to simulate clotting events, this chapter establishes a rationale for 

a systems approach to platelet physiology. These include modeling of coagulation reactions, 

platelet activation, platelet dynamics, platelet–platelet interactions, and blood flow. The 

integrative modeling approaches are described to provide the basis for multi-scale 

computational models of thrombus development. First, biological background on platelet 

functioning is given, including platelet adherence and activation, intracellular and 

extracellular signaling, relation to tumor metastasis, and global approaches to study platelet–

vessel wall interactions. Then, several recent integrative modeling methods of thrombus 

development involving cellular signaling, platelet–platelet, platelet–flow, and platelet–wall 

interactions are highlighted. Finally, a concluding perspective is offered on the role of 

platelets in hemostasis/thrombosis and tumor progression as well as the role of system 

biology in testing new therapeutic targets.

Platelet Adherence and Activation

Platelets interact with their environment through specialized receptors, many of which are 

integrins [7]. One principle mediator is platelet P-selectin (CD62P), a cell adhesion 

molecule stored in platelet alpha granules that interacts with P-selectin ligand 1 (PSGL-1, or 

CD162, found on leukocytes and endothelial cells). Endothelial cells possess granules called 

Weibel–Palade bodies, which release von Willebrand Factor (vWF) and P-selectin when 

activated. Interaction between P-selectin and its ligand occurs during tethering and rolling on 

the endothelium [1]. Importantly, the platelet surface receptor for vWF is glycoprotein Ib 

(GPIb; CD42). Lack of cleavage of high molecular weight vWF multimers results in 

thrombotic thrombocytopenic purpura, a catastrophic disorder. On the other hand, defective 

GPIb expression or activity results in excessive bleeding, the Bernard–Soulier disorder. vWF 

binding to GPIb induces downstream cytoskeletal actin rearrangement via FilaminA. 

FilaminA which regulates intracellular signaling [8] is responsible for a solid anchorage of 

GPIb [9]. Filamin A mutations have recently been found as a cause for thrombocytopenia 

[10] and abnormal platelet function [11].

Another critical mediator for platelet interactions is integrin αIIbβ3 (CD41), a cell surface 

receptor for fibrinogen. This integrin is defective in individuals suffering from Glanzmann’s 
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thrombasthenia, a bleeding disorder. When fibrinogen binds to the integrin, a cascade of 

downstream events, which include cytoskeletal rearrangements via talin and other signaling 

involving rous sarcoma (SRC) and focal adhesion kinase (FAK)-tyrosine kinases [12], is set 

in motion. Equally important is the presence of collagen receptors at the surface of the 

platelet, the better known of which are GPVI and α2β1. GPVI in particular seems to have a 

prominent role during collagen exposure to platelet surface and subsequent activation [12]. 

Platelets also express the C-type lectin receptor (CLEC-2, which triggers a downstream 

signaling cascade similar to that of GPVI, including activation of the spleen tyrosine kinase 

(Syk)) [12].

G-protein-coupled receptors include the thrombin receptor, adenosine diphosphate (ADP) 

receptors (P2Y1, P2Y12 which is a target for several “antiplatelet” drugs in thrombotic 

disease treatment) [3, 13], and thromboxane A2 receptor. They are activated in response to 

soluble factors from the blood. Exposure of the subendothelial matrix provides additional 

potent activators of platelet activation and coagulation. Platelet receptors recognize matrix 

components, collagen (via α2β1, GPVI), and laminin (via α6β1). Targeting of the laminin 

receptor, like the integrin α6β1, has been shown to be a promising strategy in the treatment 

of arterial thrombosis [14]. Recently, platelets were found to express CXCR6, the receptor 

specific to chemokine CXCL16. CXCL16 present on atherosclerotic lesions was found to 

enhance platelet adhesion to the endothelium after high arterial shear stress and to injured 

vascular wall [15]. Other cell surface proteins on platelets, such as Eph kinases and 

EphrinB1 [16], semaphorins [17] or Gas6 receptors [18], may promote thrombus formation. 

Gap junction channels, such as connexin 37 [19], may also enhance thrombus formation.

The list of platelet cell surface receptors or adhesion molecules will likely continue to grow, 

adding to complexity of platelet interactions and function. For instance, by expressing 

CD40-L, Fc receptors to immunoglobulins, and toll-like receptors [5], platelets serve as 

effectors in the immune system. Platelet-derived microparticles containing pro-inflammatory 

cytokines such as IL-1β contribute to inflammation [6].

Intracellular Cell Signaling and Inter-platelet Signaling

Resulting from those diverse ligand–receptor stimuli (Fig. 5.2), downstream signaling events 

involve phospholipid metabolism, generation of cAMP and cGMP second messengers, and 

Ca2+ release from the dense tubular system. These pathways lead to cytoskeletal 

reorganization, calpain activation, and signal amplification and diversification due to protein 

and lipid kinases. Phosphatase activity increases too [20]. Many of these pathways intersect 

or interact with each other in a complex fashion. Besides outside–inside signaling, there is 

also inside–outside signaling, as in the case of αIIbβ3 integrin activation [12, 21].

Extraplatelet Signaling

Upon platelet stimulation, alpha or dense granule release occurs, leading to platelet 

activation amplification, since the released substances (fibrinogen, vWF,ADP, thromboxane 

A2, thrombospondin-1) will further activate platelets and contribute to hemostasis. One 

adaptive measure is to induce blood vessel constriction, which is achieved through 

Chen et al. Page 3

Adv Exp Med Biol. Author manuscript; available in PMC 2017 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



thromboxane A2. However, alpha granules release not only prothrombotic but also pro-

angiogenic (VEGF) and anti-angiogenic (endostatin, thrombospondin) factors [22–25]. 

Intensively studied are platelet microparticles and exosomes. Microparticles are shed from 

membranes and their size varies from 100 to 1000 nm [26], while exosomes are secreted and 

overall smaller (30–100 nm) [27]. Microparticles are shed from the platelet membrane and 

carry tissue factor activity, thus being procoagulant [12, 28]. Exosome secretion from 

platelets has also been described, but their role is less well known [29]. Inflammation 

contributes to thrombus formation through the interaction of platelets with leukocytes 

(neutrophils and monocytes) [30, 31]. Indeed, thrombosis could more generally be seen as 

an effector of innate immunity [32]. Moreover, neutrophils also contribute to thrombus 

formation, including via formation of neutrophil extracellular traps (NET) [33–37].

When a blood vessel is injured, the subendothelial matrix is exposed, and matrix 

components such as the collagens or laminins serve as potent activators of platelet 

activation. Furthermore, endothelial cells release prothrombotic factors such as vWF from 

their Weibel–Palade bodies. Interestingly, vWF release from the endothelial Weibel–Palade 

bodies is dependent on essential autophagy genes Atg5 or Atg7, and pharmacological 

inhibitors of autophagic flux lead to increased bleeding time [38]. On the other hand, the 

endothelium also releases substances that are inhibitory to platelet activation, by secreting 

nitric oxide (NO) and the downstream modulation of cGMP levels [39–43], or by secreting 

prostacyclin(PGI2) [44].

On a different scale, platelet contraction forces depend on microenvironment stiffness [45] 

and platelet adhesion and spreading depends on local microenvironment geometry [46]. 

Stresses developed by contracting platelets significantly alter thrombus internal structure and 

were recently shown to strongly deform embedded erythrocytes [47]. Vessels can be made 

susceptible to injury depending on vessel geometry, biophysical and rheological forces from 

the blood flow that will produce turbulence and shear. Models are being developed, where 

the role of vWF is still being found to be crucial [48]. Progression of an injured 

endothelium, resulting from a combination of flow shear, inflammatory state, and 

dyslipidemia, results in atherosclerosis and atheroma plaques, which by themselves lead to 

specific atheroma–platelet interactions [15, 44].

Platelets and Tumor Metastasis Through the Vessel Wall

Apart from their role in thrombosis and inflammation/immunity, platelets are also currently 

under intense scrutiny for their role in cancer metastasis dissemination. Indeed, a study has 

found that interactions between platelets and tumor cells induce an invasive mesenchymal-

like phenotype and enhance in vivo metastasis. This effect is mediated by platelet-derived 

TGFβ, which activates the Smad and NF-κB pathways in cancer cells [4]. Specific to vessel 

wall effects, tumor cell-activated platelets secreted ADP, which facilitates cancer cell 

penetration past blood vessels. The P2Y2 receptor on blood vessel cells is necessary for this 

effect [49].
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Global Approaches in Studying Platelet–Vessel Wall Interactions

To discover molecular mechanisms of platelet interactions with the vessel wall, researchers 

have been relying on narrowed and focused approaches (Fig. 5.3). One example is observing 

human disease and trying to pin down the molecular defect. Then one might want to search 

for partners of known actors. Subsequently, to confirm the relevance, one might pursue on 

knocking down or knocking out an element and observing the cell or organism for modified 

behaviors. More recently, researchers have been adding new global approaches in the field of 

biology, enriching knowledge through global and systemic approaches [50]. These new 

global approaches include:

1. Mutagenesis screening by N-ethyl-N-nitrosourea (ENU). For example, BcL-xL 

was discovered to regulate platelet half-life or platelet number [51].

2. Genome-wide association studies (GWAS). Human genomic variations are 

associated with cardiovascular outcomes, platelet size, or number, as reported by 

European study consortiums [52]. Jones et al. found that single nucleotide 

variants in platelet endothelial aggregation receptor 1 (PEAR1), guanine 

nucleotide exchange factors (GEFs) for Rho family GTPases (VAV3), and IP3 

receptor (ITPR1) were associated with modified platelet response to platelet 

agonists [53].

3. Transcriptomics. Rowley et al. recently reported a comprehensive transcriptome 

study of human and mouse platelets [54]. This approach led to the discovery of 

connexin 37 in platelet aggregation [19].

4. Proteomics. Comprehensive platelet proteomics have been performed [55] and 

can be further narrowed down to subfields as “secretome” or “phosphoproteome” 

[56]. These proteomic studies revealed that secretogranin III, cyclophilin A, and 

calumenin were secreted by platelets after thrombin stimulation and found in 

atherosclerotic plaques [57] and nitrous oxide-treatment abrogated platelet 

activation by thrombin and prevented thrombin-induced translocation of gelsolin, 

filamin, 14–3-3 ζ, phosphatidylinositol 3-kinase-gamma isoform, and growth 

factor receptor-bound protein 2 (Grb2) [58].

5. Network analysis. Network analysis tools are being developed and databases are 

being made available online. For example, cPlateletWeb (http://

plateletweb.bioapps.biozentrum.uni-wuerzburg.de) is an Internet-based platform 

organizing signaling network [59, 60]. A study based on PlateletWeb found a 

novel interaction between vasodilator-stimulated phosphoprotein and Abelson 

interactor 1 in human platelets [61]. Another database is Reactome (http://

www.reactome.org), where extensive data have been collected, analyzed, and 

grouped in different pathways [62].

6. Informatics for modeling and simulations. Bioinformatics can be used to develop 

models for simulating platelet function, thrombus formation associated with pro- 

or anticoagulant gradients, and different flow conditions [63–69]. Indeed, 

thrombus formation studies have mostly focused on separate components of 

thrombogenesis, which can be numerous and subgrouped into categories: 
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coagulation cascades of blood coagulation factors, platelet adhesion to the 

vascular wall, platelet aggregation among themselves, internal platelet activation 

phenomena, platelet substance release and amplification reaction, white blood 

cells’roles in thrombus formation, vessel wall product release, vessel wall injury 

and exposure of thrombogenic elements, atheroma genesis, and blood flow shear 

variation and impact.

Integrative Multi-scale Modeling Approaches

Integrating the relative role of each of the mentioned elements to model thrombus formation 

has been challenging. Various modeling approaches have been proposed, that integrate a 

certain number of processes or scales, and tested with the assistance of simulations 

implemented on large computer clusters (see [63, 65, 70, 83] for review). One target goal for 

future research would be to improve modeling ability to predict platelet/vessel wall behavior 

and thrombus formation by integrating simulations of the molecular signature 

characteristics, mechanical properties of agonist/antagonist, blood flow and viscoelastic 

properties of a blood vessel. Below we outline several existing modeling approaches that 

combine several scales.

Explicit incorporation of single platelet dynamics into a three-dimensional thrombus 

formation model has been described in Pivkin et al. [71] where each platelet was represented 

in a simplified way as a spherical object, while red blood cells were treated using continuum 

submodel describing their density. The model also included an ADP-induced platelet 

activation mechanism. Model simulations accurately reproduced the thrombus growth rate as 

a function of blood velocity obtained in experiments [72].

Fogelson and Guy developed a microscale platelet aggregation model in which individual 

platelets were modeled as fluid-filled closed membranes immersed in a viscous liquid [73]. 

This model allowed for simulations of individual platelet motion and their interactions with 

each other and with surrounding medium. In the model by Mody and King [74], the 

hydrodynamic effects of the oblate spheroidal shape of platelets and the proximity of a wall 

on cell–cell collisions were investigated. Collision time and contact area and collision 

frequency were compared between spherical shape vs. platelet-type oblate shape on one 

hand and presence or not of a proximal bounding wall. The approach used calculation of 

forces and torques acting on each particle in the fluid system (gravity, bond forces, and 

repulsion between two surfaces in close proximity). The study showed that the contact time 

between two platelets during collision close to the wall was greater than the contact time 

during a collision far from the wall. The wall proximity had a greater influence on platelet–

platelet collisions than on sphere–sphere collisions. The method also used Huang and 

Hellums’ mathematical model of the shear-induced platelet aggregation [75–77], where high 

shear resulted in increased platelet aggregation.

Leiderman and Fogelson [78] described a model of blood coagulation under flow that 

included coagulation biochemistry, chemical activation, and deposition of platelets, and a 

two-way interaction between fluid dynamics and growth of platelet mass. Expanding on a 

previously published Kuharsky and Fogelson model [79], this approach now described how 
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tissue factor threshold triggered production of thrombin and how the wall shear rate and 

near-wall increased platelet concentration affected thrombus growth. The porous nature of 

the thrombus, allowing for advective and diffusive transport within itself, was also accounted 

for in the extended model. Xu et al. [63, 80–83] proposed a multi-scale model-coupling 

submodels of coagulation reactions, platelet dynamics, and blood flow, where platelets were 

represented as extended objects with fluctuating boundaries based on the cellular Potts 

model [84].

The importance of quantifying transport of coagulation factors within thrombus 

microenvironment was emphasized in Ref. [69]. By combining in vitro experiments and 

continuum-modeling approach of thrombus hydrodynamics, authors showed that both 

diffusivity and advection of blood proteins through the porous thrombus structure affect 

platelet–thrombus interaction and play an essential role in blood clot growth dynamics. 

Following this work, Stalker et al. demonstrated, using mouse injury model, that regional 

platelet-packing density emerged in parallel with differences in intrathrombus molecular 

transport and predicted that these differences affect thrombus growth and stability [85].

Wu et al. [86] presented a three-dimensional multi-scale platelet–blood flow–vessel wall 

interaction model, which combined three biological scales crucial for the early platelet 

aggregation. The model included hybrid cell membrane submodel of platelet elasticity, 

stochastic receptor–ligand binding submodel of cell adhesion kinetics and Lattice 

Boltzmann submodel of blood flow. Adhesion kinetics involved specific receptor–ligand 

pairs, namely vWF-GpIb complexes. At subcellular level, to simulate vWF–GpIb and GpIb-

vWF–GpIbαbinding, individual molecules were represented by elastic springs. This was 

justified by the demonstration that the receptor–ligand binding is probabilistic in nature. 

Individual filaments of the cytoskeleton network of platelet membrane were modeled as 

coarse-grained harmonic potentials. At cellular level, a novel continuum description of the 

cell membrane was used. The subcellular and cellular components were integrated by 

distributing GpIbα receptors over verticies of the cytoskeleton network and by 

superimposing the lipid bilayer and the network. The model allowed investigation of how 

platelet stiffness, GPIb receptor expression, and platelet–platelet interaction affect platelet–

wall adhesion quantified in terms of platelet pause time. To reduce the computational time 

cost, the model was implemented on graphical processing units (GPUs) computer cluster. 

Predictive simulations revealed that platelet deformation, interactions between platelets in 

the vicinity of the vessel wall, as well as the number of functional GPIbα platelet receptors 

played significant roles in the platelet adhesion to the injury site (Fig. 5.4, from Ref. [86]).

Recently, a multi-scale model was presented in Flamm, Diamond et al. [64, 65, 87], which 

included four components: the fluid flow (using a lattice Boltzmann method), the transport 

of soluble substances (using convection–diffusion–reaction equations), motion and binding 

of platelets leading to their deposition (using a lattice kinetic Monte Carlo algorithm), and 

the activation state of each platelet (using a neural network for cellular signaling). A 

pairwise agonist scanning approach had been found to allow handling of large datasets of 

measured calcium mobilization to predict an individual’s platelet responses to pairwise 

combinations of ADP (which activates P2Y1/P2Y12 receptors), U46619 (which has 

properties similar to Thromboxane A2), and convulxin (which activates GPVI receptor to 
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collagen). A neural network for cellular signaling was used to predict patient-specific 

responses to drugs. The resulting simulations were compared with experimental results in a 

system using blood flowing on collagen in microfluidic devices at different shear rates. The 

simulations were used to predict the individual’s drug sensitivity to cyclooxygenase (COX) 

inhibitors and P2Y1 receptor antagonists in three different blood donors.

Perspective and Conclusions

Increasing and organizing our knowledge on platelet–vessel wall interactions and combining 

it with novel multi-scale computational models to test new biological hypothesis will help 

devise treatments for human disease where excessive thrombosis occurs, while attempting to 

minimize the risk of bleeding. Moreover, platelets and vessels are not only implicated in 

“pure” thrombotic states and inflammatory disease but also in other pathological processes 

such as cancer and metastases. Furthermore, how both platelets and blood vessels may 

contribute to tumor growth and tumor dissemination can be by itself a part of a systems 

approach to cancer biology. Relying only on in vivo studies is impractical and time 

consuming. Genetic knockout animal models have their own limits, as nonhuman animals’ 

biology differs from human biology in many aspects, and a complete functional knockout 

might not yield information on certain conditions, where a dosage effect or a mutated state 

might be the actual determinant pathogenesis. While hypothesis-based experiments are 

being performed, concomitantly developing and refining multi-scale models and running 

simulations on powerful computer clusters will enable biomedical community to accelerate 

testing of new therapeutic targets. Systems biology is thus becoming a novel empowering 

tool to devise new less toxic treatments more efficiently and economically.
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Fig. 5.1. 
Platelets and vessel walls interact in multiple ways. Platelets and vessel wall cells express 

adhesion molecules, surface receptors, and release substances that initiate or regulate 

cascading thrombosis events. Matrix components of the vessel wall, when blood flow is 

exposed through a damaged endothelium, also elicit clotting reactions from blood cells. 

Moreover, blood cells and endothelial cells also produce microparticles and microvesicles 

that carry procoagulant activity
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Fig. 5.2. 
Platelets express a diversity of cell surface receptors and chemical substances that interact 

with the vessel wall components during hemostasis. Downstream signaling events take place 

that involve phospholipid signalization, Ca2+ flux, calpain activation, cAMP- and cGMP-

level modulation, cytoskeletal players and their modulators and diverse kinases. Many of 

these pathways intersect or interact with each other in a complex manner
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Fig. 5.3. 
Systems approach to hemostasis control by platelet–blood vessel interaction. A highly 

informative approach is based on multi-scale analysis of human bleeding disorders at 

biochemical, molecular, genetic, and organismal levels
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Fig. 5.4. 
Simulated deformations of platelet structure during adhesion to the vessel wall for platelets 

stiffnesses of a 2.5 kPa and b 25 kPa. c The effect of platelet membrane stiffness on the 

platelet pause time. (Originally published in Ref [86] Open Access: http://

rsta.royalsocietypublishing.org/content/372/2021/20130380.long)

Chen et al. Page 16

Adv Exp Med Biol. Author manuscript; available in PMC 2017 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://rsta.royalsocietypublishing.org/content/372/2021/20130380.long
http://rsta.royalsocietypublishing.org/content/372/2021/20130380.long

	Abstract
	Multiple Functions of Platelets in Blood Clot Development
	Platelet Adherence and Activation
	Intracellular Cell Signaling and Inter-platelet Signaling
	Extraplatelet Signaling
	Platelets and Tumor Metastasis Through the Vessel Wall
	Global Approaches in Studying Platelet–Vessel Wall Interactions
	Integrative Multi-scale Modeling Approaches
	Perspective and Conclusions
	References
	Fig. 5.1
	Fig. 5.2
	Fig. 5.3
	Fig. 5.4

