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Abstract

We show, how the Riemann-Hilbert approach to the elastodynamic equations,
which have been suggested in our preceding papers, works in the half-plane case. We
pay a special attention to the emergence of the Rayleigh waves within the scheme.

1 Introduction

This paper is a complement to our previous work [11] where, following the general ideas of
Fokas’ method [4] -[8], we started to develop the Riemann-Hilbert scheme for solving the
elastodynamic equations in the wedge-type domains. In [11], we show that the problem
can be reduced to the solution of a certain matrix, 2× 2 Riemann-Hilbert problem with
a shift posed on a torus. A detail analysis of this problem is our ultimate goal which we
hope to be able to present in our further publications. The aim of this paper is much
more modest. We want to show how the basic ingredients of the elasticity theory, such
as the Rayleigh waves, are produced in the framework of Fokas’ method. To this end we
shall consider the simplest case, the problem in the half-plane. Of course, the problem
can be easily solved via the standard separation of variables. However, its analysis in
the framework of the Riemann-Hilbert method shows many of the features which are also
present in the more interesting and important case of the quarter plane.

The quarter plane case has already been outlined in [11]. In the next section we shall
remind the principal ingredients of the approach that has been developed there.

2 Lax Pair for the elastodynamic equation

The elastodynamic equation in an isotropic medium defined by the Lamé parameters λ, µ,
density ρ and frequency ω can be written as the following system of two scalar equations:

uxx +
h2

l2
uzz +

l2 − h2

l2
wxz + h2u = 0, (2.1)
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wzz +
h2

l2
wxx +

l2 − h2

l2
uxz + h2w = 0, (2.2)

where h2 = ρω2

λ+2µ
, l2 = ρω2

µ
. Note that

l > h (2.3)

The problem is two - dimensional in xz plane, and u and w are the x and z components
of displacement, respectively. For the half plane problem (z ≥ 0) on the surfaces z = 0
the stress free boundary conditions are :

Txz = µ (uz + wx) = −T (0)
xz , Tzz = λux + (λ+ 2µ)wz = −T (0)

zz , z = 0, (2.4)

where T
(0)
zz and T

(0)
xz denote the given stresses which could be interpreted for example as

the stresses of the incident Rayleigh wave. The solution should also satisfy Sommerfeld’s
radiation conditions [17] which we shall specify latter on (see equation (2.23) below).
In fact, to make the problem well-posed one also has to add the surface wave radiation
conditions. However, we will postpone doing this until Section 4. In that section we
will show how one arrives at these condition, together with the Rayleigh surface waves,
just following the logic of the method we are presenting in this paper. Indeed, as we
have already indicated in the introduction, the appearance of the Rayleigh waves within
Fokas’s method is one of the principal methodological goals of this paper.

In [11], following the methodology of [6], we showed that equations (2.1), (2.2) are the
compatibility conditions of the following two Lax pairs, written for the auxiliary scalar
functions, φ ≡ φ(z, x; k) and ψ ≡ ψ(z, x; k) (see [11] and [10] for details),

φz − ikφ =
1

h2
(
√
k2 − h2 − k)τ1 −

1

h2
(τ1x + iτ1z), (2.5)

φx +
√
k2 − h2φ =

i

h2
(k −

√
k2 − h2)τ1 −

i

h2
(τ1x + iτ1z),

and

ψz − ikφ =
1

l2
(
√
k2 − l2 − k)τ2 −

1

l2
(τ2x + iτ2z), (2.6)

ψx +
√
k2 − l2φ =

i

l2
(k −

√
k2 − l2)τ2 −

i

l2
(τ2x + iτ2z),

where τ1(z, x) and τ2(z, x) are the Lamé potentials given by the equations

τ1 =
1

2
(ux + wz), τ2 =

1

2
(wx − uz), (2.7)

and φ and ψ satisfy the following asymptotic conditions ,

φ, ψ = O

(
1

k

)
, k →∞+ (2.8)
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φ, ψ = O(1), k →∞−.

The last condition in conjunction with systems (2.5), (2.6) yields in fact the more specific
asymptotic representation of the solutions φ and ψ as k →∞−. Indeed we have (cf. [10]),
that

φ = − 2i

h2
τ1 +O

(
1

k

)
, ψ = −2i

l2
τ2 +O

(
1

k

)
k →∞−. (2.9)

In these formulae, k →∞± means that k →∞ and
√
k2 − h2,

√
k2 − l2 → ±k + ..

Introducing the new spectral parameter ζ as follows,

k =
h

2

(
ζ +

1

ζ

)
,
√
k2 − h2 =

h

2

(
ζ − 1

ζ

)
, (2.10)

so that,
ζ →∞ as k →∞+ and ζ → 0 as k →∞− ,

one can rewrite the first Lax pair (2.5) as

φz −
ih

2

(
ζ +

1

ζ

)
φ = Q1, (2.11)

φx +
h

2

(
ζ − 1

ζ

)
φ = Q̃1, (2.12)

where Q1, Q̃1 are the right-hand side parts of (2.5). In terms of ζ they are :

Q1 = − τ1

ζh
− 1

h2
(τ1x + iτ1z); Q̃1 =

iτ1

ζh
− i

h2
(τ1x + iτ1z). (2.13)

The normalization conditions (2.8) and (2.9) in terms of the new variable ζ read,

φ = O

(
1

ζ

)
, ζ →∞, (2.14)

φ = − 2i

h2
τ1 +O(ζ) ζ → 0. (2.15)

The new spectral parameter for the second Lax pair we shall denote ζ̃. The variable
ζ̃ is defined by the relations,

k =
l

2

(
ζ̃ +

1

ζ̃

)
,
√
k2 − l2 =

l

2

(
ζ̃ − 1

ζ̃

)
, (2.16)

so that,
ζ̃ →∞ as k →∞+ and ζ̃ → 0 as k →∞− .
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The second Lax pair reads as follows

ψz −
il

2

(
ζ̃ +

1

ζ̃

)
ψ = Q2, (2.17)

ψx +
l

2

(
ζ̃ − 1

ζ̃

)
ψ = Q̃2, (2.18)

where

Q2 = −τ2

ζ̃l
− 1

l2
(τ2x + iτ2z); Q̃2 =

iτ2

ζ̃l
− i

l2
(τ2x + iτ2z), (2.19)

and it is supplemented by the normalization conditions

φ = O

(
1

ζ̃

)
, ζ̃ →∞, (2.20)

φ = −2i

l2
τ2 +O(ζ̃) ζ̃ → 0. (2.21)

The potentials τ1 and τ2 can be taken as the basic objects instead of the original
displacements u and w. Indeed, as it follows from (2.1) and (2.2), the functions u and w
can be reconstructed via τ1 and τ2 with the help of the following equations

u = − 2

h2
τ1x +

2

l2
τ2z, and w = − 2

h2
τ1z −

2

l2
τ2x, (2.22)

respectively. Also, in terms of potentials τ1 and τ2, Sommerfeld’s radiation conditions can
be written as

lim
R→∞

R

(
∂τ1

∂R
− ihτ1

)
= 0, lim

R→∞
R

(
∂τ2

∂R
− ilτ2

)
= 0, R =

√
x2 + z2. (2.23)

The potentials τ1,2 satisfy the Helmholtz equations,

τ1xx + τ1zz + h2τ1 = 0, (2.24)

τ2xx + τ2zz + l2τ2 = 0. (2.25)

This fact follows again from the basic elastodynamic system (2.1) - (2.2). It is important
to notice that the reverse statement is also true. That is, if the displacements u and
w are determined by (2.22), than equations (2.24) and (2.25) for τ1 and τ2 imply the
elastodynamic equations (2.1) and (2.2) for u and w. Moreover, the inverse formulae
expressing τ1 and τ2 in terms of u and w are given by (2.7).

The linear systems (2.11)-(2.12) and (2.17)-(2.18) can be thought of as the Lax pairs
for the equations (2.24) and (2.25), respectively. This Lax pair representation of the
Helmholtz equation has already been known and used for the analysis of the boundary
value problem for the Helmholtz equation in [7] and [10]. The very important novelty of
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the situation we are dealing with in this paper is that the boundary conditions, which
relations (2.4) impose on the functions τ1 and τ2 are completely different from the ones
which appear in the pure Helmholtz problem. The most distinct feature of these conditions
is that they mix the two Lax pairs together, and this in turn complicates dramatically
the analysis of the global relation (the main ingredient of Fokas’ method [8]) in the case
of the quarter space. In the half space, however, the solution of the global relation can
be obtained in the closed form and by simple algebraic means.

3 Half space problem

The considerations of the previous section were general. We now apply the Lax pair
representation of the elastodynamic equation to the half plane problem. We will basically
repeat the constructions of the Section 3 of [11].

3.1 Integration of the Lax Pairs. The integral representation
for the potential functions.

Rewriting (2.11, 2.12) as

e
ih
2

(ζ+ 1
ζ

)z−h
2

(ζ− 1
ζ

)x(φe−
ih
2

(ζ+ 1
ζ

)z+h
2

(ζ− 1
ζ

)x)z = Q1, (3.26)

e
ih
2

(ζ+ 1
ζ

)z−h
2

(ζ− 1
ζ

)x(φe−
ih
2

(ζ+ 1
ζ

)z+h
2

(ζ− 1
ζ

)x)x = Q̃1, (3.27)

and then integrating, yields the following general formula for the solution of (2.11, 2.12):

φ(ζ, x, z) = e
ih
2

(ζ+ 1
ζ

)z−h
2

(ζ− 1
ζ

)x

∫ (x,z)

(x∗,z∗)

e−
ih
2

(ζ+ 1
ζ

)z′+h
2

(ζ− 1
ζ

)x′ [Q1dz
′ + Q̃1dx

′]. (3.28)

It is worth noticing, that the path independence of the line integral in the right hand side
is equivalent to the elastodynamic equation.

Choosing the contours of integration as shown in Figure 1, one obtains two distinct
solutions:

φ1(ζ, x, z) =

∫ x

−∞
e
h
2

(ζ− 1
ζ

)(x′−x)Q̃1(ζ, x′, z)dx′ (3.29)

φ2(ζ, x, z) =

∫ x

∞
e
h
2

(ζ− 1
ζ

)(x′−x)Q̃1(ζ, x′, z)dx′. (3.30)

The functions φ1, φ2 are analytic in the regions of the complex ζ plane which are shown
in Figure 2. The difference,

φ1 − φ2,

is the solution of the homogeneous version of system (2.11, 2.12). Therefore,

φ1 − φ2 = eih(ζ+ 1
ζ

)z/2−h(ζ− 1
ζ

)x/2ρ12, (3.31)
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z’

x’

(x,z)φ φ
1 2

Figure 1: Contours Li and the solutions φi(x, z), i = 1, 2 of the first scalar Lax pair

where the jump function ρ12(ζ), j, k = 1, 2 does not depend on x and z and, as a function
of ζ, is well defined on the boundaries of the regions in Figure 2, that is on the oriented
contour K also depicted in Figure 2.

A key point now is to look at relation (3.31) as at the Riemann-Hilbert problem of
finding the piecewise analytic function φ(ζ) whose boundary values on the contour K,
i.e. φ+ = φ1, φ− = φ2, satisfy the jump relation (3.31). Solving this Riemann-Hilbert
problem we obtain the following integral representation for the piece-wise analytic function
φζ)

φ(ζ) =
1

2πi

∫
K

e
ih
2

(s+1/s)z−h
2

(s−1/s)x

s− ζ
ρ12(s)ds. (3.32)

Taking into account (2.15), we derive from (3.32) the integral representation for τ1

τ1 ≡
1

2
(ux + wz) =

h2

4π

∫
K

e
ih
2

(ζ+1/ζ)z−h
2

(ζ−1/ζ)x

ζ
ρ12(ζ)dζ. (3.33)

Similar representation we obtain for the potential τ2 using the second Lax pair

τ2 ≡
1

2
(wx − uz) =

l2

4π

∫
K̃

e
il
2

(ζ̃+1/ζ̃)z− l
2

(ζ̃−1/ζ̃)x

ζ̃
ρ̃12(ζ̃)dζ̃. (3.34)

To complete the solution of the half space problem, we need to express the jump
function ρ12(ζ) and the similar function, ρ̃12(ζ̃) (coming from the second Lax pair), in

terms of the given boundary data, i.e. in terms of the stresses T
(0)
xz and T

(0)
zz . To this end,

we notice that equation (3.31) holds for all x and z and that ρ12(ζ) does not depend on x
and z; therefore, using this equation for x = 0 and z = 0 and remembering the definitions
(3.29), (3.30) of the solutions φ1,2, one obtains the following formula for the jump function
ρ12:

ρ12(ζ) =

∫ ∞
−∞

e
h
2

(ζ− 1
ζ

)x′Q̃1(ζ, x′, 0)dx′. (3.35)
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φ φφ φ
2 21 1

K

ζ

Figure 2: Regions of analyticity of functions φi, i = 1, 3 of the first scalar Lax pair

The integrand, Q̃1(ζ, 0, x′), involves the boundary values of the potential function τ1 and
its derivatives. However, not all of them can be determined by the boundary relations
(2.4). In order to determine the remaining data, we have to appeal to the central ingredient
of Fokas’ method, i.e. to derive the relevant global relation for the jump function ρ12(ζ).

Formula (3.35) can be rewritten in the form of the line integral of the conservative
vector field,

ρ12(ζ) =

∫
−∞<x′<∞, z′=0

e−
ih
2

(ζ+ 1
ζ

)z′+h
2

(ζ− 1
ζ

)x′ [Q1dz
′ + Q̃1dx

′].

Assuming that either ζ = −it, t > 1 or ζ = it, t < 1, the contour can be closed in the
upper plane z′ ≥ 0. Therefore, ρ12(ζ) is zero on these parts of the complex axis ζ,

ρ12(ζ) = 0, ζ = −it, t > 1, and ζ = it, 0 < t < 1, (3.36)

which constitutes the global relation for our problem. Furthermore, the circular part of
the contour has to be analyzed taking into account the radiation condition. Applying the
stationary phase estimate as R → ∞ (x = R cos θ, z = R sin θ, 0 ≤ θ ≤ π) to τ1 (3.33)
yields two stationary phase points

ζ1 = sin θ − i cos θ, ζ2 = −(sin θ − i cos θ). (3.37)

They belong respectively to Cr and Cl parts of K (see Fig3). These points provide the
following asymptotic estimates

ICr ∼
1

2πi

ρ(ζ1)

ζ1

eiRheiθ
√

2

Rh
e−iπ/4

√
π, (3.38)
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C C

I

II

K

l r

i

−i

Figure 3: Contour of integration K of the first scalar Lax pair; sections of the contour
where the jump function is zero are given by the dashed line.

ICl ∼
1

2πi

ρ(ζ2)

ζ2

e−iRheiθ
√

2

Rh
e−iπ/4

√
π. (3.39)

The second asymptotic solution (3.39) does not satisfy the radiation condition (2.23);
therefore, in addition to the global relation (3.36), we have that

ρ12(ζ) = 0, ζ ∈ Cl. (3.40)

Taking into account (3.36) and (3.40), one finally obtains that the jump functions
should be defined on the “non zero” parts of the contour K which are indicated in Figure
3 by solid lines.

3.2 Analysis of the global relation

In this section we use the global relation (3.36) and the radiation condition (3.40) to

determine the jump function ρ12(ζ) in terms of the known functions T
(0)
xz , T

(0)
zz .
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Let us rewrite (3.35) changing x′ to x and substituting Q̃1 from (2.13):

ρ12(ζ) =

∫ ∞
−∞

e
h
2 (ζ− 1

ζ )x
[(

i

hζ
τ1(x, 0)− i

h2
(τ1x(x, 0) + iτ1z(x, 0))

)]
dx. (3.41)

After integration of τ1x by parts one obtains

ρ12(ζ) =

∫ ∞
−∞

e
h
2 (ζ− 1

ζ )x
[
i

2h

(
ζ +

1

ζ

)
τ1(x, 0) +

1

h2
τ1z(x, 0)

]
dx. (3.42)

Then using conditions (2.4) at z = 0, equations (2.1), (2.2) and again integrating by parts,
one finally arrives at the formula,

ρ12(ζ) = −b(ζ)Φ1(ζ)− d(ζ)Φ2(ζ) + F1(ζ), (3.43)

where F1 is defined by the given boundary data,

F1 = − i

4h(λ+ 2µ)

(
ζ +

1

ζ

)∫ ∞
−∞

e
h
2 (ζ− 1

ζ )xT (0)
zz (x, 0)dx (3.44)

− 1

2l2µ

∫ ∞
−∞

e
h
2 (ζ− 1

ζ )xT (0)
xzx(x, 0)dx,

and Φ1, Φ2 are the following integrals of the unknown u and w:

Φ1(ζ) =

∫ ∞
−∞

e
h
2 (ζ− 1

ζ )xu(x, 0)dx, Φ2(ζ) =

∫ ∞
−∞

e
h
2 (ζ− 1

ζ )xw(x, 0)dx. (3.45)

The coefficient functions, b(ζ) and d(ζ), are given by the formulas:

b(ζ) =
ih2

4l2

(
ζ2 − 1

ζ2

)
, (3.46)

d(ζ) =
l2 − h2

2l2
+
h2

4l2

(
ζ2 +

1

ζ2

)
. (3.47)

In terms of these functions the global relation on the parts I and II of the imaginary
ζ - axis reads

b(ζ)Φ1(ζ) + d(ζ)Φ2(ζ) = F1(ζ) (3.48)

Changing ζ to −1
ζ

and using symmetries yields

−b(ζ)Φ1(ζ) + d(ζ)Φ2(ζ) = F1

(
−1

ζ

)
(3.49)

on the parts of the imaginary axis which are included into non zero ρ sections of K. Hence
the boundary conditions applied to the first Lax pair produces one equation to relate the
two unknown functions, i.e. Φ1 and Φ2, on these parts of the contour K.
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Equation (3.48) also holds on Cl where ρ12 = 0. Changing ζ to −1
ζ

and using symme-
tries yields

−b(ζ)Φ1(ζ) + d(ζ)Φ2(ζ) = F1

(
−1

ζ

)
, (3.50)

and hence we obtain an equation (actually the same as (3.49)) relating the two unknown
functions on the arc Cr as well.

Repeating computations for the second Lax pair on the ζ̃ complex plane one obtains
that the global relation has similar form as (3.48)

δ(ζ̃)Φ̃1(ζ̃) + β(ζ̃)Φ̃2(ζ̃) = F2(ζ̃), (3.51)

where

δ(ζ̃) = −1

4

(
ζ̃2 +

1

ζ̃2

)
, (3.52)

β(ζ̃) =
i

4

(
ζ̃2 − 1

ζ̃2

)
, (3.53)

Φ̃1(ζ̃) =

∫ ∞
−∞

e
l
2

(
ζ̃− 1

ζ̃

)
x
u(x, 0)dx, Φ̃2(ζ̃) =

∫ ∞
−∞

e
l
2

(
ζ̃− 1

ζ̃

)
x
w(x, 0)dx, (3.54)

F2(ζ̃) = − 1

2µl2

∫ ∞
∞

e
l
2

(
ζ̃− 1

ζ̃

)
x
T (0)
zzx(x, 0)dx (3.55)

+
i

4lµ

(
ζ̃ +

1

ζ̃

)∫ ∞
−∞

e
l
2

(
ζ̃− 1

ζ̃

)
x
T (0)
xz (x, 0)dx.

Therefore, using the symmetries in the same way as for the first Lax pair, we can obtain
another relation between the unknown functions on the non-zero parts of the contour K̃
of ζ̃ plane.

Summarizing our analysis of the global relation, we see that we have arrived at two
algebraic linear equations - equations (3.49) and (3.51), for four unknown functions - the
functions Φ1,2(ζ) and Φ̃1,2(ζ̃). However, one can notice - see the definitions (3.45) and
(3.54), that these four functions are actually depend only on two functional parameters -
u(x, 0) and w(x, 0). This means, that just by counting the truly independent functions we
have as many equations as we have unknowns. In order to make use of this observation,
we are suggesting to transfer both Lax pairs onto the same complex plane.

3.3 Joint uniformization

Let us map the complex planes ζ and ζ̃ to the complex plane ξ by the following formulae

ζ =
ξ

a
, l

(
ζ̃ − 1

ζ̃

)
= h

(
ζ − 1

ζ

)
, (3.56)
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where

a =
l

h
+

√
l2

h2
− 1. (3.57)

Note that a > 1. Transformation of the contour K from ζ plane to ξ is given in Figure 4.

2

K

i

−i

ζ

A

B

A

B

ia

ia

i

−i

−ia

−ia

ξ
2

Figure 4: Transformation of contour K from ζ to ξ complex plane.

The explicit formula for the map ζ̃(ξ) is given by the equation,

ζ̃ =
h

2al

(
ξ − a2

ξ
+

1

ξ

√
(ξ2 + 1)(ξ2 + a4)

)
, (3.58)

so that

ζ̃ +
1

ζ̃
=

h

alξ

√
(ξ2 + 1)(ξ2 + a4).

Transformation of the contour K̃ is presented in Figure 5.
The branch points of (3.58) ξ = ia2 and ξ = i, presented in Figure 5 as At, Ab, have

the same image ζ̃ = h
2al

(
ξ − a2

ξ

)
= i. It is given as Ã point on the ζ̃ plane. On the other

hand, the intersection of the circle of radius a with the imaginary ξ axis (point A which
is also marked as A1 and A2 to indicate left and right sides of the cut) has two different
images Ã1 and Ã2 on ζ̃ plane. At these points

ζ̃ =
a2 − 1 + 2ia

a2 + 1
and ζ̃ =

1− a2 + 2ia

a2 + 1
,

and they belong to the unit circle: |ζ̃| = 1. Symmetric low part of the contour has B
notations.

Since,

ζ − 1

ζ
=

1

a

(
ξ − a2

ξ

)
, ζ̃ − 1

ζ̃
=
h

al

(
ξ − a2

ξ

)
, (3.59)
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B

i

−i

ζ ia

ξ
2

K
∼

∼

−i

−ia
2

ia

i

A

B

A
1

A
2

B B
1 2

A

B

2

t

t

b

bA

B

∼

∼

∼ ∼

∼ ∼

A
1

AA

B
1

−ia

B
2

Figure 5: Transformation of contour K̃ from ζ̃ to ξ complex plane.

the both Φ1(ζ) and Φ̃1(ζ̃) become Φ1(ξ) while the both Φ2(ζ) and Φ̃2(ζ̃) become Φ2(ξ),
where

Φ1(ξ) =

∫ ∞
−∞

e
h
2a

(ξ−a
2

ξ
)xu(0, x)dx, Φ2(ξ) =

∫ ∞
−∞

e
h
2a

(ξ−a
2

ξ
)xw(0, x)dx. (3.60)

Taking into account these transformations and changing b(ζ), d(ζ), F1(ζ), β(ζ̃), δ(ζ̃), F2(ζ̃)
to b(ξ), d(ξ), F1(ξ), β(ξ), δ(ξ), F2(ξ) yields the system of two algebraic equations for the
two unknown functions Φ1(ξ) and Φ2)ξ) on all parts of the contour K(ξ). Indeed, we have
that

−b(ξ)Φ1(ξ) + d(ξ)Φ2(ξ) = F1

(
−a

2

ξ

)
, (3.61)

δ(ξ)Φ1(ξ)− β(ξ)Φ2(ξ) = F2

(
−a

2

ξ

)
,

if ξ ∈ [ia2, i∞) ∪ [ia, ia2]+ ∪ [−ia,−i]+ ∪ [−i, i0) ∪ Cr, and

b(ξ)Φ1(ξ) + d(ξ)Φ2(ξ) = F1(ξ), (3.62)

δ(ξ)Φ1(ξ)− β(ξ)Φ2(ξ) = F2

(
−a

2

ξ

)
,

if ξ ∈ [i, ia]+ ∪ [−ia,−ia2]+. Here [. . . ]+ means the right side of the cut [. . . ], and the
functions b(ξ), d(ξ), β(ξ), δ(ξ) are given by the formulae.

b(ξ) =
ih2

4l2

(
ξ2

a2
− a2

ξ2

)
, d(ξ) =

l2 − h2

2l2
+
h2

4l2

(
ξ2

a2
+
a2

ξ2

)
, (3.63)

δ(ξ) = − h
2

4l2

[(
ξ2

a2
+
a2

ξ2

)
+

1

2

(
a− 1

a

)2
]
, β(ξ) =

ih2

4a2l2

(
ξ

a
− a

ξ

)
Ω(ξ), (3.64)
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where
Ω(ξ) =

a

ξ

√
(ξ2 + 1)(ξ2 + a4). (3.65)

It is worth noticing that

Ω(−ξ) = −Ω(ξ), Ω

(
a2

ξ

)
= Ω(ξ). (3.66)

4 Analysis of the solution. Rayleigh waves

Summarizing our derivations, we see that on all parts of the ξ - image of the contour
K, the functions Φ1(ξ) and Φ2(ξ) can be defined by solving a simple algebraic system.
Changing variable ξ back to the variables ζ and ζ̃, we obtain the jump functions ρ12(ζ)
and ρ̃12(ζ̃), respectively. This would complete the solution of the half space problem. Let
us look at the solutions of the algebraic systems more carefully. Note that we need to
know functions Φ1(ξ) and Φ2(ξ) on the image of the contours K and K̃ on the ξ - plane
only, i.e. for ξ ∈ [ia2, i∞)∪ [ia, ia2]+∪ [−ia,−i]+∪ [−i, i0)∪Cr Hence, we need to consider
the system (3.61) only. It follows then that,

Φ1(ξ) =
β(ξ)F1

(
−a2

ξ

)
+ d(ξ)F2

(
−a2

ξ

)
D(ξ)

and Φ2(ξ) =
δ(ξ)F1

(
−a2

ξ

)
+ b(ξ)F2

(
−a2

ξ

)
D(ξ)

,

(4.67)
where

D(ξ) = d(ξ)δ(ξ)− β(ξ)b(ξ) (4.68)

is the determinant of system (3.61). Our task now is to analyze its zeros.
By a straightforward calculation, we have that

D(ξ) = −
(
a+

1

a

)−4

D0(ξ),

D0(ξ) =
1

4

[(
a− 1

a

)2

+ 2

(
ξ2

a2
+
a2

ξ2

)]2

− 1

a2

(
ξ2

a2
− a2

ξ2

)(
1− a2

ξ2

)√
(ξ2 + 1)(ξ2 + a4).

(4.69)
Going back to the original spectral parameter k,

k =
h

2

(
ξ

a
+
a

ξ

)
, (4.70)

and recalling the definition of the parameter a, one can check that

h

2

(
ξ

a
− a

ξ

)
=
√
k2 − h2,

1

ξ

√
(ξ2 + 1)(ξ2 + a4) =

2a

h

√
k2 + l2 − h2.

13



From this, it is easy to see that

h4

16
D0(ξ) =

(
k2 − h2 +

l2

2

)2

− k(k2 − h2)
√
k2 + l2 − h2. (4.71)

Introducing the physical quantities (see [3] ),

c2 =
ω2

h2 − k2
, α2 =

ω2

h2
, β2 =

ω2

l2
, (4.72)

we arrive at the final formula for the determinant D0,

c4h4

4ω4
D0(ξ) =

(
2− c2

β2

)2

− 4

√
1− c2

α2

√
1− c2

β2
, (4.73)

which means that

D(ξ) = 0 ⇐⇒
(

2− c2

β2

)2

= 4

√
1− c2

α2

√
1− c2

β2
. (4.74)

Equation in the right hand side of this equivalence relation is the classical equation for
the velocity c of the Rayleigh wave - see e.g., [3].

Hence our main conclusion: The zeros of the determinant D(ξ) of the linear system
(3.61) representing the global relation of the half-plane problem coincide with the images
ξc of the Rayleigh velocity c under the map chain c→ k → ξ .

Combining (4.70, 4.72) we obtain the value of ξc in terms of the Rayleigh wave velocity
c as

ξc = ia

(
α

c
+

√
α2

c2
− 1

)
, (4.75)

or, taking into account the expression of the transformation parameter a, in terms of α
and β as

ξc = i

(
α

β
+

√
α2

β2
− 1

)(
α

c
+

√
α2

c2
− 1

)
. (4.76)

Due to symmetries (3.66), there are two zeros: ξc and a2

ξc
.

Since 0 < c < β < α, the roots lie on the intervals (ia2, i∞) and (−i, i0) of ξ plane.
This means, that the densities ρ12(ζ) and ρ̃12(ζ̃) do have poles on the contours K and K̃,
respectively. This means we have to deform the contours K and K̃ near the poles and go
around them. This is where the both - the Rayleigh surface waves and the surface wave
radiation condition, will show up in our approach. We are going now to explain this in
details.

14



Let us consider, for example, the part, Iζc , of the τ1 - integral (3.33) that contains the
top pole, ζc = ξc/a, i.e.,

Iζc =
h2

4π

∫ i∞

i

e
ih
2

(ζ+1/ζ)z−h
2

(ζ−1/ζ)x

ζ
ρ12(ζ)dζ.

As is written, this integral does not exists, of course. It needs to be regularized. To this
end, let us denote ρc the residue of ρ12(ζ) at the pole ζ = ζc and rewrite Iζc as

Iζc = I
(1)
ζc

+ I
(2)
ζc
, (4.77)

where

I
(1)
ζ0

=
h2

4π

∫ i∞

i

e
ih
2

(ζ+1/ζ)z−h
2

(ζ−1/ζ)x

ζ
(ρ12(ζ)− ρc

ζ − ζc
)dζ, (4.78)

and

I
(2)
ζc

=
h2

4π

∫ i∞

i

e
ih
2

(ζ+1/ζ)z−h
2

(ζ−1/ζ)x

ζ

ρc
ζ − ζc

dζ. (4.79)

.

ζ

K

(a) (b)

−i −i

ia

i

ia

i

.

Figure 6: Top pole on the imaginary axes

We note that the integral I
(1)
ζc

has no singularities. Moreover, it can be easily estimated

as R =
√
x2 + z2 →∞. Indeed, since the corresponding stationary point lies on the circle

part of the contour K we immediately conclude that

I
(1)
ζc

= O

(
1

R

)
, R→∞.

Hence this part does not contribute either to radiation part or to the surface wave part
of the potential τ1(x, z). Let us then concentrate on the indeed singular integral I

(2)
ζc

.
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A standard way to regularize the integral I
(2)
ζc

would be to deform the contour around
the pole. Let us assume that x > 0 and suppose that we go around the pole from the right
(see Figure 6). Because of analyticity and exponential decay of the integrand in the first
quadrant of the complex plane outside of the unit circle, this part K may deformed to,
for example, the ray arg ζ = π/4 and integration by part produces the O

(
1
R

)
asymptotic

behavior. Suppose now that we go around the poll from the left. We still have to close
the contour in the first quadrant because of the analyticity and decay. This time, the
leading term will be given by the residue of the integrant, i.e., we shall have,

I
(2)
ζc

=
ih2ρc
2ξc

e
ih
2a

(ξc+a2/ξc)z− h
2a

(ξc−a2/ξc)x +O

(
1

R

)
, R→∞. (4.80)

In the case x < 0, the integrand is exponentially decay in the second quadrant and hence
the situation is reverse: if the contour goes around the pole from left we have the O

(
1
R

)
asymptotic behavior of the integral I

(2)
ζc

while going around the pole from the right would
produce the residue term (4.80) with the opposite sign. In other words, for the part Iζc
of the τ1 - integral (3.33) we have that

Iζc = sign (x)
ih2ρc
2ξc

e
ih
2a

(ξc+a2/ξc)z− h
2a

(ξc−a2/ξc)x +O

(
1

R

)
, R→∞, (4.81)

if x > 0 and the contour goes around the pole from the left or if x < 0 and the contour
goes around the pole from the right. At the same time,

Iζc = O

(
1

R

)
, R→∞, (4.82)

if x > 0 and the contour goes around the pole from the right or if x < 0 and the contour
goes around the pole from the left.

When we do the similar analysis (see Figure 7) with the part Iζ−1
c

of the τ1 - integral
(3.33) containing the bottom pole ζ−1

c , i.e. with the integral

Iζ−1
c

=
h2

4π

∫ −i0
−i

e
ih
2

(ζ+1/ζ)z−h
2

(ζ−1/ζ)x

ζ
ρ12(ζ)dζ,

we would arrive at the estimates,

Iζ−1
c

= sign (x)
ih2ρc
2ξc

e
ih
2a

(ξc+a2/ξc)z+
h
2a

(ξc−a2/ξc)x +O

(
1

R

)
, R→∞, (4.83)

if x < 0 and the contour goes around the pole from the left or if x > 0 and the contour
goes around the pole from the right, and

Iζ−1
c

= O

(
1

R

)
, R→∞, (4.84)
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.

ζ

K

(a) (b)

i i

−i −i

−i/a −i/a

.

Figure 7: Bottom pole on the imaginary axes

if x < 0 and the contour goes around the pole from the right or if x > 0 and the contour
goes around the pole from the left.

Observe, that
h

2a

(
ξc −

a2

ξc

)
= i

ω

c
≡ ikc,

while

i
h

2a

(
ξc −

a2

ξc

)
= −h

√
α2

c2
− 1 = −

√
ω2

c2
− h2 ≡ −

√
k2
c − h2,

where kc is the Rayleigh wave number (note that kc > h). Hence, equations (4.81 ) and
(4.83) can be written as equations,

Iζc = sign (x)
ih2ρc
2ξc

e−
√
k2c−h2z−iωc x +O

(
1

R

)
, R→∞, (4.85)

and

Iζ−1
c

= sign (x)
ih2ρc
2ξc

e−
√
k2c−h2z+iωc x +O

(
1

R

)
, R→∞, (4.86)

respectively, and written in this form they clearly represent the Rayleigh surface waves
propagating along the surface z = 0. The direction of their propagation depends on the
particular choice of the way we are going around the poles ζc and ζ−1

c . Let us choose the
contour of integration as it is indicated in Figure 8. From the above analysis it follows that
the only bottom pole will contribute and the potential τ1 will then exhibit the Rayleigh
surface wave behavior described by the equation

τ1(x, z) = sign (x)
ih2ρc
2ξc

e−
√
k2c−h2z+iωc x +O

(
1

R

)
, R→∞.
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This formula ensures that the potential τ1 satisfies the surface wave radiation condition

.

ζ

K

(a) (b)

−i −i

ia

i

ia

i

..
.

.

.

Figure 8: Final contour of integration: choice (a) corresponds x > 0, choice (b) corre-
sponds x < 0

(see [18] ) in a small parabolic sector near the surface depicted in Figure 9 :

lim
x→∞

x

(
∂τ1

∂x
− ikcτ1

)
= 0. (4.87)

Together with the radiation condition which, as we have already shown, the solution τ1

also satisfies, (4.87) guarantees that the solution we just constructed is exactly the one
whose existence and uniqueness are proven in [18].

The similar analysis of the potential τ2(x, z) yields the presence of the Rayleigh surface
waves described this time by the formula

τ2(x, z) = sign (x)
ih2ρc
2ξc

e
ih
a2

Ω(ξc)z+i
ω
c
x +O

(
1

R

)
, R→∞.

Note, that since ξc ∈ (ia2, i∞),
ih

a2
Ω(ξc) < 0.

Remark. We have explained the intrinsic reason of appearance of the Rayleigh waves
within Fokas’s scheme. The Sommerfeld radiation condition, which we imposed at the
very beginning in the setting of the boundary value problem we are studying, can be also
motivated entirely by the method’s logic. Indeed, as we saw in Sections 3.1 and 3.2, the
radiation condition allows us to set the algebraic equations for the unknown functions Φ1,2

in the circular part of the contour K which is not covered by the global relation.
In conclusion, we want to mention that in the quarter-space problem the oriented

contour consists of the contour K appearing in this paper and a similar, but rotated by
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z

θ= r
−ε

x   

Figure 9: Narrow sector near the surface z = 0

ninety degree contour which corresponds to half space problem for x ≥ 0. As a result ,
the no-jump section of the circular part of quarter-space contour becomes only a second-
quadrant part C2 instead of Cl ( which corresponds to C2 + C3) in this paper. But a
fourth-quadrant part C4 in the quarter-space problem has a ”double” jump because it
is included in both x ≥ 0 and z ≥ 0 problems. Moreover, we expect Rayleigh wave
contributions in the quarter-space problem as ”pole/residues” contributions located on
non-zero horizontal and vertical parts of the quarter-space problem contour.
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