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Abstract
Thiamin diphosphate (ThDP)-dependent enzymes constitute a large class of enzymes that catalyze a diverse range of reactions.

Many are involved in stereospecific carbon–carbon bond formation and, consequently, have found increasing interest and utility as

chiral catalysts in various biocatalytic applications. All ThDP-catalyzed reactions require the reaction of the ThDP ylide (the acti-

vated state of the cofactor) with the substrate. Given that the cofactor can adopt up to seven states on an enzyme, identifying the

factors affecting the stability of the pre-reactant states is important for the overall understanding of the kinetics and mechanism of

the individual reactions.

In this paper we use density functional theory calculations to systematically study the different cofactor states in terms of energies

and geometries. Benzoylformate decarboxylase (BFDC), which is a well characterized chiral catalyst, serves as the prototypical

ThDP-dependent enzyme. A model of the active site was constructed on the basis of available crystal structures, and the cofactor

states were characterized in the presence of three different ligands (crystallographic water, benzoylformate as substrate, and

(R)-mandelate as inhibitor). Overall, the calculations reveal that the relative stabilities of the cofactor states are greatly affected by

the presence and identity of the bound ligands. A surprising finding is that benzoylformate binding, while favoring ylide formation,

provided even greater stabilization to a catalytically inactive tricyclic state. Conversely, the inhibitor binding greatly destabilized

the ylide formation. Together, these observations have significant implications for the reaction kinetics of the ThDP-dependent en-

zymes, and, potentially, for the use of unnatural substrates in such reactions.
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Scheme 1: The variety of forms of enzyme-bound ThDP.

Introduction
Enzymes that depend on thiamin diphosphate (ThDP,

Scheme 1) can be found in a wide range of metabolic pathways.

Although they are known to catalyze the formation of C–N,

C–O and C–S bonds, ThDP-dependent enzymes generally cata-

lyze the breakdown and formation of C–C bonds adjacent to a

carbonyl group [1,2]. The resultant 2-hydroxyketones are often

chiral, so these enzymes are being increasingly studied for their

use as biocatalysts in the preparation of pharmaceuticals and

agrochemicals [3]. ThDP is an unusual cofactor in that, even

without the enzyme, it can catalyze many of these reactions [2].

For example, the decarboxylation of pyruvate in water can be

accomplished by ThDP, but when it is bound to the enzyme

pyruvate decarboxylase (PDC), the decarboxylation rate is in-

creased by 12 orders of magnitude [2,4]. Clearly, the catalytic

power of the cofactor is greatly enhanced by the enzyme-bound

environment. A fundamental understanding of how this en-

hancement is achieved could potentially lead to the develop-

ment of new and improved biocatalysts.

At a minimum, ThDP-catalyzed reactions all require the forma-

tion of a C2-carbanion or ylide [5] (Scheme 1). This is achieved

through a series of proton transfers during which several differ-

ent states of the cofactor are formed [6]. Starting from the

neutral form of ThDP (AP), the cofactor can be protonated at

the N1′ position, resulting in the APH+ state. With only one

known exception [7], the protonation/deprotonation of the

N1′ position is performed by a highly conserved glutamic acid

residue that is thought to stabilize the imino tautomer IP [6].

The subsequent loss of a proton from N4′ of APH+ gives the

IP state. Deprotonation of the C2 position results in the ylide

form which can be either protonated (YIH+) or deprotonated

(YI) at the N1′ position. The C2 deprotonation is believed to be

performed by the N4′ nitrogen [2,8,9], and is assisted by the

cofactor being held in a “V” conformation in which the imino

group is located within a hydrogen bonding distance of the C2

of the thiazolium ring [9-14].

While the importance of the catalytically critical ylide was

readily recognized, obtaining evidence for the participation of

the 4′-amino group and the imino tautomer IP proved more

challenging. Initially, model compounds were used to identify

the signature UV absorbances for the IP form of ThDP. These
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were then used to demonstrate the presence of IP on yeast PDC

[15]. Subsequently, the IP form was shown to have a positive

CD signal around 300–310 nm, while a negative peak around

320–330 nm, similar to that observed upon binding of ThDP to

apo transketolase [16], was assigned to the AP form [15].

These, along with signature CD and UV signals for intermedi-

ates further along the reaction pathway, have now been ob-

served for more than 10 ThDP-dependent enzymes [6,17]. As

yet, no electronic signature has been observed for the APH+

form. However, solid-state NMR using 15N and 13C-labeled

ThDP has been used to identify APH+ on pyruvate decarboxy-

lase and the E1 component of the pyruvate dehydrogenase com-

plex [18].

In addition to the plethora of experimental investigations, a

number of computational studies have addressed issues

regarding the various states of ThDP. For example, in some

very early work, Jordan used semi-empirical methods to study

the electronic structure and conformational space of the cofactor

in the gas phase, acknowledging the difficulty of comparing

these results to reactions in solution and on the enzyme [19,20].

Thirty years later, density functional theory (DFT) calculations

showed that the 4′-amino moiety of the cofactor can either

accept or donate a proton in the reactions, depending on the pro-

tonation state of N1′ [21].

Orbital analysis of the IP/YIH+ reaction showed that full for-

mation of ylide was dependent on deprotonation of N1′ and,

consistent with experimental findings, deprotonation was, in

turn, likely dependent on conformational changes induced by

the presence of substrate [22]. More recently, the relative stabil-

ities of a number of the ThDP states (AP, APH+, IP and YI)

were obtained using DFT methods, employing a model of the

cofactor along with the hydrogen-bonding carboxylate moiety

[23]. Subsequently, a similar approach was used to characterize

the nucleophilicity of the N1′ and N4′ centers [24]. In many

cases, rather than simply focus on the cofactor, computational

studies have been used to investigate full reaction mechanisms

of ThDP enzymes, including pyruvate decarboxylase (PDC)

[25-28], benzoylformate decarboxylase (BFDC) [29,30], aceto-

hydroxy acid synthase [24,31-35], pyruvate dehydrogenase

(PDH) [36], benzaldehyde lyase [37], cyclohexane dione hydro-

lase [38], oxalyl-CoA decarboxylase [39], DXP synthase [40]

and transketolase [41,42].

It is surprising that almost none of these studies acknowledged

that there is a second, albeit less well discussed, path for the

ThDP cofactor, i.e., the formation of a tricyclic, dihydrothia-

chromine species from the AP form [43-45]. Nucleophilic

attack of N4′ on C2 results in the formation of a C2–N4′ bond,

giving rise to the tricyclic intermediate TCH+. Loss of the N1′

proton TCH+ will result in the TC form of the cofactor [45].

While admittedly not common, the tricyclic form of the cofactor

has been observed on at least two ThDP-dependent enzymes.

Dihydrothiachromine diphosphate (TC) was observed in the

X-ray structure of phosphoketolase from Bifidobacterium breve

[46], and its hydroxyethyl derivative was identified in the struc-

ture of acetolactate synthase from Klebsiella pneumoniae whose

crystals had been soaked with pyruvate [47].

In a very recent study, we used quantum chemical methodolo-

gy to investigate the detailed reaction mechanism of benzoylfor-

mate decarboxylase (BFDC) [29]. A model of the active site

was designed on the basis of the X-ray structure of BFDC in

complex with the substrate analog inhibitor, (R)-mandelate. In

that study all intermediates and transition states were located

and characterized. Intriguingly, we identified the tricyclic

TCH+ state of the cofactor as an off-cycle intermediate species.

It was found to be about 5 kcal/mol lower in energy than the

IP state, thereby raising the barrier for the formation of the

cofactor–substrate adduct (C2α-mandelyl–ThDP). Of course

this has important implications for the overall kinetics of any

BFDC-catalyzed reaction and, potentially, for all THDP-de-

pendent enzymes [29].

This unexpected result prompted us to conduct a systematic

study of the energetics of the various enzyme-bound states of

ThDP (Scheme 1). To this end, we have used BFDC as a repre-

sentative ThDP-dependent enzyme, and employed the quantum

chemical approach used to study the BFDC reaction mecha-

nism to characterize the various states of the ThDP cofactor.

Models representing different enzymatic and non-enzymatic

environments have been generated and, for each model, the

cofactor has been characterized in terms of energies and geome-

tries.

Results
The various states of the cofactor have been studied using five

different models. In all cases the diphosphate group is omitted

since it is thought to act primarily as an anchor for the cofactor

and, consequently, was not deemed relevant to the current

study. Model A is the simplest, representing the cofactor alone

in solution. It comprises 31 atoms and has a net charge of +1.

Models B–E represent the cofactor in the BFDC active site in

the absence and presence of bound ligands. The active site

model is built on the basis of the crystal structure (PDB ID

1MCZ) and is identical to that used in the mechanistic study

[29]. As shown in Figure 1, the model comprises all groups that

make up the active site pocket, including residues that surround

the ThDP cofactor and the ligand. A detailed description of the

residues included in the model and the choice of protonation

states is provided in reference [29].
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Figure 1: A) 2D representation of ThDP (blue) and the residues included in the active site models, and B) optimized structure of model B with an
empty active site. Asterisks mark atoms that were kept fixed to their crystallographic positions during the geometry optimization. The BFDC active site
has contributions from two monomers and primes re-used to indicate residues from the second monomer. For clarity, the non-polar hydrogens of the
residues are not included.

In model B the active site does not contain any ligand, and is

considered for comparative purposes. It has a total of 291 atoms

and a net charge of 0. In model C the active site contains a crys-

tallographic water molecule and includes 294 atoms with net

charge of 0. In model D the water is replaced by the benzoylfor-

mate substrate in its deprotonated form and has thus 307 atoms
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Figure 2: Optimized structures of the states of ThDP in the absence of enzyme (model A). Relative energies are indicated in kcal/mol.

and a net charge of −1. Finally, in model E the active site

contains (R)-mandelate, again in its deprotonated form, and

consists of 309 atoms with a net charge of −1. In the active site

models B–E a number of atoms are kept fixed in the geometry

optimizations in order to preserve the overall structure of the

active site and avoid excessive movements of the various

groups. The fixed atoms are indicated by asterisks in Figure 1B.

The states of the ThDP cofactor considered here are shown in

Scheme 1. The starting point for each model is the AP state, the

energy of which is set to zero, and the energies of the other

states are then compared to it.

Model A: cofactor in solution
In order to analyze the effect of the enzyme environment on the

properties of the various ThDP states, it is important to first

consider the solution states of the cofactor in the absence of en-

zyme. The calculations show that the difference in energy be-

tween the lowest energy conformer and the typical V-conforma-

tion of enzyme-bound ThDP [48] is 4.2 kcal/mol. Interestingly,

the lowest energy structure also adopts a V-shape, but one in

which thiazolium ring is perpendicular to the pyrimidine ring

(see Supporting Information File 1 for an optimized structure).

Given that this study compares enzyme-bound states of ThDP,

it is appropriate to use the typical V-conformation of the AP

form as the starting/reference point. With that in mind, the opti-

mized geometries of the various V-states of the cofactor alone

are displayed in Figure 2.

Calculations on model A show that the AP state is the most

stable, but the tricyclic form TCH+ is only 2.8 kcal/mol higher

in energy (Table 1). Presumably the proximity of N4' to C2 in

the V-conformation makes this state more accessible than it

would be if ThDP was unconstrained in solution. Both the IP

and YIH+ states are considerably higher in energy, at +6.4 and

+15.2 kcal/mol, respectively. It should be noted that the acid/

base conjugates of these states (APH+, TC and YI, respective-

ly) were not calculated, as these structures would have different
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Figure 3: Optimized structures of the states of BFDC-bound ThDP in the absence of ligand (model B). Relative energies are indicated in kcal/mol. For
clarity, only a selected part of the model is shown, for full model, see Figure 1.

numbers of atoms and so the energies would not be directly

comparable.

Table 1: Calculated relative energies (kcal/mol) of the various ThDP
states. The most stable state for each model is indicated in bold face.

state model A model B model C model D model E

AP 0.0 0.0 0.0 0.0 0.0
APH+ – +1.2a +1.9a +3.0 −0.3

IP +6.4 +12.8 +16.0 −0.9 +10.2
YI – +11.6 +11.0 +3.0 +23.2

YIH+ +15.2 +11.3a +11.1a +6.0 +20.2
TC – +2.6 +8.9 −4.9 +7.9

TCH+ +2.8 +2.0a +8.5a −6.3 +11.3
aValues are calculated with the N1′–H distance constrained to 1.15 Å
(see text).

Model B: ThDP in the empty active site
Model B represents ThDP in the active site of BFDC in the

absence of ligand. The geometries of the different ThDP states

were optimized (Figure 3) and their energies evaluated

(Table 1). Here, the enzyme provides both electrostatic and

steric interactions with ThDP, all of which are expected to

affect the cofactor’s geometry and energy. Of particular interest

is the conserved Glu47 residue which forms a hydrogen bond to

N1' of the pyrimidine ring. It is important to note that, during

the geometry optimizations of the three states YIH+, APH+

and TCH+, the N1' proton invariably transferred spontaneously

to the carboxylate of Glu47 thereby yielding the conjugated

states YI, AP and TC. In order to assess independently the

effect of the N1′ protonation state, approximate energies of

YIH+, APH+ and TCH+ were calculated by restraining the

N1′–H distance to 1.15 Å. Even with that constraint the ener-

gies obtained are within 2 kcal/mol of those of their conjugates

(Table 1), showing that N1′ protonation/deprotonation has
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Figure 4: Optimized structures of the ThDP states for the model including the crystallographic water (model C). Relative energies are indicated in
kcal/mol.

only marginal impact on the relative energies of the cofactor

states.

In the AP state, His70 interacts with the cofactor through a

hydrogen bond between the Nε and the exocyclic N4' amino

group, a bond that is not present in the other states. With that

notable exception, the overall geometries of the different states

are quite similar, and bond distances are also fairly consistent

(Figure 3).

As with model A, the AP state is found to be the lowest energy

state in model B. The stability of TC state in model B is similar

to that of the TCH+ in the model of the cofactor alone (+2.6

compared to +2.8 kcal/mol, respectively).The energy of the YI

state is also reasonably close to that of YIH+ in the cofactor

alone (+11.6 vs +15.2 kcal/mol, relative to their respective

AP states). Indeed, it was not until the energy of the IP state

was calculated that the enzyme showed any significant effect. In

this instance the IP state was calculated to be 12.8 kcal/mol

higher than AP, i.e., more than 6 kcal/mol higher than the value

calculated in the absence of enzyme.

Model C: active site including the
crystallographic water
In the X-ray structure of unliganded BFDC, there is a crystallo-

graphic water molecule that is displaced when a ligand is

present [13,49]. In model C, that water molecule is included

and is found to bind in the same position regardless of the state

of the cofactor. A superposition with the crystal structure with-

out substrate (PDB 1BFD) shows that the model calculations

reproduce very well the position of this water (see Supporting

Information File 1), even though the hydrogen-bonding pattern

of the water molecule changes somewhat between the states

(Figure 4). Interestingly, there is a hydrogen bond from the
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water to the anionic C2 carbon in the YI state (OH…C distance

of 1.91 Å), with the negative charge on C2 further stabilized by

interaction with the exocyclic NH2 group (NH…C distance of

2.17 Å). The superposition of the structures of model B and

model C reveals that inclusion of the water molecule causes

also a slight movement of the thiazolium ring of the cofactor

towards the interior of the active site cavity (see Supporting

Information File 1).

Energetically, we note that the IP state is destabilized com-

pared to that in model B, now being 16.0 kcal/mol higher than

AP, an increase of 3.2 kcal/mol. Conversely, the stability of the

YI state was very similar (+11.0 vs +11.6 kcal/mol) to that ob-

served for model B suggesting the water molecule has little

effect on the stability of the ylide. However, the water mole-

cule reserves its largest effect for the TC state which now is

8.9 kcal/mol less stable than AP, an increase of 6.3 kcal/mol

over that observed in model B. Overall, it would appear that the

effect of the water molecule is to stabilize the AP state com-

pared to the other states. The exception is the YI state, which

seemingly benefits from the new hydrogen bond from the water

molecule to the C2 carbanion.

Finally, as with model B, the geometries for the YIH+, APH+

and TCH+ states could not be obtained, as geometry optimiza-

tions lead to their respective conjugates. However, constrained

optimizations again show that the energies are not affected sig-

nificantly by the protonation (see Table 1).

Model D: active site including benzoylformate
In model D, which includes the native substrate, benzoylfor-

mate (BF), all the states shown in Scheme 1 could be located by

the geometry optimizations. As with the crystallographic water

in model C, the presence of the substrate pushes the thiazolium

ring somewhat towards the interior of the cavity. In all ThDP

states the carboxylate of BF forms hydrogen bonds to the side

chain hydroxy group and the backbone NH of Ser26, and to the

Nε of His281 (Figure 5). In the AP and APH+ states, the Nδ of

His70 accepts a hydrogen bond from the exocyclic NH2 group,

with an N…HN distance of 2.1 Å. In the other states, the Nε of

His70 is protonated and donates a hydrogen bond to the carbon-

yl of the substrate. In YI and YIH+, the exocyclic NH2 inter-

acts with the C2 carbanion of the thiazolium ring.

Strikingly, the presence of the substrate has a dramatic impact

on the relative stabilities of the various states as compared to

the water (model C) or the empty cavity (model B). Presum-

ably this effect is primarily due to the overall negative charge of

the benzoylformate and the bulk of the phenyl substituent. The

most significant changes are seen in the energies of the two cat-

alytically productive states, IP and YI. Now, the former is more

stable, by 0.9 kcal/mol, than the AP state. This may not seem

much but the overall change is substantial as the IP state was

calculated to be 6.4, 12.8 and 16.0 kcal/mol higher in energy

than the AP state in models A, B, and C, respectively. The

energy of the ylide is also lowered in the presence of the sub-

strate and the YI state is now only +3.0 kcal/mol compared

to AP. In the other models the difference was more than

11 kcal/mol (Table 1).

Although these results clearly suggest that substrate binding

results in catalytically productive states of the cofactor, this is

not the whole story. Model D also indicates that substrate

binding produces a major stabilization of the two non-produc-

tive tricyclic species. In fact, the most stable state is found to be

TCH+, which is calculated to be 6.3 kcal/mol more stable than

the AP state. Also the deprotonated TC state is 4.9 kcal/mol

more stable than AP, and both tricyclic states are at least

4 kcal/mol lower in energy than the IP form. While substrate

binding favoring the non-productive species is surprising and

seems counterintuitive, benzoylformate binding also makes the

catalytically essential IP and YI forms more accessible than in

any of the other models. Importantly, as detailed in our recent

paper on the reaction mechanism of BFDC, this model is

consistent with the kinetics of the BFDC reaction [29].

In a final note on model D, although the calculations show that

proton transfer from N1' to Glu47 is not spontaneous in this

model, the energy difference between the conjugated pairs

AP/APH+, TC/TCH+, YI/YIH+ remains very low, suggesting

the forms are readily interchangeable (Table 1).

Model E: active site of BFDC with
(R)-mandelate bound
In model E, in which the active site of BFDC contains the in-

hibitor (R)-mandelate, the hydrogen-bonding network is very

similar to that of benzoylformate in model D. However, as

shown in Figure 6, the benzylic hydroxy group provides a

source of additional interactions. In the AP and APH+ states,

the hydroxy group forms hydrogen bonds with His70 and the

exocyclic NH2. Support was lent to the validity of model E

when superposition of the structure of the APH+ form on the

structure of BFDC:(R)-mandelate complex (PDB 1MCZ)

showed no major movements (see Supporting Information

File 1). In the other states, the bond to His 70 is maintained

but that to the exocyclic NH2 is broken. Instead the hydroxy

group forms a hydrogen bond to the backbone carbonyl of

Gly401.

Energetically, we note that, in this model, AP/APH+ are by far

the most stable states with the IP, YI and TC states being 10.2,

23.2 and 7.9 kcal/mol higher than AP, respectively (Table 1).
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Figure 5: Optimized structures of the ThDP states in the BFDC active site containing the substrate, benzoylformate (model D). Relative energies are
indicated in kcal/mol.
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Figure 6: Optimized structures of the ThDP states for the model including (R)-mandelate (model E). Relative energies are indicated in kcal/mol.
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Further, each of these states is more than 10 kcal/mol higher in

energy relative to the AP state than its counterpart in model D

in which the substrate is bound (Table 1). Clearly the binding of

the (R)-mandelate causes a stabilization of the AP/APH+ states

relative to the others.

As seen from Table 1, despite having the same overall charge

and similar bulkiness of the substituents, the binding of the

benzoylformate (model D) and (R)-mandelate (model E) result

in quite different energies. The superposition of the AP states of

the two models (see Supporting Information File 1) shows that

the additional hydrogen bond provided by the benzylic hydroxy

group of (R)-mandelate (vide supra) contributes significantly to

this difference. Further, changing from the sp2 carbonyl carbon

to the sp3 benzylic carbon results in a substantial movement of

the substituent oxygen which also contributes to the energy

difference between the models.

According to Table 1 the AP/APH+ forms are the most stable

states for models C and E, i.e., BFDC in the absence of ligand

and in the presence of (R)-mandelate. The CD spectrum of

BFDC shows a small minimum at around 325 nm, attributed to

the AP form. Titrating BFDC with methyl benzoylphosphonate

(MBP), a mechanism-based inhibitor, gave rise to a new

maximum at around 300 nm, attributed to the IP form, with a

concurrent loss of signal at 325 nm [50]. Based on the data in

Table 1, it is not certain that the titration with benzoylformate

would give rise to the IP form. However, the data unambigu-

ously suggest that titration of BFDC with (R)-mandelate should

result in no change in its CD spectrum, even when the enzyme

is saturated. Accordingly, the titration was carried out and,

indeed, even at (R)-mandelate concentrations well in excess of

its Ki value of 1 mM [49], no change in the spectrum was ob-

served (see Supporting Information File 1 for details).

Discussion
Since it was first purified from beer yeast over 80 years ago

[51], the structure of ThDP and its related intermediates and

ionization states have undergone intensive investigation (sum-

marized in references [2,52]). Most of these investigations have

focused on the structure and properties of the covalently modi-

fied ThDP intermediates of diverse ThDP-dependent enzymes.

Less attention has been paid to the variety of states the cofactor

itself can adopt on the enzyme. As shown in Scheme 1, when

various tautomers and ionization states are included, ThDP can

adopt at least seven forms on any given ThDP-dependent en-

zyme. This is prior to any reaction taking place. Most of these

are accounted for in typical analyses [52] but the two tricyclic

forms, TC and TCH+, are rarely considered. Unlike the

tricyclic states, which could be regarded to be non-productive,

the IP and the YI forms arising from it are essential for cataly-

sis and always considered in any mechanistic study. However,

conceivably all seven states could be energetically accessible

and could influence the catalytic mechanism. Over the past

several years there has been an increasing use of ThDP-depend-

ent enzymes as chiral catalysts [53]. Given that all of these en-

zymes will require ready access to the IP and YI forms, it

seemed logical to take a closer look at the relative energies of

the various states and how those energies may be affected by

the binding of different ligands. Toward that end, we have used

DFT calculations to explore the energetics of the various states

of enzyme-bound ThDP using benzoylformate decarboxylase as

the model enzyme.

The work was predicated on two elements. First, that the

cofactor was held in a V-conformation on the enzyme, and

second, that the resting (reference) state of the cofactor was the

AP form. Both have been confirmed experimentally [13,49,50]

and are typical of most, if not all, of the ThDP-dependent en-

zymes studied to date. In total, five models were employed:

models A and B providing a comparison of the cofactor states

in the presence and absence of enzyme, and models C–E exam-

ining the effects of active site ligands.

Models A and B both predict the AP state to be the most stable,

vindicating its use as the reference state. Perhaps the first

surprise was the difference in magnitude and overall effect the

active site ligands had on the relative energy levels. For exam-

ple, the simple addition of a crystallographic water destabilized

both the IP and TC forms by 3 and 6 kcal/mol, respectively,

thereby ensuring that BFDC largely exists as the AP form. Even

more surprising was the comparison of the substrate, benzoyl-

formate, and the inhibitor, (R)-mandelate. With the exception of

an sp3 rather than sp2 hybridized benzylic carbon, (R)-mande-

late is identical to benzoylformate. However, they have

markedly different effects on the states of the cofactor. In model

C, corresponding to the native enzyme, the IP form is

16 kcal/mol less stable than the AP form. When benzoylfor-

mate binds (model D), the IP form becomes energetically

favored by 0.9 kcal/mol, an overall change of 17 kcal/mol. This

is accompanied by an 8 kcal/mol stabilization of the catalytical-

ly essential YI form. Conversely, when the inhibitor is bound

(model E), the IP and YI forms are ca. 10 and 20 kcal/mol less

stable than in model D. Clearly the substrate-induced changes

combine to facilitate catalysis, while those brought about by the

inhibitor make reaction more difficult.

Considering that they have been largely ignored in previous

studies, the next surprise was that the tricyclic forms TC and

TCH+ were relatively stable, in both the absence and presence

of enzyme. In fact, it seemed that the primary effect of the

binding of ThDP to the enzyme was to bring about the destabi-
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lization of the IP form. Over all five models, the tricyclic forms

were consistently more energetically stable than the catalytical-

ly essential IP and YI forms (Table 1). While it may be argued

that stabilization of the tricyclic forms could prove to be en-

zyme specific, the relatively low energy of the tricyclic state in

the absence of enzyme cannot be disregarded, and certainly sug-

gests that the TC/TCH+ forms may be more common than pre-

viously recognized. Further, and consistent with results for the

YI/YIH+ forms, the relative stabilities of TC/TCH+ states

proved to be ligand specific. In model C, the AP form is ca.

9 kcal/mol more stable than the TC/TCH+ forms. However,

after substrate binding (model D) the TC/TCH+ states are ca.

5 kcal/mol more stable than AP. Thus, the presence of benzoyl-

formate shifts the relative energies by 14 kcal/mol and, concom-

itantly, makes the tricyclic forms the most stable species. The

inhibitor again provides the contrast, for the binding of

(R)-mandelate (model E) has virtually no effect on the relative

energy levels of the tricyclic forms, and AP remains clearly the

most stable state.

At this point, it is reasonable to assess the validity of the cur-

rent computational results in light of available experimental

information. In the first instance the results confirm that the

AP state is the lowest energy, i.e., resting state. This was one of

the elements on which the work was predicated and is consis-

tent with data obtained from, among others, BFDC, benzalde-

hyde lyase, pyruvate oxidase, pyruvate decarboxylase and the

E1 subunit of the pyruvate dehydrogenase complex (summa-

rized in [54]). In fact, there are only two cases in which the

IP form has been observed in the resting enzyme, namely pyru-

vate oxidase and the pyruvate dehydrogenase complex. In both

cases, the AP state was the predominant form [54].

Secondly, the results show that substrate binding dramatically

lowers the energy of the IP and YI states, which would,

presumably, increase the rate and extent of ylide formation.

This observation is more difficult to demonstrate experimental-

ly. While H/D exchange experiments have been used as a

measure of the rate of ylide formation, substrate activation has

only been observed with allosteric enzymes such as yeast PDC

[8]. Further, even though there is a CD signature for the

IP state, it is usually associated with formation of a tetrahedral

reaction intermediate. As a result it is difficult to separate any

increase in the IP signal arising from substrate binding from

that due to intermediate formation. Possibly the closest to ex-

perimental support came from an experiment in which the reac-

tion of BFDC with MBP was monitored by stopped-flow mea-

surements at 308 nm using the intrinsic absorbance of the

IP state. In that case the results implied that there was a tran-

sient formation of a Michaelis complex which was accompa-

nied by an increase in the IP form [55].

Next, the calculations suggest that the binding of (R)-mandelate

should not change the state of the cofactor. Again, somewhat

difficult to prove conclusively but titration of BFDC with the

substrate analogue, MBP, provided clear evidence for the

conversion of the AP to the IP state for the former. Conversely,

and consistent with predictions, the AP state remained un-

changed when a similar titration was carried out with the inhibi-

tor, (R)-mandelate (see Supporting Information File 1).

Finally, what evidence is there for the formation of tricyclic

states? As noted in the introduction, there has been little or no

effort to identify tricyclic intermediates on ThDP-dependent en-

zymes. Critically, even though they were treated dismissively,

there are two X-ray structures which, at a minimum, provide

unambiguous evidence for the formation of stable tricyclic

intermediates on an enzyme [46,47]. Additional evidence, albeit

more indirect, comes from an inhibition study using omepra-

zole, which was predicted to possibly interact with ThDP-de-

pendent enzymes. The prediction was based on the similarity of

omeprazole to the tricyclic form of thiamin. This was con-

firmed experimentally when omeprazole was subsequently

shown to be a competitive inhibitor of both transketolase and

PDC, with a Ki value for the latter only ca. 20 times the Km for

ThDP measured in the same experiment [56].

The current calculations show that, in the presence of substrate,

TC/TCH+ are the most stable states of ThDP on BFDC. Yet,

even though a large number of high-resolution structures of

BFDC variants, in the presence and absence of ligands, have

been determined, none of them shows the tricyclic intermediate.

This may seem surprising but it must be considered that when

benzoylformate is present the catalytic cycle is in operation,

reactions are running and covalent ThDP intermediates are

being formed. As detailed in our recent paper, the enamine is

the most stable reaction intermediate [29], which makes it

unlikely that the TC state will be detected experimentally.

Furthermore, in the absence of the substrate (model C) or in the

presence of the inhibitor (model E), the TC states are clearly

disfavored, with calculated energies of +8.9 and +7.9 kcal/mol,

respectively, relative to the AP state.

Are the tricyclic forms even relevant? That is really the crux of

the matter, and the answer is, for BFDC at least, yes! It is im-

portant to note that the tricyclic forms TC/TCH+ are calculated

to be more stable than the ylide forms YI/YIH+ in all consid-

ered models. Further, the calculations on model D indicate that

an energy penalty of ca. 5 kcal/mol must be paid to go from

the TCH+ to the YI state, which is the catalytically active

form of the cofactor. This, in turn, effectively increases the

barrier for formation of the first reaction intermediate. In fact,

as shown in the paper on the catalytic mechanism that inspired
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this work, the energy barrier brought about by the stable

tricyclic state fits well with the experimental evidence for

the slow first step, i.e., formation of the mandelylThDP adduct

[29].

In addition to BFDC, the X-ray structures of tricyclic intermedi-

ates suggest that an even greater stabilization is present on

phosphoketolase and acetolactate synthase. It could well be

argued that TC stabilization may prove to be rare and specific

to only a few enzymes. Yet, the relatively low energy of the

tricyclic state in the absence of enzyme cannot be disregarded,

and certainly suggests that the TC forms may be more common

than previously thought. Over the past few years, a rapid-

quench NMR technique has been employed to determine micro-

scopic rate constants for elementary steps in several ThDP-de-

pendent enzymes. It is notable that, in addition to BFDC [55],

E. coli AHAS I and II [57], glyoxylate carboligase [7], DXP

synthase [58] and indolepyruvate decarboxylase [59] all have

formation of the first tetrahedral intermediate as the rate-deter-

mining step. Of course, in the absence of the corresponding

calculations it is impossible to definitively state that this is due

to stabilization of the TC state, but the question is worth asking.

The pyruvate oxidase from Lactobacillus plantarum provides

some support in that both the AP and IP forms are present in

the resting enzyme [54] and decarboxylation, rather than forma-

tion of the first intermediate, was found to be rate limiting [60].

On the other hand, product release was the slowest step for

ZmPDC and ScPDC [61], so clearly not all ThDP-dependent en-

zymes behave in the same manner.

Of course, while the relative stability of the TC form may slow

down the BFDC reaction, it is conceivable that it may also play

a beneficial role. As the pKa of the C2 proton decreases, the ac-

tivity of the ThDP cofactor increases [62]. However, concomi-

tantly, the thiazolium ring becomes more susceptible to hydro-

lysis to a catalytically inactive form [44]. The stable tricyclic

form of the cofactor, which can readily revert to its active form,

may provide a protective mechanism against hydrolysis [44].

Two final thoughts: first, the current results show that even

when substrate is bound, the tricyclic state, not the ylide, is the

most energetically stable. This observation implies that starting

the computational investigations of the ThDP-dependent cata-

lytic mechanism directly from the ylide, as done in numerous

examples in the literature, may give rise to an incomplete, if not

inaccurate, picture of the energy profile of the reaction. Second,

many ThDP-dependent enzymes are being evaluated for use as

biocatalysts. The stark difference in the effect of two very simi-

lar ligands, benzoylformate and (R)-mandelate, on the activa-

tion of the cofactor suggests that the use of alternative sub-

strates or, possibly more importantly, the evolution of ThDP-de-

pendent enzymes to accept a wide range of non-native sub-

strates, might not be as simple as may have been expected.

Experimental
All calculations were performed with the B3LYP-D3(BJ)

[62-65] density functional method and using the Gaussian 09

package [66]. The geometries were optimized with the

6-31G(d,p) basis set, and the energy of the stationary points was

refined by single-point calculations with 6-311+G(2d,2p) basis

set. Frequency calculations were done at the same level of

theory as the optimizations to obtain zero-point energy correc-

tions, and solvation energies were calculated using the implicit

solvent method SMD [67] with a dielectric constant ε = 4.

Supporting Information
Supporting Information File 1
Lowest-energy conformation of model A, superpositions of

the AP state/model C and APH+ state/model E with crystal

structures, superposition of the AP state/models B and C,

superposition of the AP states/models D and E,

experimental CD spectra, calculated energies and energy

corrections, and Cartesian coordinates of all optimized

structures.

[https://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-15-15-S1.pdf]
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