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Abstract
Background: Coregulator proteins are "master regulators", directing transcriptional and
posttranscriptional regulation of many target genes, and are critical in many normal physiological
processes, but also in hormone driven diseases, such as breast cancer. Little is known on how
genetic changes in these genes impact disease development and progression. Thus, we set out to
identify novel single nucleotide polymorphisms (SNPs) within SRC-1 (NCoA1), SRC-3 (NCoA3,
AIB1), NCoR (NCoR1), and SMRT (NCoR2), and test the most promising SNPs for associations
with breast cancer risk.

Methods: The identification of novel SNPs was accomplished by sequencing the coding regions of
these genes in 96 apparently normal individuals (48 Caucasian Americans, 48 African Americans).
To assess their association with breast cancer risk, five SNPs were genotyped in 1218 familial
BRCA1/2-mutation negative breast cancer cases and 1509 controls (rs1804645, rs6094752,
rs2230782, rs2076546, rs2229840).

Results: Through our resequencing effort, we identified 74 novel SNPs (30 in NCoR, 32 in SMRT,
10 in SRC-3, and 2 in SRC-1). Of these, 8 were found with minor allele frequency (MAF) >5%
illustrating the large amount of genetic diversity yet to be discovered. The previously shown
protective effect of rs2230782 in SRC-3 was strengthened (OR = 0.45 [0.21-0.98], p = 0.04). No
significant associations were found with the other SNPs genotyped.

Conclusions: This data illustrates the importance of coregulators, especially SRC-3, in breast
cancer development and suggests that more focused studies, including functional analyses, should
be conducted.

Background
Nuclear receptors are critical for proper development and
function of many physiological pathways including lipid
metabolism, inflammation, and cell growth [1-3]. Over
the past 25 years, it has become clear that nuclear recep-
tors are also critical for the onset and progression of many
diseases, including cancer. In breast cancer, for example,
estrogen receptor-α (ERα) is expressed and drives tumor
growth in approximately 2/3 of cases. However, only
recently it has been appreciated that proper nuclear recep-
tor function is absolutely dependent on the interaction
with coregulator proteins [4]. These proteins couple
nuclear receptors with RNA polymerase II and chromatin
remodeling machinery to either activate (coactivators) or
repress (corepressors) nuclear receptor mediated gene
transcription. And because a single or a subset of coregu-
lators can simultaneously regulate multiple cellular proc-
esses through multiple nuclear receptors, they have been
classified as 'master regulators' [3]. Keeping with this clas-
sification, many coregulators have been implicated in
numerous human diseases, including breast cancer [5-
10].

Family history is one of the strongest risk factors for breast
cancer with the risk approximately double in first degree
relatives of women with breast cancer compared to the
general population [11]. Because of this, many attempts
to identify genetic risk factors using multiple approaches
have been conducted. However, despite the identification

of mutations in the major risk factor genes such as BRCA1,
BRCA2, PTEN, CHEK2, and ATM, it is estimated that
~75% of familial breast cancers have yet unidentified risk
alleles [12]. ERα is expressed and drives a large fraction of
breast cancer cases and is therefore an excellent candidate
gene for identifying breast cancer risk factors. Recently, a
significant association with familial breast cancer risk has
been observed for the C allele of ESR1_rs2747648 in an
allele dose-dependent manner. This variant is located in a
miRNA-binding site in the 3' untranslated region of ESR1
[13]. However, historically very few associations have
been found between SNPs in ERα and breast cancer risk.
Further, a recent study conducted a comprehensive search
of all SNPs in ERα that revealed no major risk associations
(n>55,000 breast cancer cases and controls) [14]. This
suggests that other players in the ER signaling pathway
may be important for breast cancer risk. Because of the
critical importance of coregulators for ERα function, we
hypothesized that breast cancer risk is influenced by SNPs
within the coactivators SRC-1/NCoA1 and SRC-3/
NCoA3/AIB1 and the corepressors NCoR and SMRT/
NCoR2.

We previously reported two SNPs in SRC-3 (rs2230782
and rs2076546) associated with reduced breast cancer risk
in a case-control study of German and Polish high-risk,
BRCA1/2 mutation-negative women (cases: 775, controls:
1628) [15]. In a recent study by Haiman et al [16], coreg-
ulator sequencing was conducted in 95 women with
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advanced breast cancer from the Multiethnic Cohort (Afri-
can Americans, Latinos, Japanese, Native Hawaiians, and
European Americans) to identify novel SNPs and deter-
mine their contribution to breast cancer risk in the Multi-
ethnic Cohort (cases: 1612, controls: 1961). Two SNPs
were significantly associated with breast cancer risk in this
study (one in each of SMRT and CALCOCO1). These
SNPs, however, are found exclusively or nearly exclusively
in African Americans and therefore cannot be feasibly
tested in DNA banks derived from European individuals.
One SRC-3 SNP previously identified to be protective in
our study [15] was genotyped (rs2230782) and found not
to be associated with altered breast cancer risk in the
Haiman study [16]. The other SNP we reported to be pro-
tective (rs2076546) was not genotyped in this study since
it focused on non-synonymous SNPs.

Here we report an extension of our previous study that
identified two SNPs within SRC-3 associated with reduced
breast cancer risk [15]. We followed a similar approach by
genotyping candidate SNPs for associations with breast
cancer risk in a high-risk, BRCA1/2 mutation-negative
case-control study; however, the original study was
extended in three ways. First, three additional coregulators
were examined. Second, we sequenced 96 apparently nor-
mal individuals from two populations (48 Caucasian
Americans and 48 African Americans) to discover novel
SNPs and to confirm or reveal SNP frequency information
in different populations. Third, a larger population was
examined, almost doubling the number of cases and sig-
nificantly improving our statistical power. The association
studies allowed us to strengthen the significance of the
protective effect previously reported for a SNP in SRC-3
while extending it to a rare two-SNP haplotype that is
highly protective for breast cancer risk.

Methods
SNP Discovery
Target sequence obtained from NCBI consisting of all
exons, 500 bp of proximal promoter, and 25 bp of flank-
ing introns from SRC-1, SRC-3, NCoR, and SMRT was
submitted for primer design and Sanger sequencing to
Polymorphic DNA Technologies Inc. (Alameda CA). DNA
from 96 samples (48 Caucasian American, 48 African
American) obtained from the Coriell Institute (Camden,
NJ, USA) (sample sets: HD100CAU and HD100AA) was
sequenced in both directions and aligned to NCBI refer-
ence sequence and previously reported SNPs in dbSNP.
These samples had been collected and anonymized by the
National Institute of General Medical Sciences. Visual
inspection of chromatograms was conducted for hetero-
zygous calls.

Genotyping Cohort
A case-control study was conducted investigating a Ger-
man familial breast cancer study cohort. Unrelated, Ger-

man, female BRCA1/2 mutation negative index cases
from breast cancer families were used in this study. The
samples, all of Caucasian origin, were collected during the
years 1997-2005 by six centers of the German Consortium
for Hereditary Breast and Ovarian Cancer (GC-HBOC:
centers of Heidelberg, Würzburg, Cologne, Kiel, Düssel-
dorf and Munich, see authors affiliations). Familial cases
were identified based on (A1) families with two or more
breast cancer cases including at least two cases with onset
below the age of 50 years; (A2) families with at least one
male breast cancer case; (B) families with at least one
breast cancer and one ovarian cancer case; (C) families
with at least two breast cancer cases including one case
diagnosed before the age of 50 years; (D) families with at
least two breast cancer cases diagnosed after the age of 50
years; (E) single cases of breast cancer with age of diagno-
sis before 35 years. These selection criteria which have pre-
viously been reported [17] enrich for cases caused by
genetic factor(s). The control population included healthy
and unrelated female blood donors collected by the Insti-
tute of Transfusion Medicine and Immunology (Man-
nheim), sharing the ethnic background and sex with the
breast cancer patients. The age distribution in the controls
and cases was similar (controls: mean age 45.6 years,
median age 46 years, age range from 18 to 68 years old;
cases: mean age 45.1 years, median age 45 years, age range
from 19 to 87 years old). According to the German guide-
lines for blood donation, all blood donors were examined
by a standard questionnaire and gave their informed con-
sent. They were randomly selected during the years 2004-
2007 for this study and no further inclusion criteria were
applied during recruitment. The study was approved by
the Ethics Committee of the University of Heidelberg
(Heidelberg, Germany).

Genotyping
Genotyping was conducted using TaqMan allelic discrim-
ination assays. Primers and TaqMan MGB probes were
purchased from Applied Biosystems (Foster City, CA).

SRC-3 Q586H: 5'-CTGGGCTTTTATTGCGACCAAA-3V,
reverse 5VGCTCTCCTTACTTTCTTTGTCACTGA-3'; Taq-
Man probes: forward 5'-TTCAATGTGTCACTCAAAT-3'-
VIC, reverse 5'-CAATGTGTCAGTCAAAT-3'-FAM.

SRC-3 T960T: forward 5'-CCTGCACTGGGTGGCT-3',
reverse 5'-CTCGCACCTGGTATGCTATTAGAC-3'; Taq-
Man probes: forward 5'-CTATTCCCACATTGCCTC-3'-
VIC, reverse 5'-TTCCCACGTTGCCTC-3'-FAM.

SRC-3 C218R: forward 5'-AGACATAAACGCCAGTCCT-
GAAATG-3', reverse 5'-GCCAGAGATATGAAACAATGC
AGTG-3'; TaqMan probes: forward 5'-TGAAATGCG CCA-
GAG-3'-VIC, reverse 5'-TGAAATGTGCCAGAG-3'-FAM.
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SRC-1 P1272S: forward 5'-CCCTCCTCCTCAGAGT-
TCTCT-3', reverse 5'-CCTTCATGTCTGGTGACTGATACC-
3'; TaqMan probes: forward 5'-CAGGTGGAGTTTGC-3'-
VIC, reverse 5'-CAGGTGAAGTTTGC-3'-FAM.

SMRT A1706T: forward 5'-ACCTCGCAGCAGATGCA-3',
reverse 5'-GAGGCCCCTCAGCATATCAG-3'; TaqMan
probes: forward 5'-CCACAACACGGCCAC-3'-VIC, reverse
5'-CACAACGCGGCCAC-3'-FAM.

Genotyping call rates for all studies were >97%. The SNP
assays were validated by re-genotyping 5% of all samples.
The concordance rate for all SNPs varied from 99 to
100%.

Statistical Analysis
Hardy-Weinberg equilibrium test was undertaken using
the chi-square "goodness-of-fit" test. Crude odds ratios
(ORs), 95% confidence intervals (95% CIs) and P values
were computed by unconditional logistic regression using
a tool offered by the Institute of Human Genetics, Techni-
cal University Munich, Germany http://ihg.gsf.de/cgi-bin/
hw/hwa1.pl. Power calculations were determined using
power and sample size calculator software PS version

2.1.31 http://www.mc.vanderbilt.edu/prevmed/ps/. With
the total sample size, we had 80% power to detect OR of
0.79/1.26 and 0.57/1.56 for carrier frequencies of 30%
and 5%, respectively.

Haplotype Analysis
Haplotypes of variants located in the same gene were
determined using the PHASE 2 software created by
Stephens et al. [18], or SNPHAP 1.3 software created by
David Clayton http://www-gene.cimr.cam.ac.uk/clayton/
software/snphap.txt. Each individual was assumed to
carry the most likely pair of haplotypes and the haplotype
distributions were estimated based on the controls.

Results/Discussion
SNP Discovery
Complete coding regions and 25 bp of the flanking
intronic regions of SRC-1, SRC-3, NCoR, and SMRT were
fully sequenced in both directions using Sanger sequenc-
ing in 96 apparently normal individuals (48 Caucasian
American, 48 African American) generating a total of ~5.8
MB of sequence. From this effort we identified 120 SNPs
(61 in SMRT, 33 in NCoR, 18 in SRC-3, and 8 in SRC-1).
A summary of the results is shown in Table 1 and details

SNP discovery in (A) SRC-1, (B) SRC-3, (C) NCoR, and (D) SMRTFigure 1
SNP discovery in (A) SRC-1, (B) SRC-3, (C) NCoR, and (D) SMRT. Vertical lines delineate the position of SNPs iden-
tified by our resequencing effort. The height of the vertical lines represents the frequency at which the SNP was found. Black 
lines represent novel SNPs, grey lines represent SNPs found in dbSNP. Solid lines represent nonsynonymous SNPs, dashed 
lines represent synonymous SNPs. Positions of SNPs genotyped for risk associations are pointed out by arrows.
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are provided in Additional File 1. Of these, 86 coding
SNPs were identified resulting in 36 nonsynonymous
SNPs (nsSNPs). SMRT contained the largest number of
SNPs (61 total, 43 coding, and 17 nsSNPs). Despite its
close relationship with SMRT, NCoR contains far fewer
SNPs (33 total, 25 coding, and 10 nsSNPs). This is espe-
cially evident when only common SNPs are considered
(minor allele frequency [MAF]>5%; 16 in SMRT, 1 in
NCoR). The position of the coding SNPs and the MAF is
schematically presented in Figure 1.

By conducting the sequencing in two populations, we
were able to distinguish SNPs unique to a particular pop-
ulation. We identified 66 SNPs unique to African Ameri-
cans and 23 SNPs unique to Caucasian Americans (see
Additional File 1). This distribution is similar to that
reported previously in the SNP@Ethnos database for
Yoruban and European populations and is hypothesized
to arise from bottlenecks in non-African population his-

tory[19] However, most of the unique SNPs found in Cau-
casians were rare, possibly suggesting that these are recent
alterations since only 4 out of the 23 unique SNPs (17%)
were found in more than a single individual. On the other
hand, 31 out of the 66 unique SNPs (47%) in African
Americans were found in more than a single individual. It
is important to note that some of the population unique
SNPs are rare and since only 48 individuals were
sequenced for each population, they could appear as
unique SNPs purely by chance.

From our sequencing effort we identified 74 SNPs in these
four coregulators not previously represented in dbSNP or
reported in the recent study by Haiman et al [16] (Table 1,
columns on the right). We will refer to these SNPs as novel
SNPs. Surprisingly, 8 of these novel SNPs were found at
MAF>5% (7 within SMRT and 1 within SRC-3). Of the 74
novel SNPs, 18 were nonsynonymous, again with SMRT
harboring many of the alterations. This illustrates that

Table 2: Summary of associations in entire population

SNP Genotypes Cases Controls OR 95% CI P

SRC-1 CC (%) 1147 (94.2) 1432 (94.9) 1
rs1804645 CT (%) 69 (5.6) 77 (5.1) 1.11 0.80-1.56 0.510

P1272S TT (%) 2 (0.2) 0 (0.0) - - -
[CT + TT]<-> [CC] 1.15 0.82-1.60 0.405

SRC-3 CC (%) 1089 (89.9) 1330 (89.3) 1
rs6094752 CT (%) 116 (9.6) 152 (10.2) 0.93 0.72-1.20 0.587

C218R TT (%) 6 (0.5) 8 (0.5) 0.92 0.32-2.65 0.871
[CT + TT]<-> [CC] 0.93 0.73-1.19 0.575

SRC-3 GG (%) 988 (80.8) 1207 (80.3) 1
rs2230782 CG (%) 226 (18.5) 272 (18.1) 1.11 0.83-1.23 0.881

Q586H CC (%) 9 (0.7) 24 (1.6) 0.46 0.21-0.99 0.042
[CC]<-> [GG + GC] 0.45* 0.21-0.98* 0.041*

SRC-3 AA (%) 1011 (82.7) 1240 (82.2) 1
rs2076546 AG (%) 202 (16.5) 249 (16.5) 0.99 0.25-1.22 0.961

T960T GG (%) 9 (0.8) 20 (1.3) 0.55 0.25-1.22 0.135
[AG + GG]<-> [AA] 0.96° 0.79-1.17° 0.702°

SMRT GG (%) 789 (66.2) 1004 (67.6) 1
rs2229840 AG (%) 357 (30.0) 423 (28.5) 1.07 0.91-1.27 0.407

A1706T AA (%) 45 (3.8) 57 (3.9) 1.01 0.67-1.50 0.982
[AG + GG]<-> [AA] 1.06 0.91-1.25 0.441

Odds ratios (OR) with 95% confidence intervals (95% CI) and P-values. Please note that the results excluding samples (345 cases/1190 controls) 
that have been analysed in a previous study (14) are *OR = 0.37, 95%CI = 0.13-1.08, p = 0.059 and °OR = 1.13, 95%CI = 0.80-1.59, p = 0.491.

Table 1: SNP Discovery Summary.

Gene Total SNPs Coding SNPs nsSNPs Total SNPs MAF>5% Novel SNPs Novel nsSNPs Novel SNPs MAF>5%

SMRT 61 43 17 16 32 6 7
NCoR 33 25 10 1 30 9 0
SRC-3 18 11 8 5 10 3 1
SRC-1 8 7 1 3 2 0 0

Total 120 86 36 25 74 18 8
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SMRT is by far the most polymorphic of the 4 coregula-
tors. A recent study suggests that mutation rate, compared
to selection pressure, has a larger impact on polymor-
phism frequency in a region [20]. Further, areas of con-
densed chromatin have been suggested to have the
highest level of background mutation [21]. Together this
suggests that SMRT is under less selective pressure than
NCoR and/or is in a region of the genome with a higher

mutation rate (possibly in an area of condensed chroma-
tin).

Genotyping for Association with Breast Cancer Risk
We genotyped a case-control study of female index
patients of BRCA1/BRCA2 mutation negative breast can-
cer families for two SNPs in SRC-3 which were previously
shown to have a protective effect for breast cancer [15]
(rs2230782 and rs2076546). Additionally, we genotyped

Table 3: Associations according to age stratification

SNP Genotypes Cases Controls OR 95% CI P

Cases and Controls ≥50

SRC-1 CC (%) 306 (93.9) 747 (94.9) 1
rs1804645 CT (%) 20 (6.1) 40 (5.1) 1.22 0.70-2.12 0.479

P1272S TT (%) 0 (0.0) 0 (0.0) - - -
[CT + TT]<-> [CC] 1.22 0.70-2.12 0.479

SRC-3 CC (%) 299 (92.8) 691 (89.0) 1
rs6094752 CT (%) 20 (6.2) 80 (10.4) 0.58 0.35-0.96 0.033

C218R TT (%) 3 (1.0) 5 (0.6) 1.39 0.33-5.84 0.654
[CT + TT]<-> [CC] 0.62 0.39-1.01 0.053

SRC-3 GG (%) 253 (78.1) 623 (79.4) 1
rs2230782 GC (%) 68 (21.0) 150 (19.1) 1.12 0.81-1.54 0.502

Q586H CC (%) 3 (0.9) 12 (1.5) 0.62 0.17-2.20 0.451
[CC]<-> [GG + GC] 0.60 0.16-2.14 0.429

SRC-3 AA (%) 270 (83.6) 653 (82.5) 1
rs2076546 AG (%) 52 (16.1) 126 (15.9) 0.99 0.70-1.42 0.991

T960T GG (%) 1 (0.3) 12 (1.6) 0.20 0.02-1.56 0.088
[AG + GG]<-> [AA] 0.93 0.66-1.31 0.676

SMRT GG (%) 222 (69.4) 517 (67.0) 1
rs2229840 AG (%) 89 (27.8) 220 (28.5) 0.94 0.70-1.26 0.689

A1706T AA (%) 9 (2.8) 35 (4.5) 0.59 0.28-1.27 0.175
[AG + GG]<-> [AA] 0.89 0.68-1.18 0.439

Cases and Controls < 50

SRC-1 CC (%) 682 (94.4) 685 (94.9) 1
rs1804645 CT (%) 38 (5.3) 37 (5.1) 1.03 0.65-1.64 0.896

P1272S TT (%) 2 (0.3) 0 (0.0) - - -
[CT + TT]<-> [CC] 1.08 0.69-1.72 0.725

SRC-3 CC (%) 633 (88.6) 639 (89.4) 1
rs6094752 CT (%) 77 (10.8) 72 (10.1) 1.08 0.77-1.52 0.658

C218R TT (%) 4 (0.6) 4 (0.6) 1.01 0.25-4.05 0.989
[CT + TT]<-> [CC] 1.08 0.77-1.50 0.665

SRC-3 GG (%) 592 (82.2) 584 (81.3) 1
rs2230782 GC (%) 122 (16.9) 122 (17.0) 0.98 0.75-1.30 0.923

Q586H CC (%) 6 (0.9) 12 (1.7) 0.49 0.18-1.32 0.152
[CC]<-> [GG + GC] 0.49 0.18-1.32 0.153

SRC-3 AA (%) 592 (82.1) 587 (81.7) 1
rs2076546 AG (%) 123 (17.1) 123 (17.1) 0.99 0.75-1.30 0.952

T960T GG (%) 6 (0.8) 8 (1.2) 0.74 0.26-2.16 0.584
[AG + GG]<-> [AA] 0.98 0.75-1.28 0.862

SMRT GG (%) 470 (66.9) 487 (68.4) 1
rs2229840 AG (%) 202 (28.8) 203 (28.5) 1.03 0.82-1.30 0.796

A1706T AA (%) 30 (4.3) 22 (3.1) 1.41 0.80-2.48 0.228
[AG + GG]<-> [AA] 1.07 0.85-1.33 0.561

Odds ratios (OR) with 95% confidence intervals (95% CI) and P-values.
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other coregulator SNPs we rationalized may have func-
tional consequences based on the severity of the amino
acid change and proximity to functional domains
[rs1804645 (SRC-1), rs6094752 (SRC-3), and rs2229840
& rs7978237 (SMRT)] (positions are highlighted in Figure
1). For example, rs1804645 (SRC-1 P1272S) was chosen
since it is the only non-synonymous SNP in SRC-1, is
located in the second activation domain, and is predicted
to be 'probably damaging' by a polymorphism phenotype
prediction tool (PolyPhen, http://genetics.bwh.har
vard.edu/pph/). Rs6094752 (SRC-3 R218C) was chosen
because of the loss of charge and size as a result of the
amino acid substitution, and is one of the most common
non-synonymous SNPs in SRC-3. The SNPs in SMRT,
rs2229840 (A1706T) and rs7978237 (G781E) were cho-
sen for genotyping due to high frequency, severity of
amino acid change, and location in a functional domain.
Several approaches to design TaqMan assays for
rs7978237 failed. We were therefore unable to obtain gen-
otyping information for this SNP.

The genotyping results were in Hardy-Weinberg equilib-
rium in controls for all SNPs investigated (p = 0.309 for
rs1804645; p = 0.112 for rs6094752; p = 0.058 for
rs2230782; p = 0.067 for rs2076546; p = 0.140 for
rs2229840). The three SNPs that we rationalized may
have functional consequences that we were able to geno-
type, namely SRC-1 P1272S (rs1804645), SRC-3 R218C
(rs6094752), and SMRT A1706T (rs2229840), did not
significantly associate with breast cancer risk (Table 2).
Also, stratification for age (> = 50 year and <50 years of

age) in order to investigate a possible risk influence in pre-
or postmenopausal women revealed no significant associ-
ations except for rs6094752 where a significant effect
could be detected for heterozygous carriers only (Table 3).
However, this is most likely a chance effect due to multi-
ple testing. Stratification by bilateral cases revealed no sig-
nificant associations (Table 4). We observed a protective
effect of the homozygous c-allele carrier of SRC-3 Q586H
rs2230782 (GG+GC versus CC: OR = 0.45, 95%CI =
0.041, Table 2), similar to the findings that have been
reported before (GG+GC versus CC: OR = 0.39, 95%CI =
0.14-1.05 p = 0.061) [15]. As our study included a portion
of the samples of the previous reported study it is note-
worthy to mention that the results of the current study
excluding the previously analyzed samples show the same
protective effect and borderline significance (GG+GC ver-
sus CC: OR = 0.37, 95%CI = 0.13-1.08, p = 0.059). How-
ever, we failed to replicate previous associations between
SRC-3 rs2076546 (T960T) SNP and breast cancer risk. The
haplotype analysis of the variants analysed in SRC-3
revealed a protective haplotype including the C-C-G-alle-
les of R218C, Q586H and T960T, respectively (Table 5).
As the haplotype is very rare occurring with a frequency of
0.03 in controls this result has to be verified in further
multi-center collaboration studies.

The discordant findings between our studies and the
Haiman study [16] with respect to SRC-3 Q586H may be
due to the inherent differences in the populations exam-
ined. For example, our studies exclusively examined Euro-
peans while the study by Haiman et al. examined a range

Table 4: Associations with stratification by bilateral cases

SNP Genotypes Cases Controls OR 95% CI P

Cases bilateral

SRC-1 CC (%) 106 (93.8) 1432 (94.9) 1
Rs1804645 CT (%) 6 (5.3) 77 (5.1) 1.05 0.44-2.47 0.906

P1272S TT (%) 1 (0.9) 0 (0.0) - - -
[CT + TT]<-> [CC] 1.22 0.55-2.73 0.613

SRC-3 CC (%) 95 (86.4) 1330 (89.3) 1
rs6094752 CT (%) 14 (12.7) 152 (10.2) 1.29 0.72-2.32 0.393

C218R TT (%) 1 (0.9) 8 (0.5) 1.75 0.22-14.14 0.595
[CT + TT]<-> [CC] 1.31 0.74-2.32 0.347

SRC-3 GG (%) 88 (80.0) 1207 (80.3) 1
Rs2230782 GC (%) 22 (20.0) 272 (18.1) 1.11 0.68-1.80 0.675

Q586H CC (%) 0 (0.7) 24 (1.6) 0.28 0.017-4.62 0.186
[CC]<-> [GG + CT] 1.02 0.63-1.65 0.938

SRC-3 AA (%) 89 (80.2) 1240 (82.2) 1
rs2076546 AG (%) 21 (18.9) 249 (16.5) 1.17 0.72-1.93 0.522

T960T GG (%) 1 (0.9) 20 (1.3) 0.69 0.09-5.25 0.724
[AG + GG]<-> [AA] 1.14 0.70-1.85 0.597

SMRT GG (%) 79 (72.5) 1004 (67.6) 1
rs2229840 AG (%) 27 (24.8) 423 (28.5) 0.81 0.52-1.27 0.363

A1706T AA (%) 3 (2.7) 57 (3.9) 0.67 0.20-2.18 0.502
[AG + GG]<-> [AA] 0.79 0.51-1.23 0.298

Odds ratios (OR) with 95% confidence intervals (95% CI) and P-values.
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of ethnic backgrounds. A number of recent studies suggest
that a SNP association could be specific to the genetic
background of a certain ethnic group [22,23]. It is possi-
ble that the Q586H effect is only seen in European popu-
lations, and/or that the lower number of unselected
European cases within the Haiman study had insufficient
power to detect this effect. The selection of high risk
BRCA1/BRCA2 mutation negative cases in our study is
expected to act as a multiplier to further increase our
power to detect associations. Lastly, since only nonsynon-
ymous SNPs were genotyped in the Haiman study, the
stronger effect seen in the two-SNP SRC-3 haplotype
could not be observed. We did not genotype the two SNPs
(SMRT H52R and CALCOCO1 R12H) identified in the
Haiman study to be associated with breast cancer risk
since they were found either exclusively or predominantly
in African Americans (European population MAF: SMRT
H52R = 0%, CALCOCO1 R12H = 0.6%). Since our study
exclusively contains Europeans, it was unlikely that we
would obtain sufficient power to detect an association.

Conclusions
In summary, these results illustrate the dramatic differ-
ences in polymorphism frequency that can be seen
amongst closely related genes. Further, the fact that so
many novel SNPs were identified through our sequencing
effort, even common SNPs with MAF>5%, illustrates the
huge amount of genetic diversity that has yet to be discov-
ered. Finally, the strengthening of the association between
the SRC-3 Q586H SNP and decreased breast cancer risk,
and the identification of a rare haplotype within SRC-3
associated with decreased risk, suggest that this informa-
tion could be used to help identify a subgroup of high-risk
women at a more modest risk. However, this remains to
be verified prospectively.
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Table 5: Associations of SRC-3 haplotypes

Haplotypesa Cases (%) Controls (%) OR 95% CI P

CGA 1847 (77.0) 2199 (75.0) 1
CCA 227 (9.5) 298 (10.1) 0.91 0.75-1.09 0.2963
CGG 205 (8.5) 267 (9.1) 0.91 0.75-1.11 0.3597
TGA 119 (4.9) 162 (5.5) 0.87 0.68-1.12 0.2824
CCG 0 (0.0) 8 (0.3) 0.07 0.004-1.21 0.0096
TCG 2 (0.1) 1 (0.0) 2.38 0.22-26.28 0.4651
TGG 0 (0.0) 1 (0.0) 0.39 0.02-9.74 0.3659

a haplotypes representing the alleles of C218R, Q586H and T960T compared with wildtype. Haplotype frequencies of SRC-3 polymorphisms 
C218R, Q586H and T960T in the German study population compared with the, odds ratios (OR) with 95% confidence intervals (95% CI) and P-
values.
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