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Abstract—A new global nonlinear predictor with a particle 
swarm optimized interval support vector regression (PSO-ISVR) 
is proposed to address three issues (viz. kernel selection, model 
optimization, kernel method speed) encountered when applying 
support vector regression (SVR) in the presence of large datasets. 
The novel prediction model can reduce the SVR computing 
overhead by dividing input space and adaptively selecting the 
optimized kernel functions to obtain optimal SVR parameter by 
PSO. To quantify the quality of the predictor, its generalization 
performance and execution speed are investigated based on 
statistical learning theory. In addition, experiments using 
synthetic data as well as the stock volume weighted average price 
(VWAP) are reported to demonstrate the effectiveness of the 
developed models. The experimental results show that the 
proposed PSO-ISVR predictor can improve the computational 
efficiency and the overall prediction accuracy compared with the 
results produced by the SVR and other regression methods. The 
proposed PSO-ISVR provides an important tool for nonlinear 
regression analysis of big data.  
 

Index Terms—global nonlinear predictor, interval support 
vector regression, particle swarm optimization, kernel function, 
sliding adaptive model, large data  

I. INTRODUCTION 
UPPORT vector regression (SVR) model is constructed 
based on statistical learning theory [1], which uses a kernel 
 function to map the data from some input space to a high-

dimensional feature space where the problem becomes 
amenable for handling by linear regression [2]. Owing to its 
robustness to noise and its generalization abilities, it has been 
widely employed in various areas such as adaptive flight 
identification [3], ore grade estimation [4] , and stock market 
price forecasting [5-7].  

Many researchers have pointed out that three crucial 

 
This work was supported in part by the Key Project of the National Nature 

Science Foundation of China (No. 61134009), the National Nature Science 
Foundation of China (No. 61473077, 61473078), Cooperative research funds 
of the National Natural Science Funds Overseas and Hong Kong and Macao 
scholars (No. 61428302), Program for Changjiang Scholars from the Ministry 
of Education, Specialized Research Fund for Shanghai Leading Talents, Project 
of the Shanghai Committee of Science and Technology (Nos. 13JC1407500), 
and Innovation Program of Shanghai Municipal Education Commission (No. 
14ZZ067). 

Yongsheng Ding, Lijun Cheng, and Kuangrong Hao are all at the 
Engineering Research Center of Digitized Textile & Apparel Technology, 
Ministry of Education, together with the College of Information Science and 

problems existing in SVR urgently need to be addressed: (1) 
How to choose or construct an appropriate kernel to complete 
forecasting problems [8, 9]; (2) How to optimize parameters of 
SVR to improve the quality of prediction [10, 11]; (3) How to 
construct a fast algorithm to operate in presence of large 
datasets [12, 13]. With unsuitable kernel functions or hyper-
parameter settings, SVR may lead to poor prediction results. In 
fact, a kernel function forms a certain nonlinear transformation 
function. Due to data uncertainty in practical regression 
problems, it is difficult to determine which kernel function is 
the best one for a specific problem without any prior knowledge 
[14]. If the adjustable kernel parameters in SVR are not 
properly selected, it will result in the undesirable phenomena of 
over-fitting or under-fitting [1]. Furthermore, SVR is typically 
confronted with a heavy computing overhead due to processing 
large Gram matrices being associated with the kernels [13]. 
This computing burden becomes an essential barrier when 
dealing with massive data, such as those encountered in protein 
structure prediction and time series prediction [15]. 

During the past several years, various methods have been 
proposed to address these three problems encountered in SVR 
applications. (1) For kernel function selection, many 
researchers integrate multiple-kernels learning [6, 9] or 
construct some new kernel functions based on some prior 
knowledge available for the specific problems [16, 17]. With 
the increasing number of kernels being available, it is not 
obvious which kernel function is a suitable one for a specific 
problem at hand. Therefore it becomes necessary to construct a 
kernel function library so that the kernel functions can be 
selected depending upon the specificity of the application 
problem. (2) Since the performance of SVR depends on its 
kernel and parameters, an effective way is to use a re-sampling 
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technique such as the cross-validation or leave-one-out [18], or 
to enumerate all possible combinations of parameters to choose 
proper values by running methods such as a grid search 
algorithm [19]. However, for huge datasets and multi-parameter 
applications, re-sampling and enumerating approaches could 
become computationally expensive. It is also difficult to set an 
entire suite of dynamic parameters. Recently some advanced 
algorithms have been proposed to adjust SVR parameters, such 
as immune clonal selection algorithms (AIA) [15], genetic 
algorithms (GA) [20], and particle swarm optimization (PSO) 
algorithms [21, 22]. These approaches are based on an optimal 
control design strategy being used to guarantee the SVR 
performance. The search rules implemented by the PSO 
algorithm are simpler than those encountered in the GA and the 
AIA, and PSO algorithm is easy to implement and exhibits 
quick convergence. In light of these advantages, recently the 
PSO algorithm has attracted a lot of attention as an effective 
optimization tool [11, 21, 23]. (3) Given the kernel matrix 
problem present in SVR, some researchers employ data 
clustering and data pruning methods to reduce computing time, 
such as K-Means clustering [12], Fuzzy C-Means [13], and 
clustering kernel row vectors [24]. These methods are feasible 
and greatly mitigate the influence of noise and outliers 
presented in large datasets. However, if we use the weighted 
clustering average data to conduct a further application, the 
whole data feature cannot ensure to be unchanged and the 
important information is intact after the clustering. 

Considering the above three aspects altogether, a novel 
sliding adaptive model with particle swarm optimized interval 
support vector regression (PSO-ISVR) is proposed to address 
the difficulties of applying the SVR to large datasets. Firstly, 
the sample space is divided into a number of subspaces, a 
sliding controller is used to select the optimal kernel function 
from the kernel function library to fit the nature of the dataset 
present in each subspace. Secondly, the PSO algorithm 
optimizes the parameters of the SVR and produces the optimal 
PSO-ISVR subspace fitting hyper-plane. Finally, the optimal 
subspace fitting hyper-planes are combined to construct a 
global nonlinear predictor by using Lagrange interpolation 
surfaces’ join algorithm. In order to demonstrate the 
effectiveness of the approach, the PSO-ISVR model is applied 
to nonlinear numeric functions and the prediction problem of 
the volume weighted average price (VWAP) on Shanghai stock 
market exchange index for companies traded in China.  

The main contributions of this paper are as follows: A global 
nonlinear predictor with the PSO-ISVR is proposed for large 
datasets. The design strategy is highly relevant and exhibits a 
certain level of originality: the PSO-ISVR simultaneously 
selects kernel type and optimizes kernel parameters adaptively, 
which reduces the PSO-SVR complexity, greatly reducing the 
computing overhead and storage size requirements of SVR. All 
of these improve the practical usage of the resulting method, 
especially in the presence of large datasets. 

This paper is organized as follows. The basic SVR method 
and the PSO-SVR model are illustrated in Section 2. The global 
nonlinear predictor with the PSO-ISVR is presented in Section 
3. The performance of the global nonlinear predictor is 

examined experimentally by using synthetic data and dealing 
with the VWAP prediction problem in Section 4. Finally, 
concluding remarks are provided in Section 5.  

II. SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM 
OPTIMIZATION  

A. Support Vector Regression 
Statistical Learning Theory (SLT) provides a very effective 

framework for SVR. SVR model attempts to minimize the 
generalization error bound so as to achieve generalized 
performance. This generalization error bound is the 
combination of the training error and a regularization term that 
controls the complexity of the hypothesis space. 

Given a dataset T with l examples, T={(xi, yi), n
ix R∈ , 

iy R∈ , i=1,2,…,l}, where xi is an input variable, yi is the target 
value. The data x are mapped onto high-dimensional feature 
space F by a nonlinear transformation function ( )xφ : 

:
( )

nR F
x X x

φ
φ

→
→ =

 (1) 

A linear regression function ( ( ))f xφ  is constructed to 
predict the target y in F as follows: 

ŷ = ( ( ))f xφ = ( )Tw x bφ +  (2) 
where w F∈ is a weight vector and b is a coefficient constant. 
The expression (2) is referred as a regression hyper-plane in F. 
The structural risk minimization principle provides a theoretical 
basis to find a suitable approximation hyper-plane from the 
random samples by using the loss function specified [1] as 
follows  

21( ) || || [ ]
2 empx w L R fψ = + ⋅  (3) 

where L is a regularization constant, [ ]empR f  is the empirical 
risk, also referred to as a cost function, which expresses the 
prediction error loss. Vapnik's ε-insensitive function is often 
used to describe a tolerable error within the extent of the ε-tube, 
as shown in (4),  
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SVR minimizes the generalized error bound so as to achieve 
generalized performance. The input data need not lie on or 
inside the ε-insensitive band strictly. The positive slack 
variables iξ  and *

iξ  are introduced to cope with the infeasible 
constraint errors. The loss function [ ]empR f  is defined by the 

slack variables *| ( ( )) |i i i iy f x εφ ξ ξ− = + . Only the points 
outside the ε-tube are penalized. The regression problem can be 
expressed as the following convex optimization problem: 
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where C >0 is the error penalty parameter, which determines a 
tradeoff between the training error and the complexity of the 
model; 𝜀𝜀 > 0  is an accuracy coefficient, which controls the 
width of the ε-insensitive zone.  

The primal problem shown in (5) is solved by handling its 
dual problem under the Karush-Kuhn-Tucker (KKT) conditions 
and the Wolfe dual [1] as: 

* *

, *

1min [ , ] [ , ]
2

TQ Q
Q Qα α

α α α α
 − 
  −    

[ ] }*[ , ]TI y I yε ε α α+ + −
 

*. . [ , ][ , ] 0Ts t I I α α− =  

(6) 

where 1 2[ , ,..., ]lα α α α=  and * * *
1 2* [ , ,..., ]lα α α α=  are defined 

as vectors of Lagrange multipliers, *

1
( ) 0

l

i i
i

α α
=

− =∑ , 

*, [0, ]i i Cα α ∈ , ( ) ( ), ( , 1, 2,..., )T
ij i jQ x x i j lφ φ= = represents 

the inner product, which will be substituted by a kernel function 
value k(xi, xj) , where I=[1,...,1] is the unit vector, y =[y1, y2, ..., 
yl]. 

Once the SVR has been trained, some iα  and *
iα  become 

equal to zero. Only those examples with nonzero values for iα

or *
iα  are called support vectors and will enter into the 

expansion of f(x) in (2). The regression hyper-plane is 
expressed as: 

*

1
ˆ ( ) ( ) ( , )

l

i i i
i

y f x k x x bα α
=

= = − +∑  (7) 

where k(·) is kernel function, b is the average constant over all 
non-zero support vectors.  

Note that different kernel functions implicitly define the form 
of mapping and the feature space, thus they determine how well 
the nonlinearity of a system can be captured. The most widely 
used kernel functions are shown in Table I. All these kernels 
compose a kernel function library. In Table I, , , , ,q d u pδ  
denotes the kernel parameters, which reflect the characteristics 
of the training data, affect the performance of the SVR, and 
determine a location of the hyper-plane. We note that it is 
necessary to optimize all parameters in SVR, including the error 

penalty parameter C, the insensitivity loss parameter ε, as well 
as these kernel parameters. 

B. Parameters Optimization of SVR by PSO Algorithm  
The solution to the SVR problem is not a simple indicator 

function and there are more complicated parameters to design. 
Here, a novel integrated framework based on PSO algorithm for 
SVR parameter optimization is proposed to obtain better 
prediction performance. 

PSO algorithm is an evolutionary computation technique that 
has been used successfully in optimization [25]. The method 
uses a swarm of particles to represent the potential solutions to 
a problem. Each particle in the swarm is characterized by its 
position and a velocity. In an iterative fashion, the particles 
adjust their velocity so that they start moving towards the 
optimal solution. There are two important characteristics, the 
best previous position pbest and the overall best position gbest. 
The search process determines the best gbest so that the 
corresponding particle’s fitness reaches its best value [22, 25]. 
Here, a particle swarm optimization-based SVR (PSO-SVR) 
model is designed, in which PSO algorithm is used to determine 
the parameters of SVR. These parameters consist of the error 
penalty parameter C, the tube parameter ε, and the kernel 
parameters. Each particle position iP  optimizes a suite of these 
parameters. The dimensionality (L) of the particle depends upon 
the number of the parameters being optimized. Table II lists the 
definition of the particles’ position and velocity depending on 
different kernel functions used in the model.  

The PSO-SVR can automatically determine the parameters 
of SVR and control the predictive accuracy and generalization 
ability simultaneously. The overall framework of the PSO-SVR 
is depicted while the optimization proceeds as follows: 

Step 1: Collect the training samples and select a kernel 
function from kernel function library for the SVR predictor; 

Step 2: Search SVR optimal parameters by engaging a PSO 
algorithm: 

Step 2.1: Initialize n particles in a population
{ }1 2, ,..., ,...,i nU P P P P= , each particle has the same dimension 

size  L according to the kernel function type, for example, if the 
radial basis kernel function is selected, its particle is 

( , , )i i i iP C ε δ= , L=3. 
Step 2.2: For each particle, determine a value of its fitness 

function expressed in the form 
2

1

ˆ( )
( )

n
i i

i

y y
fitness t

n=

−
= ∑  (8) 

where the fitness expresses the deviation from the particle 
predictive value ŷ  and the true value y. The particles move 
towards a direction where low fitness values are reported; 

Step 2.3: Select the particle with the lowest fitness value in 
overall particles in all generations as the best overall position 
(gbest) Pgd and the smallest fitness value in current generation 
as the best current generation position (pbest) Pbd; 

Step 2.4: Update the velocity and position for each particle 
iP  in t-th generation: 

1 1 2 1( 1) ( ) ( ( )) ( ( ))id id bd id gd idv t v t C r P P t C r P P tω+ = + − + − (9) 

TABLE I 
A COLLECTION OF KERNEL FUNCTIONS   

Kernel type Kernel function  
Linear kernel ( , ) ( )k x y x y= ⋅  
Polynomial kernel ( , ) ( )qk x y x y d= ⋅ + , q>0 integer , d∈R  
Radial basis kernel 2( , ) exp( | | / ), 0k x y x y δ δ= − − >  

Sigmoid kernel ( , ) tanh( , ), 0, 0k x y u x y p u p= < > + > <  

 
TABLE II 

 POSITION AND VELOCITY VECTORS IN THE PSO-SVR SPACE 
Kernel 
function Dimension L Particle  

position Pi 
Velocity Vi 

Linear 2 (C,ε) (VC, Vε)
 

Polynomial 4 (C,ε,q,d ) (VC, Vε, Vq, Vd)
 

Radial basis 3 (C,ε ,δ) (VC, Vε, Vδ)
 

Sigmoid 4 (C,ε, u, p ) (VC, Vε, Vu, Vp)
 

Note: C - penalty parameter, ɛ is the insensitivity loss parameter, and kernel 
parameters depending upon the form of the kernel. 
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( 1) ( ) ( )id id idP t P t v t+ = +                                               (10) 
where 1 i n≤ ≤ , 1 d L≤ ≤ , C1 and C2 are acceleration 
coefficients, quite commonly both of them are set to 2; r1 and r2 
are two random variables in the range [0, 1]; 1/ tω = , is an 
inertia weight, whose values decline linearly over successive 
generations (t); 

Step 2.5: Check the termination condition. If the maximum 
number of iterations is reached or the required minimal fitness 
error accuracy is obtained, return the gbest gdP ; otherwise go 
back to Step 2.2; 

Step 3: Obtain the fitting hyper-plane function (7) of SVR 
for the optimal parameters already obtained. 

III. GLOBAL NONLINEAR KERNEL ADAPTIVE PREDICTION 
APPROACH 

A. The PSO-ISVR Predictor 
The idea of the PSO-ISVR predictor originates from the 

piecewise support vector machine (SVM) [26] and the Takagi-
Sugeno (TS) fuzzy model [27]. The TS fuzzy model comprises 
local input-output relations of a nonlinear system. In the model, 
local controllers are designed for each subsystem by fuzzy 
approximation rules to obtain the local optimum. In the sequel 
such local controllers are aggregated by considering their 
weights to produce a control value. The underlying concept of 
PSO-ISVR is derived from TS fuzzy model, and the only 
difference is that the PSO-ISVR is looking for an optimization 
regression model by the PSO algorithm in subsystem not by 
considering a fuzzy rule. On the other hand, the idea of splitting 
the data space originates from the piecewise SVM [26]. But the 
piecewise SVM does not consider the kernel selection and the 
parameter optimization realized in a given subspace as well as 
the generation of the regression model. The overall process of 
ISVR-PSO based sliding adaptive control predictor is displayed 
in Fig. 1. First of all, the sample space is divided into m 
subspaces, as shown in Part I of Fig. 1. In each subspace, a 
sliding adaptive switcher is used to select the optimal kernel and 
form its optimal parameters set so as to obtain the local optimal 
input-output relations of a nonlinear system to fit the data. 
Hence, a group of kernel candidate units C1, C2, …, Ck are 
designed to select the kernel function from the kernel function 
library, as illustrated in Part II of Fig. 1. In fact, each kernel 
candidate unit Ci corresponds to a certain kernel function. The 
goal of Ci is to gain an optimal subspace SVR fitting hyper-
plane of its kernel function. Here, the PSO algorithm is used to 
adjust the SVR parameters and form the optimal subspace 
hyper-plane, as shown in Part IV of Fig. 1. At last, by using 
Lagrange interpolation surfaces’ join algorithm [28], the 
optimal fitting hyper-planes for the subspace segments are 
aggregated to create a global nonlinear predictor for new data, 
as shown in Part III of Fig.1. In the following, the ISVR-PSO 
predictor is illustrated in details and its generalization 
performance and execution speed are analyzed. 
(1)  Sample space division  

The training data need to be normalized firstly. The 
maximum and minimum values of each variable are determined 

and the samples space Ω is divided into m consecutive 
subspaces iΩ  of equal size max min( ) /x x x m∆ = − , where 

, , , 1, 2, ,i j i j i j mφΩ ∩ Ω = ≠ = … . 

(2)  Subspace adaptive switching and hyper-plane fitting 
In each subspace iΩ , the PSO-ISVR sliding adaptive switch 

is used to select the optimal kernel function from the kernel 
function library to fit the input data. The switch mechanism 
belongs to a class of control selecting methods, refer to Part II 
of Fig. 1. The switch consists of three elements: (1) The parallel 
kernel candidate units set 1 2{ , ,... }kC C C , which controls the 
kernel function selection; (2) The controlling decision-making 
device D, which evaluates the performance of kernel candidate 
units; (3) A switch unit P which switches among different 
kernel candidate units. P switches to the optimal kernel 
candidate unit Ck in candidate kernels set, outputs and saves its 
fitting hyper-plane into the storage 1. 

Given the training sample set j-th as (x(j), y(j))={(xi
(j), yi

(j)), i=1, 
2,... ,lj} in the j-th subspace, j is an subspace index, not an 
exponent, where x(j) is the input data, y(j) is the actual value, 
ˆ ( )jf x is the predicted output in Fig.1, lj is the number of samples 

for the training set in j-th subspace. The switching unit P is used 
to find an optimal kernel candidate unit kC  and produces its 

optimal parameters configuration set ˆ
jkθ , which will be used in 

the kernel function as well as the optimal hyper-plane ˆ ( )jkf x  in 

SVR. The optimal SVR model in set ˆ
jkθ  makes the mean 

square error (MSE) J minimal, namely 
( ) ( ) 2ˆˆ ˆ( ) ( ( | ) )j j

jk jk jkJ min f x yθ θ= −  (11) 
where k denotes the k-th kernel candidate unit, ( )ˆ ˆ( | )j

jk jkf x θ  is 
the predicted value of x(j) obtained for the optimal parameters 
produced by the PSO-SVR. The optimal prediction is 
corresponding to Part IV in Fig. 1. Each kernel candidate has 
its ˆ( )jkJ θ in the j-th subspace. The decision D evaluates the 

performance of the kernel candidate units by their ˆ( )jiJ θ (i=1, 
2,…,k). Switching unit P switches to the optimal kernel 
candidate unit Ck with the min( 1

ˆ( )jJ θ ,
2

ˆ( )jJ θ ... ˆ( )jkJ θ ), and 

outputs its fitting hyper-plane ˆ
jf in the j-th subspace j=1, 2, …, 

m. 

(3) Subspaces link and fitting hyper-planes connect 
In every subspace, it will produce an optimal fitting hyper-

plane, but each fitting hyper-plane ˆ ( )jf x of subspace jΩ  is 
relatively independent from the others. Therefore, the overall 
fitting hyper-planes at the subspace boundaries of the entire 
space are not continuous and sometimes may exhibit jumps, as 
shown in Fig. 2. In order to eliminate this discontinuity, we add 
a connection decision function to construct a buffer zone near 
the borders of each subspace, where the endpoints between the 
optimal fitting hyper-planes ˆ ( )jf x  and 1

ˆ ( )jf x+  are connected 
by Lagrangian three points interpolation [28]. 

The decision function ˆ ( )jf x  of subspace jΩ  consists of part 
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A and part B. Part A is the subspace fitting hyper-plane, while 
part B is the buffer zone between the subspaces. Given that the 

buffer zone set is [ , ]j jx x x− ∆  in subspace jΩ , we select three 
points (ui, vi), i =1, 2, 3 which form a quadratic fitting function 

 
Fig. 1.  The PSO-ISVR predictor. 

 

 
Fig. 2.  Fitting hyper-plane subspace link scheme. 

 
by Lagrangian three points interpolation method completed in 
the buffer zone.  

Considering that the space Ω  is separated into m subspaces, 
the overall decision function becomes  

1

ˆ ˆ( ) ( ) ( )
j

m

j
j

f x I x f xΩ
=

= ∑  (12) 

where ˆ ( )jf x  is the optimal fitting hyper-plane function in the 

subspace jΩ , ( )
j

I xΩ  is an indicator function, 

1
0j

j

j

x
I

xΩ

∈ Ω=  ∉ Ω
 (13) 

The decision function ˆ ( )jf x  of subspace jΩ  consists of 
A and B parts 

ˆ ˆ ˆ( ) ( ) ( )j jA jBf x f x f x= +  (14) 
where 

*

1

ˆ ( ) ( ) ( , )
jl

jA ji ji ji j
i

f x k x x bα α
=

= − +∑ , jx ∈ Ω  (15) 

Here, jiα , *
jiα are non-negative Langrange multipliers, jb is 

the translation component, k(.) is the kernel function, jl stands 

for the number of training samples in subspace jΩ , jix is the 

i-th training sample located in subspace jΩ . 
33

1 1

( )ˆ ( ) ( )
( )

i
jB k

k i k i
i k

x u
f x v

u u= =
≠

−
=

−∑ ∏  (16) 

where 12( ) /j j jx x x l−∆ = − , 1 ju x x= − ∆ , 1 ˆ( )jv y x x= − ∆ , 

2 / 2ju x x= − ∆ , 2 ˆ ˆ[ ( ) ( )] / 2j jv y x x y x= − ∆ + , 3 ju x= , 

3 ˆ( )iv y x= , 1( )j jx x x −∆ = − . 

B. Generalization Abilities of the PSO-ISVR Predictor 
Given a function set ( , )f x α ,α ∈ Ω , there are l observation 

samples 1 1 2 2( , ), ( , )...( , )l lx y x y x y , where the samples are 
independent, identically distributed, and follow some unknown 
joint probability F(x, y). The PSO-ISVR estimation seeks an 
optimal prediction function 0( , )y f x α=  in function set ( , )f x α  
so that the prediction comes with a minimum expected risk in 
(17): 

2
( ) ( , ( , )) ( , ) ( ( , )) ( , )R L y f x dF x y y f x dF x yα α α= = −∫ ∫ (17) 

where ( )R α is the expected risk function, α ∈ Ω  is a generalized 

parameter of function, 2( , ( , )) ( ( , ))L y f x y f xα α= −  is the loss 
function, a prediction loss of implied y by the use of ( , )f x α .  

However, in practice, the loss function ( , ( , ))L y f x α  and the 
joint probability distribution ( , )F x y  cannot be obtained 
directly. According to the law of large numbers, an arithmetic 
average can approximate the joint function ( , )F x y in a large 
dataset. Therefore, the empirical risk ( )empR α  can replace the 
expected risk ( )R α :  

2

1

1( ) ( ( , ))
l

emp i i
i

R y f x
l

α α
=

= −∑ , α ∈ Ω  (18) 

The principle, which uses the empirical risk function to 
approach the expected risk function, is referred to the empirical 
risk minimization principle [1]. We refer to the correct 
prediction capacity between the input and the prediction as 
generalization performance in machine learning, and the 
relationship between empirical risk and expected risk is 
generally referred to the generalization bound in statistical 
learning theory. The goal of machine learning is to find a 
function from a function set of ( , )f x α so that the expected risk 

( )R α  approaches the lowest upper bound on the actual risk 
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under a fixed, sufficiently small η when the empirical risk 
gradually converges to the expected risk with the number of 
samples l increasing. They form an important basis for the 
analysis of performance of machine learning schemes and help 
in the development of a new algorithm.  

To explore the PSO-ISVR generalization, the upper bound of 
converging speed in empirical risk ( )empR α close to expected 
risk ( )R α and the minimum value difference between the 
expected risk ( )R α and the empirical risk ( )empR α  [1] in bound 
of function ( , ( , ))L y f x α in compact space Ω . This 
relationship is captured in terms of Theorem 1 and Theorem 
2. Here, ( , ( , ))L y f x α  is defined in a finite domain for SVR, 
which forms a difference to [26] where SVM is unbounded set.  

Theorem 1: For the bounded real function set,
( , ( , ))A L y f x Bα≤ ≤ , α ∈ Ω , the following inequality 

establishes in probability1 2mη− : 

1

ln 1( ) ( )(1 )
2

m

emp
j j

lR a R
l

ηα
=

−
≤ + ∑

 

1

ln( )( ) ( )
2

m
j

j
j

l
B A l

l l
η ε

=

−
+ + −∑

 

(19) 

where 
(ln(2 / ) 1) ln( / 4)

( ) j j
j

h l h
l

l
η

ε
+ −

= , η  is the subspace 

number, 0 1η≤ ≤ , jh  is a non-negative integer, called the 
Vapnik Chervonenk is (VC) dimension in jΩ , lj and l are the 
number of samples in subspace and the entire space respectively,

1

m

j
j

l l
=

= ∑ . 

The proof is given in Appendix A. Theorem 1 offers the 
upper bound of the expected risk when empirical risk ( )empR α  
converges to expected risk ( )R α  in probability η . The 
minimum risk difference between the expected risk and the 
empirical risk is provided in Theorem 2. 

Suppose that 0( )R α  is the minimization expected risk on 
function ( , ( , ))L y f x α  and ( )emp nR α  is the minimization 
empirical risk on function ( , ( , ))L y f x α , the upper bound 

0( ) ( ) ( )emp nR Rα α α∆ = −  is described in Theorem 2. 
Theorem2: Assume that parameters 1 2( , ,..., )lα α α α= ∈ Ω  

and the expected risk ( )R α  has a solution set in subspaces which 
are decoupled, for the functions set ( , ( , ))A L y f x Bα≤ ≤ , the 
following inequality establishes in probability 1 3mη− : 

0( ) ( ) ( )emp nR Rα α α∆ = − ≤  

1

ln ln( )( ) ( )
2 2

m
j

j
j

l
B A l

l l l
η ηε

=

 − −
+ − + 

 
∑

 
(20) 

The proof is given in Appendix B. Theorem 2 describes the 
proximity degree of minimal empirical risk ( )emp nR α  close to 
the minimal expected risk 0( )R α  in the empirical risk 
minimization principle, its risk bound is related to the VC 
dimension in ( )j lε .Theorem 1 describes the converge speed 

whereas Theorem 2 describes the distance between the 
empirical risk ( )emp nR α  and the expected risk 0( )R α . In virtue 
of Theorem 1 and Theorem 2, the PSO-ISVR in joint 
subspaces can find the control risk bound, which provides a 
sound theoretical basis for the PSO-ISVR predictor. 

C. Speed Analysis of the PSO-ISVR Predictor  
Given that the number of PSO generations to k, there are n 

particles in a population. For the j-th subspace the training time 
of the SVR satisfies the relationship [26, 29]:    

( )u
j jt l nkα=  (21) 

where n, k and α are constants; jl is the number of training 
samples in j-th subspace. The size of u is related to the training 
algorithm, for example, if the sequential minimal optimization 
algorithm is used, only two examples are analytically optimized 
at every step, then 2u = . But in Osuna's algorithm[29], a fixed 
number of examples are optimized and the same number of 
examples is discarded from the problem at every step, then u is 
the fixed number of examples in handling. 

If the PSO-ISVR model splits the input space into m 
subspaces and there is the same number of samples lj=l/m in 
each subspace 1,2,...j m= ,where l is the number of training 
samples, then the overall training time t becomes 

1
u

u u
j

lt mt ma nk am l nk
m

− = = = 
 

 (22) 

When m=1, viz. the data space is not split into regions, the 
total training time is ut l nkα= , which is 1um − times of the 
estimate provided by (22) in  the m interval spaces for the PSO-
ISVR model. Thus the larger the number of subspaces m is, the 
higher the speedup is. It can be noted that the training time of 
the PSO-SVR rises faster than that of the PSO-ISVR when the 
number of the training samples increases. 

It is interesting to search for the value of m for which the 
PSO-ISVR model can reach the optimal generalization 
performance. The piecewise SVM provides a sound view at the 
problem [26]. According to Theorem 1, the speed of ( )R a  is 

proportional to ( )empR α  by 
1

ln 1
2

m

j j

l
l

η
=

− ∑ , and lj=l/m  with the 

equal number samples in each subspace as follows:  

2

1

ln 1 ln
2 2

m

j j

l m
l l

η η
=

− −
=∑  

(23) 

TABLE III 
Initialization parameters and particles position search scope in PSO  

Initialization parameters Particles position search scope 
Parameters 
name Value Parameter name Search 

space 
Population 
size n =100 SVR parameter

 C∈[0.001,500] 
ɛ∈[0.001,1]  

Acceleration 
coefficients 

C1 =1.8 
C2 =2.1 

Polynomial 
kernel parameter 

d∈[-1000,1000] 

q∈[1,10]  

Constriction 
coefficient ω = 1 RBF kernel 

parameter δ∈[0.01,500]  

Maximal 
iteration 
generation 

t =1000 Sigmoid kernel 
parameter 

μ∈[0.01,500]  

p∈[-1000,0]  
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From (23) we note that the higher the subspace number m is, 
the larger the distance between empirical risk ( )empR α and 
expected risk ( )R α  in probabilityη . Then the generalization 
performance decreases even the training speed increases. 
Therefore, we have to consider both the speed and the 
performance of the predictor. As a matter of fact, this issue can 
be quantified as follows: 

2 1ln( ) ( )
2

umin f m m m
l
η −−

= +  (24) 

It can be used to decide upon the optimal number of 
subspaces, where η  is a certain probability. By derivative 

extremum analysis ( ) 0df m
dm

= , then 

ln2 (1 ) 0
2

um m
l
η µ −−

+ − = . 

Hence, the optimal subspace number m is 
1

1[( 1) ]
2 ln

ulm u
η

+= −
−

 

when u=2 in sequential minimal optimization algorithms, we 
obtain the optimal subspace number m to be 

1
6( )

2 ln
lm

η
=

−
 (25) 

The division of the input space is essential to the successful 
performance of the PSO-SVR. This split exhibits a direct 
impact on the final prediction performance and the 
generalization abilities of the predictor. The number of 
subspaces not only affects the training speed of the SVR, but 
also impacts the prediction performance of the PSO-ISVR. 
Therefore, the selection of the number of subspaces requires a 
thorough attention. 

IV. EXPERIMENTAL RESULTS 
In this section, we conducted a series of experiments to 

illustrate how the PSO-ISVR functions and show its 
performance. We use synthetic data and the stock volume 
weighted average price (VWAP) of real-world large data 
coming from Shanghai stock market exchange index in China. 

A. Noise Functions  

1)  Noise function 1 

We consider a single-variable function affected by noise and 
described as follows: 

2 0
( ) ~ (0,1), 5 5

3 0
x x

f x noise N x
x x

 ≤
= + − ≤ ≤

+ >
 

where N(0,1) is a normal distribution with zero mean and 
variance of 1. Here we illustrate how the PSO-ISVR functions 
and quantify the training time and accuracy of the PSO-ISVR 
model. Also, we compare the obtained results with those 
produced by the PSO-SVR algorithm. In the experiment, we 
randomly generate 500 points treated as the training data and 
subsequently 500 points as the testing data. Here, the kernel 
function library includes the linear kernel, the Polynomial 
kernel, the RBF kernel and the Sigmoid kernel function as 

shown in Table I. For all the experiments, the PSO initialization 
and the particle search space are listed in Table III. In this table, 
d, q, δ, u, p are kernel parameters, C is penalty parameter, and 
ε is the SVR parameter. An integrated tool for SVR and 
classification, libSVM [30], is improved by combining with 
PSO algorithm. The detailed computer setting concerns AMD 
2.2GHz and 2.0GB RAM.  

In the PSO-SVR experiment, the entire training set (x, y) is 
input to the PSO-SVR algorithm. Then the sliding switch 
selects the RBF kernel function as the optimal kernel function 
because it has the minimum MSE = 66.4144 in 4 kernel 
functions, the optimal parameters C=18.7632, ε = 0.32975, 
δ=0.121 is obtained by the PSO algorithm. The optimal RBF 
fitting optimal hyper-plane to observe the fitting result is shown 
in Fig. 3. It can be seen that the deviation of fitting in middle, 
the beginning and the terminal points is larger than the other 
points in the PSO-SVR testing. 

In PSO-ISVR experiment, the training samples are divided 
into 11 successive sub-intervals which are used by the adaptive 
PSO-ISVR model. Table IV contains the optimal training result 
of PSO-ISVR model in each sub-space and the overall 
comparing result with the PSO-SVR model to the noise 
function 1, including the kernel function, the optimal parameter, 
the MSE in training model and the algorithm time consumption 
in each subspace. It can be seen that the time consumption of 
PSO-ISVR algorithm is far less than that of PSO-SVR 
algorithm and the PSO-ISVR algorithm has higher fitting 
accuracy than that of the PSO-SVR in spatial prediction. Fig. 4 
shows the fitting result of the test sample points in each sub-
interval in noise function1. It can be seen that there are 
discontinuous phenomenon in adjacent sub-spaces, the 
subspace are connected by using Lagrange three-point 
interpolation and output the overall decision-making function. 
Fig. 5 shows the final approximation result of the test data. It 
has a good fitness in the entire space. 

On the other hand, the generalization abilities of the PSO-
ISVR are examined in experiments. Owing to the speed of the 
empirical risk ( )empR α approximating to the expected risk ( )R a  
by (23), the approach speed from the empirical to expected risk 

is 2 ln 0.0111 8.21
2 500

−
× =

×
 in the PSO-ISVR and is

2 ln 0.011 0.06
2 500
−

× =
×

in the PSO-SVR under the assumption of 

0.01η = . The distance between the ( )R α and the e ( )mpR α

increases 8.21/ 0.06 121≈  times for the PSO-ISVR comparing 
with the PSO-SVR. It means the generalization abilities of the 
PSO-ISVR decrease from 8.21 to 0.06, and the over-fitting 
phenomenon occurred although its MSE 6.096 and computing 
overhead of 0.5299s for m=11 is less than the whole PSO-
SVR's MSE 66.4144 and 91.4051s in m=1. The ideal division 

of the input space is round
1
6

500( ) 2
2ln 0.01

≈
−  

by (24) and (25). 

Here, the generalization ability and algorithm velocity is 
tradeoff. In 2 division experiments for the PSO-ISVR, the 
average MSE and the consumption time is 20.218 and 2.565s, 
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respectively. It is far less than those of the PSO-SVR, which is 
66.4144 and 91.4051s, respectively, as shown in Table IV. That 
is to say, the overall performance of the PSO-ISVR is better. 

 
Fig. 3.  Original noise function 1 and the PSO-SVR prediction - testing data.

 

 
Fig. 4.  The prediction results for noise function 1 by PSO-ISVR in testing 

data. 

 
Fig. 5.  The fitting result of the test sample points in PSO-ISVR by using 

Lagrange three interpolation connection. 
 

than that of the PSO-SVR. 
2) Noise function 2 

In order to further evaluate the PSO-ISVR model’s 
performance, another noise function is considered. 

2

2

sin( ) ~ (0,0.1),0 5
( )

cos( 1) ~ (0,0.1), 5 0
x noise N x

f x
x noise N x

 + < ≤
= 

− + − ≤ ≤
 

where N(0, 0.1) has a normal distribution with zero mean and 
variance of 0.1. For comparative purposes, we consider two 
other prediction methods, Back-Propagation Neural Network 
(BPNN) and Cubic Spline Curve Fitting (CSCF) model [31]. A 
standard three-layer BPNN network has a single node in the 
input layer and a single node in output layer, and the number of 
hidden nodes varying from 2 to 10. In the CSCF, the 
interpolation interval is divided into subintervals, and over each 
subinterval we carry out interpolation by using the cubic 
polynomial. The polynomial satisfies the condition of 
continuity at each endpoint. Since the CSCF doesn't pass 
through all given points, there are many random noise points in 
the experiment, which are overlapped, repeated, and even 
inconsistent. We use subinterval average as the curve fitting 

input. Here, the CSCF has the same interval division as the 
PSO-ISVR. In each experiment, we randomly generate 2,000 
points as the training data and then 2,000 points to form the 
testing data. According to (25), it is appropriate to set the 

subinterval number in the PSO-ISVR to around
1
62000( ) 3

2ln 0.01
≈

−
. 

In total, 10 experiments are conducted for each model 
repeatedly. We compare evaluation process of the PSO-ISVR 
with that of the CSCF and the BPNN in 3 continuous subspaces, 
as shown in Fig.6. The performance of all models is evaluated 
by calculating the root mean square error (MSE) and inequality 
coefficient U. 

2

1

1 ˆ( )
l

i i
i

MSE y y
l =

= −∑  (26) 

2

1

2 2

1 1

1 ˆ( )

1 1 ˆ

l

i i
i

l l

i i
i i

y y
lU

y y
l l

=

= =

−
=

+

∑

∑ ∑
, 0 1U< <  (27) 

where ˆiy  is the predicted value, iy  is the actual value, l is the 
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TABLE IV  
PSO-SVR AND PSO-ISVR RESULTS FOR NOISY FUNCTION 1 (TRAINING 

SAMPLES) 

NO 
The best 
kernel 
function 

Optimal 
parameters MSE Consumption 

time (s) 

1 Linear 
C = 100  
ε= 0.3088 
q =1，d =0 

0.1946 0.0210 

2 Linear 
C = 17.7253 
ε= 0.4951 
q =1，d =0 

0 0.0435 

3 RBF 
C = 9.8055 
ε= 1 
δ= 0.0271 

0 0.0797 

4 RBF 
C = 3.0164  
ε= 0.5334 
δ= 0.821 

0.0787 0.0735 

5 RBF 
C = 62.5812   
ε= 0.0359 
δ= 0.01 

0 0.1043 

6 RBF 
C = 30.5344  
ε= 0.3177 
δ= 0.021 

0.0987 0.0406 

7 RBF 
C = 2.53117 
ε= 1 
δ= 0.101 

0.0717 0.0271 

8 RBF 
C = 51.1719 
ε= 0.1808 
δ= 0.352 

0 0.1544 

9 RBF 
C = 81.2194 
ε= 0.1787 
δ= 0.891 

0.0127 0.0159 

10 RBF 
C = 51.1671 
ε= 0.2732 
δ= 0.01 

4.1896 0.0837 

11 RBF 
C = 18.3878 
ε= 1  
δ= 0.211 

0 0.0406 

 PSO-ISVR sum 6.0960 0.5299 

 PSO-SVR 
C = 18.7632 
ε= 0.3298 
δ= 0.121 

66.4144 91.4051 
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index of the data to be predicted. Generally, the model 
predictive ability is inversely proportional to MSE and U, 
especially when U tends to 1, the predictive power of model is 
the worst. The values of the MSE and U obtained for the training 
and testing dataset are reported in TABLE V. It can be seen that 
the values of the MSE and U provided by the PSO-ISVM are 
smaller than the ones obtained for the CSCF and the BPNN. In 
other words, the forecasting accuracy produced by the PSO-
ISVM excels the ones produced by the CSCF and the BPNN. 

In addition, we observe that the forecasting accuracy of the 
PSO-ISVR and the BPNN does not depend on the start and the 
end intervals, while the CSCF did. Fig. 7 shows the results of 
comparative analysis of the CSCF, the BPNN, and the PSO-
ISVR for the training samples. The PSO-ISVR always captures 
the change point and exhibits better fitting than the CSCF and 
the BPNN, especially, when the volatility of the endpoints is 
high. In fact, this phenomenon also is presented in the testing 

data. 

B. Prediction of Stock Volume Weighted Average Price 
In this part, the importance of the parameters optimization 

and the kernel function selection in PSO-ISVR are illustrated 
by an application of VWAP prediction in a big stock data. Its 
performance is verified by comparing with the SVR and the 
PSO-SVR models respectively. In an electronic trading system, 
the VWAP is defined as the ratio of traded value to total traded 
volume in a certain time horizon (such as one day or an hour). 
It is a measure of an average price in a stock trading. The 
VWAP often becomes an optimal benchmark and an 
implementation strategy. An order with enough large volume is 
decomposed into smaller suborders, then trade the small 
suborders throughout a specified period gradually by sequence 
so that their trading cost is less than or equal to the VWAP value 
in the corresponding time period [32]. By doing so, it can 
reduce the market impact, increase the profitability of investors’ 
transactions, and making the selling or the buying in large 
amounts of shares more secret. 

A reliable historical data and a second-level market real-time 
data determine the success gain or its lack in the VWAP at the 
end of the process. If stock market participants want to trade at 
a price as close as possible to the VWAP benchmark [33], they 
need a model to predict the VWAP by using the real-time 
existing data on current stock market. Here, we use a stock 
VWAP in five minutes to predict its new coming five minutes 
volume of the VWAP in the stock market. 

Assuming that the current trading VWAP is y(t), its 
prediction volume is ŷ(t) in five minutes. The prediction volume 
is associated with seven factors of the current five minutes 
trade: opening price (OPRC), the highest price (HPRC), the 
lowest price (LPRC), closing price (CPRC), stock trading 
volume (STD), trading turnover (TT), and the current VWAP. 
Let us arrange these factors in a vector form y(t).We use y(t) to 
predict  ŷ(t). 

( ) { ( 5), ( 5), ( 5),y t OPRC t HPRC t LPRC t= − − −
( 5), ( 5), ( 5), ( 5)}CPRC t STD t TT t VWAP t− − − −  

(28) 

ˆ( ) ( )y t VWAP t=  (29) 

(1) Data sets 

We use an actual stock trading data coming from the 
Shanghai Stock Exchange, China (http://english.sse.com.cn/). 
The trading data are with 896 trading days, where the first point 
corresponds to the time moment 9:30 AM and the last to the 
time 3:00 PM. The time interval between two succeeding time 
points is five minutes. Therefore, there are 48 points available 
in a day and this yields 43,008 records during these days. 
Excluding 63 session records during the periods, we use the 
remaining 42,945 records to complete analysis and predict the 
coming VWAP volume in the succeeding five minutes by using 
the PSO-ISVR method. In practice, these records measure is 
often from differential metric unit and has the differential 
expression of variation; the higher values would drive the 
training process and mask the contribution of lower valued 
inputs. In such a case, we normalize the data within a specified 
range (here going from 1 to 2) to reduce the risk of the 

TABLE V 
MSE AND U VALUES OF CSCF, BPNN AND PSO-ISVR MODELS IN NOISE 

FUNCTION 2 
Experiments 

times 
CSCF BPNN PSO-ISVR 

MSE U MSE U MSE U 
1 3.45 0.36 1.63 0.27 0.83 0.21 
2 4.53 0.44 1.51 0.36 0.96 0.19 
3 4.22 0.28 1.51 0.22 1.03 0.17 
4 4.87 0.39 1.81 0.24 1.11 0.20 
5 5.53 0.55 1.64 0.21 1.16 0.15 
6 4.67 0.47 2.27 0.41 0.72 0.20 
7 4.32 0.48 1.54 0.28 1.08 0.16 
8 5.21 0.51 1.64 0.32 1.39 0.13 
9 3.55 0.39 1.67 0.22 1.21 0.16 

10 5.56 0.36 1.64 0.19 1.42 0.14 
Average 4.591 0.423 1.686 0.272 1.091 0.171 

 

  
Fig. 6.  The process of model evaluation. 

 

 
Fig. 7.  The results of training samples with the CSCF, the BPNN, and the PSO-
ISVR. 
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difference measure. This preprocessing becomes necessary 
before starting data analysis. 

(2)  Prediction results and their analysis 

1) Selection of parameters and prediction accuracy 
The 42,945 records are separated into 896 subspaces by 

trading days, each of which comprises 48 records. In each 
subspace, 24 records are used as a training data to estimate the 
parameters of each kernel functions by the PSO-ISVR. In the 
sequel, 24 records are used as the testing set. Finally, we select 
the kernel and parameters which lead to the lowest value of the 
fitness function.  

Table VI shows the selected parameters obtained for 
different kernel functions produced by the PSO-ISVR in a 
subspace. According to the results, a fact has been reflected that 
the different kernel selection in SVR is crucial, four kernel 
types have different values of their resulting MSEs in their own 
best parameters in a subspace. The kernel type exhibits a 
significant impact on the quality of prediction. Here, the RBF 
kernel function is chosen as the best option for all kernel 
function types in the subspace due to its lowest MSE values. 

On the other hand, in order to demonstrate the importance of 
the parametric optimization, we choose another group 
parameters of the RBF kernel in the subspace, which slightly 
deviate from the optimal values of the parameters. As shown in 
Table VI, the parameters (C=0.12, ɛ=0.276, δ=0.03) in the SVR 
differ slightly from the optimal setting 
(C=0.10,ɛ=0.2332,δ=0.01). However, the quality of prediction 
decreases significantly moving up from 0.0209 to 0.3980. Fig.8 
shows the difference of the prediction results in the subspace 
using the SVR and the PSO-ISVR. In Fig.8, the x axis is a day 
trading records in 5 minutes interval, the y axis is the trade 
volume of the VWAP. It can be seen that the predicted result of 
the PSO-ISVR for the coming VWAP in five minutes are close 
to the original data than that of the SVR, which is essential to 
real-time stock trading. The PSO-ISVR integrates two 
processes of the parameters optimization and the kernel 
functions selection to gain the best fitness and the highest 
accuracy. 

In addition, in order to verify the PSO performance for the 
parameter selection of the SVR. The searching process for 
optimum parameters in PSO is studied in detail. Fig.9 illustrates 
the searching process of the PSO for SVR optimum parameters 
of the RBF kernel function in a subspace. Its optimal fitness 
decreases in successive generations of the algorithm, but its 
average fitness of each generation is fluctuated. The large 
fluctuation of average fitness from one generation to another 
generation indicates that the search ability of the overall 
particles is strong. It is easier for these particles to jump out the 
local minima or the local maxima and obtain the global optimal 
parameters. The reliability of searching optimum parameters 
has been tested in PSO. 

In order to illustrate the reliability of the PSO algorithm in 
the realization of the SVR parametric optimization, the genetic 
algorithm (GA) [25] is compared with the PSO in SVR (RBF) 
for a day VWAP prediction. The computational efficiency and 
the search velocity are the key objectives expressing the 

efficiency of the optimization. Therefore, attributes such as the 
fitness MSE of the SVR, the generation of the first search 
optimization parameter become particular interest. A typical 
GA composes three main operators, selection, crossover, and 
mutation [25]. The selection probability of 0.9 identifies the 
chromosomes of the current population. The selected 
chromosomes mate and generate a new offspring by invoking 
the crossover operation with probability of 0.8. Offsprings are 
mutated by the mutation probability of 0.15. The initial 
parameters of the GA are the same as those used for the PSO: 
population size is set to 100 and the maximum number of 
iterations is 1,000. Table VII shows the comparative results of 
the generation of the first search optimization parameter and the 
MSE in finding the best fitness for a trading day in the SVR 
model with RBF kernel by using the PSO and the GA 
respectively. It is clearly shown that the PSO is more accurate 
than the GA in this optimization problem. In addition, the 
computational overhead of the PSO is lower than the one 
encountered in the GA. 
2) Performance analysis in the overall space 

We compare the computing speed and prediction accuracy 
rates of the PSO-ISVR with those of the PSO-SVR with 5 
subspaces in 5 days. The PSO-ISVR forms its own best kernel 
and optimal parameters, respectively in 5 subspaces in the 5 

TABLE VI 
PARAMETERS IN KERNEL FUNCTIONS CHOSEN BY THE PSO-ISVR IN THE 

VWAP 

Methods Kernel  
function C ε  Kernel parameters MSE 

PSO-ISVR 

Line 1.4183 0.6856 - - 1.0656 

Poly 73.1332 0.4399 q =1 d =-8.0429 0.6043 
RBF 0.1000 0.2332 δ=0.01 - 0.0209 

Sigmoid 8.7189 1 w =0.01 p =-267.938 7.1248 

SVR RBF 0.1200 0.2760 δ=0.03 - 0.3980 
 

TABLE VII 
COMPARISON OF THE PSO, THE GA AND THE VARYING PARAMETERS 

ALGORITHMS FOR THE SVR(RBF) IN A DAY TRADING 

Types Fitness MSE(%) The generation of 
the first search 

Training Testing Training 
GA 0.3017 0.4381 17 
PSO 0.2880 0.3980 5 

 
TABLE VIII 

COMPARISON OF VWAP PREDICTION ANALYSIS ON THE PSO-ISVR AND THE 
PSO-SVR RESULTS IN A WEEK 5 DAYS 

 Samples 
number C ε  Kernel 

parameters Fitting Time(s) MSE 

PSO- 
ISVR 

48 0.1125 0.3545 δ=0.01 0.0000186 0.5390 0.0210 
48 0.1238 0.2612 δ=0.10 0.0000156 0.4924 0.0176 
48 0.1014 0.4100 δ=0.01 0.0000524 0.5538 0.05926 
48 0.1026 0.3360 δ=0.02 5.70×10-28 0.54918 6.41×10-25 

48 0.1026 0.2150 δ=0.01 3.86×10-7 0.5602 0.000437 
PSO- 
ISVR 
sum 

240     2.6945 0.0983 

PSO- 
SVR 240 61.82 0.6611 40.5587 0.0631 58.7945 6.26735 

Note that the RBF function is selected as the kernel function here. 
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days. The results are reported in Table VIII. It can be seen  
 

 
Fig. 8.  The comparison of the original data and prediction results in the VWAP. 

 
 

Fig. 9.  Fitness function in successive generations. 
 

 
Fig. 10.  The weekly VWAP prediction results obtained by the PSO-ISVR and 
the PSO-SVR. 

 

 
Fig. 11.  The result comparison of the PSO-ISVR and the PSO-SVR in a weekly 
VWAP. 

 

 
 

Fig.12.  Overall VWAP prediction results by 5 minutes from 2007.07.02 to 
2011.03.10. 
clearly that the PSO-ISVR has smaller MSE and less time than 
the PSO-SVR's. The PSO-ISVR using interval division is 
superior to the PSO-SVM not only in model accuracy (smaller 
MSE), but also in time consumption for the weekly VWAP 
prediction. The space division can effectively decompose the 
complication of the SVR. 

Fig.10 shows the VWAP–generated prediction results in 5 
days. By enlarging a portion of the VWAP prediction results as 
shown in Fig. 11, there is a clear difference between the results 
formed by the PSO-ISVR and the PSO-SVR. Noticeable, the 
PSO-ISVR prediction is around the original point tightly, but 
the PSO-SVR prediction results exhibit a certain bias. 

Fig. 12 shows the prediction results for the entire data 
obtained with the use of the PSO-ISVR by day separation. The 
predicted values are close to the experimental data. The 
computing time is 259.35s, while the MSE value is 93.682. 
However, we were not able to run the SVR algorithm for the 
overall space because of its excessively large space 
requirements caused by the kernel matrix calculation. 

V. CONCLUSIONS AND FURTHER STUDIES  
In this paper, the novel PSO-ISVR model is proposed, where 

the feature space is divided into a number of subspaces. An 
optimal hyper-plane is constructed based on the PSO-SVR in 
each subspaces and the hyper-planes are then linked to form a 
global predictor. The main features of the PSO-ISVR model can 
be listed as follows: (1) An adaptive sliding switch in each 
subspace is designed, which can choose the optimal kernel 
function to fit the input data. (2) The PSO algorithm is used to 
adjust hyper-plane parameters in each subspace to earn the 
optimal SVR model. (3) The space division can effectively 
decompose the complication of the SVR, thus reducing the 
computing overhead and storage requirements, and facilitate 
further applications. In order to demonstrate its effectiveness, 
some synthetic data and the exchange index of the VWAP for 
current stock market are predicted and analyzed. The 
experimental results show that the PSO-ISVR is more accurate 
and faster than the PSO-SVR, and the PSO algorithm is reliable 
in seeking optimum SVR model. 

There are several important directions worth investigating in 
the future. First, one can discuss how to construct the kernel 
functions and analyze their usage in the SVR. Secondly, the 
interactive relationships among the parameters can be 
introduced to the model. One might expect that such interaction 
could result in higher prediction accuracy and reduced 
computing time. 

APPENDIX 

PROOF OF THEOREM 1 

Denote loss function ( , ( , ))L y f x a as ( , )Q z a , the expected 
risk function can be written as 

( ) ( , ) ( )R Q z dF zα α= ∫  
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Hence, the expected risk function can be described as: 
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P Ω=

Ω
 is the joint distribution. 
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Hence,  
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j
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This indicates that the overall expected risk is the weighted 
average of each sub-space expected risk. For the bounded real 
function set ( , )f x α , which satisfies the conditions

( , ( , ))A L y f x Bα≤ ≤ , jα ∈ Ω , the minimizing experience 

risk function , ( )j empR α satisfies the following inequality in 
probability η  [1]:  

,( ) ( ) ( ) ( )j j emp jR R B A lα α ε≤ + −  (32) 
where  
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0 1η≤ ≤ , jh  is a non-negative integer called the VC dimension 

in jΩ , l  is the samples number, j= 1, 2, ... m, m is the subspace 
number. 

According to (31) and (32), the following inequality is 
established in probability 1 2mη− : 
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In virtue of (34) and (35), we can get 
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APPENDIX B. PROOF OF THEOREM 2 

Suppose that 0( )jR α  is the gained minimization expected 

risk on function set ( , )j jQ z α  and , ( )j emp nR α  is the 

minimization empirical risk on function set ( , )j jQ z α in jΩ . 
According to statistical learning theory [1], the upper bound 

0 ,( ) ( ) ( )j j j emp nR Rα α α∆ = − in probability 1 3mη−  is 
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where j = 1, 2, ... m, m is the subspace number. 
In light of (31) and (33), we obtain 
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