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Abstract

Transgenic mice that express channelrhodopsin-2 or its variants provide a powerful tool for
optogenetic study of the nervous system. Previous studies have established that introducing
such exogenous genes usually does not alter anatomical, electrophysiological, and behav-
ioral properties of neurons in these mice. However, in a line of Thy1-ChR2-YFP transgenic
mice (line 9, Jackson lab), we found that short-latency motor evoked potentials (MEPS)
induced by transcranial magnetic stimulation had a longer latency and much lower ampli-
tude than that of wild type mice. MEPs evoked by transcranial electrical stimulation also had
a much higher threshold in ChR2 mice, although similar amplitudes could be evoked in both
wild and ChR2 mice at maximal stimulation. In contrast, long-latency MEPs evoked by
electrically stimulating the motor cortex were similar in amplitude and latency between wild
type and ChR2 mice. Whole-cell patch clamp recordings from layer V pyramidal neurons of
the motor cortex in ChR2 mice revealed no significant differences in intrinsic membrane
properties and action potential firing in response to current injection. These data suggest
that corticospinal tract is not accountable for the observed abnormality. Motor behavioral
assessments including BMS score, rotarod, and grid-walking test showed no significant dif-
ferences between the two groups. Because short-latency MEPs are known to involve brain-
stem reticulospinal tract, while long-latency MEPs mainly involve primary motor cortex and
dorsal corticospinal tract, we conclude that this line of ChR2 transgenic mice has normal
function of motor cortex and dorsal corticospinal tract, but reduced excitability and respon-
siveness of reticulospinal tracts. This abnormality needs to be taken into account when
using these mice for related optogenetic study.
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Introduction

Neurons that are genetically modified to express light-sensitive channels allow precise optoge-
netic activation or inhibition of their activities, providing a powerful tool for studying neural
network under physiological and pathological conditions. Transgenic mice that express Chan-
nelrhodopsin-2 (ChR2) or its variants under the control of a specific promoter have been
widely used for in vitro and in vivo studies of the nervous system at cellular, circuit, and behav-
ioral levels [1-3]. Particularly, Thyl-ChR2 transgenic mice (Thyl-ChR2-EYFP lines 9 and 18)
are the first lines that express transgenes in subsets of neurons throughout the nervous system
(1, 2].

Previous studies showed that transgenic mice often maintain unaltered structural and func-
tional properties. For example, there are no significant differences in morphological features
and electrophysiological properties between GFP-positive and GFP-negative hippocampal
dentate granule cells of Thyl-GFP transgenic mice [4]. ChR2 expressing cortical neurons of
Thy1-ChR2 mice show no significant changes in intrinsic properties, including resting mem-
brane potential, input resistance, and properties of action potential [2]. Similarly, hippocampal
neurons with viral expression of ChR2 for at least one week maintain normal intrinsic
electrophysiological properties [5]. Specific expression of ChR2 at axon initial segments by
using ankyrinG-binding loop of voltage-gated sodium channels does not cause significant
changes in neuronal passive and active electrical properties such as action potential threshold
and spike number induced by current injection in these neurons [6]. These observations may
lead to an assumption that transgenic mice usually maintain their “normal” structural and
functional properties. For neurons that express ChR2 or its variants, most attention has been
focused on characterizing electrophysiological properties of the introduced photosensitive cur-
rents. However, it has been shown that long-term high expressions of ChR2-YFP through in
utero electroporation or viral infection causes abnormal neuronal morphologies including
swelling axons, formation of cylinders that envelope pyramidal neuron dendrites and axons,
and spherical structures surrounding neuronal somata [7]. Although such structural alter-
ations occur only in neurons that strongly express ChR2 for a long time, whether such mor-
phological abnormalities are accompanied or preceded by functional alterations in
ChR2-expressing neurons is unknown.

In our recent study using the line 9 Thyl-ChR2 transgenic mice, we accidentally found that
short-latency (~5 ms) motor evoked potentials (MEPs) induced by transcranial magnetic stim-
ulation (TMS) and transcranial electrical stimulation had dramatically reduced amplitude and
higher threshold. In contrast, long-latency MEP evoked by electrical stimulation of the motor
cortex remained intact. Patch clamp recording and motor behavioral assessments indicate no
significant changes in cellular electrophysiological properties of cortical pyramidal neurons
and motor behavior. The results suggest that ChR2 expression in this transgenic line has a spe-
cific effect on the motor pathway involving reticulospinal tract that generates short-latency
MEDPs.

Materials and methods
Animals

Transgenic mice expressing ChR2-YFP under the control of Thyl promoter (line 9, stock
number 7615, Jackson lab) and C57BL wild type (WT) sibling mice of the same background
were used in the experiments. The mice were between 8-10 weeks old. All procedures were
approved by the Animal Care and Use Committee of the Institutional Guide for the Care and
Use of Laboratory Animals at Indiana University School of Medicine.
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MEPs induced by TMS and percutaneous electrical stimulation

Eight C57BL mice and 13 Thyl-ChR2 transgenic mice were used for recording TMS-evoked
MEPs. TMS-induced MEPs were obtained by stimulating awake, non-anesthetized, restrained
mice as described previously [8, 9]. Briefly, mice were restrained in thin and porous stockinet
on a4.5” x 2" wooden board with thumb tacks. Hindlimbs were exposed to enable insertion of
recording electrodes into the gastrocnemius muscles bilaterally, with the active electrodes
being placed in the muscle belly and the reference electrodes being placed near the distal ten-
don. A ground electrode was placed subcutaneously between the coil and recording electrodes.
A 5 cm diameter, single round electromagnetic coil without casing was connected to a Cadwell
MES-10 stimulator (Cadwell Laboratories, Kennewick, WA). The coil was placed on the skull
of the animal tangentially, with the region of maximal output being aimed at the sensorimotor
cortex. MEPs were elicited by activating cortical and subcortical structures with the coil being
placed over the mouse’s scalp and positioned for maximal activation. A single magnetic pulse
at 90% of maximal output intensity (2 Tesla peak output) was used. If a response could not be
evoked in ChR2 transgenic mice, the maximal TMS intensity was applied and the stimulation
was repeated three times. Depending on the amplitude of the responses, a gain of x5000 was
used to record the compound muscle action potentials. Responses were recorded at intervals
of 1 min. All animals were tested weekly for 5 weeks. In both WT and ChR2 groups, the mean
amplitudes and latencies were calculated based on responses to 90% stimulation intensity.

For recording MEPs evoked by transcranial electrical stimulation, 8 C57BL mice and 9
Thy1-ChR2 mice were anesthetized with ketamine (100 mg/kg, i. p.). Previous studies showed
that ketamine does not significantly affect the amplitude and waveform of MEPs in dogs and
rodents [10, 11]. A 9 mm cup filled with Electro-conductive gel (Tag Gel, Pharmaceutical
Innovations, Newark, NJ) was placed on the vertex of the animal scalp as an anode. The origi-
nal clip part of the ear electrode was shortened and wired to serve as a cathode that contacted
the hard palate of the animal behind the incisor. Electrical stimulation was applied to excite
the brain using a stimulator (Digitimer DS7A, Digitimer, Garden City, UK). A single pulse of
stimulation (100 ys, 350 V) was delivered via a modified E5-9S ear electrode (Electro-cap Inc.
Eaton, OH).

All MEP data were analyzed offline using Clampfix software. Events that occurred within
4-8 ms after TMS and had peak amplitude two standard deviations of the baseline activity
were regarded as MEPs. Latencies for each sweep were measured from the onset of the TMS
artifact to the beginning of the evoked-events. The amplitudes of the evoked MEPs were mea-
sured from peak to peak. Since MEPs could not be evoked even with maximal TMS in the
majority of ChR2 mice, mean MEP amplitudes and latencies in this group were calculated
only from responses in which MEPs were successfully induced.

MEPs induced by cortical electrical stimulation

MEPs were recorded using cortical electrical stimulation in 6 ChR2 transgenic mice and 6 WT
mice. After the animals were anesthetized with ketamine (100 mg/kg, i.p.), stainless steel
screws (2.5 mm long and 1.2 mm in diameter) were implanted onto the skull above the pri-
mary motor cortex. A needle electrode was inserted into contralateral gastrocnemius muscle
for recording MEPs. Electric shocks were delivered with a duration of 200 ps and intensities
between 0.4-1.5 mA.

Behavior assessment

All behavior analyses were conducted according to previously published methods by two
blinded observers who had no knowledge of group assignment.
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Basso Mouse Scale (BMS): This open-field locomotor scoring system consists of scores from
0 (no ankle movement) to 9 (frequent or consistent plantar stepping, mostly coordinated,
paws parallel at initial contact and lift off, and normal trunk stability and tail always up) [12].

Rotarod test: This test was used to assess motor coordination, balance, and motor learning.
The mice were placed on a single lane rotarod according to our existing protocol [13]. The
speed was set to a constant acceleration from 0-18 round per minute (rpm) or from 0-30 rpm
for a total of 120 seconds. The latency to fall from the rod was recorded. Each mouse was indi-
vidually scored for 3 trials and the scores were averaged to generate a final score for each
session.

Grid-walking: The mice were placed on a horizontal grid, and allowed to walk freely on the
grid for 3 minutes [14]. The total steps and falls of each hindlimb were recorded.

Slice preparation and patch clamp recording

Brain slices were prepared using previously described procedures [15, 16]. Following deep
anesthetization with pentobarbital (55 mg/kg, i.p.), the mice were decapitated. Coronal corti-
cal slices containing the motor cortex were cut with a vibratome (Leica VT1200, Leica) in ice
cold (4°C) oxygenated slicing solution containing (in mM) 230 sucrose, 2.5 KCl, 1.25
NaH,PO,, 10 MgSO,4.7HO,, 10 glucose, 0.5 CaCl,.2H,0, and 26 NaHCOj;. The slices were
incubated at 34°C for 1 hour in standard artificial cerebrospinal fluid (ACSF), and were then
kept at room temperature. The ACSF contained (in mM) 126 NaCl, 2.5 KCl, 1.25 NaH,PO,,
2 CaCl,, 2 MgS0O,4.7H,0, 26 NaHCO3, and 10 glucose; pH 7.4 when saturated with 95%
0,-5% CO..

Patch clamp recordings were made in a heated chamber at 35°C from YFP-expressing layer
V pyramidal neurons of ChR2 mice or layer V pyramidal neurons of WT mice. Neurons in
slices were visualized under infrared DIC illumination, which did not noticeably induce light-
activated current. Patch electrodes were pulled from borosilicate glass tubing (1.5 mm OD),
and had an impedance of 3-5 MQ when filled with intracellular voltage clamp solution con-
taining (in mM): 20 KCl, 100 cesium gluconate, 10 HEPES, 4 Mg-ATP, 0.3 Na-GTP, 10
sodium phosphocreatine and 3 QX-314. For current clamp recordings, K-gluconate based
solution was used, which contained (in mM): 100 K-gluconate, 20 KCI, 10 HEPES, 4 Mg-ATP,
0.3 NaGTP and 10 sodium phosphocreatine. To measure spontaneous action potential (AP)
firing rates, current clamp recordings were made by adjusting the membrane potentials to -60
mV and in a modified ACSF that slightly enhanced neuronal excitability. The modified ACSF
contained (in mM): 124 NaCl, 3.5 KCl, 0.5 MgCl,, 1.25 NaH,PO,, 26 NaHCO3, 1 CaCl,, and
25 Dextrose [17].

Neurons with a resting membrane potential below -60 mV and a series resistance of less
than 15 MQ were included in data analysis. Intrinsic properties and AP firings were deter-
mined from neuronal responses to a series of 500 ms hyperpolarizing and depolarizing cur-
rents pulses (25-50 pA steps) under current clamp mode. Spike frequencies in response to
step current injections (I-F curve) were constructed. Analysis of intrinsic properties was done
using Clampfit 9.0 software. Resting membrane potential was measured as the membrane volt-
age after break-in and no current was injected. Input resistance was determined from the slope
of a best-fit-line through the linear segment of a voltage-current relationship. The first AP
elicited by lowest current injection was used for measuring AP properties. AP threshold was
determined at the voltage level when voltage deflection exceeded 10 mV/ms. AP duration was
measured at its half maximal amplitude, while AP amplitude was measured as the difference
between AP threshold and the peak amplitude.

PLOS ONE | https://doi.org/10.1371/journal.pone.0178803 May 31,2017 4/13


https://doi.org/10.1371/journal.pone.0178803

o ®
@ ' PLOS | ONE Reduced MEP threshold in ChR2-expressing mice

Statistical analysis

Data are presented as mean + SEM. Statistical analyses were performed using Microsoft Excel
and OriginPro 8 software. Statistical significance was determined using Student ¢-test and one-
way ANOVA followed by Tukey’s test, with a p value of p < 0.05.

Results

Reduced short-latency MEPs induced by TMS and percutaneous
electrical stimulation in ChR2 mice

TMS reliably induced bilateral EMG responses in all WT animals (Fig 1A and 1D, 100%,

n = 8). The mean onset latency of the TMS-induced MEPs was 4.82 + 0.14 ms, and the ampli-
tude was 4.07 £ 1.02 mV (Fig 1A-1C). In contrast, MEPs were induced in only a small percent-
age of ChR2 transgenic mice (Fig 1D. 15%, n = 13). In the ChR2 mice that failed to respond to
TMS, neither increasing the TMS output from 90% to the maximum nor changing coil posi-
tion and orientation was able to induce any response. We calculated onset latency and ampli-
tude in ChR2 mice in which discernable MEPs were recorded. Their onset latency was
significantly delayed compared with that of the WT mice (Fig 1A-1C, 5.12 + 0.04 ms,
p<0.001, Student t-test), and the amplitude was dramatically reduced (0.67 £ 0.23 mV,
p<0.001). Thus, TMS induced smaller MEPs with longer onset latencies in ChR2 mice.

To confirm the observed change in TMS-induced MEPs and differentiate between potential
cortical and subcortical changes in the reduced MEPs, we recorded MEPs induced by transcra-
nial electrical stimulation of the motor cortex (Fig 2A). The thresholds for evoking MEPs were
7.8 +4.9 and 46.2 + 21.8 mA for the WT and ChR2 mice, respectively (Fig 2B, n = 8-9 in each
group, p<0.01). However, there were no differences between the ChR2 and WT mice in the
amplitude and latency of MEPs induced by maximal stimulus (Fig 2C-1E. 5.2 + 0.14 ms vs.
5.2+ 0.2 msin latency, and 11.8 + 2.5 mV vs. 10.9 + 2.6 mV in amplitude for ChR2 and WT
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Fig 1. Reduced motor evoked potentials induced by transcranial magnetic stimulation in Thy1-ChR2 transgenic mice. A. Representative
traces showing bilateral TMS-evoked motor evoked potentials (MEPs) in a wild type C57 Black mouse (WT; black) and a Thy1-ChR2 transgenic
mouse (blue). The black arrows indicate times of transcranial magnetic stimulation (TMS). B-D. The amplitudes of bilateral TMS-evoked MEPs
were dramatically decreased in the ChR2 mice compared with WT mice (B); the latencies of bilateral TMS-evoked MEPs were significantly
increased in the ChR2 mice (C), and the percentage of mice in which MEPs were induced by TMS was greatly reduced in the ChR2 mice (D)

(***: p<0.001, Student t-test).

https://doi.org/10.1371/journal.pone.0178803.g001
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Fig 2. Reduced MEPs evoked by transcranial electrical stimulation in Thy1-ChR2 transgenic mice. A.
Representative traces showing electrically evoked motor evoked potentials (MEPSs) in a wild type C57 Black
mouse (WT). The asterisk indicates a response evoked with an electrical pulse at the threshold level (4 mA). B.
The threshold for electrically evoking MEPs was significantly higher in Thy1-ChR2 mice than in WT mice

(**: p<0.01, n=8-9 mice in each group). C. Representative traces showing similar latency, amplitudes, and
waveform of maximally evoked MEPs in WT (black) and ChR2 (blue) mice. The arrows indicate times of electrical
stimulation. D-E. The amplitudes (D) and latency (E) of MEPs evoked at maximal electrical stimulation were
similar between the WT and Thy1-ChR2 mice (p> 0.05).

https://doi.org/10.1371/journal.pone.0178803.g002

mice, respectively). The results suggest that ChR2 transgenic mice have a higher threshold for
evoking MEPs through transcranial magnetic or electrical stimulation.

No change in MEPs induced by cortical electrical stimulation in ChR2
mice

It has been shown that two types of MEPs can be evoked in rodents. The first is a short-latency
and high amplitude (~ 5 ms) response; the second is a long-latency (~15 ms), polyphasic wave
that involves motor cortex and corticospinal tract [18, 19]. To specifically evaluate the long-
latency MEPs, mouse motor cortex was electrically stimulated via an implanted screw. The
mean thresholds of the ChR2 mice and WT mice were 0.65 + 0.08 mA and 0.70 + 0.08 mA,
and the times to MEP peak were 32.0 £ 0.36 ms and 33 + 0.26 ms, respectively (Fig 3A-3C.

n = 6 in each group). Thus, there are no differences in the threshold and latency of the long-
latency MEPs between WT and ChR2 mice.
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Fig 3. No significant change in MEPs induced by electrical stimulation of motor cortex in ChR2
transgenic mice. A. Representative traces showing similar long-latency motor evoked potentials (MEPs) in
wild type (WT; black) and ChR2 (blue) mice. B-C. There were no significant differences in stimulating
thresholds (B) and time to peak amplitude of MEP (C) between WT and ChR2 mice.

https://doi.org/10.1371/journal.pone.0178803.g003

Unaltered electrophysiological properties of cortical layer V pyramidal
neurons in ChR2 mice

To determine the electrophysiological mechanism of the reduced MEPs evoked by transcranial
magnetic and electrical stimulation in the Thyl-ChR2 mice, we made whole-cell patch clamp
recordings from layer V pyramidal neurons of the motor cortex in these mice. These neurons
express ChR2 protein and are involved in activating corticospinal tract and generating MEPs.
We first recorded spontaneous firing of action potentials (APs) of these neurons in a modified
ACSF solution that slightly enhances neuronal excitability and reveals their spontaneous activ-
ity in vitro, and found that the AP firing rate in the ChR2 mice at -60 mV was similar to that of
the WT mice (data not shown).

Under current clamp mode, we further recorded traces in response to injections of increas-
ing current steps and plotted the relationship between the injected currents and frequencies of
evoked spikes (I-F curve) (Fig 4A and 4B). The I-F curve from layer V pyramidal neurons of
ChR2 mice had a similar slope as that of the WT mice (Fig 4B), suggesting that current injec-
tions induced similar frequency of AP spikes. There were also no significant differences in
intrinsic membrane properties including resting membrane potential, input resistance, mem-
brane time constant, action potential threshold, and AP half width and peak amplitude
between the two groups (Table 1 and Fig 4C and 4D).

No motor deficits in ChR2 mice

To further explore whether a reduction in short-latency MEPs would cause any motor func-
tional deficits, we assessed motor behavior in WT and ChR2 transgenic mice. There were no
significant differences in BMS scores (Fig 5A. WT: 9; ChR2: 8.9 £ 0.3), ratios of paw drop in
grid-walking test (Fig 5B. WT: 0.94 + 0.4, ChR2: 0.7 £ 0.3 for left hindlimb; WT: 0.58 + 0.4,

ChR2: 0.4 + 0.2 for right hindlimb), and latencies to fall in rotarod test (Fig 5C and 5D. WT:
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Fig 4. Similar intrinsic properties of layer V pyramidal neurons in WT and Thy1-ChR2 mice. A.
Representative traces of action potential (AP) firing of layer V pyramidal neurons of wild type (WT; black) and
ChR2 (blue) mice in response to current injections. B. Similar /-F slope in ChR2 mice: Spike frequencies to
step current injections in ChR2 mice were similar to those of the WT mice (p > 0.05, one-way ANOVA). C-D.
AP thresholds (C) and input resistances were similar between WT and ChR2 mice.

https://doi.org/10.1371/journal.pone.0178803.9004

88 + 15 5; ChR2: 76 + 15 s at the speed of 18 rpm; WT: 61 £ 10 s; ChR2: 50 + 10 at the speed of
30 rpm). These results indicate normal motor function in ChR2 mice.

Discussion

In the current study, we found a great decrease of amplitude and an increase of threshold in
short-latency MEPs evoked by transcranial magnetic and electrical stimulations, but no change
in long-latency MEPs evoked by cortical electrical stimulation in line 9 Thy1-ChR2 transgenic
mice. Whole cell recordings indicated no changes in the intrinsic properties and excitability of
layer V pyramidal neurons of the motor cortex in these mice. Motor behavioral assessments

Table 1. Electrophysiological properties of membrane and action potential.

Group n Vi (MV) Rinput (MQ) membrane time constant | AP threshold (mV) AP amplitude (mV) AP half width (ms)
Wild type 39 | -64.7+2.1 90.7+3.8 23.6+1.4 -48.8+1.0 92.3+1.1 1.6+0.03
Thy1-ChR2 28 | -63.3+0.8 91.6+6.0 25.1+1.2 -46.6+0.9 93.5+1.2 1.3+0.02
Abbreviations: AP, action potential; ChR2, channelrhodopsin-2

https:/doi.org/10.1371/journal.pone.0178803.t001
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Fig 5. No significant change in motor function in Thy1-ChR2 transgenic mice. A. Basso Mouse Scale (BMS)
locomotor scores were not different between wild type (WT) and ChR2 transgenic mice. B. Grid-walking test
showed no significant differences in paw drop ratios of both left and right hindlimbs between WT and ChR2 mice.
C-D. Rotarod test showed that there were no significant differences in the latency to fall at the speeds of 18 rpm (C)
and 30 rpm (D) between WT and ChR2 mice.

https://doi.org/10.1371/journal.pone.0178803.9005

also indicate no deficits in motor function. The results indicate specific impairment of short-
latency MEPs that are closely related to the function of reticulospinal tracts [20].

TMS is a well-established non-invasive brain stimulation technique that is useful for study-
ing brain excitability and plasticity in human and animals [21-23]. Our initial findings of
reduced TMS-induced MEPs in ChR2 mice are likely due to a lower efficacy of the TMS than
that of direct cortical electrical stimulation. TMS induces MEPs via a magnetic coil and usually
has low spatial precision. This may be particularly true when it is used for activating small
mouse brains [24, 25]. However, it was this low efficacy of TMS that helped reveal the reduced
motor response in ChR2 mice in vivo. This was confirmed by the increase in the threshold of
MEP evoked by transcranial electrical stimulation. Additionally, the similar MEP amplitudes
and latencies in response to strong percutaneous electric stimulation in WT and ChR2-expres-
sing mice (Fig 2C-2E) suggest that reduced brain excitability, rather than possible abnormali-
ties in descending motor tracts or neuromuscular coupling, is responsible for the reduced
TMS-induced MEPs.

Previous studies have characterized two types of MEPs that are different in waveform,
latency, and the involved motor pathways. The short-latency (5-7.5 ms) MEP has high ampli-
tude and brainstem origin. It likely involves reticulospinal tracts, because transection of the
midlateral funiculus severely compromises this component but transection of the rubrospinal
tract in dorsolateral funiculus does not [19, 26, 27] [20]. In contrast, the long-latency MEPs
appear as a set of polyphasic waves of variable latency (15-22 ms), with a prominent peak at
latency around 15 ms and mainly involves corticospinal tracts. Transecting the motor cortex
or dorsal corticospinal tract abolishes most of the long-latency MEPs but spares the short-
latency MEPs [18-20]. Our result of reduced amplitude of short-latency MEPs indicates
reduced excitability of reticulospinal tract in ChR2-YFP transgenic mice. Earlier studies also
showed no clear correlation between the amplitude of short-latency MEPs and functional
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recovery in rats after spinal cord injury [28], which may explain the observation of no signifi-
cant changes in motor behavior in ChR2 mice that have reduced MEP response.

In contrast to corticospinal and rubrospinal tracts which control fine motor movement, the
reticulospinal tract plays an major role in eliciting locomotion that coordinates rhythmic step-
ping movement ([29-31]. It originates from dispersed nuclei in the reticular formation of the
brainstem. An increased threshold of short-latency MEPs without changes in latency, wave-
form, and amplitude at maximal electrical stimulation (Fig 2B-2E) likely suggests reduced
excitability of reticular nuclei instead of impaired axonal tracts. At the cellular level, an
increase in AP threshold of these neurons may contribute to the observed increase in MEP
threshold. Because a high density of voltage-gated sodium channels in axon initial segment
(AIS) is essential for AP initiation [32], one explanation is that expression of exogenous ChR2
channels may reduce the expression or localization of endogenous voltage-gated sodium chan-
nels at the AIS. While it is unclear why reticulospinal neurons are specifically or more promi-
nently affected by ChR2 expression, several factors may potentially contribute to such specific
effect. These neurons are a group of brainstem locomotion neurons with unique molecular
characteristics and developmental profile that are different from corticospinal neurons. They
express homeodomain transcription factors including Lhx3 or Chx10 [33, 34]. During devel-
opment, they are the first supraspinal axons to reach the spinal cord and form discrete groups
with distinct anteroposterior and mediolateral locations in the hindbrain [35]. These unique
molecular and developmental features may make them more accessible to alterations induced
by transgenic expression. In Thyl-YFP transgenic mice, reticuospinal neurons in the brain-
stem are found to strongly express YFP [36, 37]. This enhanced expression of exogenous pro-
tein driven by Thyl may divert cellular resources so that the expression of intrinsic channel
protein such as sodium channels is decreased or its localization is interfered, which may
reduce the efficiency of action potential initiation and increase the threshold of TMS-evoked
MEPs. Consistently, long-term, high expression of ChR2 protein, through either in utero elec-
troporation of CAG::ChR2(H124R)-EYFP-WPRE construct or viral infection driven by
0CaMKII promoter, causes morphological abnormalities in axons and somata, suggesting that
high ChR2 expression may have a general effect on neuronal morphology [7]. However, the
current data do not allow us to exclude other potential changes in neural circuits in this line of
transgenic mice; whether neuronal excitability of reticular nuclei is indeed altered requires fur-
ther investigation.

We did not find significant changes in intrinsic properties of cortical pyramidal neurons,
including resting membrane potential, input resistance, and membrane time constant,
which is consistent with the finding that the long-latency MEPs, which have a cortical origin,
remained unchanged. The normal excitability of cortical pyramidal neurons in ChR2 trans-
genic mice is also consistent with previous studies that characterized and found unaltered
electrophysiological properties in ChR2-expressing neurons. For example, ChR2 expression
in cultured hippocampal neurons has no effect on their electrical properties and health [5].
Lentiviral expression of ChR2 for at least 1 week did not cause significant differences in neu-
ronal membrane resistance, resting membrane potential, and voltage change and spike rate
in response to current injections [5]. Specific expression of ChR2 at the axon initial segment
(AIS) of hippocampal neurons also did not reveal “significant” changes in passive and active
membrane properties [6].

Transgenic mice are routinely used in neuroscience research as model systems for visualiz-
ing neuronal structures and activity and for manipulating electrophysiological and molecular
functions [38-40]. The increased activation threshold for short-latency MEPs in Thyl-ChR2
mice suggests that introducing a new gene into neurons may affect other physiological proper-
ties. One striking example is that ChAT-ChR2-EYFP mice carry extra copies of the vesicular
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acetylcholine transporter gene, which leads to overexpression of the gene VAChT, consequent
increased cholinergic tone, and behavioral changes with improved motor endurance and
severe cognitive deficits [41]. While obvious phenotypic changes such as the ChAT-ChR2-
EYFP mice can be detected, subtler changes would require careful characterization and scru-
tiny. Therefore, it is important to take into account and control such effects in experimental
design and data interpretation. Particularly, comparisons should be made between groups of
ChR2-expressing mice with or without any treatment, instead of between groups of WT and
ChR2-expressing mice.

In conclusion, we report reduced short-latency MEPs in Thy1-ChR2 transgenic mice, as
indicated by the lower MEP amplitude induced by transcranial magnetic and electrical stimu-
lations. Long-latency MEPs and excitability of cortical layer V pyramidal neurons remain
intact. The results not only show specific impairment of the motor pathway in this particular
line of transgenic mice, but also suggest that transgenic mice may have altered physiological
function in addition to the targeted genetic manipulation in general.
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