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Summary:

Covariate-specific time-dependent ROC curves are often used to evaluate the diagnostic accuracy

of a biomarker with time-to-event outcomes, when certain covariates have an impact on the test

accuracy. In many medical studies, measurements of biomarkers are subject to missingness due to

high cost or limitation of technology. This article considers estimation of covariate-specific time-

dependent ROC curves in the presence of missing biomarkers. To incorporate the covariate effect,

we assume a proportional hazards model for the failure time given the biomarker and the covariates,

and a semiparametric location model for the biomarker given the covariates. In the presence of

missing biomarkers, we propose a simple weighted estimator for the ROC curves where the weights

are inversely proportional to the selection probability. We also propose an augmented weighted

estimator which utilizes information from the subjects with missing biomarkers. The augmented

weighted estimator enjoys the double-robustness property in the sense that the estimator remains

consistent if either the missing data process or the conditional distribution of the missing data

given the observed data is correctly specified. We derive the large sample properties of the proposed

estimators and evaluate their finite sample performance using numerical studies. The proposed

approaches are illustrated using the US Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.
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1. Introduction

Receiver Operating Characteristic (ROC) curve is a common tool for evaluating diagnostic

accuracy of a continuous biomarker by plotting true positive rate (TPR) against false positive

rate (FPR) at various threshold values (Metz, 1978). When covariates have an impact on

the predictive accuracy of a biomarker, it is important to adjust for the covariate effects

to ensure generalizability of the results to other different populations. Therefore, covariate-

specific ROC curves are widely used for evaluation of diagnostic accuracy of biomarkers

within specific subgroups (Liu and Zhou, 2011).

In prospective cohort studies, information on biomarkers and disease status is often col-

lected over time. Therefore, evaluation of biomarker accuracy with event time outcomes has

attracted much interest, see Pepe et al. (2008) for comprehensive reviews. With event time

outcomes, subjects are classified as cases or controls depending on their survival status,

and the biomarker accuracy can be evaluated at various time points of interest. Heagerty

and Zheng (2005) discussed several definitions of time-dependent TPR and FPR, where

instantaneous failures or cumulative failures are considered to define the cases, and dynamic

survivors or a fixed group of survivors are considered to define the controls.

In this manuscript, we consider two types of covariate-specific time-dependent ROC curves:

the Incident/Dynamic (I/D) ROC and the Cumulative/Dynamic (C/D) ROC (Heagerty and

Zheng, 2005). Let Z be a single marker or a combination of multiple markers, and X be a

vector of covariates that affect the failure time T . Without loss of generality, we assume

larger values of Z are associated with greater risks. The covariate-specific incident TPR,

cumulative TPR and dynamic FPR at cutoff point c are defined respectively as

TPRI(c; t, x) = P (Z > c | T = t,X = x),

TPRC(c; t, x) = P (Z > c | T 6 t,X = x),

FPRD(c; t, x) = P (Z > c | T > t,X = x).
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The I/D ROC curve and the C/D ROC curve are defined as

ROCI/D(p; t, x) = TPRI{[FPRD]−1(p; t, x); t, x}, and

ROCC/D(p; t, x) = TPRC{[FPRD]−1(p; t, x); t, x},

where p ∈ (0, 1). The I/D ROC curve is used to distinguish subjects failing at time t from

those failing after time t, whereas the C/D ROC is used to distinguish subjects failing by

time t from those failing after time t. Various approaches have been proposed to estimate

the covariate-specific time-dependent ROC curves in the literature. For example, Cai et al.

(2006) used generalized linear model concepts to characterize the shape of the ROC curve,

allowing covariates to impact accuracy directly. Zheng and Heagerty (2004) modeled the

marker distribution for cases and controls as a function of disease status, covariates and

disease onset time (cases only), and calculated the induced covariate-specific ROC curves.

Song and Zhou (2008) adopted a joint model which assumes that the failure time depends

on the biomarker and the covariates through a regression model, and that the biomarker

depends on the covariates through a location model.

The existing methods on estimating time-dependent ROC functions, with or without

covariate adjustment, are mostly developed for settings with complete observations. However,

in practice, values of biomarkers are not always observed due to limitations in measuring

technology or inhibitive measuring cost. Despite the popularity of the time-dependent ROC

modeling, the problem of missing biomarkers has not been well studied. In a related but

different setting, Liu et al. (2012) proposed an inverse probability weighting approach to

estimate the predictive values of biomarkers under the case-cohort sampling design, where

all cases and a random subset of the full cohort are selected (Prentice, 1986). They evaluated

the accuracy of biomarkers in the absence of covariates. In addition, the weight used to adjust

for the selection bias is proportional to the sampling fraction, which is assumed known.

To complement the existing work, we consider estimation of covariate-specific time-dependent
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ROC curves when the missingness process needs to be estimated. To incorporate covariate ef-

fects, we consider a joint modeling approach where the failure time depends on the biomarker

and the covariates through a proportional hazards model, and the biomarker depends on the

covariates through a semiparametric location model (Song and Zhou, 2008). To handle the

missing biomarkers, we propose an inverse probability weighted estimator, where individual

contributions are weighted inversely proportional to their selection probabilities. In real data

applications, the missingness process is rarely known. To implement the inverse probability

weighted estimator, we suggest a parametric approach for the estimation of the missingness

process. However, the estimator may result in a large bias, if the model for the missingness

process is misspecified. Using the projection method proposed by Robins et al. (1994), we

further propose a fully augmented weighted estimator, in which both the proportional haz-

ards model and the semiparametric location model are augmented. The resulting augmented

estimator enjoys the so-called “double robustness” property (Robins et al., 1994) in the sense

that the estimator remains consistent if either the missing data process or the conditional

distribution of the biomarkers given the observed data is correctly specified.

The rest of this article is organized as follows. In Section 2, we propose the simple weighted

estimators, which require correct specification of the missing data process. In Section 3, we

describe the fully augmented estimators, which incorporate information from subjects with

incomplete data. In Section 4, we develop large sample properties of the proposed estimators.

An extensive simulation study is conducted in Section 5. We illustrate the proposed approach

using an Alzheimer’s disease study in Section 6. General discussion is included in Section 7.

2. Simple Weighted Estimators

For subject i = 1, ..., n, let Ti, Ci, and Ri = min(Ti, Ci) denote the failure time, censoring

time, and observed time. Let δi = I(Ti 6 Ci) denote the censoring indicator. Let Xi be a

p-dimensional vector of covariates and Zi a biomarker value for subject i. We write Qi =
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(Zi, X
T
i )T . For simplicity, we assume that Ci and Ti are independent given Qi. When multiple

biomarkers are available, we combine them into a composite score for disease prediction, and

thus Zi could represent a combination of multiple markers. We assume the combination is

pre-specified and if one component is missing, the composite score Zi is considered as missing.

We assume the failure time Ti satisfies the proportional hazards model

λi(t) = λ0(t) exp(β0Zi + γ0
TXi), (1)

where λ0(t) is an unspecified baseline hazard function, and θ0 = (β0, γ0
T )T is a (p + 1)-

dimensional parameter. Let Vi be the missingness indicator taking 1 if Zi is observed and

0 otherwise. Let Wi = (Ri, Xi, δi) denote the observed data. We assume Zi is missing at

random in that π(Wi) = P (Vi = 1 | Wi) = P (Vi = 1 | Ri, Xi, Zi, δi). That is, given the

observed data Wi, the probability of observing Zi is conditionally independent of Zi.

Following the Bayes’ theorem, we write TPR and FPR as

TPRC(c; t, x) =

∫∞
c
{1− S(t | u, x)}dP (Z 6 u | X = x)∫∞

−∞{1− S(t | u, x)}dP (Z 6 u | X = x)
, (2)

TPRI(c; t, x) =

∫∞
c
{f(t | u, x)}dP (Z 6 u | X = x)∫∞

−∞{f(t | u, x)}dP (Z 6 u | X = x)
, (3)

FPRD(c; t, x) =

∫∞
c
{S(t | u, x)}dP (Z 6 u | X = x)∫∞

−∞{S(t | u, x)}dP (Z 6 u | X = x)
, (4)

where S(t | u, x) = P (T > t | Z = u,X = x) is the conditional survival function, and

f(t | u, x) = −dS(t | u, x)/dt is the conditional density function. To estimate TPR and FPR,

we need estimators for S(t | z, x), f(t | z, x) and P (Z 6 z | X = x). Under the proportional

hazards model, the survival function is S(t | z, x) = exp{−Λ0(t) exp(β0z + γ0
Tx)}, where

Λ0(t) =
∫ t
0
λ0(s)ds, and the density function is f(t | z, x) = λ0(t) exp(β0z + γ0

Tx)S(t | z, x).

A variety of methods have been proposed to handle missing covariates in the proportional

hazards model, see Paik and Tsai (1997); Chen and Little (1999); Wang and Chen (2001);

Wang et al. (2001); Qi et al. (2005); Luo et al. (2009); Xu et al. (2009). To fix the idea, we

focus on the inverse probability weighted estimating equation approach proposed by Qi et al.
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(2005), and indicate that other approaches can be applied as well. Let Ni(t) = δiI(Ri 6 t)

and Yi(t) = I(Ri > t) be the counting process and the at-risk process for subject i. The

simple weighted estimating equation in Qi et al. (2005) is given as

Uθ(θ) =
1

n

n∑
i=1

Vi
π(Wi)

∫ τ

0

{
Qi −

S(1)(θ, t)

S(0)(θ, t)

}
dNi(t),

where for k = 0, 1, 2, S(k)(θ, t) = n−1
∑n

i=1
Vi

π(Wi)
Yi(t)Q

⊗k
i exp(θTQi), with a⊗0 = 1, a⊗1 = a

and a⊗2 = aaT , and τ is the end of the study period. The simple weighted estimator θ̂ can

be obtained by solving Uθ(θ) = 0.

Since S(t | z, x) and f(t | z, x) are functions of both θ and Λ0(t), we also need to estimate

Λ0(t). By the property of the counting process, we have E(dNi(t) | Ft−) = Yi(t) exp(θT0Qi)λ0(t)dt,

where Ft is the σ-field generated by {(Ni(u), Yi(u)) : 0 6 u 6 t, i = 1, ..., n}. Therefore, the

weighted estimator for λ0(t)dt = dΛ0(t) with the plug-in estimator θ̂ is given by

dΛ̂0(t; θ̂) =
1

n

∑n
i=1{Vi/π(Wi)}dNi(t)

S(0)(θ̂, t)
. (5)

With the plug-in estimators θ̂ and dΛ̂0(t; θ̂), we can estimate S(t | z, x) and f(t | z, x) by

Ŝ(t | z, x) = exp{−Λ̂0(t) exp(β̂z+ γ̂Tx)}, and f̂(t | z, x)dt = dΛ̂0(t) exp(β̂z+ γ̂Tx)Ŝ(t | z, x).

To estimate P (Z 6 z | X = x), we further assume a linear regression model,

Zi = α0
TXi + εi, (6)

where εi is a zero-mean random variable with unknown distribution function H(·) and α0 is

a p-dimensional parameter. The model is equivalent to the semiparametric location model

P (Zi 6 z | Xi = x) = H(z − α0
Tx) considered by Song and Zhou (2008). The estimator α̂

can be obtained by solving the estimating equation Uα(α) = 0, where

Uα(α) =
1

n

n∑
i=1

Vi
π(Wi)

(Zi − αTXi)Xi.

The unknown distribution function H(z) is estimated by the weighted estimator

Ĥ(z) =
1

n

n∑
i=1

ViI(Zi − α̂TXi 6 z)

π(Wi)
,

and thus P (Z 6 z | X = x) is estimated by Ĥ(z − α̂Tx).
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Plugging the estimators for S(t | z, x), f(t | z, x) and P (Z 6 z | X = x) into equations

(2)-(4) leads to estimators T̂PRC(c; t, x), T̂PRI(c; t, x), F̂PRD(c; t, x). For example,

T̂PRC(c; t, x) =

∑n
i=1 Vi/π(Wi)

[
1− Ŝ{t | Zi − α̂T (Xi − x), x}

]
I{Zi − α̂T (Xi − x) > c}∑n

i=1 Vi/π(Wi)
[
1− Ŝ{t | Zi − α̂T (Xi − x), x}

] .

The resulting ROC estimators are denoted by R̂OCI/D(p; t, x) and R̂OCC/D(p; t, x).

In practice, the selection probability π(Wi) is often unknown. To implement the simple

weighted estimators, we postulate a parametric model, say πi(φ0) = π(Wi;φ0), to characterize

the missing data process, where φ0 is a finite dimensional parameter. Let `(φ) denote the

resulting log likelihood, i.e., `(φ) =
∑n

i=1 Vi log πi(φ)+(1−Vi) log{1−πi(φ)}. Then the score

function for φ is Uφ(φ) = n−1
∑n

i=1 Uφ,i(φ), where

Uφ,i(φ) =
Vi − πi(φ)

πi(φ){1− πi(φ)}
∂πi(φ)

∂φ
.

Let S(k)(θ, φ, t) = 1
n

∑n
i=1

Vi
πi(φ)

Yi(t)Q
⊗k
i exp(θTQi), k = 0, 1, 2. The estimators (θ̂P , φ̂) can be

obtained by simultaneously solving the estimating equations (Uθ(θ, φ)T , Uφ(φ)T )T = 0, where

Uθ(θ, φ) =
1

n

n∑
i=1

Vi
π(Wi;φ)

∫ τ

0

{
Qi −

S(1)(θ, φ, t)

S(0)(θ, φ, t)

}
dNi(t).

The corresponding estimator for dΛ0(t) is given by

dΛ̂P
0 (t; θ̂P , φ̂) =

1

n

∑n
i=1{Vi/π(Wi, φ̂)}dNi(t)

S(0)(θ̂P , φ̂, t)
. (7)

The resulting estimators of S(t | z, x), f(t | z, x) are denoted by ŜP (t | z, x) and f̂P (t | z, x).

Similarly, α̂P can be obtained by solving (Uα(α, φ)T , Uφ(φ)T )T = 0, where

Uα(α, φ) =
1

n

n∑
i=1

Vi
πi(φ)

(Zi − αTXi)Xi,

and the resulting estimator for H(z) is denoted by ĤP (z). Plugging ŜP (t | z, x), f̂P (t | z, x)

and ĤP (z) into equations (2)-(4) leads to estimators T̂PRC
P
, T̂PRI

P
, and F̂PRD

P
. For

example, T̂PRC
P

can be written as

T̂PRC
P
(c; t, x) =

∑n
i=1 Vi/πi(φ̂)

[
1− ŜP{t | Zi − α̂TP (Xi − x), x}

]
I{Zi − α̂TP (Xi − x) > c}∑n

i=1 Vi/πi(φ̂)
[
1− ŜP{t | Zi − α̂TP (Xi − x), x}

] .

The resulting estimators for ROC functions are denoted by R̂OC
P

I/D(p; t, x) and R̂OC
P

C/D(p; t, x).



ROC with missing biomarkers 7

3. Fully Augmented Weighted Estimators

While the parametric method in Section 2 provides a flexible scheme for modeling the missing

data process, the consistency of the ROC estimators still hinges on the correct specification of

the model for π(Wi). Moreover, the weighted estimating equation approach in Section 2 only

utilizes the subjects with complete measurements, which may result in a loss of information.

To address these issues, we develop fully augmented weighted estimators of ROC. The key

idea is to project the corresponding estimating equations constructed in Section 2 onto the

orthogonal complement of the tangent space for the nuisance missing data process, and then

construct new estimating equations by removing redundant information (Robins et al., 1994).

For theoretical presentation, for now we assume π(Wi) and f(Zi | Xi) are given. Following

Qi et al. (2005), we estimate θ by solving the following augmented estimating equations

UA(θ) =
1

n

n∑
i=1

Vi
π(Wi)

∫ τ

0

{
Qi −

S
(1)
A (θ, t)

S
(0)
A (θ, t)

}
dNi(t) +

1

n

n∑
i=1

AA
i (θ), (8)

where for k = 0, 1, 2,

S
(k)
A (θ, t) =

1

n

n∑
i=1

[
Vi

π(Wi)
Yi(t)Q

⊗k
i exp(θTQi) +

(
1− Vi

π(Wi)

)
Yi(t)E{Q⊗ki exp(θTQi) | Wi}

]
,

(9)

AA
i (θ) =

(
1− Vi

π(Wi)

)∫ τ

0

[
E{QidNi(t) | Wi} −

S
(1)
A (θ, t)

S
(0)
A (θ, t)

E{dNi(t) | Wi}
]
. (10)

Note that the subjects with missing biomarkers contribute to UA(θ) in two ways, one through

the augmentation term AA
i (θ) and the other through the risk set weighted average S

(k)
A (θ, t).

It is easily seen that, if π is correctly specified, equation (8) is unbiased even if f(Zi | Wi) is

mis-specified. On the other hand, if f(Zi | Wi) is mis-specified, equation (8) is also unbiased

even if π is incorrectly specified. Therefore, the augmented estimator θ̂A, obtained by solving

UA(θ) = 0, enjoys the so-called “double robustness” property (Robins et al., 1994; Wang and

Chen, 2001). In addition, under proportional hazards model, it can be shown that

f(Zi | Wi) =
exp{δi(β0Zi + γT0 Xi)} exp{−Λ0(Ri) exp(β0Zi + γT0 Xi)}f(Zi | Xi)∫

[exp{δi(β0Zi + γT0 Xi)} exp{−Λ0(Ri) exp(β0Zi + γT0 Xi)}f(Zi | Xi)]dZi
,
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where f(Zi | Xi) follows the semiparametric location model (6). We assume validity of the

proportional hazards model and allow for arbitrary error distribution in the location model.

Therefore, in our context, θ̂A is doubly robust in the sense that it is consistent if either π(Wi)

or f(Zi | Xi) is correctly specified.

To construct doubly robust estimators of ROC functions, we develop augmented weighted

estimators of dΛ0(t), α and H(z), respectively. Following the same principle, we give the

following augmented estimator of dΛ0(t):

dΛ̂A
0 (t; θ̂A) =

1

n

∑n
i=1 dNi(t)

S
(0)
A (θ̂A, t)

. (11)

In contrast to the simple weighted estimator dΛ̂0(t; θ̂) in (5), dΛ̂A
0 (t; θ̂A) has an augmentation

term S
(k)
A (θ, t) that incorporates information from incomplete observations. In addition, in

(11), the counting processes dNi(t) are averaged over all subjects, whereas in (5), dNi(t)

are averaged over subjects with complete observations. In Web Appendix B, we show that

dΛ̂A
0 (t; θ̂A) also has the double robustness property. By plugging in dΛ̂A

0 (t; θ̂A) and θ̂A, the

resulting estimators of S(t | z, x) and f(t | z, x)dt are denoted by ŜA(t | z, x) and f̂A(t | z, x)dt.

Similarly, the augmented weighted estimating equation for α is

UA
α (α) =

1

n

n∑
i=1

[
Vi

π(Wi)
(Zi − αTXi)Xi +

(
1− Vi

π(Wi)

)
E{(Zi − αTXi)Xi | Wi}

]
. (12)

Let α̂A denote the root of UA
α (α) = 0, and FZ(z | Wi) = E{I(Zi 6 z) | Wi}. The distribution

function H(z) is estimated by the augmented estimator

ĤA(z) =
1

n

n∑
i=1

{
Vi

π(Wi)
I(Zi − α̂TAXi 6 z) +

(
1− Vi

π(Wi)

)
FZ(z + α̂TAXi | Wi)

}
. (13)

Plugging ŜA(t | z, x), f̂A(t | z, x) and ĤA(z) into equations (2)-(4) leads to estimators

T̃PRC(c; t, x), T̃PRI(c; t, x) and F̃PRD(c; t, x). For example, letting Li = Zi − α̂TA(Xi − x),

we write F̃PRD(c; t, x) as∑n
i=1

Vi
π(Wi)

ŜA(t | Li, x)I(Li > c) +
∑n

i=1

{
1− Vi

π(Wi)

}∫∞
c
ŜA(t | u, x)dFZ{u− α̂TA(x−Xi) | Wi}∑n

i=1
Vi

π(Wi)
ŜA(t | Li, x) +

∑n
i=1

{
1− Vi

π(Wi)

}∫∞
−∞ ŜA(t | u, x)dFZ{u− α̂TA(x−Xi) | Wi}

.

The resulting estimators for ROC functions are denoted by R̃OCI/D(p; t, x) and R̃OCC/D(p; t, x).
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Our estimation procedures are fully augmented in the sense that the estimating equa-

tions and estimators UA(θ), dΛ̂A
0 (t; θ̂A), UA

α (α), ĤA(z) are all augmented. This ensures the

double robustness of {θ̂A, α̂A, ĤA(z), Λ̂A
0 (t; θ̂A)}. Therefore the resulting estimators of ROC

functions are also doubly robust. One problem with the augmented estimators is that it

does not guarantee the TPR and FPR functions are monotone, because of some negative

weighting of the data points induced by the (1− Vi/πi) term (Alonzo and Pepe, 2005). Our

numerical studies show that the augmented estimators do not show dramatic deviation from

monotonicity, therefore, the non-monotonicity is not a major concern in this manuscript.

The above augmented estimation approach assumes π(Wi), Λ0(t) and f(Zi | Xi) are given,

while all of them are usually unknown in practice. Qi et al. (2005) proposed a nonparametric

approach to estimate the unknown functions. However, their approach is not applicable in

the presence of high dimensional Xi due to the curse of dimensionality. In this manuscript,

we consider a parametric approach to estimate those functions. As illustrated in Section 2, we

can postulate a parametric model for π(Wi), say πi(φ0) = π(Wi;φ0). Similarly, we assume a

parametric distribution for the error term εi in the semiparametric location model for Zi|Xi.

Note that this assumption is not needed for the simple weighted estimator ĤP , because it has

the form of a weighted empirical estimator. On the contrary, the augmented estimator ĤA

involves estimation of f(Zi |Wi), thus further assumption is required. ĤA remains consistent

if either one of the two parametric models for π and f(Zi | Xi) is correctly specified.

Assume that the parametric distribution for εi is indexed by η0, and let Sc(Zi | Xi; η, α) =

∂
∂η

log f(Zi | Xi; η, α) denote the score function for η. The expression of the augmented

estimator also requires an estimator for dΛ0(t), and we denote it by dΛ̃0(t, φ). The choice

of dΛ̃0(t, φ) will be discussed later. Let χ0 = (θ0, α0, φ0, η0). As a result of replacing Λ0(t)

with Λ̃0(t, φ), E(· | Wi) in (9), (10) and (12) is denoted by Ẽ(· | Wi;χ), and the estimated

S
(k)
A (θ, t) in (9) is denoted by S̃

(k)
A (χ, t). Details about calculation of Ẽ(· | Wi;χ) can be found
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in Web Appendix E. Let UAP(χ) = (UAP
θ (χ)T , UAP

α (α, φ, η)T , UAP
η (α, φ, η)T , Uφ(φ)T )T , where

UAP
θ (χ) =

1

n

n∑
i=1

Vi
π(Wi, φ)

∫ τ

0

{
Qi −

S̃
(1)
A (χ, t)

S̃
(0)
A (χ, t)

}
dNi(t)

+
1

n

n∑
i=1

(
1− Vi

π(Wi, φ)

)∫ τ

0

{
Ẽ{QidNi(t) | Wi;χ} −

S̃
(1)
A (χ, t)

S̃
(0)
A (χ, t)

Ẽ{dNi(t) | Wi;χ}
}
,

UAP
α (α, φ, η) =

1

n

n∑
i=1

[
Vi

π(Wi, φ)
(Zi−αTXi)Xi+

(
1− Vi

π(Wi, φ)

)
Ẽ{(Zi−αTXi)Xi | Wi;χ}

]
,

UAP
η (α, φ, η) =

1

n

n∑
i=1

{
Vi

π(Wi, φ)
Sc(Zi |Xi; η, α)+

(
1− Vi

π(Wi, φ)

)
Ẽ{Sc(Zi |Xi; η, α) | Wi}

}
.

The parameters χ can be estimated by solving UAP(χ) = 0, and the resulting estimators are

denoted by (θ̂AP, α̂AP, φ̂, η̂). Similarly, the augmented estimator of dΛ0(t) is given by

dΛ̂AP
0 (t; θ̂AP, φ̂, η̂) =

1

n

∑n
i=1 dNi(t)

S
(0)
A (θ̂AP, φ̂, η̂, t)

.

where S
(0)
A (θ, φ, η, t) is given in equation (9) with parameterized π(Wi) and f(Zi | Xi). Let

F̂Z(z | Wi;χ) = Ê{I(Zi < z) | Wi;χ}, which is obtained with the plug-in estimator η̂. The

augmented estimator of H(z) is given by

ĤAP(z) =
1

n

n∑
i=1

{
Vi

π(Wi, φ̂)
I(Zi − α̂TAPXi 6 z) +

(
1− Vi

π(Wi, φ̂)

)
F̂Z(z + α̂TAPXi | Wi;χ)

}
.

Recall that the estimators Λ̂AP
0 , ĤAP, and φ̂, η̂ depend on the choice of dΛ̃0 in Ẽ(· | Wi;χ).

One choice is the simple weighted estimator given in (7). However, if π(Wi, φ) is misspecified,

the simple weighted estimator can deviate from the truth, which leads to incorrect estimation

of Ẽ and biased estimation of (Λ0, H, φ, η). To address this issue, we estimate the parameters

based on an EM-type iterative algorithm following similar ideas of Wang and Chen (2001)

and Zheng et al. (2005). First, we calculate the estimators Λ̂AP
0 , ĤAP, φ̂ and η̂ with the initial

estimator dΛ̃0(t) in (7). Second, we update Λ̃0(t) using Λ̂AP
0 (t) obtained from the previous

iteration and recalculate all the estimators with Λ̃0(t) = Λ̂AP
0 (t). Third, repeat the second

step until certain convergence criterion is met. With a slight abuse of notation, we still denote

the estimators obtained from this iterative algorithm by Λ̂AP
0 , ĤAP, φ̂ and η̂.

With the plug-in estimators Λ̂AP
0 , ĤAP, φ̂ and η̂, we denote the corresponding ROC
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estimators by R̃OC
P

I/D(p; t, x, π(φ̂), η̂) and R̃OC
P

C/D(p; t, x, π(φ̂), η̂). We show in the next

section that R̃OC
P

I/D and R̃OC
P

C/D are doubly robust, and they are asymptotically equivalent

to R̃OCI/D and R̃OCC/D respectively. This implies that estimation of π(Wi) and f(Zi | Xi)

does not affect the asymptotic distribution of R̃OC
P

I/D and R̃OC
P

C/D.

4. Inference in Large Samples

In this section, we outline theoretical results for the proposed estimators. As shown in Section

2, the ROC functions depend on both θ and Λ0(t). The asymptotics of the estimators for

θ have been established under various missing data processes (Wang and Chen, 2001; Qi

et al., 2005; Luo et al., 2009; Xu et al., 2009). However, to the best of our knowledge,

the asymptotics of Λ0(t) in the presence of missing data remain largely unexplored. As a

byproduct of our asymptotic results, we derive the limiting distributions of a variety of

estimators for Λ0(t). Therefore, our results complement the existing works in the literature.

In Lemma 1 and Lemma 3 in Web Appendix B, we establish the large sample properties of

Λ̂0(t; θ̂) and Λ̂P
0 (t; θ̂P , φ̂). In Lemmas 2 and 4, we establish the large sample properties of α̂,

Ĥ(z−α̂Tx) and α̂P , ĤP (z−α̂TPx). Let Z and X be the supports of Z and X, respectively. The

following theorems establish the asymptotic properties of the simple weighted estimators.

Theorem 1: Under conditions (A1)-(A9) in Web Appendix A, given (x, t) ∈ X × [0, τ ],

n1/2{T̂PRC(·; t, x)−TPRC(·; t, x)}, n1/2{T̂PRI(·; t, x)−TPRI(·; t, x)} and n1/2{F̂PRD(·; t, x)−

FPRD(·; t, x)} converge weakly to zero-mean Gaussian processes on Z with covariances given

in Web Appendix C. Moreover, n1/2{R̂OCI/D(·; t, x)−ROCI/D(·; t, x)} and n1/2{R̂OCC/D(·; t, x)−

ROCC/D(·; t, x)} converge weakly to zero-mean Gaussian processes on [p, q] with covariances

given in Web Appendix C and p, q defined in Web Appendix A.

Theorem 2: Under conditions (A1)-(A10) in Web Appendix A, if π(W ;φ0) is correctly

specified, then given (x, t) ∈ X×[0, τ ], n1/2{T̂PRC
P
(·; t, x)−TPRC(·; t, x)}, n1/2{T̂PRI

P
(·; t, x)−
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TPRI(·; t, x)} and n1/2{F̂PRD
P
(·; t, x) − FPRD(·; t, x)} converge weakly to zero-mean Gaus-

sian processes with covariances given in Web Appendix C. n1/2{R̂OC
P

I/D(·; t, x)−ROCI/D(·; t, x)}

and n1/2{R̂OC
P

C/D(·; t, x)−ROCC/D(·; t, x)} converge weakly to zero-mean Gaussian processes

on [p, q] with covariances given in Web Appendix C and p, q defined in Web Appendix A.

Theorem 2 shows that simple weighted ROC estimators with estimated selection probabil-

ities remain consistent, provided the selection probability model πi(φ0) is correctly specified.

In Lemmas 5 and 6 in Web Appendix B, we establish the asymptotic properties and the

double robustness properties of the augmented estimators Λ̂A(t; θ̂A), α̂A and ĤA(z). The

following theorem establishes the asymptotic properties of the resulting ROC estimators.

For theoretical presentation, we assume π and f(Zi | Wi) are known.

Theorem 3: Under conditions (A1)-(A9) in Web Appendix A, given (x, t) ∈ X × [0, τ ],

n1/2{T̃PRC(·; t, x)−TPRC(·; t, x)}, n1/2{T̃PRI(·; t, x)−TPRI(·; t, x)} and n1/2{F̃PRD(·; t, x)−

FPRD(·; t, x)} converge weakly to zero-mean Gaussian processes on Z with covariances given

in Web Appendix C. As a result, given (x, t) ∈ X×[0, τ ], n1/2{R̃OCI/D(·; t, x)−ROCI/D(·; t, x)}

and n1/2{R̃OCC/D(·; t, x)−ROCC/D(·; t, x)} converge weakly to zero-mean Gaussian processes

on [p, q] with covariances given in Web Appendix C and p, q defined in Web Appendix A.

In Web Appendix B, we show that Λ̂AP
0 (t; θ̂AP, φ̂, η̂) and ĤAP(z−α̂TAPx; φ̂, η̂) are asymptoti-

cally equivalent to Λ̂A
0 (t; θ̂A) and ĤA(z−α̂TAx) respectively. The following theorem summarizes

the asymptotic properties of the augmented ROC estimators with estimated π and f(Zi|Xi).

Theorem 4: Under conditions (A1)-(A14) in Web Appendix A, given (x, t) ∈ X×[0, τ ],

if both π(Wi) and f(Zi | Xi) are correctly specified, T̃PRC
P

(·; t, x, π(φ̂), η̂), T̃PRI
P

(·; t, x, π(φ̂), η̂)

and F̃PRD
P

(·; t, x, π(φ̂), η̂) are asymptotically equivalent to T̃PRC(·; t, x), T̃PRI(·; t, x) and

F̃PRD(·; t, x) on Z, respectively. In addition, R̃OC
P

I/D(·; t, x, π(φ̂), η̂) and R̃OC
P

C/D(·; t, x, π(φ̂), η̂)

are asymptotically equivalent to R̃OCI/D(·; t, x) and R̃OCC/D(·; t, x) on [p, q], respectively.
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Theorem 4 implies that estimation of π(Wi) and f(Zi | Xi) does not affect the asymptotic

properties of the augmented estimators. This is because the derivatives of the estimating

equations such as UAP
θ (χ) with respective to η and φ converge to zero in probability. By the

Taylor expansion, the error of estimating η and φ is asymptotically ignorable. Note that,

this property requires correct specification of both π(Wi) and f(Zi | Xi). In practice, it is of

interest to study the variance formula when one component is misspecified. In Web Appendix

D, we briefly discuss the asymptotics of the augmented estimators under misspecified models.

Although we have derived the asymptotic distributions of the proposed estimators, it is

intractable to obtain the explicit analytic expressions for the variance-covariance processes.

To alleviate this difficulty, we approximate the limiting distributions using resampling tech-

niques, as proposed and used by Parzen et al. (1994); Cai and Pepe (2002) and others. Details

about the variance estimation procedure can be found in Web Appendix E.

5. Simulation Study

We conduct extensive simulation studies to compare the performance of the augmented

weighted estimators with that of the simple weighted estimators and the estimators from

the complete-case analysis. The sample size is n = 500 and the number of simulation

replications is 300. The covariate Xi1 is generated from uniform (-1, 1), and Xi2 is generated

from a Bernoulli distribution with mean 0.5. The biomarker Zi is generated from a normal

distribution with mean −Xi1 − 0.5Xi2 and variance 1, that is, αT0 = (−1,−0.5). The failure

time Ti is generated according to the proportional hazards model, with θT0 = (1.5, 1.5, 1.5),

and λ0(t) = 0.1, which results in a median survival time of 4. The censoring time Ci followed

a uniform distribution with the upper limit selected to yield a censoring rate of 40%.

We evaluate the following estimators for the ROC functions: (1) the estimators based

on the full-cohort, (2) the estimators from the complete-case analysis (CC), (3) the simple

weighted estimator with the true π, denoted as SWE-π, (4) the simple weighted estimator
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with the estimated π, denoted as SWE-π̂, (5) the augmented weighted estimator with true

π and true f(Z|X), denoted as AWE-π-fZ|X , (6) the augmented weighted estimator with

estimated π and estimated f(Z|X), denoted as AWE-π̂-f̂Z|X , and (7) the augmented weighted

estimator with misspecified f(Z|X), denoted as AWE-π̂-f̂Z|X1 , where a misspecified model

Zi = αXi1 + εi, εi ∼ N(0, σ2) is used to model Zi|Xi. Both cumulative and incident ROC

curves are evaluated at t = 5, X1 = 0, X2 = 1, and FPR = 0.1, 0.3, 0.5. We consider two sets

of simulation scenarios, with different missingness probabilities for the biomarker Zi.

Under the first simulation setting, the selection probability is πi = 0.7δi+0.3(1−δi), which

results in 46% of missingness. Table 1 exhibits the results for the various estimators under

the first simulation scenario. Bias is the empirical bias. SE denotes the square root of the

sample variance of the estimates. ASE denotes the average of the standard error estimates

using methods discussed in Web Appendix E. The 95% coverage probability is constructed

using ASE. For the estimators with π̂, π is estimated as a function of W by fitting the

logistic regression, thus the missing data process is correctly specified. The complete-case

analysis yields large bias because the selection probability is strongly associated with the

outcome variable δ. All remaining estimators show negligible bias, which agrees with the

consistency properties of SWE and AWE under the correctly specified missing data model.

Comparing the efficiency of the proposed estimators, we find that SWE-π̂, AWE-π̂-f̂Z|X

and AWE-π-fZ|X have comparable efficiency with SWE-π. Note that, although it can be

shown that (θ̂P, α̂P, Λ̂
P
0 , ĤP) and (θ̂A, α̂A, Λ̂

A
0 , ĤA) have higher efficiency than (θ̂, α̂, Λ̂, Ĥ),

this result may not be generalizable to the ROC estimators, because TPR and FPR are

nonlinear functions of (θ, α,Λ0, H), and the correlation among the estimators of (θ, α,Λ0, H)

is difficult to characterize. This explains why we do not observe a substantial efficiency gain

of AWE-π-fZ|X over SWE-π. The augmented estimator with misspecified Z|X, AWE-π̂-

f̂Z|X1 , is also unbiased due to its double robustness property, but it shows larger SE than
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its competitors. For unbiased estimators, the estimated standard errors track the empirical

standard errors well, and the coverage probabilities are close to the nominal level.

Under the second simulation setting, the selection probability is given by πi = 1/{1 +

exp(3 − 0.8Ri − 0.5X2
1i − X1i − 0.5δi)}, which results in 42% of missingness. For the pur-

pose of comparison, we report estimators with misspecified π̂i, where πi is estimated using

logistic regression with δi as covariate only, and also estimators with correctly specified π̂i,

where πi is estimated using logistic regression with covariates Gi = (Ri, X
2
i1, Xi1, δi). The

simulation results are summarized in Table 2. Similar to the first setting, the complete-case

analysis leads to biased results. In addition, SWE-π̂(δ) also yields substantial bias, while

AWE-π̂(δ)-f̂Z|X remains consistent. This agrees with our theoretical results that the simple

weighted estimators rely on the correct specification of the missing data process, whereas the

augmented weighted estimators are doubly robust. Similar to the first setting, the estimators

with correctly specified π̂, SWE-π̂(G) and AWE-π̂(G)-f̂Z|X , have comparable efficiency as

SWE-π. The augmented estimator with misspecified Z|X, AWE-π̂(G)-f̂Z|X1 , is consistent

and has slightly larger SE than its competitors. To further explore the performances of the

SWE and AWE, we compare the estimated TPR and FPR using different approaches in Table

3. The same conclusion is drawn. In particular, SWE-π̂(δ) yields substantial bias in TPRI,

TPRC and FPR, while the augmented estimators show small bias for all these quantities.

Additional simulation results with varying sample sizes, censoring rates, missing propor-

tions, and a nonconstant baseline hazard rate can be found in Web Appendix F.

In summary, we find that the AWE is consistent provided one of the models for π and Z|X

is correctly specified. In addition, AWE achieves similar or higher efficiency than SWE-π, and

its standard errors and confidence intervals can be well approximated using the resampling

methods. These observations hold for both ROC and TPR, FPR estimation. Based on our

simulation results, we recommend the use of the augmented estimators in practice.
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[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

6. Application to the Alzheimer’s Disease Neuroimaging Initiative Study

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) study is a research investigation

designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early

detection and tracking of Alzheimer’s disease (AD) (quoted from http://adni.loni.ucla.edu/).

The study is supported by the NIH, private pharmaceutical companies, and nonprofit organi-

zations. Enrollment target was 800 participants, including 400 subjects diagnosed with mild

cognitive impairment (MCI), 200 subjects with early AD and 200 elderly control subjects.

Participants were enrolled on a rolling basis, and were evaluated every six months. One of the

major goals of the ADNI study is to identify biomarkers that are associated with progression

from MCI to AD. Sensitivity and specificity were considered important statistical techniques

for assessing biomarkers in the disease progression.

We analyze the dataset for the 393 MCI patients, using onset of AD as the event outcome.

The biomarkers include cognition, genetics, neuroimaging, and cerebrospinal fluid measures,

which are subject to missing values. Patient demographics, such as age, gender, education and

Apolipoprotein E (ApoE), are completely observed. To illustrate our approach, we evaluate

the diagnostic accuracy of the neuroimaging biomarkers, while adjusting for age and ApoE.

We consider two neuroimaging biomarkers: hippocampus volume and ventricular volume,

because both hippocampus and ventricle are primary brain regions that modulate cognitive

function. To avoid overestimation, we use a predefined rule (take the difference) to combine

the two biomarkers after standardization. Using the previously introduced notations, Zi is

the composite score of the baseline neuroimaging biomarkers, X1i is the baseline age, X2i is
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the ApoE status, and Ti is the time to AD since enrollment. Among these 393 MCI patients,

118 had missing neuroimaging biomarkers, resulting in about 30% of missingness.

We fit logistic regression models to the selection indicator Vi. A model selection procedure

is performed with Ti, δi, X1i, X2i and the quadratic and interaction terms of these variables

as candidate predictors. The best model is selected using Akaike information criterion, which

includes Ti, δi and their interaction as predictors. We then estimate the ROC curves using the

simple weighted estimator, the augmented weighted estimator as well as the complete-case

analysis, with π̂ estimated from the selected logistic regression model.

The upper panels of Figure 1 exhibit the estimated cumulative ROC curves evaluated at

t = 24 month, for individuals of 75 years old with ApoE4 positive and ApoE4 negative

respectively. The lower panels of Figure 1 present the corresponding incident ROC curves.

It appears that the estimated ROC curves and the 95% pointwise confidence intervals (CIs)

using three approaches are very close. For clarity of presentation, we only show the CIs of

the augmented estimator. Though the estimated ROC curves are similar using all three

approaches, the estimated TPR and FPR show some differences. Specifically, as shown

in Table 4, the complete-case estimator yields lower TPR and FPR than the other two

estimators. Because sensitivity (TPR) and specificity (1 − FPR) are the most clinically

relevant quantities in AD research, it is important to find an estimator that is unbiased in

these quantities. We advocate the use of the augmented weighted estimator, because it is

more robust to model misspecification.

In the following, we summarize the analytical results obtained from the augmented esti-

mator. The cumulative ROC curves show that the combined marker has moderate capacity

for discriminating 75 years old MCI individuals who would experience AD in the next 24

months from those who would not. In particular, the estimated AUC is 0.69 (CI: 0.63-0.75)

for the ApoE4 positive group, and 0.66 (CI: 0.61-0.70) for the ApoE4 negative group. For
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the incident ROC curves, the estimated AUC is 0.64 (CI: 0.60-0.68) for the ApoE4 positive

group, and 0.63 (CI: 0.59-0.67) for the ApoE4 negative group. Figure 2 shows the AUC as a

function of time using different estimators. The C/D AUC is slightly increasing over time,

suggesting that the combined marker has higher accuracy in predicting late onset of AD.

The difference of C/D AUC in the two ApoE groups shows the impact of ApoE4 on the

classification accuracy of the biomarkers.

[Figure 1 about here.]

[Figure 2 about here.]

[Table 4 about here.]

7. Discussion

Missing biomarker problem is commonly encountered in time-to-event data. Existing meth-

ods on estimating the time-dependent accuracy measures of biomarkers are mainly de-

veloped for complete data. In the presence of missing biomarkers, the naive complete-

case analysis may lead to inconsistent and inefficient estimation. Therefore, it is urgent

to develop estimation procedures that account for the missingness effect. The proposed

simple weighted estimators correct the bias by inversely weighting each completely observed

subject by its selection probability, and they are shown to be consistent when the selection

probability is correctly specified. Furthermore, we propose augmented weighted estimators

which are robust against misspecification of the selection probability. Both theoretical and

numerical results suggest that the augmented weighted estimator outperforms the complete-

case analysis and the simple weighted estimator, because it remains consistent if either the

selection probability or the missing data given the observed data is correctly specified, and

it often has comparable or improved efficiency than the other estimators. We suggest the use

of the augmented weighted estimators, especially when the selection probability is unknown.
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In addition to studying biomarker accuracy at a given time point t, it is often of interest to

evaluate the biomarker’s overall predictive accuracy. Heagerty and Zheng (2005) proposed a

global summary measure for the time-dependent ROC curve, which is defined as: C = P (Zj >

Zk | Tj < Tk). To incorporate covariate effect, we extend their definition to a covariate-

specific summary measure: Cx = P (Zj > Zk | Tj < Tk, Xj = Xk = x). Cx characterizes the

probability that, among subjects with covariate values x, those who fail at an earlier time have

larger marker values. To estimate this summary measure, we write it as Cx = 2
∫
t
AUCI/D(t |

x)f(t | x)S(t | x)dt, where AUCI/D can be estimated by numerical integration under the I/D

ROC curves, and f(t | x), S(t | x) can be estimated under both the location model and the

proportional hazards model. We have established augmented estimators for each component,

thus the resulting estimator for Cx also inherits the double robustness property.

There are several directions for future research. First, in this manuscript, we assume the

covariates are fully observed. It would be of interest to extend our method to accommodate

missingness in both biomarkers Zi and covariates Xi, where Xi can be partitioned into

fully observed covariates Xc
i and covariates subject to missingness Xm

i . Second, we have

confined our attention to right censored survival data. In practice, it might be challenging

for clinicians to identify exact time of disease onset, thus the survival outcomes might be

subject to interval censoring. It is an important extension to study biomarker accuracy under

both missingness in biomarkers and interval censoring in survival outcomes. Finally, the

proposed ROC estimation approaches are built on the proportional hazards model. To relax

the model assumption, one can consider more flexible models such as the semiparametric

transformation model. Further investigation is warranted.

8. Supplementary Materials

Web Appendices, Tables referenced in Sections 3, 4, 5, and the R code implementing the new

methods are available with this paper at the Biometrics website on Wiley Online Library.
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Figure 1. Time-dependent ROC curves for neuroimaging biomarkers in the ADNI study.
The upper panels are cumulative ROC curves at t =24, for individuals with X1 = 75, X2 = 1
and X1 = 75, X2 = 0 respectively. The lower panels are incidence ROC curves at t = 24, for
individuals with X1 = 75, X2 = 1 and X1 = 75, X2 = 0 respectively. Solid lines represent
the fully augmented estimator, with 95% point-wise confidence interval in shaded areas.
Dashed lines represent the simple weighted estimator. Dotted lines represent the complete-
case estimator.
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Figure 2. AUC as a function of time for neuroimaging biomarkers in the ADNI study.
The upper panel shows the AUCs for the cumulative ROCs and the lower panel shows the
AUCs for the incidence ROCs. For both panels, the black curves pertain to individuals with
X1 = 75, X2 = 1 and the gray curves pertain to individuals with X1 = 75, X2 = 0. Solid
lines represent the fully augmented estimator. Dashed lines represent the simple weighted
estimator. Dotted lines represent the complete-case estimator.
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Table 1
Simulation results for ROC estimators evaluated at t = 5, X1 = 0, and X2 = 1 under the first scenario. B is the

empirical bias (× 1000); SE is the sample standard error (× 1000); ASE is the average theoretical standard errors
(× 1000); CP is the coverage probability of the 95% confidence interval (× 100).

Incident ROC Cumulative ROC

Approach B SE ASE CP B SE ASE CP

v = 0.1

Full cohort 0 17 17 96.7 -1 24 24 94.0
CC -46 18 19 31.5 -4 34 32 93.2

SWE-π 2 24 25 94.9 2 32 34 96.2
SWE-π̂ 1 23 25 96.9 1 32 33 96.9

AWE-π-fZ|X 3 25 23 95.3 4 34 33 93.6

AWE-π̂-f̂Z|X 3 24 23 95.3 4 33 32 94.3

AWE-π̂-f̂Z|X1 3 24 23 93.6 4 33 33 93.2

v = 0.3

Full cohort -1 19 19 96.2 0 14 14 94.9
CC -53 24 25 42.3 -6 20 19 92.6

SWE-π -1 29 29 95.6 0 19 21 95.6
SWE-π̂ -2 27 29 96.9 0 18 20 96.3

AWE-π-fZ|X 1 29 28 94.3 3 21 20 93.1

AWE-π̂-f̂Z|X 1 29 28 95.0 2 21 20 93.1

AWE-π̂-f̂Z|X1 2 30 28 93.2 3 21 21 92.9

v = 0.5

Full cohort 0 13 14 97.1 0 8 8 95.3
CC -38 20 20 55.2 -5 11 11 93.4

SWE-π -1 21 22 94.0 0 10 13 96.9
SWE-π̂ -1 20 22 95.3 0 10 11 95.9

AWE-π-fZ|X 1 22 21 93.2 2 12 12 94.0

AWE-π̂-f̂Z|X 1 21 21 94.3 1 12 11 92.3

AWE-π̂-f̂Z|X1 0 23 21 92.2 1 12 12 94.3
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Table 2
Simulation results for ROC estimators evaluated at t = 5, X1 = 0, and X2 = 1 under the second scenario. G denotes

(R,X1, X
2
1 , δ). B is the empirical bias (× 1000); SE is the sample standard error (× 1000); ASE is the average

theoretical standard errors (× 1000); CP is the coverage probability of the 95% confidence interval (× 100).

Incident ROC Cumulative ROC

Approach B SE ASE CP B SE ASE CP

v = 0.1

Full cohort 0 17 17 97.1 -1 25 24 93.2
CC 61 28 29 46.6 -112 40 43 20.8

SWE-π -2 30 31 95.6 -5 56 52 91.3
SWE-π̂(δ) -12 22 24 95.1 -165 43 46 5.3
SWE-π̂(G) 1 28 30 96.1 -5 55 47 90.3

AWE-π-fZ|X 6 32 31 95.1 7 57 57 93.7

AWE-π̂(δ)-f̂Z|X 4 25 21 90.8 2 34 36 94.6

AWE-π̂(G)-f̂Z|X 2 30 31 97.6 4 54 57 93.2

AWE-π̂(G)-f̂Z|X1 7 33 32 92.1 8 60 57 90.7

v = 0.3

Full cohort -1 19 19 96.1 0 14 14 95.1
CC 59 27 28 40.2 -46 26 27 61.7

SWE-π -1 33 34 92.2 -2 31 32 94.2
SWE-π̂(δ) -13 25 27 97.5 -87 29 31 12.6
SWE-π̂(G) 1 31 34 94.6 -1 30 27 91.7

AWE-π-fZ|X 6 33 35 96.6 5 31 31 94.2

AWE-π̂(δ)-f̂Z|X 4 27 26 91.8 4 20 22 96.1

AWE-π̂(G)-f̂Z|X 3 34 35 96.6 3 29 32 92.7

AWE-π̂(G)-f̂Z|X1 6 35 36 93.1 7 33 33 92.6

v = 0.5

Full cohort 0 13 14 98.5 0 7 8 96.6
CC 39 18 18 84.5 -18 15 15 84.5

SWE-π 1 24 25 92.7 -1 16 21 95.1
SWE-π̂(δ) -8 19 21 96.6 -42 17 18 34.5
SWE-π̂(G) 1 23 24 95.1 0 16 16 94.2

AWE-π-fZ|X 5 25 26 95.1 3 17 19 95.1

AWE-π̂(δ)-f̂Z|X 3 19 18 91.3 2 10 12 97.1

AWE-π̂(G)-f̂Z|X 3 26 27 94.2 3 16 18 94.7

AWE-π̂(G)-f̂Z|X1 4 26 26 90.2 4 18 20 94.0
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Table 3
Simulation results for TPR and FPR estimators evaluated at t = 5, (X1, X2) = (0, 1) under the second scenario. G

denotes (R,X1, X
2
1 , δ). B is the empirical bias (× 1000); SE is the sample standard error (× 1000); ASE is the

average theoretical standard errors (× 1000); CP is the coverage probability of the 95% confidence interval (× 100).

Incident TPR Cumulative TPR FPR

Approach B SE ASE CP B SE ASE CP B SE ASE CP

z = -1.4

Full cohort 0 20 19 96.1 0 8 7 94.6 0 37 40 96.7
CC -12 25 23 92.9 -39 19 16 28.8 -90 39 38 40.2

SWE-π -1 32 28 93.4 -2 17 20 95.6 -3 49 53 96.7
SWE-π̂(δ) 10 23 21 88.5 -20 16 13 70.1 25 39 40 92.9
SWE-π̂(G) -1 32 27 94.0 -1 18 15 93.4 -4 49 53 93.8

AWE-π-fZ|X 3 32 33 94.0 2 16 21 96.9 -4 49 51 96.1

AWE-π̂(δ)-f̂Z|X 1 26 28 95.6 0 11 14 93.4 -5 47 46 94.0

AWE-π̂(G)-f̂Z|X 1 32 32 95.6 1 16 17 96.1 -4 50 50 95.1

AWE-π̂(G)-f̂Z|X1 5 33 23 92.6 2 17 20 95.8 -3 45 50 97.6

z = -1.1

Full cohort 0 30 28 94.0 0 13 11 92.6 2 38 38 94.6
CC -17 39 34 88.0 -70 31 25 23.3 -83 38 34 34.7

SWE-π -1 48 42 91.8 -3 30 26 91.8 -2 51 51 95.1
SWE-π̂(δ) 15 38 33 88.5 -42 29 21 57.6 30 41 41 90.7
SWE-π̂(G) 0 47 42 90.7 -2 29 24 90.6 -2 49 51 91.3

AWE-π-fZ|X 4 50 50 93.4 3 29 31 94.0 -3 51 49 92.5

AWE-π̂(δ)-f̂Z|X 1 42 44 96.7 2 20 24 97.2 -5 48 45 93.5

AWE-π̂(G)-f̂Z|X 2 49 50 94.6 2 26 26 93.5 -3 51 48 91.8

AWE-π̂(G)-f̂Z|X1 7 49 49 95.3 5 28 29 93.0 0 47 48 95.3

z = -0.8

Full cohort 1 37 37 95.1 1 19 17 91.8 2 29 30 96.1
CC -18 48 44 97.5 -115 43 35 10.8 -63 30 26 35.8

SWE-π 1 58 55 92.4 -4 44 39 90.4 1 43 42 95.1
SWE-π̂(δ) 25 49 45 91.3 -75 42 31 38.5 30 37 37 91.8
SWE-π̂(G) 0 58 55 92.4 -4 43 37 89.6 -2 40 41 92.3

AWE-π-fZ|X 3 61 61 92.4 4 44 43 92.9 -3 43 39 92.4

AWE-π̂(δ)-f̂Z|X -3 52 58 97.2 0 30 37 98.3 -7 37 37 92.9

AWE-π̂(G)-f̂Z|X -1 59 60 92.9 3 41 41 94.0 -5 41 38 90.9

AWE-π̂(G)-f̂Z|X1 5 61 60 94.4 7 44 41 91.2 -4 40 38 92.1
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Table 4
Estimates and SEs for time-dependent TPR and FPR in the ADNI study, evaluated at t = 24, X1 = 75, and

X2 = 0, 1.

X1 = 75, X2 = 0 X1 = 75, X2 = 1

Approach z = -0.3 z = 0.1 z = 0.5 z = -0.3 z = 0.1 z = 0.5

Incident TPR

CC 0.78 (0.04) 0.49 (0.06) 0.20 (0.04) 0.83 (0.03) 0.54 (0.05) 0.22 (0.03)
SWE-π̂ 0.82 (0.03) 0.52 (0.04) 0.23 (0.04) 0.85 (0.03) 0.56 (0.05) 0.24 (0.04)

AWE-π̂-f̂Z|X 0.82 (0.03) 0.53 (0.04) 0.24 (0.04) 0.87 (0.03) 0.57 (0.05) 0.24 (0.04)

Cumulative TPR

CC 0.81 (0.03) 0.53 (0.06) 0.22 (0.04) 0.85 (0.02) 0.62 (0.05) 0.26 (0.04)
SWE-π̂ 0.84 (0.02) 0.56 (0.04) 0.26 (0.04) 0.87 (0.03) 0.63 (0.05) 0.29 (0.04)

AWE-π̂-f̂Z|X 0.84 (0.02) 0.56 (0.04) 0.26 (0.04) 0.87 (0.03) 0.64 (0.05) 0.30 (0.04)

FPR

CC 0.66 (0.04) 0.31 (0.03) 0.11 (0.02) 0.67 (0.03) 0.35 (0.05) 0.11 (0.03)
SWE-π̂ 0.69 (0.02) 0.34 (0.02) 0.12 (0.02) 0.69 (0.03) 0.36 (0.05) 0.12 (0.02)

AWE-π̂-f̂Z|X 0.69 (0.03) 0.34 (0.02) 0.12 (0.02) 0.70 (0.03) 0.38 (0.05) 0.12 (0.02)


