DEVELOPMENT OF A MICROFLUIDIC GAS GENERATOR FROM AN EFFICIENT FILM-BASED MICROFABRICATION METHOD

Yuanzhi Cao1, Jacob Bontrager-Singer1, Mahmoud R. Zamani Farahani1, Dennis D. Meng2, Whitney H. Yu1 and Likun Zhu1

1 Indiana University-Purdue University Indianapolis and 2 University of Texas at Arlington, USA

ABSTRACT

We report the development of a microfluidic gas generator using polymer film-based microfabrication method. The method is time and cost efficient and capable of fabricating microfluidic devices with feature resolution lower than 100 µm. Complicated 3-dimensional devices can be fabricated by aligning and stacking multiple layers of patterned polymer (polystyrene, polycarbonate) films and double-sided tapes which are obtained from a digital craft-cutter. Integrated with functional features like Pt catalyst, the device can generate a variety of gas (O2, H2, etc) through controllable catalytic reaction.

KEYWORDS: Microfluidic gas generator, polystyrene, digital craft-cutter, film-based microfabrication

INTRODUCTION

Recently, tape&film-based microfabrication method has been studied for rapid prototyping of microfluidic devices due to its low cost and ease of fabrication [1]. But most of the reported film-based microfluidic devices are simple single-layer patterned 2-dimentional (2D) designs, which have limited potential applications. In this paper, we present the design, fabrication and testing results of a 3-dimentional (3D) microfluidic gas generator prototype. This gas generator is used as an example to introduce our new approach of film-based microfabrication method towards lab-use microfluidic research, which usually requires constant change of design and prefers low fabrication cost and short fabrication period. The prototype is a film-based comprehensive microfluidic gas generator that integrates self-circulation, self-regulation, catalytic reaction, and gas/liquid separation. Time and economy efficiency are the biggest merit of this method. The only required facility during the whole process is a digital craft-cutter.

THEORY

The working principle of the device is depicted in Fig.1. Briefly, when reactant solution comes into contact with the catalyst, the generated gas bubble (b1) will be pushed rightward due to the check valve, thus pushing everything in the reaction channel rightward. When the bubble (b2) reaches the hydrophobic porous membrane, it will be dragged rightward due to hydrophilicity difference and be vented out (b3) and collected. Therefore, self-circulation in the device is achieved and new reactant solution will be pumped into the reaction channel to react until the valve is closed which will cause a self-regulation. The
film-based prototype is an alternate version of the silicon-based self-circulating self-regulating gas generator developed by Zhu and Meng [2].

EXPERIMENTAL

Fig.2 shows the schematic of the film-based prototype. It consists of 15 layers of films, tapes, glass slide, tubing connectors, and cube support. As shown in Fig.3, the prototype device was obtained by sequentially aligning and stacking multiple layers of patterned films and double-sided Kapton tape. The patterns were obtained by a digital craft-cutter (Graphtec FC2250, Graphtec America, Irvine, CA) from CAD drawings. The 3D structure was made from both the pattern and the thickness of the layer material, as shown in Fig.4. Besides, functional features can be easily added into the device. For instance, Pt-black was partially sprayed on the tape layer for catalytic reaction using a shadow mask, and nanoporous membrane was cut in the desired shape and stack-placed in position as the gas/liquid separator. The self-circulation and self-regulation functions were achieved by capillary force difference in different channels. As shown in Fig.4, it can be achieved by fabricating different channel depths and treating the surface of certain channel into hydrophilic and leaving others hydrophobic. The treatment for polystyrene (PS) film was achieved by spraying Lotus Leaf® hydrophilic coating or using oxygen plasma machine [3].

![Diagram of the film-based prototype](image)

Figure 3: BOM view of the design. (1) Tubing connector for inlet and outlet. (2) Glass slide with two drilled holes. (3) PS film (50 µm). (4) Double-sided tape (70 µm). (5) PS film (125 µm). (6) Pt-black catalyst. (7) Nanoporous hydrophobic membrane for gas/liquid separation. (8) Gas collector. (9) Tube support.

![Sectional schematic of the device](image)

Figure 4: Sectional schematic of the device. Overall dimension of the main body is 76.2×25.4×2.135 mm, the dimension of the Pt reaction channel is 1×10×0.585 mm. The interior of the reaction channel is specially treated to be partially hydrophilic and partially hydrophobic in order to achieve self-pumping.

![Gas generation profiles for different reactants](image)

Figure 5: Gas generation profiles for different reactants.
RESULTS AND DISCUSSION

The device was tested with H₂O₂ solutions (for O₂) and NH₃BH₃ solutions (for H₂) at different concentrations. A pressure difference (1 psi) was applied across the gas/liquid separation membrane to provide better venting. The generated gas flow rate was measured by an electronic mass flow meter (FMA-1614A, Omega, Stamford, CT), and liquid pumping rate was measured by monitoring the movement of a liquid/gas meniscus. The gas generation profiles are shown in Fig.5 and the summarized characteristics are given in Table 1. Fig. 5 shows that higher reactant concentration causes higher gas generation rate. The fluctuation of gas generation rate is due to the pulsatile pumping of this self-pumping mechanism. It is expected that multiple parallel channels can make the gas generation profile smooth due to the channels interactions. Fig.6 shows a series of snapshots, each at 0.5 s time interval, which recorded the self-pumping gas generation process in the microchannel. The newly generated bubble (b1) expands and pushes b2 rightward, and at the same time, b3 is vented out which creates a rightward dragging force. This provides additional rightward pumping force which keeps the process going repeatedly.

CONCLUSION

We have successfully demonstrated a microfluidic device fabrication method with the self-circulating self-regulating gas generator as an example. The method shows great potential for scientific research because it provides researchers with a fast yet accurate testing solution in the area of microfluidics.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under Grant No. 1264739. Microfabrication facilities were provided by the Integrated Nanosystems Development Institute (INDI) at IUPUI.

REFERENCES

CONTACT

* Yuanzhi Cao; phone: +1-317-374-8676; cao9@iupui.edu

<table>
<thead>
<tr>
<th>Generated gas type</th>
<th>Reactant solution concentration (wt%)</th>
<th>Average gas generation rate in the first 150s (SCCM)</th>
<th>Liquid self pumping rate (µL/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂ (From H₂O₂)</td>
<td>3</td>
<td>0.038</td>
<td>0.075</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.235</td>
<td>0.348</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.720</td>
<td>0.819</td>
</tr>
<tr>
<td>H₂ (From NH₃BH₃)</td>
<td>1</td>
<td>0.361</td>
<td>0.512</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.491</td>
<td>0.602</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.525</td>
<td>0.623</td>
</tr>
</tbody>
</table>

Figure 6: A series of photographs showing gas generation process in the microchannel.