
Journal of Bone Oncology 2 (2013) 59–69
Contents lists available at SciVerse ScienceDirect
Journal of Bone Oncology
2212-13
http://d

n Corr
Univers
IN 4620
fax: +1

E-m
journal homepage: www.elsevier.com/locate/jbo
Review Article
Myeloma bone disease: Pathophysiology and management
Rebecca Silbermann n, G. David Roodman
Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
a r t i c l e i n f o

Article history:
Received 25 January 2013
Received in revised form
29 March 2013
Accepted 2 April 2013
Available online 18 April 2013

Keywords:
Myeloma
Osteoblast
Osteoclast
Myeloma bone disease
Angiogenesis
Bone marrow microenvironment
74/$ - see front matter & 2013 Elsevier GmbH
x.doi.org/10.1016/j.jbo.2013.04.001

espondence to: Hematology/Oncology, Depa
ity School of Medicine, 980 West Walnut Stre
2, USA. Tel.: +1 317 274 3589, +1 317 274 084
317 274 0396.
ail address: rsilberm@iu.edu (R. Silbermann).
a b s t r a c t

Multiple myeloma bone disease is marked by severe dysfunction of both bone formation and resorption
and serves as a model for understanding the regulation of osteoblasts (OBL) and osteoclasts (OCL) in
cancer. Myeloma bone lesions are purely osteolytic and are associated with severe and debilitating bone
pain, pathologic fractures, hypercalcemia, and spinal cord compression, as well as increased mortality.
Interactions within the bone marrow microenvironment in myeloma are responsible for the abnormal
bone remodeling in myeloma bone disease. Myeloma cells drive bone destruction that increases tumor
growth, directly stimulates the OCL formation, and induces cells in the marrow microenvironment to
produce factors that drive OCL formation and suppress OBL formation. Factors produced by marrow
stromal cells and OCL promote tumor growth through direct action on myeloma cells and by increasing
angiogenesis. Current therapies targeting MMBD focus on preventing osteoclastic bone destruction;
however regulators of OBL inhibition in MMBD have also been identified, and targeted agents with a
potential anabolic effect in MMBD are under investigation. This review will discuss the mechanisms
responsible for MMBD and therapeutic approaches currently in use and in development for the
management of MMBD.

& 2013 Elsevier GmbH This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Multiple myeloma (MM) is the most frequent cancer to involve
the skeleton with 80–90% of patients developing bone lesions
during their disease course [1]. Myeloma bone lesions are purely
osteolytic and are associated with severe and debilitating bone
pain, pathologic fractures, hypercalcemia, and spinal cord com-
pression, as well as increased mortality [2]. It is estimated that 20%
of MM patients present with pathologic fractures, 40% develop a
fracture in the first year after diagnosis, and up to 60% develop
pathologic fractures over the course of their disease [3]. Addition-
ally, patients with pathologic fractures have a 20% increase in
mortality when compared to patients without pathologic fractures
[4]. The bone destructive lesions can be extensive and severe [5]
and bone pain, frequently centered on the chest or back and
exacerbated by movement, is present in more than two-thirds of
patients at diagnosis [6].

Multiple myeloma bone disease (MMBD) is distinct from the bone
disease caused by other types of tumors that metastasize to bone and
is marked by dysfunction of both bone formation
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and bone resorption [5]. While osteolytic metastases from MM and
other malignancies induce osteoclastic (OCL) bone resorption, mye-
loma bone lesions are unique in that osteoblast (OBL) activity is
severely decreased or absent [7,8]. Thus, bone scans in patients with
MM frequently underestimate the extent of bone disease [9].
Furthermore, bone lesions in patients with myeloma rarely heal,
even when a patient is in prolonged complete remission. MMBD can
affect any bone, with predominant areas of involvement occurring in
sites of red marrow, such as the vertebral bodies and ribs.

Current therapies targeting MMBD focus on preventing osteoclas-
tic bone destruction. OCL activity is responsible for the bone
destruction in myeloma and plays a pivotal role in MMBD through
release of growth factors from the bone matrix during the bone
resorptive process that enhance tumor growth. Recently, regulators
of OBL inhibition in MMBD have also been identified, and targeted
agents with a potential anabolic effect in MMBD are under investiga-
tion. In this review, mechanisms responsible for MMBD and ther-
apeutic approaches based on these mechanisms will be discussed.
2. Prevalence and presentation of myeloma bone disease

The clinical presentation of myeloma is variable and approxi-
mately 11% of patients are initially asymptomatic [10]. (Disease in
these patients is generally identified through routine laboratory
studies.) Of symptoms reported at presentation, the most common
is bone pain, which is present in more than two-thirds of patients
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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[6]. The American Cancer Society estimates that there will be
21,700 new cases of myeloma diagnosed in 2012, including 12,190
in men and 9510 in women, with an estimated 4690 deaths [11].
The majority of myeloma patients are elderly, with a median age at
diagnosis of 69 years and a median age at death of 74 years [12].
Treatment of MM has improved markedly over the past 30 years,
with an increase in 5-year survival from 25% in 1975 to 41% in
2007, however the disease remains incurable and MMBD remains
a major contributor to the morbidity and mortality of myeloma
patients.

Up to 90% of MM patients have evidence of osteolysis in the
form of generalized osteopenia or discrete lytic lesions over the
course of their disease [13], and approximately 80% have radiologic
evidence of bone involvement on skeletal survey [14]. Approxi-
mately 40% of patients with MM will develop a fracture in the
first year after diagnosis, and up to 60% will develop pathologic
fractures [3]. The bone destructive lesions in myeloma can be
extensive and can affect any bone [5]. The predominant areas of
involvement occur in sites of red marrow, such as the vertebral
bodies (49%), skull (35%), pelvis (34%) and ribs (33% of patients)
[15]. While there is an association between a patient's tumor
burden and the number of lytic lesions present [16], and tumor
burden, OCL number, and OCL resorptive surface area are corre-
lated in bone marrow biopsies from MM patients [17,18],
an individual's degree of bone disease does not have significant
utility in predicting clinical outcomes. Additionally, bone lesions in
patients with myeloma rarely heal, even when a patient is in
prolonged complete remission.

Approximately 15% of newly diagnosed MM patients are
hypercalcemic due to increased bone resorption, decreased bone
formation, and impaired renal function, all of which are often
exacerbated by immobility. Unlike other malignancies with meta-
static bone involvement, parathyroid hormone related protein
(PTHrP) is rarely over-produced by myeloma cells. Thus, the
severity of hypercalcemia in patients with myeloma is not corre-
lated with serum PTHrP levels and instead reflects tumor burden
[6]. Symptomatic hypercalcemia can result in anorexia, nausea,
vomiting, confusion, fatigue, constipation, renal stones, depression
and polyuria, and is suggestive of a high tumor burden.

Finally, MM patients have accelerated bone loss when com-
pared to age-matched controls. Bone mineral density is decreased
in patients with MM as well as in patients with monoclonal
gammopathy of undetermined significance (MGUS) [19,20], a
clinically benign condition defined by a low level of monoclonal
protein production and the absence of skeletal lesions [19].
3. Mechanisms of myeloma bone disease

MMBD is characterized by purely osteolytic bone destruction
due to increased OCL activity and suppressed or absent OBL activity,
and myeloma bone lesions have a characteristic “punched-out”
appearance on x-rays. The bone marrow microenvironment in
myeloma includes both extracellular and cellular elements, includ-
ing osteoblasts, osteoclasts, endothelial cells, immune cells and MM
cells that contribute to tumor growth and the bone destructive
process. Multiple interactions within the bone marrow microenvir-
onment in myeloma are responsible for the abnormal bone remo-
deling of MMBD (Fig. 1, panels A and B). Myeloma cells drive bone
destruction that in turn increases tumor growth; highlighting the
critical role that bone disease plays in myeloma. In addition,
myeloma cells both directly stimulate OCL formation and induce
cells in the marrow microenvironment to produce factors that
drive OCL formation and suppress OBL formation. Immune cells
contribute to the bone destructive process through production
of cytokines and adhesion molecules that increase myeloma
cell growth and enhance myeloma cell chemoresistance, increase
osteoclastogenesis, suppress osteoblastogenesis, and drive T cell
polarization from a predominantly Th1 phenotype to Th17 [21–24].
Factors produced by marrow stromal cells and OCL promote tumor
growth through direct action on myeloma cells [25] and indirectly
by increasing angiogenesis (Fig. 1, panel C). [26–28]. Finally,
the bone resorption process itself releases immobilized growth
factors such as TGFβ from the bone matrix that also drive tumor
growth [29].
4. Pathogenesis of the increased osteoclast activity in
myeloma

Histologic studies of bone biopsies from patients with MM
demonstrate that increased OCL activity occurs adjacent to MM
cells, suggesting that bone destruction in MM is a local event. This
has led to the hypothesis that local cytokines produced or induced
by MM cells are responsible for the increased OCL formation and
subsequent bone resorptive activity in MM. These osteoclastogenic
activating factors, (OAFs), directly increase OCL formation and
activity and decrease production of osteoprotegerin (OPG), a soluble
decoy receptor for receptor activator of NF-kB ligand (RANKL), a
critical differentiation factor for OCLs produced by marrow stromal
cells and OBL [30]. OAFs were initially identified in conditioned
media from myeloma cell lines and found to stimulate bone
resorption in bone organ culture systems [31]. Additional factors
identified as OAFs important in MMBD include RANKL, MIP-1α,
TNF-α, Interleukin 3 (IL-3), and IL-6. Interestingly, several of these
OAFs also suppress OBL formation and/or support myeloma cells
directly, indicating that they play multiple roles in MMBD.

Myeloma cells also stimulate cells in the marrow microenvir-
onment, particularly marrow stromal cells and T cells, resulting in
increased production of OAFs and decreased production of OCL
inhibitory factors. Adhesive interactions between myeloma cells
and bone marrow stromal cells via binding of surface VLA-4 (α4β1
integrin) to VCAM-1 on stromal cells results in production of
osteoclastogenic cytokines such as RANKL, M-CSF, IL-11, and IL-6
by marrow stromal cells and osteoclastogenic cytokines including
macrophage inflammatory protein-1α (MIP-1α) and IL-3 by MM
cells [32–35,36].

Additionally, OCLs themselves secrete factors that support
myeloma cells [37], including IL-6 [38], annexin II [39], osteopon-
tin [40], fibroblast activation protein [41], BAFF, and APRIL [42].

RANK/RANKL: The RANK/RANKL signaling pathway is a critical
component of both normal and malignant bone remodeling. RANK
is a transmembrane signaling receptor and a member of the tumor
necrosis receptor (TNF) superfamily that is found on the surface of
OCL precursors [43,44]. RANK ligand (RANKL) is expressed as a
membrane-bound protein on marrow stromal cells and OBL that is
secreted by activated lymphocytes. RANKL expression is induced
by cytokines that stimulate bone resorption [45] such as PTH, 1,25-
OH Vitamin D3, prostaglandins [46,47], and myeloma cells them-
selves both produce and induce production of RANKL by marrow
stromal cells via adhesive interactions described above, as well as
by soluble factors produced by myeloma cells such as Dickkopf1
(DKK1) [48] and TNF-α [49]. In addition, RANKL further increases
OCL formation and survival by binding to RANK [50].

OPG, the soluble décor receptor for RANKL, is critical for the
regulation of lytic activity in both normal and myelomatous bone
[51]. OPG is produced by OBL in the marrow and blocks the
interactions of RANKL with RANK, limiting osteoclastogenesis. The
RANKL/OPG ratio in the marrow microenvironment in MM is
skewed in favor of RANKL [30], and the ratio of RANKL to OPG in
the sera of myeloma patients impacts prognosis. Patients with
high RANKL:OPG ratios have inferior survival as compared to
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Fig. 1. Cellular interactions in the bone marrow microenvironment in myeloma bone disease. The bone marrow microenvironment in myeloma includes osteoblasts (OBL),
osteoclasts (OCL), stromal cells, endothelial cells, and osteocytes. Multiple interactions within the bone marrow microenvironment in myeloma are responsible for the
abnormal bone remodeling of multiple myeloma bone disease (MMBD). (A) OCL Activation in MMBD. Myeloma cells directly stimulate OCL formation and induce cells in the
marrow microenvironment to produce factors that drive OCL formation. Osteoclast activating factors (OAFs) produced by myeloma cells include RANKL, MIP-1α, IL-3, and
TNF-α. Myeloma cells also induce marrow stromal cell production of growth factors that enhance OCL formation including RANKL, MCSF, and (not pictured) IL-6 and TNF-α
and decrease production of OCL inhibitory factors, such as OPG. OCLs secrete soluble factors such as osteopontin, MIP-1α, IL-6, AXII, BAFF, and APRIL that stimulate tumor
growth. In addition, factors produced by marrow stromal cells and OCL promote tumor growth through direct action on myeloma cells. Osteocytes also regulate
osteoclastognesis and bone resorption through expression of RANKL. Finally, the bone destructive process releases bone matrix-derived growth factors such as TGFβ, IGFs,
FGF, PDGFs, and BMPs that increase the growth of myeloma cells, further exacerbating the osteolytic process. (B) OBL Suppression in MMBD. MM cell derived OBL-inhibitory
factors include DKK1, sclerostin, HGF, IL-7, and TNF-α. MM cells also induce other cells in the marrow microenvironment to increase production of OBL suppressors such as
sclerostin (from osteocytes), and TNF-α and GFI1 (from marrow stromal cells). Myeloma cells also induce marrow stromal cells to produce factors that support the myeloma
cells, including IL-6, VCAM1, VEGF, and IGF-1. (C) Angiogenesis is enhanced in MMBD. Angiogenesis is enhanced in MM. OCL and endothelial cells are closely apposed in the
bone marrow microenvironment, and increased OCL activity appears to contribute to both the increased angiogenesis in MM as well as to tumor growth. Endothelial cell
proliferation is enhanced by angiogenic factors such as VEGF produced by myeloma cells and stromal cells. Osteoclasts also secrete angiogenic factors, such as osteopontin
and MMP9.
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patients with normal or intermediate RANKL:OPG ratios [52].
Furthermore, preclinical models of myeloma demonstrated that
inhibition of RANKL with OPG prevented bone destruction in
animal MM models [52–54]. The clinical impact of denosumab,
a human monoclonal antibody to RANKL, on bone metastases
in patients with osteoporosis, breast cancer, prostate cancer, and
treatment-induced bone disease due to prostate cancer has
recently been evaluated, and is discussed later in this review.

TNF-α: TNF-α is elevated in myeloma patients [55] and has
multiple functions in MMBD. Myeloma cells induce high levels of
TNF-α in the marrow microenvironment [56];,however it has been
difficult to clearly demonstrate that myeloma cells themselves
produce significant quantities of this cytokine [57]. Myeloma
cells and TNF-α increase the transcription factor XBP1 in marrow
stromal cells, which contributes to the increased production of
VCAM1, RANKL, and IL-6 and enhances stromal cell support of
myeloma cell growth and osteoclast formation. In addition, TNF-α
is itself a potent inducer of osteoclast formation, and can directly
increase osteoclast formation and enhance the effects of RANKL
[58]. TNF-α also can block osteoblast differentiation from marrow
stromal cells by decreasing expression of critical osteoblast tran-
scription factors such as Runx2, TAZ, and Osx, induce apoptosis
of mature osteoblasts, and increase support of myeloma cells by
induction of IL-6 [23,59].

MIP-1α: MIP-1α (CCL3) is a potent chemokine produced by MM
cells in 70% of patients that induces OCL formation and has
recently also been found to inhibit osteoblast function [60].
MIP-1α acts as a chemotactic factor for OCL precursors and can
induce differentiation of OCL progenitors, contributing to OCL
formation [61–63] independent of RANKL. In addition, MIP-1α
potentiates both RANKL and IL-6 stimulated OCL formation [64]
and plays a role in homing of MM cells to the bone marrow by
enhancing myeloma cell adhesion to marrow stromal cells by
increasing expression of β1 integrins on MM cells[65]. This
enhances marrow stromal cell production of OAFs and the angio-
genic factor VEGF. Elevated MIP-1α gene expression and secretion
by myeloma cells is highly correlated with bone destruction and
decreased patient survival in MM [66]. Translocation 4:14 in MM
cells, associated with poor patient prognosis, has been shown to
induce constitutive expression of the fibroblast growth factor
receptor 3 (FGFR3), resulting in high levels of MIP-1α [67]. In vivo
murine models of MM have demonstrated that MIP-1α can induce
OCL formation and bone destruction. Blocking MIP-1α expression
in MM cells injected into SCID mice or treating the animals with a
neutralizing antibody to MIP-1α results in decreased tumor
burden and bone destruction [62,68].

In addition to well-described effects on OCL, MIP-1α inhibits
OBL function via downregulation of osterix, an osteogenic tran-
scription factor, and inhibits osteoblast mineralization activity,
suggesting that MIP-1α impairs osteoblast function rather than
differentiation.

MIP-1α binds to three different receptors: CCR1, CCR5 and
CCR9. CCR1 and CCR5 are expressed on MM cells and stromal cells.
Inhibitors to CCR1 and CCR5 have been used to delineate the roles
of each receptor in the myeloma bone marrow microenvironment
[69]. Menu and colleagues demonstrated that MM cell migration
to MIP-1α in vitro and homing in vivo were mediated by binding
to CCR5 and not CCR1. In vivo inhibition of CCR1 resulted in
reduction of osteoclastic bone resorption, suggesting that CCR1
and CCR5 have differential effects on myeloma cell chemotaxis and
stimulation of osteolysis. Small molecule antagonists to CCR1 have
been studied in models of myeloma and have been shown to block
both tumor growth and destruction [69,70], and to at least
partially reverse MIP-1α osteoblast inhibitor effects in vitro and
in vivo [60]. These small molecule antagonists are currently in
pharmaceutical development [71].

IL-3/Activin A: IL-3 is produced by myeloma cells and T cells in the
myeloma microenvironment and approximately 70% of MM patients
have elevated IL-3 levels in marrow plasma. IL-3 is a bifunctional
cytokine that can both stimulate osteoclastogenesis via an indirect
effect [35] and inhibit osteoblast formation [50]. Silbermann and
coworkers [72] reported that IL-3 stimulates marrow macrophages
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in the myeloma microenvironment to produce activin A, a TGF-β
family member, and that anti-activin A inhibits the effects of IL-3 on
osteoclast formation. Activin A is known to directly induce osteoclast
formation and enhance the effects of RANKL on osteoclast formation
[73]. Others have reported that levels of activin A are increased in
marrow plasma and peripheral blood from patients with myeloma,
and that marrow stromal cells and osteoclasts are the major source of
activin A in myeloma patients [74]. In addition, elevated circulating
activin A levels have been described in newly diagnosed symptomatic
myeloma patients as compared with controls and elevated activin A
levels correlated with advanced disease stage and were associated
with increased bone resorption and extensive bone disease [75].
Interestingly, the mechanism of IL-3 suppression of osteoblast differ-
entiation is also indirect, and requires the participation of CD45+ cells.
Osteoclast precursors are also CD45+, suggesting that Activin A is
involved as a cross-talk regulatory molecule between osteoclast and
osteoblast precursors in both the directions [76].

Activin A signals through the activin A type IIA receptor to
increase bone resorption and suppress osteoblast differentiation
by inhibiting production of the Dlx5. An activin A receptor
antagonist (soluble activin receptor type IIA fusion protein,
ActRIIA.muFc; RAP-011) has been shown to block bone destruc-
tion, stimulate bone formation, and decrease tumor growth in a
murine model of myeloma [77]. A humanized activin A soluble
receptor antagonist (ACE-011) has been shown to inhibit bone
resorption markers and stimulate bone formation in post meno-
pausal women [78], and a trial of ACE-011 in myeloma patients is
ongoing.

Annexin II: Annexin II (AXII) is a recently identified factor
produced by stromal cells and osteoclasts that is important in
osteoclast formation, hematopoietic stem cell mobilization, and
homing of prostate cancer cells to the bone [79]. AXII is upregu-
lated in MM, and myeloma-derived AXII increases proliferation of
myeloma cell lines, possibly through an autocrine mechanism
[80,81]. OCL and stromal cell derived AXII enhances the growth
of MM cells in the bone marrow by binding to the AXII receptor
on MM cells, primarily through a paracrine mechanism [39]. In
addition, AXII can induce stromal cell production of RANKL,
further stimulating OCL formation.

Ephrin B2/EphB4 bidirectional signaling: Bidirectional signal-
ing between the ligand ephrin B2 from osteoclasts and its receptor
EphB4 on bone marrow stromal cells and osteoblasts has been
reported to negatively control OCL development from OCL pre-
cursors (reverse signaling) and to promote OBL differentiation
(forward signaling) [82]. EphrinB2 and EphB4 are decreased in
stromal cells from myeloma patients [83]. EphB4-Fc activates
ephrinB2 in OCL, but not in stromal cells; and ephrinB2-Fc activates
EphB4 in stromal cells. Administration of either peptide to a murine
myeloma model stimulated osteoblastogenesis, bone formation,
and angiogenesis, but only EphB4-Fc also inhibited osteoclastogen-
esis and myeloma growth. Thus, enhancing ephrinB2-EphB4 signal-
ing is a possible therapeutic target for MMBD.

Adhesive interactions: Adhesive interactions between mye-
loma cells and stromal cells play a significant role in both the
homing of MM cells to the bone marrow and augmentation of
the bone destructive process. These adhesive interactions result
in activation of NF-κB and p38 MAP-kinase signaling, which is
involved in the induction of RANKL expression by OBL. Blocking
p38 MAP-kinase results in inhibition of IL-6 and VEGF production,
as well as decreased adhesion of MM cells to marrow stromal cells
[84]. Vanderkerken and coworkers reported that inhibition of p38
MAP kinase in the 5T2MM murine model of MM decreased tumor
cell burden, prevented development of bone disease and increased
overall survival of mice having 5T2 cells [85]. Therefore, this
pathway may be a potential therapeutic target for novel therapies
for MM disease.
Additionally, adhesive interaction between MM cells and cells
in the BM microenvironment increase production of cytokines and
chemokines that enhance angiogenesis and contribute to the
chemotherapy resistance of tumor cells resistant [86,87]. Angio-
genesis is markedly enhanced in MM, parallels disease progres-
sion, and correlates inversely with patient survival [88]. OCL and
endothelial cells are closely apposed in MM, and increased OCL
activity appears to contribute to both the increased angiogenesis
in MM as well as to tumor growth. OCL can support the growth of
MM cells through cell-to-cell contact, which results in production
of IL-6 and osteopontin [40,53]. Further, Tanaka and coworkers
have shown that OCL enhance angiogenesis in MM through
constitutive secretion of pro-angiogenic factors such as osteopon-
tin, which together with vascular endothelial growth factor (VEGF)
produced by MM cells, increase angiogenesis [88]. We have
reported that OCL are angiogenic cells [27], and that suppression
of OCL formation with OPG dose-dependently inhibited angiogen-
esis and osteoclastogenesis in established bone angiogenesis
assays.
5. Osteoblast suppression in myeloma

OBL activity is suppressed in MM, with decreased bone forma-
tion and calcification despite increased bone resorption [17,89]. As
a result, serum alkaline phosphatase and osteocalcin are normal or
decreased in patients with myeloma bone involvement. Co-culture
experiments have demonstrated reduced myeloma cell prolifera-
tion in the presence of OBLs as compared with OCL or marrow
stromal cells [90], a finding that has been confirmed in murine
models of myeloma bone disease [91]. A number of inhibitors
of OBL differentiation have been identified in myeloma that are
produced by myeloma cells or cells in the myeloma marrow
microenvironment. Interestingly, myeloma patient marrow stro-
mal cells retain their aberrant properties, such as increased
production of OCL activating factors such as RANKL, IL-6, XBP1,
and activin A and suppressed OBL differentiation in long-term
tissue culture, suggesting that myeloma cells induce permanent
changes in marrow stromal cells.

In addition to TNF-α, MIP-1α, and IL-3/Activin A discussed
previously in this review, DKK1, sclerostin, TGFβ, hepatocyte
growth factor (HGF) and IL-7 are also potent inhibitors of osteo-
blast differentiation. Mechanisms responsible for the suppressed
osteoblast activity in myeloma are just beginning to be under-
stood, and the basis for the persistent block in osteoblast differ-
entiation in myeloma is unknown.

The formation and differentiation of OBLs frommarrow stromal
cells requires the activity and function of systemic and local
factors, such as parathyroid hormone (PTH), fibroblast growth
factor (FGF), and bone morphogenic proteins (BMP). The activity
and function of the transcription factor Runx2/Cbfal (Runx2) play a
critical role in OBL development and activity. Runx2-deficient
mice, which are embryonic lethal, lack OBL and bone formation
[92]. Inhibition of Runx2 in OBL precursors has been demonstrated
in MMBD [93], and direct cell–cell contact between myeloma
cells and OBL progenitor cells as well as soluble factors produced
by MM cells downregulate RUNX2 activity [93], however the
mechanisms underlying this inhibition are unclear. Myeloma cells
also induce marrow stromal cells to produce factors that support
myeloma cell growth, survival, and chemoresistance, such as IL-6,
annexin II, VCAM1, VEGF, and IGF-1; and mature osteoblasts
suppress myeloma cell growth via production of decorin [90,94].
Thus, suppression of OBL differentiation in myeloma enhances
tumor growth due to toxic effects of mature osteoblasts on
myeloma cells.
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The canonical, or β-catenin dependent, Wnt signaling pathway
is critical for the regulation of osteoblast proliferation and survival
[95]. Soluble inhibitors of the canonical Wnt pathway such as
Dickkopf (DKK1), produced by OBL, and sclerostin, from osteo-
cytes, play important roles in the regulation of bone mass in MM.
Additionally, secreted Wnt inhibitors such as the secreted frizzled
related proteins (sFRP) [96] can inhibit the canonical as well as the
non-canonical Wnt pathways by binding to frizzled.

DKK1: DKK1 is a major inhibitor of OBL differentiation in
myeloma by sequestering low-density lipoprotein receptor-related
protein (LRP) 5/6 from binding WNT, ultimately downregulating
RUNX2 activity [97–99]. Tian and coworkers reported that primary
CD138+ cells from myeloma patients but not MGUS patients
produce DKK1, and demonstrated that levels of DKK1 mRNA
correlate with the number of focal bone lesions in patients with
MM [100]. Others have similarly reported that serum DKK1 levels
correlate with the extent of bone disease in MM patients [101],
however this finding is controversial as DKK1 expression is lost as
MM bone disease progresses [100]. Preclinical studies with anti-
bodies that block DKK1 (BHQ880) have shown that these com-
pounds enhance bone formation and block tumor growth in murine
models of myeloma bone disease [102]. However, MM patients with
advanced disease do not express DKK1, suggesting that Wnt
inhibitors may mediate bone destruction only in the early phases
of disease [100].

In addition to inhibiting osteoblastogenesis, elevated DKK1
levels can also enhance osteoclastogenesis. Wnt signaling in OBLs
increases expression of OPG [103] and down-regulates the expres-
sion of RANKL [104], suggesting a possible mechanism by which
inhibition of Wnt signaling in OBL would indirectly increase
osteoclastogenesis. Taken together, these studies indicate that
DKK1 is a key regulator of bone remodeling in both physiological
and pathological conditions and that blocking this factor may
contribute to both stimulation of osteoclastogenesis and inhibition
of OBL in myelomatous bones.

Sclerostin: Sclerostin is an inhibitor of the canonical down-
stream Wnt signaling pathway that is produced by osteocytes to
inhibit osteoblast differentiation. Several studies have recently
demonstrated that myeloma cells may produce sclerostin or
induce sclerostin expression in myeloma patients [105,106], and
sclerostin levels correlate with bone destruction in myeloma [107].
In addition, osteocyte apopotosis has been reported in myeloma,
and apoptotic osteocytes may release both RANKL and sclerostin
[108].

HGF: HGF is a negative regulator of BMP-induced osteoblast
differentiation [59]. A myeloma cell line, that produces large
amounts of HGF, JJN3, causes 99% loss of osteoblast perimeter
when injected into irradiated SCID mice. Myeloma patients with
elevated HGF levels in their sera have lower bone specific alkaline
phosphatase activity (a marker of osteoblast function) when
compared to patients without HGF elevations, and HGF has been
shown to inhibit human osteoblast formation [109].

TGFβ: TGFβ is deposited into bone matrix in a latent form by
osteocytes and osteoblasts and released in an active form by the
enhanced OCL activity in MMBD. TGFβ inhibits osteoblast differ-
entiation in MMBD, and blockade of TGFβ signaling via the TGFβ
type I receptor by an inhibitor of the receptor's kinase function,
Ki26894, restores osteoblast differentiation suppressed by either
TGFβ, myeloma cell line conditioned media, or bone marrow
plasma from MM patients [110]. Oral administration of Ki26894
to a SCID-rab model of MMBD injected with INA-6 myeloma cells
demonstrated that in vivo targeting of TGFβ signaling decreased
MM cell growth in the bone, protected the bone from destruction,
and preserved osteoblast differentiation.

TGFβ family members, including BMPs and activin, also mod-
ulate OBL differentiation. BMP2 stimulates OBL differentiation via
SMAD signaling activation [111], while activin A-mediated upre-
gulation of SMAD2 pathways results in both stimulation of OCL
differentiation and function described previously in this review
and impairment of osteoblastogenesis [74]. Additionally, activin
A levels correlate with advanced ISS stage, bone disease, and
decreased survival in patients at diagnosis and relapse [112].

IL-7: IL-7 is another potential inhibitor of OBL differentiation in
MM that induces RANKL production by T lymphocytes [113] and
mediates MM-induced OBL inhibition by down-regulating RUNX2
transcriptional activity [93]. IL-7 levels are increased in the
marrow of MM patients and that IL-7 inhibited both early and
late human osteoblast precursor differentiation in a dose-
dependent manner, affecting the differentiation of early and late
osteoblast precursors by targeting Runx2 activity, though it did
not suppress Runx2 activity [114]. IL-7 can also induce GFI1, a
transcriptional repressor of the Runx2 gene, and enhance the
effects of suboptimal TNF-α on osteoblast suppression, resulting in
further suppression of osteoblast differentiation [115].

GFI1: D'Souza and colleagues recently reported that myeloma
cells and primary marrow stromal cells from myeloma patients
have elevated levels of Gf1 and that myeloma cells induce expres-
sion of GFI1 in marrow stromal cells. In addition, they demonstrate
that GFI1 is a potent suppressor of osteoblast differentiation [116].
In preliminary studies Galson and colleagues have shown that
GFI1 directly interacts with the RUNX2 promoter to block RUNX2
expression, that there are multiple GFI1 sites within the Runx2
promoter, and that mutation of the key GFI1 binding site prevents
TNF-α repression of Runx2. GFI1 can also recruit histone deacety-
lases and other modifying enzymes to the RUNX2 promoter,
possibly contributing to the long-term suppression of OBL activity
present in MM patients [117].

Adiponectin: Adiponectin is an adipocyte-derived factor that
can protect osteoblast differentiation in MM and increase mye-
loma cell apopotosis [118]. Adiponectin expression is decreased in
both murine and human bone marrows permissive for myeloma
growth and increasing adiponectin expression with the apolipo-
protein peptide mimetic L-4F both reduces tumor burden and
MMBD in murine models and, in the absence of myeloma cells,
induces an increase in osteoblasts and bone formation without
altering osteoclasts. Thus, induction of adiponectin expression is
a potential therapeutic target for the osteoblast suppression
of MMBD.
6. Treatment of myeloma bone disease

Treatment of myeloma bone disease requires management of
both the underlying malignancy and the increased bone destruc-
tion and suppressed new bone formation detailed above. Current
treatments for myeloma include chemotherapy or novel agents
such as proteasome inhibitors or immunomodulatory agents, with
or without autologous stem cell transplantation. Bone disease is
managed with a combination of bisphosphonate therapy, localized
radiation, (for control of bone pain, treatment of impending
fractures or solitary plasmacytomas) and kyphoplasty, vertebro-
plasty, or surgery.

Bisphosphonates remain the standard of care for MM-related
bone disease at this time. Bisphosphonates are potent inhibitors
of OCL activity, and intravenous bisphosphonates given every 3–4
weeks are the current treatment of choice for the prevention of
skeletal-related events. Bisphosphonate therapy slows progression
of lytic lesions, prevents development of new pathologic fractures,
and improves bone pain through inhibition of osteoclast activity.
Oral clodronate treatment has been shown to reduce the devel-
opment of osteolytic lesions, fractures, hypercalcemia, and bone
pain in MM [119]. The Medical Research Council (MRC) IX trial
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demonstrated that iv zoledronic acid reduced the incidence of
skeletal related events (SREs), (hypercalcemia, new bone lesions,
and fractures) as compared with oral clodronate in patients with
newly diagnosed MM [120]. In addition, patients treated with
zoledronic acid had improved disease response rates and overall
survival after a median follow-up of 3.7 years, compared with
patients treated with clodronate. This suggests that bisphospho-
nates have a direct anti-myeloma effect, a hypothesis supported by
in vitro data [121,122].

Intravenous pamidronate, 90 mg monthly, or zoledronic acid,
4 mg monthly, are the standard bisphosphonate therapies in mye-
loma. In the original randomized trial evaluating intravenous pami-
dronate therapy in myeloma, a significant reduction in the number
of skeletal events per patient year was found when compared to
placebo (1.3 versus 2.2) when patients were treated for 21 months
[9]. When compared with pamidronate in phase III trials, zoledronic
acid was found to be as effective as pamidronate in decreasing the
number of skeletal complications and the need for radiation therapy
[123]. The major benefit of zoledronic acid over pamidronate is that it
can be given over a shorter period of time (15 min. versus 2 h).

Current ASCO recommendations suggest initiating bisphospho-
nate therapy in myeloma when there is evidence of bone involve-
ment [124]. The optimal duration and frequency of bisphosphonate
therapy for myeloma are not well understood and are currently being
studied. All randomized, placebo-controlled trials of bisphosphonate
use in MM to date have given bisphosphonates for a maximum
of two years, thus two years is the treatment duration currently
recommended by ASCO and the European myeloma network (EMN).
Consensus statements recommend treating patients monthly for
2 years and then considering discontinuation of therapy at that time
if the patient is in remission or at plateau phase of disease [124], or at
physician discretion [125]. A subset of patients in the MRC IX trial did
receive zoledronic acid for more than 2 years and had a reduced
incidence of SREs and improved overall survival compared with the
clodronate treated group [126]. However, it is not known whether
this finding is independent of the patients' response to their anti-
myeloma therapy. As discussed in a recent evidence-based review of
bisphosphonate use in MM, it is not clear whether patients who
achieved complete response (CR) in the MRC IX trial continued to
have an advantage with continued zoledronic acid use as compared
to those who did not achieve a CR [127]. Patients with mild-
moderate renal impairment (CrCl: 30–60 mL/min) 43 mg/dl) should
receive reduced doses of zoledronic acid. No change in the zoledronic
acid infusion time is recommended. In these patients, pamidronate
should be administered over an extended infusion time (2–4 h) [127].
DEXA scans are recommended for consideration for patients with
monoclonal gammopathy of undetermined significance and low and
intermediate risk smoldering MM, given the increased risk of
skeletal-related events in the patients compared with age-matched
controls [128,129]. Patients with DEXA scans demonstrating osteo-
porosis (T score o2) should be treated with bisphosphonates in the
same manner as patients with osteoporosis.

An emerging complication of bisphosphonate therapy is osteo-
necrosis of the jaw (ONJ). ONJ has been reported in association
with bisphosphonate use in patients with metastastic bone disease
as well as benign osteoporosis, although a cause and effect
relationship has not been clearly demonstrated. Patients with
myeloma have been reported to have the highest incidence of
ONJ (1.6–11%; reviewed in [130]) while patients with postmeno-
pausal osteoporosis who are treated with oral bisphosphonates
have an incidence of ONJ of 1/10,000–1/100,000 patient treatment
years [131].

Bisphosphonate associated ONJ is defined as the presence of
the exposed bone in the mandible or maxilla in patients receiving
bisphosphonate therapy that does not heal within 8 weeks of
appropriate dental management in the absence of local metastatic
disease or previous radiation therapy [130]. Clinical examination
usually shows an exposed alveolar ridge with evidence of necrotic
bone, often with a purulent discharge. The surrounding gums and
mucosal tissue are often inflamed and can be painful to the touch
[130]. Patients can have single or multiple lesions with the
mandible more frequently involved than the maxilla. Most patients
have only exposed bone, although fistulae to the maxillary sinus or
the skin rarely occur and pathologic fractures of the mandible have
been reported [130]. The overwhelming majority of cases reported
are case reports or retrospective studies of patients receiving
bisphosphonate therapy. A long-term follow-up study of 97 mye-
loma patients with ONJ followed for at least 3.2 years identified
dental extraction, older age and longer survival as risk factors for
ONJ [132]. ONJ resolved in 60 of the 97 patients studied, resolved
and recurred in 12 of the patients, and did not heal over a 9-month
period in 26% of the patients. Dental extraction preceded develop-
ment of ONJ in 47% of the patients and was more common in
patients with a single episode of ONJ than in patients with recurrent
or nonhealing ONJ. ONJ recurrence in these patients was associated
with reinitiation of bisphosphonate therapy or dental procedures.
Patients developing ONJ following dental procedures were less
likely to have a recurrence or nonhealing, and although infrequent,
recurrence was linked to re-treatment with bisphosphonates in
patients with relapsed myeloma.

The pathophysiology underlying ONJ is unclear. Decreased
bone remodeling induced by bisphosphonates or inhibition of
osteoclast function, which interferes with healing of the micro-
fractures and trauma occurring after dental extraction, have been
hypothesized as potential mechanisms for ONJ, but these have not
been confirmed [133]. No specific myeloma treatments have been
clearly implicated in the pathogenesis of ONJ, although dexa-
methasone and thalidomide have been suggested as additional risk
factors [134]. Interestingly, patients with ONJ are more frequently
diabetic or have impaired glucose tolerance when compared to an
age-matched population [135]. Culture of some ONJ lesions has
revealed actinomycetes, suggesting that infection may also play a
role in the development of ONJ [130].

The decision of whether to stop bisphosphonate therapy in
myeloma patients who develop ONJ remains a major clinical
question. Bisphosphonates have an extremely long half-life in
bone, estimated to be greater than 10 years; so stopping bispho-
sphonates may or may not have any effect on ONJ. In patients who
have progressive bone disease, reinstitution or continuation of
bisphosphonate therapy should be considered after the risks and
benefits have been discussed with the patient.

6.1. Denosumab

Denosumab, a human monoclonal antibody that binds to
RANKL with high affinity and specificity, was approved by the
FDA for prevention of SREs in patients with bone metastases from
solid tumors in 2010, and is currently under investigation for use
in MM bone disease. A recent clinical trial has demonstrated that
denosumab inhibits bone resorption and prevents SREs in patients
refractory to bisphosphonate therapy [136,137].

Denosumab inhibits RANKL-RANK interactions, mimicking
the endogenous effects of OPG, a soluble RANKL decoy receptor.
Recent reports have demonstrated that denosumab treatment
prevents bone loss and decreases fractures in patients with
osteoporosis or receiving androgen deprivation therapy for pros-
tate cancer [138,139] while also resulting in a statistically sig-
nificant improvement in bone mineral density in patients with
nonmetastatic prostate or breast cancer [138,140]. Efficacy advan-
tages for denosumab over zoledronic acid in myeloma have not yet
been demonstrated, though myeloma patients were included in a
separate clinical trial evaluating the efficacy of denosumab in
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approximately 1500 patients with solid tumor bone metastasis
and 200 patients with myeloma. In this study denosumab reduced
skeletal related events and time to next skeletal related event as
effectively as zoledronic acid [141].

In clinical trials thus far, denosumab has been well tolerated.
Hypocalcemia occurs more frequently in denosumab-treated
patients compared with patients treated with zoledronic acid,
with an incidence ranging from 5.5 to 13% with denosumab
treatment as compared to 3.4–6% with zoledronic acid across the
three phase III SRE studies published thus far [142]. Reported rates
of ONJ in patients treated with denosumab are similar to those for
patients treated with zoledronic acid (1.8%, denosumab; 1.3%
zoledronic acid) [143].

6.2. Bortezomib

Bortezomib is a highly active agent for the treatment of MM.
Bortezomib is a proteasome antagonist that induces MM cell
apoptosis and directly alters OBL and OCL activity by decreasing
RANKL and DKK-1 levels in the sera of myeloma patients [144].
Clinical trials with bortezomib indicate that it may also increase
OBL activity, induce new bone formation, and potentially repair
lytic bone lesions. In human OBL precursor cultures, bortezomib
increased markers of OBL differentiation and OBL-specific tran-
scription factors and enhanced bone nodule formation. Bone
marrow samples of patients responding to bortezomib had a
significantly increased number of osteoblastic cells compared to
non-responders. These studies suggest that bortezomib can sti-
mulate OBL in patients whose MM responded to bortezomib [145].

Zangari et al. conducted a retrospective analysis of three trials
of bortezomib in patients with relapsed MM [146]. In all three
trials, patients who had a partial response to bortezomib therapy
had a transient increase in alkaline phosphatase level compared to
non-responders. When compared to patients who responded to
dexamethasone treatment, the bortezomib-treated group had
higher serum levels of alkaline phosphatase than dexamethasone
responders, suggesting that the increase in alkaline phosphatase
was not merely a result of reduced tumor burden. More recently, a
prospective study of bortezomib-associated bone changes [147]
has been reported. Bortezomib naïve myeloma patients with
relapsed or progressive disease were treated with bortezomib at
two dosing levels. Patients achieving stable disease were contin-
ued on the regimen and followed until evidence of disease
progression. After bortezomib treatment measurements of bone
volume/ total volume significantly increased in 6 of 7 patients and
trabecular thickness increased from baseline in 5 of 7 patients.
Histologic evaluation demonstrated a lack of OBL activity and
osteoid formation at baseline compared to bortezomib treatment
in patients who responded to therapy. While some have inter-
preted these findings as evidence that bortezomib directly stimu-
lates OBL and inhibits OCL, Lund et al. [148] have suggested that
biochemical markers of bone formation peak after six weeks of
bortezomib treatment due to a direct inhibitory effect on bone
resorption by OCL that counteracts bortezomib's initial direct OBL
stimulatory effect. Alternatively, bortezomib's direct inhibition of
myeloma cells in the bone marrow microenvironment might allow
for normalization of OBL and OCL function, as these effects are
only seen in patients whose disease is bortezomib responsive.

6.3. IMiDs as OCL inhibitors

IMiDs are highly active agents in the treatment of MM [149].
Anderson et al. reported that CC-4047 (pomalidomide), a deriva-
tive of thalidomide that has similar actions as lenalidomide [150],
inhibited OCL development by affecting the lineage commitment
of OCL precursors. CC-4047 down-regulated the expression of PU.1,
a critical transcription factor for the development of OCLs. The
down-regulation of PU.1 in hematopoietic progenitor cells resulted
in a complete shift of lineage development towards granulocytes
and away from OCL. This inhibited OCL formation with a con-
comitant accumulation of immature granulocytes. Similarly,
Breitkreutz et al. demonstrated that lenalidomide inhibited OCL
formation by targeting PU.1 and down-regulating cathepsin K
[151]. These results suggest that like bortezomib, IMiDs may have
both bone and anti-MM effects.
6.4. Other anabolic agents for myeloma

Parathyroid hormone has been tested in preclinical models for its
capacity to repair bone lesions or inhibit bone destruction in patients
with myeloma. Yaccoby and coworkers have shown that PTH can
stimulate bone formation in the SCID-RAB model of multiple
myeloma [152], both in the implanted bone rudiment and normal
mouse bones in this model, and resulted in decreased tumor burden.
Teriparatide, recombinant PTH, decreases the risk of vertebral and
non-vertebral fractures in post menopausal women with a history
of vertebral fractures [153], however no clinical trials have been
reported that show that PTH is an effective treatment for myeloma
bone disease. Although there has been a concern that PTH may
stimulate tumor growth in patients with myeloma, to date PTH
receptors have not been detected on myeloma cells.

Another novel anabolic agent that is in clinical trial for patients
with myeloma is sotatercept (ACE-011, Acceleron Pharm). Sotater-
cept is a chimeric fusion protein derived from the extracellular
component of the activin A receptor and the Fc domain of human
IgG1 that functions as an activin receptor inhibitor, thus blocking
osteoblast suppression and osteoclast stimulation by activin.
Raje and coworkers reported that activin levels are increased in
patients with myeloma, and that OCL and OBL are the primary
source of activin in these patients [154]. They further showed that
blocking activin inhibits bone destruction in preclinical models of
myeloma. A clinical trial of the bone anabolic effects of sotatercept
in MM patients with osteolytic lesions is in process.
7. Conclusions

Myeloma bone disease is responsible for some of the most
devastating complications of the disease. Patients endure severe
bone pain, pathologic fractures, hypercalcemia, and a markedly
decreased quality of life. Understanding the pathogenesis of myeloma
bone disease has allowed us to identify novel targets for treating the
disease. An important feature of myeloma bone disease is that the
lytic lesions do not heal even when the patients are in prolonged
remission, suggesting that bone repair does not occur at previous
sites of bone destruction in patients with myeloma. The development
of anabolic agents, which are safe for use in patients with myeloma,
may reverse this process and reverse the loss of skeletal integrity in
patients with myeloma. With the enhanced median survival in
patients with myeloma that has occurred since the introduction of
new therapies for treatment of myeloma, managing the bone disease
and its complications will be evermore important for myeloma
patients. Thus, the future should be bright for patients with myeloma
with new agents to block bone destruction as well as potentially
build bone at sites of previous bone destruction.
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