Shock Absorption Properties of Soccer Headgear

Samantha Deer¹, Jared Riley¹, Jake Streepey¹, and Rafael Bahamonde¹

¹Department of Kinesiology, Human Performance Laboratory, School of Physical Education and Tourism Management

Soccer have gained tremendous success in the US with more than 3 million registered youth playing this year. With the concurrent increase of concussion awareness, manufactures of soccer apparel have introduced headgear to help dissipate forces from impacts with the ball as well as other surfaces such as body parts, ground, or goal posts. Most manufactures claim that such headgear can significantly reduce impact forces by as much of 50% during a collision. Therefore, the purpose of this study was to evaluate the shock absorption properties of three commercially available soccer headgear [Full Gear 90 (F90), Head blast soccer band (HB), and Forcefield headband (FF)]. A drop test was used to simulate head-surface collision. A hard medicine ball weighing 2.5 kg was dropped from distance of 1 meter onto the surface of an AMTI force platform. The force platform recorded the magnitude of the force at a sampling rate of 1000 Hz. Ten trials for each condition (no head gear-control, F90, HB and FF) were recorded and the impulse and maximum impact force were calculated using SigmaPlot. One-way ANOVA were used to determine significant differences in force and impulse across headgear. Although significant differences were found between the headgears for impulse and maximum force, overall these differences were minimal. There were less than a 10% reduction in maximum force and 4% reduction in impulse. Manufacturer’s claims of 50% reduction in impact forces seem to be unfounded. There is no scientific evidence that suggest that soccer headgear reduce the risk in injuries.

Mentor: Rafael Bahamonde and Jake Streepey, Department of Kinesiology, Human Performance Laboratory, IUPUI