Cigarette smoke exposure mediated generation of Platelet-activating factor agonists induces systemic immunosuppression.

Ravi P. Sahu, Matthew J. Turner, Raymond L. Konger, Jeffrey B. Travers

The ubiquitous environmental pollutant cigarette smoke (CS) is known to exert immodulatory effects. CS also acts as a potent pro-oxidative stressor. Several studies including ours have characterized the importance of various pro-oxidative stressors including UVB to inhibit host immunity and an importance of the platelet-activating factor (1-alkyl-2-acetyl-glycerophosphocholine; PAF), a potent lipid mediator in this process. PAF is produced enzymatically in a tightly-controlled process. In addition, oxidative stressors can act directly on glycerophosphocholines (GPC) to produce oxidized GPC which are potent PAF-R agonists. The present studies employed model systems consisting of PAF-receptor (PAF-R)-expressing (KBP) and– deficient (KBM) cells and mice (wild type [WT] and Pafr-/-) to determine whether CS exposure could generate PAF-R agonists in blood and whether it could suppress contact hypersensitivity reactions in a PAF-R-dependent manner. We show that lipid extracts derived from the blood of CS-treated WT mice resulted in immediate intracellular calcium (Ca$^{2+}$) mobilization response only in KBP cells. However, no Ca$^{2+}$mobilization response was detected with lipid extracts from non-smoked (sham) mice both in KBP and KBM cells. In addition, lipid extracts only from CS-treated mice induced an increase in IL-8 secretion in KBP cells indicating that CS generates systemic PAF-R agonists. CS exposure also inhibited contact hypersensitivity to the allergen dinitrofluorobenzene (DNFB) selectively in WT but not in Pafr-/− mice. This inhibitory effect of CS in WT mice were similar to those induced by a PAF-R agonist, CPAF or histamine. Furthermore, this inhibition of CHS by CS in WT mice was blocked by antioxidants vitamin C and N-acetyl cysteine. These findings indicate that CS exposure induces systemic immunosuppression in a PAF-R-dependent manner. These studies provide the first evidence that the pro-oxidative stressor CS can modulate cutaneous immunity via the generation of PAF agonists through lipid oxidation.