Interaction Between Cognitive Impairment and Discharge Destination and its Impact on Rehospitalizations

Arif Nazir, MD(1), Michael LaMantia, MD, MPH(1),(2),(3), Joshua Chodosh, MD, MSHS(4),(5), Babar Khan, MD, MS(1),(2),(3), Noll Campbell, PharmD(2),(3),(6), Siu Hui, PhD(1),(2),(3), and Malaz Boustani, MD, MPH(1),(2),(3)

(1)Indiana University School of Medicine, Indianapolis, Indiana
(2)Indiana University Center for Aging Research, Indianapolis, Indiana
(3)Regenstrief Institute, Inc. Indianapolis, Indiana
(4)David Geffen School of Medicine, Los Angeles, California
(5)VA Greater Los Angeles Healthcare System, Los Angeles, California
(6)College of Pharmacy, Purdue University, West Lafayette, Indiana

Abstract

Background—Rehospitalizations are common among older patients and cognitive function may influence rehospitalizations.

Objectives—Evaluate the impact of cognitive impairment (CI) on rehospitalization among older patients.

Design—One year longitudinal study of 976 patients, aged 65 and older, admitted into the medical services of an urban, 340-bed, public hospital in Indianapolis between July 2006 and March 2008.

Outcome—Rehospitalization was defined as any hospital admission following the index admission.

Exposure—Patients were considered to have CI if they made two or more errors on the Short Portable Mental Status Questionnaire.

Confounders—Patient demographics, Discharge destination, Charlson Comorbidity Index, Acute Physiology Scores, and prior hospitalizations.

Results—After adjusting for confounders a significant interaction between CI and discharge location was found to predict both rehospitalization rate and time to 1-year rehospitalization (P = .008 and .028 respectively). CI Patients, discharged to a facility had a longer time to rehospitalization compared with patients with no CI (HR = 0.77 [0.58, 1.02] p=0.068, median days: 142 vs. 98), while CI patients, discharged to home had a slightly shorter time to...
rehospitalization than those without CI (HR=1.15 [0.92, 1.43] p=0.230; median days: 182 vs. 224). These two non-significant hazard ratios in opposite directions were significantly different from each other (p=0.028).

Conclusion—Discharge destination modifies the association between CI and rehospitalizations. Of those discharged to a facility, patients without CI had higher rehospitalization rates, whereas the rates were similar between cognitively impaired and intact patients that were discharged to the community.

Keywords
Rehospitalizations; Cognitive Impairment; Discharge Destination

INTRODUCTION

Recurring hospitalizations are common in older adults, with 20% of elderly patients rehospitalized at 1 month. The resulting iatrogenic events that increase patient morbidity and mortality, and more than $17 billion dollars per year spent on these rehospitalizations have persuaded policy makers to require public reporting of rehospitalization rates and to tie 30-day rehospitalizations to hospital reimbursement. These requirements received further support from the Affordable Care Act’s creation of the National Quality Strategy that emphasizes the core “Triple Aim” principles: improving the individual experience of care; improving the health of populations; and reducing the per capita costs of care for populations. Consequently, rehospitalization reduction has become a top priority for healthcare administrators.

As 75% of rehospitalizations are believed to be preventable, interventions to decrease inefficiencies of transitional care, enhance patient education, facilitate disease self-management and follow-up care after discharge have been employed. The results of these interventions have been inconsistent. One explanation is that these interventions target a heterogeneous group of patients, some of whom are not high risk and do not benefit.

Several models help identify patients who are at a high risk for rehospitalization and to standardize rehospitalization risk rates between hospitals. These models share common patient-level variables including age, gender, race or ethnicity, depression, length of hospital stay, comorbidity, functional status, prior hospital admission, cognitive impairment (CI), and polypharmacy. Few models include system-level factors such as physician practices, site of care and discharge destination. However, a recent review concluded that most of these models had poor predictive ability. Moreover, few models evaluate the interplay of patient and system-level factors. Though one study that analyzed the interaction of patient race/ethnicity and site of care concluded that this interaction significantly impacted rehospitalization rates, the interplay between patient and system level factors is understudied.

Cognitive impairment (CI) is known to influence hospital utilization but its effect varies among different populations and its relationship to system level factors is unknown. We study the impact of CI on rehospitalization rates and the influence of the discharge destination, as a potentially important system-level factor.

METHODS

We analyzed previously collected data from a randomized control trial that evaluated the efficacy of a clinical decision support system on the quality of care for hospitalized older
adults with CI admitted between July 1, 2006 and May 30, 2008. The current study was approved by the Indiana University Institutional Review Board.

Setting

The study was conducted at Wishard Memorial Hospital (WMH), a 340-bed, university-affiliated, public, safety-net hospital with 1,500 to 2,000 admissions of adults aged 65 and older each year.

Inclusion and exclusion criteria

Patients were eligible for enrollment if they were at least 65 years of age, hospitalized on a medical ward, and able to speak English. Patients were excluded if they were enrolled in any other clinical study or were aphasic or unresponsive at the time of screening.

The Regenstrief Medical Record System (RMRS)

This computerized system is the primary instrument for processing data and monitoring patient and physician activity for Wishard Health System. By linking with the Indiana Network for PatientCare, the system captures data on hospitalization and emergency room visits from a statewide network of hospital systems. Additionally, it pulls information from the Indiana State Board of Health for all registered patients who die in or outside the state.

Rehospitalization

The primary study outcome was rehospitalization, defined as any hospital admission identified in the RMRS occurring within 30 days and 1-year from the discharge day of the index admission. The index hospitalization was defined as the first study hospitalization when patients enrolled in the study and screened for CI.

Cognitive Screening

The presence of CI was based on the Short Portable Mental Status Questionnaire (SPMSQ). The SPMSQ is a brief 10-item screening test with a sensitivity of 86% and specificity 99.0% for CI among medical inpatients using a score of 7 or less. We chose this tool for its accuracy, frequency of use in cognitive research, and its verbal administration, which was needed for the study procedures. Furthermore, the SPMSQ scoring process adjusts for patient’s educational and racial status. The urban setting of our hospital serving a large proportion of African Americans and many with low education encouraged us to use the SPMSQ instrument because we could adjust for such important demographic variables. For screening purposes, two lower cut-off points have been recommended: three errors for dementia and two errors for delirium. For our trial and subsequent analyses we use a two-error cut-off to detect CI induced by both dementia and delirium. In our published paper in 2010, we found that such a categorization was able to differentiate well between patients with CI and those without CI on clinically important health outcomes such as 30 days mortality rate, length of hospital stay, and hospital acquired complications. A physician-trained research assistant conducted all patient interviews and administered the SPMSQ at the time of admission.

Other Data collections

Patient demographics including age, gender, ethnicity, and years of education were collected from the RMRS and from interviews performed at the time of cognitive screening. Length of hospital stay, discharge destination—home vs. facility [includes skilled nursing and acute rehab facilities] -- and mortality were also obtained from the RMRS. Charlson comorbidity index score was calculated using ICD-9 codes gathered from one year prior to admission until the time of each patient’s discharge from the hospital.
(APS) from the APACHE III was derived from data available in the RMRS to measure the acute severity of illness.\cite{18} While the APACHE III was developed in the ICU using data from the first 24 hours after admission, we used the worst laboratory test value during the entire hospital stay to calculate the APS.

Analysis

Baseline demographic and clinical variables are presented as percentages for binary categorical variables, and means and standard deviations for continuous variables. Group comparisons were made by using logistic regression for binary outcome variables; and Kaplan-Meier estimation, and Cox proportional hazards models for time to event, after controlling for relevant covariates such as age, gender, race, Charlson comorbidity index, APS score and SPMSQ at screening. We also tested the interaction between CI and discharged destination. Interactions between variables were tested in the final model. All data analyses were performed using SAS 9.3 software (SAS Institute, Cary, NC).

RESULTS

Between July 1, 2006 and May 30, 2008, 3686 potential study participants aged 65 and older were admitted to the hospital. Six patients declined to participate in the study, whereas 2697 patients were excluded because of various reasons (admissions over the weekend (460), discharged before screening (883), previously enrolled (333), other reasons including admitted to non-medical services and unresponsive or aphasic at admission (1021)). Thirteen patients died before getting discharged. Thus, 976 patients aged 65 and older were screened for CI and then discharged from the hospital, of which 415 (42.5%) screened positive. Six hundred and twenty patients were discharged home, while 356 patients were discharged to a facility. CI was significantly more common among patients discharged to a facility compared to those that were discharged home (60.4% vs. 32.4%; \(p<0.001\)). Patients discharged to a facility were more likely to be: African American (228 (64%) vs. 341 (55%), \(P= .005\)); older (mean age 77.0 years (SD8.1) vs. 73.6 years (SD6.8), \(P= <.001\)); sicker as determined by APS (26.3 (SD 14.6) vs. 20.8 (SD 11.8), \(P= <.001\)); more educated (mean years of education (10.4 years (SD 2.7) vs. 10.2 years (SD 2.9), \(P=.032\)).

Patients with CI were older (77.3 years (SD 8.1) vs. 73.0 years (SD 6.4), \(P= <0.001\)), had higher APS (25.1 (SD 13.7) vs. 21.1(SD 12.5), \(P=0.002\)) and had fewer years of education (9.7 (SD 2.8) vs. 10.6 (SD 2.8), \(P= <0.001\)). (see Table 1).

Patients with and without CI had similar 1-year rehospitalization rates (56.5% vs. 55.2; \(P=0.680\)) and comparable times to first rehospitalization (171 vs. 185 days; \(P=0.637\)). Patients discharged to a facility had higher 30-day rehospitalization rates than those who were discharged home (23.9% vs. 16.6%, \(P=.006\)). In addition, they also had shorter times to rehospitalization (121 days vs. 206 days; \(P<0.001\)). Allowing for the possibility that the effect of CI on rehospitalization could be influenced by the patient’s discharge location, models were fit to predict various discharge outcomes (Table 2), with discharge destination, CI, and their interaction as predictors. The interaction between CI and discharge destination was significant for both rehospitalization rate at 1 year (\(P=0.008\)), and for time to rehospitalization (0.028)(Table 2). The patterns for 30 day outcomes were similar though the interaction was not significant.

The differential effects of CI across discharge destinations on time to rehospitalization is depicted in Figure 1, which shows the Kaplan Meier curves representing the time to rehospitalization among patients based on their cognitive and discharge status. In comparison to patients with no CI, those with CI discharged to a facility exhibited a trend towards an increased time to rehospitalization (HR = 0.77 [0.58, 1.02] \(P=0.068\), median...
days: 142 vs. 98), whereas CI patients who were discharged home had a small and non-significant decreased time to rehospitalization (HR=1.15 [0.92, 1.43] p=0.230; median days: 182 vs. 224). These two non-significant hazard ratios were significantly different from each other (p=0.028).

To explore whether the differential effects of CI on rehospitalization across discharge destination could be explained by patient characteristics, age, gender, race, comorbidity, severity of illness, and any admission in the prior year were added to the original proportional hazards model for predicting time to rehospitalization (Table 3 showing the association of these characteristics with time to rehospitalization is available online as an appendix). After adjusting for these covariates, the interaction at 1-year between discharge destination and CI was no longer significant (p=0.159) but the pattern of hazard ratios stayed the same. For those discharged to a facility, CI was associated with a decreased risk of hospitalization (HR = 0.85 [0.64, 1.14]), while CI was associated with increased risk of hospitalization for patients who were discharged home (HR=1.11 [0.90, 1.86]), although neither association was statistically significant. Results were similar when the outcome of rehospitalizations alone was substituted for a composite outcome of death or rehospitalization.

DISCUSSION

The results show that CI is not independently associated with 1-year rehospitalizations and that the relationship between CI and rehospitalization is influenced by discharge destination (i.e., there are differences between the times to rehospitalization between CI and non-CI patients across the discharge destinations). We additionally found no differences in the rehospitalization rates among CI and non-CI patients that were sent to the community but among those that were discharged to a facility, the rates were lower among those who had CI. The study confirmed the association of rehospitalizations with previously known factors including chronic comorbidity, severity of illness, and prior hospitalizations.

The lack of association between CI and rehospitalization among those that were discharged to the community in our study may initially seem unexpected given the body of literature establishing CI as a risk factor for hospitalizations. Our findings may however be explained by our approach in that we analyzed outcomes of patients based on discharge destination and applied objective cognitive assessments for CI (instead of relying on documented diagnosis from the medical record). CI patients are believed to be at high risk of hospitalization due to a range of issues including the presence of complex medical illnesses that lead to and exacerbate their CI, poor ability to manage chronic diseases, poor medication compliance and higher medication adverse effects, and the lack of required social support. Further, CI patients may receive discharge instructions that do not take into account their cognitive ability, thus placing them at higher risk for non-compliance.

As per our results, CI patients who were discharged to facilities had longer times to rehospitalization than cognitively intact patients. These results are in line with a prior study that found dementia to be a predictor of delayed rehospitalizations (Hazard ratio = 0.46; 95% CI 0.24–0.80; p=0.007) in facility residents. The reasons for such an association among CI patients discharged to a facility are less clear though future prospective studies may help better clarify this relationship. One possible explanation could be that CI patients who are discharged to facilities may have relatively more support in mitigating some of the risk factors for rehospitalization including medication non-compliance and poor management of complex chronic illnesses. Moreover, the fact that CI patients admitted to facilities receive less extensive evaluation than cognitively intact patients may also impact hospital transfers. Another possible explanation could be that cognitively intact patients discharged...
to facilities may have greater complexity not fully captured in comorbidity analysis, whereas CI patients are admitted to facilities secondary to their CI and related psychosocial factors affecting their care. Discharge destination, therefore, should be included in any model that seeks to predict hospitalization or rehospitalization risk for cognitively impaired patients.

The finding that 30-day rehospitalization rates were higher among all patients discharged to a facility versus home has been confirmed in patients with a variety of comorbidities, but particularly among those with heart failure and recent joint replacements. 26, 27 Though care quality at the facility may play a role, other factors also influence 30-day hospitalizations including less than ideal medical and transitional care provided by the discharging hospital. 10 Beyond these factors, it has been observed that family, staff and provider concerns about the clinical capabilities of nursing facilities may influence rehospitalization rates. 28

Our analyses are limited by a lack of data on facility characteristics that might have influenced rehospitalization and our data were not clustered by individual facility. Our data were also limited due to the lack of availability of data regarding emergency room visits and only included rehospitalizations where patients were transferred to inpatient wards. Initial admissions lacked data on originating site, which will influence discharge destination and risk of rehospitalization, and for discharges we were unable to separate outcomes based upon discharge to a skilled facility versus acute rehab. Future research incorporating facility characteristics and patient originating site may help evaluate such issues. This study was conducted in one public hospital in an urban environment with a higher percentage of African Americans, lending further question as to the generalizability of these findings. However, studies with significant minority ethnicity representation are less common in CI research, suggesting that this study is an important contribution. Thirty-day rehospitalization rates may differ at other institutions; however, our rate is similar to the 15.3% 30-day rate for Indianapolis as reported by the Dartmouth Institute. 29

Our results have policy implications as they provide a unique perspective on the interplay between patient and system-level factors and their influence on patient rehospitalizations. Our findings warrant further exploration of the interaction between CI and rehospitalization with a goal of investing resources directed to achieve greatest reduction in avoidable utilization. For example, of the patients that are discharged to a facility, cognitively intact patients may benefit from more intense monitoring and clinical supervision than is mandated by federal regulations (monthly physician visits in skilled facilities). On the other hand, for CI patients being discharged to home, more concerted planning is warranted. Indeed, more than 60% of the Medicare spending related to medical costs of CI patients is related to hospitalizations and rehospitalizations. 30 For patients that are discharged home, transitional care coaches and Advance Practice Nurses have shown to decrease costs of care. 31, 32 Also, studies show that when interventions are targeted towards both CI patient and their caregivers, outcomes and costs of care improve. 33 Thus for achieving cost efficient care it will be important to employ above mentioned strategies for CI patients that are being discharged to the community. For frail patients that are discharged home, special geriatric and psychosocial models of care have shown promise to minimize crises and hospital transfers. 34 Moreover, the use of emergency rooms can be significantly decreased by the provision of formal geriatric care, and timely provision of palliative care consultation in patients with advanced CI. 35 In summary, a redesign of the acute care environment that promotes active discharge planning with focus on customized approaches derived from patient and system-level characteristics may be required.

These results show that CI is not independently associated with rehospitalizations and that this relationship is modified by site of discharge. With the renewed focus on the provision of
high quality of care, improved patient experiences and efficient healthcare, administrators and policy makers are seeking evidence-based strategies for curbing rehospitalizations— an objective and a rational surrogate of successful provision of quality care. This analysis provides unique insights regarding the interaction of two important risk factors for the rehospitalization of the elderly population, including patient cognition and the discharge destination.

Acknowledgments

Funding Source: This work was supported by grants from a Geriatric Academic Career Award through Health Resources and Services Administration; R01AG034205, and K23-AG043476 from the National Institute on Aging; and the John A. Hartford Foundation Center for Excellence in Geriatric Medicine.

Sponsor’s Role: The sponsor had no role in the study design, evaluation, or manuscript development.

Appendix

Table 3

<table>
<thead>
<tr>
<th>Proportional hazards regression results adjusted</th>
<th>Hazard Ratio for Time to 1 year Rehospitalization</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Physiology Score (APS)</td>
<td>1.01 (1.00, 1.01)</td>
<td>0.080</td>
</tr>
<tr>
<td>Charlson Comorbidity Index</td>
<td>1.14 (1.10, 1.17)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age (years)</td>
<td>1.00 (0.98, 1.01)</td>
<td>0.574</td>
</tr>
<tr>
<td>Female</td>
<td>0.87 (0.72, 1.04)</td>
<td>0.116</td>
</tr>
<tr>
<td>African-American</td>
<td>0.97 (0.81, 1.15)</td>
<td>0.709</td>
</tr>
<tr>
<td>Admission Prior Year</td>
<td>1.29 (1.08, 1.54)</td>
<td>0.005</td>
</tr>
</tbody>
</table>

REFERENCES

Figure 1.
Time in hospitalization
Table 1

Comparison of demographics by discharge destination and Cognitive Impairment

<table>
<thead>
<tr>
<th></th>
<th>Discharged to Facility</th>
<th>Discharged Home</th>
<th>CI</th>
<th>Discharge Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No CI (n=141)</td>
<td>CI (n=215)</td>
<td>No CI (n=420)</td>
<td>CI (n=200)</td>
</tr>
<tr>
<td>% Female</td>
<td>69.5</td>
<td>65.1</td>
<td>69.0</td>
<td>69.0</td>
</tr>
<tr>
<td>% African American</td>
<td>61.7</td>
<td>65.6</td>
<td>56.9</td>
<td>51.0</td>
</tr>
<tr>
<td>Mean APS (SD)</td>
<td>25.0 (15.1)</td>
<td>27.2 (14.2)</td>
<td>19.8 (11.2)</td>
<td>22.8 (12.7)</td>
</tr>
<tr>
<td>Mean Charlson (SD)</td>
<td>3.2 (2.9)</td>
<td>2.5 (2.5)</td>
<td>2.8 (2.5)</td>
<td>2.6 (2.2)</td>
</tr>
<tr>
<td>Mean Age (Years) (SD)</td>
<td>73.7 (6.1)</td>
<td>79.1 (8.5)</td>
<td>72.7 (6.6)</td>
<td>75.3 (7.1)</td>
</tr>
<tr>
<td>Mean Education (SD)</td>
<td>10.9 (2.6)</td>
<td>10.0 (2.8)</td>
<td>10.5 (2.8)</td>
<td>9.5 (2.9)</td>
</tr>
<tr>
<td>% Admission Prior Year</td>
<td>35.5</td>
<td>30.7</td>
<td>31.4</td>
<td>35.5</td>
</tr>
</tbody>
</table>

* Difference between CI and No CI is different across discharge destinations, P=0.003

CI= Cognitive Impairment; APS= Acute Physiology Score; SD= Standard Deviation
Table 2
Predicting rehospitalization by discharge destination and cognitive impairment *

<table>
<thead>
<tr>
<th>Discharged to Facility</th>
<th>Discharged Home</th>
<th>p-value of Interaction between CI and Discharge Destination as a predictor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No CI (n=141)</td>
<td>CI (n=215)</td>
</tr>
<tr>
<td>% Rehospitalization 30 days</td>
<td>30.5</td>
<td>19.5</td>
</tr>
<tr>
<td>% Rehospitalization/Death 30 days</td>
<td>31.2</td>
<td>21.4</td>
</tr>
<tr>
<td>% Rehospitalization 1 year</td>
<td>63.1</td>
<td>50.7</td>
</tr>
<tr>
<td>% Rehospitalization/Death 1 year</td>
<td>64.5</td>
<td>53.5</td>
</tr>
<tr>
<td>Days to Rehospitalization</td>
<td>98.0</td>
<td>142.0</td>
</tr>
<tr>
<td>Days to Rehospitalization/Death</td>
<td>96.0</td>
<td>121.0</td>
</tr>
</tbody>
</table>

CI= Cognitive Impairment

* Binary outcomes were fitted to logistic regression models and time-to-event outcomes to Cox proportional hazards model with discharge destination, CI, and their interaction as predictors.