INTEGRATED MULTIBODY DYNAMICS AND FATIGUE MODELS FOR PREDICTING THE FATIGUE LIFE OF POLY–V RIBBED BELTS

A Thesis
Submitted to the Faculty
of
Purdue University
by
Omar A. Elmaraghi

In Partial Fulfillment of the Requirements of the Degree of Masters of Science in Mechanical Engineering

May 2013
Purdue University
Indianapolis, Indiana
APPENDIX
APPENDIX: PARAMETER SENSITIVITY RESULTS

1. Tensioner Arm Viscous Damping Increases To $5 \text{ N.m}. \text{sec}/\text{rad}$ Instead Of $0 \text{ N.m}. \text{sec}/\text{rad}$

Figure 1 Crankshaft angular velocity in the A100 operation range with tensioner arm viscous damping = $5 \text{ N.m}. \text{s}/\text{rad}$ instead of $0 \text{ N.m}. \text{s}/\text{rad}$
Figure 2 Drive haft angular velocity in the A100 operation range with tensioner arm viscous damping = 5 N.m.s/rad instead of 0 N.m.s/rad
Figure 3 Drive haft torque in the A100 operation range with tensioner arm viscous damping = 5 N.m.s/rad instead of 0 N.m.s/rad
Figure 4 Crankshaft angular velocity in the B100 operation range with tensioner arm viscous damping = 5 N.m.s/rad instead of 0 N.m.s/rad
Figure 5 Drive haft torque in the B100 operation range with tensioner arm viscous damping = $5 \, N \cdot m \cdot s/\text{rad}$ instead of $0 \, N \cdot m \cdot s/\text{rad}$
Figure 6 Crankshaft angular velocity in the C100 operation range with tensioner arm
viscous damping $= 5 \, N.m.s/rad$ instead of $0 \, N.m.s/rad$.
Figure 7 Drivehaft angular velocity in the C100 operation range with tensioner arm viscous damping = $5 \, N \cdot m \cdot s/\text{rad}$ instead of $0 \, N \cdot m \cdot s/\text{rad}$
Figure 8 Drive haft torque in the C100 operation range with tensioner arm viscous damping = 5 N.m.s/rad instead of 0 N.m.s/rad
Figure 9 Crankshaft angular velocity in the idle operation range with tensioner arm viscous damping = 5 N.m.s/rad instead of 0 N.m.s/rad
Figure 10 Drive haft angular velocity in the idle operation range with tensioner arm viscous damping = 5 $N.m/s/rad$ instead of 0 $N.m/s/rad$
Figure 11 Drive haft torque in the idle operation range with tensioner arm viscous damping = 5 N.m.s/rad instead of 0 N.m.s/rad
Figure 12 Crankshaft angular velocity in the UnloadedDown operation range with tensioner arm viscous damping = 5 $N \cdot m \cdot s/\text{rad}$ instead of 0 $N \cdot m \cdot s/\text{rad}$
Figure 13 Drive haft angular velocity in the UnloadedDown operation range with tensioner arm viscous damping = $5 \, N \cdot m \cdot s/\text{rad}$ instead of $0 \, N \cdot m \cdot s/\text{rad}$
Figure 14 Drive haft torque in the UnloadedDown operation range with tensioner arm viscous damping = 5 N.m.s/rad instead of 0 N.m.s/rad
Figure 15 Crankshaft angular velocity in the UnloadedUp operation range with tensioner arm viscous damping = 5 N.m.s/rad instead of 0 N.m.s/rad
Figure 16 Drive haft angular velocity in the UnloadedUp operation range with tensioner arm viscous damping = $5 \text{ N} \cdot \text{m} \cdot \text{s} / \text{rad}$ instead of $0 \text{ N} \cdot \text{m} \cdot \text{s} / \text{rad}$
Figure 17 Drive haft torque in the UnloadedUp operation range with tensioner arm viscous damping $= 5 \, N.m.s/rad$ instead of $0 \, N.m.s/rad$
2 Tensioner Arm Friction Moment Increases To 8 N.m Instead Of 3.14 N.m

Figure 18 Crankshaft angular velocity in the A100 operation range with tensioner arm friction moment increases to 8 N.m instead of 3.14 N.m
Figure 19 Drive shaft angular velocity in the A100 operation range with tensioner arm friction moment increases to $8 \, N.m$ instead of $3.14 \, N.m$
Figure 20 Drive shaft torque in the A100 operation range with tensioner arm friction moment increases to $8 \, N \cdot m$ instead of $3.14 \, N \cdot m$.
Figure 21 Crankshaft angular velocity in the B100 operation range with tensioner arm friction moment increases to $8 \, N.m$ instead of $3.14 \, N.m$
Figure 22 Drive shaft angular velocity in the B100 operation range with tensioner arm friction moment increases to 8 $N\cdot m$ instead of 3.14 $N\cdot m$.
Figure 23 Drive shaft torque in the B100 operation range with tensioner arm friction moment increases to $8 \, N \cdot m$ instead of $3.14 \, N \cdot m$.
Figure 24 Crankshaft angular velocity in the C100 operation range with tensioner arm friction moment increases to 8 \(N \cdot m \) instead of 3.14 \(N \cdot m \)
Figure 25 Drive shaft angular velocity in the C100 operation range with tensioner arm friction moment increases to 8 N.m instead of 3.14 N.m
Figure 26 Drive shaft torque in the C100 operation range with tensioner arm friction moment increases to 8 N.m instead of 3.14 N.m
Figure 27 Crankshaft angular velocity in the idle operation range with tensioner arm friction moment increases to 8 $N\cdot m$ instead of 3.14 $N\cdot m$.
Figure 28 Drive shaft angular velocity in the idle operation range with tensioner arm friction moment increases to $8 \, N\, m$ instead of $3.14 \, N\, m$.
Figure 29 Drive shaft torque in the idle operation range with tensioner arm friction moment increases to $8 \text{ N} \cdot \text{m}$ instead of $3.14 \text{ N} \cdot \text{m}$
Figure 30 Crankshaft angular velocity in the UnloadedDown operation range with tensioner arm friction moment increases to 8 N.m instead of 3.14 N.m
Figure 31 Drive shaft angular velocity in the UnloadedDown operation range with tensioner arm friction moment increases to 8 N.m instead of 3.14 N.m
Figure 32 Drive shaft angular velocity in the UnloadedDown operation range with tensioner arm friction moment increases to 8 N.m instead of 3.14 N.m
Figure 33 Drive shaft torque in the UnloadedDown operation range with tensioner arm friction moment increases to $8 \, N \cdot m$ instead of $3.14 \, N \cdot m$.
Figure 34 Crankshaft angular velocity in the UnloadedUp operation range with tensioner arm friction moment increases to 8 N.m instead of 3.14 N.m
Figure 35 Drive shaft angular velocity in the UnloadedUp operation range with tensioner arm friction moment increases to 8 N.m instead of 3.14 N.m
Figure 36 Drive shaft torque in the UnloadedUp operation range with tensioner arm friction moment increases to $8 \, N.m$ instead of $3.14 \, N.m$.
Figure 37 Crankshaft angular velocity in the A100 operation range with belt axial damping (CA) increases to 15 N.s instead of 10 N.s
Figure 38 Drive shaft angular velocity in the A100 operation range with belt axial damping (CA) increases to $15 \, N \cdot s$ instead of $10 \, N \cdot s$.
Figure 39 Drive shaft torque in the A100 operation range with belt axial damping (CA) increases to $15\, Ns$ instead of $10\, Ns$.
Figure 40 Crankshaft angular velocity in the B100 operation range with belt axial damping (CA) increases to 15 N·s instead of 10 N·s
Figure 41 Drive shaft angular velocity in the B100 operation range with belt axial damping (CA) increases to 15 N.s instead of 10 N.s
Figure 42 Drive shaft torque in the B100 operation range with belt axial damping (CA) increases to 15 $N.s$ instead of 10 $N.s$
Figure 43 Crankshaft angular velocity in the C100 operation range with belt axial damping (CA) increases to 15 $N\cdot s$ instead of 10 $N\cdot s$.
Figure 44 Drive shaft angular velocity in the C100 operation range with belt axial damping (CA) increases to 15 $N.s$ instead of 10 $N.s$.

Figure 44: Drive shaft angular velocity in the C100 operation range with belt axial damping (CA) increases to 15 $N.s$ instead of 10 $N.s$.

[Diagram showing drive shaft angular velocity with time and frequency orders]
Figure 45 Drive shaft torque in the C100 operation range with belt axial damping (CA) increases to 15 $N.s$ instead of 10 $N.s$.
Figure 46 Crankshaft angular velocity in the idle operation range with belt axial damping (CA) increases to 15 N.s instead of 10 N.s
Figure 47 Drive shaft angular velocity in the idle operation range with belt axial damping (CA) increases to 15 N.s instead of 10 N.s
Figure 48 Drive shaft torque in the idle operation range with belt axial damping (CA) increases to $15 \, N.s$ instead of $10 \, N.s$
Figure 49 Crankshaft angular velocity in the UnloadedDown operation range with belt axial damping (CA) increases to $15 \, N.s$ instead of $10 \, N.s$.
Figure 50 Drive shaft angular velocity in the UnloadedDown operation range with belt axial damping (CA) increases to 15 $N \cdot s$ instead of 10 $N \cdot s$
Figure 51 Drive shaft torque in the UnloadedDown operation range with belt axial damping (CA) increases to 15 N\cdot s instead of 10 N\cdot s
Figure 52 Crankshaft angular velocity in the UnloadedUp operation range with belt axial damping (CA) increases to 15 N.s instead of 10 N.s
Figure 53 Drive shaft angular velocity in the UnloadedUp operation range with belt axial damping (CA) increases to $15 \, N\,s$ instead of $10 \, N\,s$.

![Figure 53 Drive shaft angular velocity in the UnloadedUp operation range](image-url)
Figure 54 Drive shaft torque in the UnloadedUp operation range with belt axial damping (CA) increases to $15 \, N\cdot s$ instead of $10 \, N\cdot s$
Belt axial stiffness (EA) decreases to $110,000\, N$ instead of $140,563\, N$ in the base line.

Figure 55 Crankshaft angular velocity in the A100 operation range with belt axial stiffness (EA) = $110,000\, N$ instead of $140,563\, N$ in the base line.
Figure 56 Drive shaft angular velocity in the A100 operation range with belt axial stiffness (EA) = 110,000 \(N \) instead of 140,563 \(N \) in the base line
Figure 57 Drive shaft torque in the A100 operation range with belt axial stiffness (EA) = 110,000 \(N\) instead of 140,563 \(N\) in the base line
Figure 58 Crankshaft angular velocity in the B100 operation range with belt axial stiffness (EA) = 110,000 N instead of 140,563 N in the base line
Figure 59 Drive shaft angular velocity in the B100 operation range with belt axial stiffness (EA) = 110,000 N instead of 140,563 N in the base line
Figure 60 Drive shaft angular velocity in the B100 operation range with belt axial stiffness (EA) = 110,000 N instead of 140,563 N in the base line.
Figure 61 Crankshaft angular velocity in the C100 operation range with belt axial stiffness (EA) = 110,000 N instead of 140,563 N in the base line
Figure 62 Drive shaft angular velocity in the C100 operation range with belt axial stiffness (EA) = 110,000 N instead of 140,563 N in the base line.
Figure 63 Drive shaft torque in the C100 operation range with belt axial stiffness (EA) = 110,000 N instead of 140,563 N in the base line
Figure 64 Crankshaft angular velocity in the idle operation range with belt axial stiffness (EA) = 110,000 N instead of 140,563 N in the base line
Figure 65 Drive shaft angular velocity in the idle operation range with belt axial stiffness (EA) = 110,000 N instead of 140,563 N in the base line
Figure 66 Drive shaft torque in the idle operation range with belt axial stiffness (EA) = 110,000 \, N instead of 140,563 \, N in the base line
Figure 67 Crankshaft angular velocity in the UnloadedDown operation range with belt axial stiffness \(EA = 110,000 \, N \) instead of \(140,563 \, N \) in the base line.
Figure 68 Drive shaft angular velocity in the UnloadedDown operation range with belt axial stiffness (EA) = 110,000 N instead of 140,563 N in the base line
Figure 69 Drive shaft torque in the UnloadedDown operation range with belt axial stiffness (EA) = 110,000 N instead of 140,563 N in the base line
Figure 70 Crankshaft angular velocity in the UnloadedUp operation range with belt axial stiffness (EA) = 110,000 N instead of 140,563 N in the base line.
Figure 71 Drive shaft angular velocity in the UnloadedUp operation range with belt axial stiffness (EA) = 110,000 N instead of 140,563 N in the base line.
Figure 72 Drive shaft torque in the UnloadedUp operation range with belt axial stiffness $(EA) = 110,000 \ N$ instead of $140,563 \ N$ in the base line.
Belt Bending Damping increases to $10 \times 10^{-5} \, N \cdot m^2 \cdot s$ instead of $5 \times 10^{-5} \, N \cdot m^2 \cdot s$ in the base line.

Figure 73 Crankshaft angular velocity in the A100 operation range with belt bending damping = $10 \times 10^{-5} \, N \cdot m^2 \cdot s$ instead of $5 \times 10^{-5} \, N \cdot m^2 \cdot s$ in the base line.
Figure 74 Drive shaft angular velocity in the A100 operation with belt bending damping
$= 10 \times 10^{-5} \, N \cdot m^2 \cdot s$ instead of $5 \times 10^{-5} \, N \cdot m^2 \cdot s$ in the base line.
Figure 75 Drive shaft torque in the A100 operation range with belt bending damping $= 10 \times 10^{-5} \, N \cdot m^2 \cdot s$ instead of $5 \times 10^{-5} \, N \cdot m^2 \cdot s$ in the base line
Figure 76 Crankshaft angular velocity in the B100 operation range with belt bending damping $= 10 \times 10^{-5} \text{N.m}^2/\text{s}$ instead of $5 \times 10^{-5} \text{N.m}^2/\text{s}$ in the base line
Figure 77 Drive shaft angular velocity in the B100 operation range with belt bending damping = $10 \times 10^{-5} \, N.\, m^2.\, s$ instead of $5 \times 10^{-5} \, N.\, m^2.\, s$ in the base line
Figure 78 Drive shaft torque in the B100 operation range with belt bending damping $= 10 \times 10^{-5} \ N.m^2.s$ instead of $5 \times 10^{-5} \ N.m^2.s$ in the base line.
Figure 79 Crankshaft angular velocity in the A100 operation range with belt bending damping $= 10 \times 10^{-5} \ N \cdot m^2 \cdot s$ instead of $5 \times 10^{-5} \ N \cdot m^2 \cdot s$ in the base line
Figure 80 Drive shaft angular velocity in the C100 operation range with belt bending damping $= 10 \times 10^{-5} \, N \cdot m^2 \cdot s$ instead of $5 \times 10^{-5} \, N \cdot m^2 \cdot s$ in the base line
Figure 81 Drive shaft torque in the C100 operation range with belt bending damping $= 10 \times 10^{-5} \, N \cdot m^2 \cdot s$ instead of $5 \times 10^{-5} \, N \cdot m^2 \cdot s$ in the base line
Figure 82 Crankshaft angular velocity in the idle operation range with belt bending damping $= 10 \times 10^{-5} \, N\,m^2\,s$ instead of $5 \times 10^{-5} \, N\,m^2\,s$ in the base line.
Figure 83 Drive shaft angular velocity in the idle operation range with belt bending damping $= 10 \times 10^{-5} \, N. m^2. s$ instead of $5 \times 10^{-5} \, N. m^2. s$ in the base line
Figure 84 Drive shaft torque in the idle operation range with belt bending damping \(= 10 \times 10^{-5} \text{ N.m}^2\text{s} \) instead of \(5 \times 10^{-5} \text{ N.m}^2\text{s} \) in the base line.
Figure 85 Crankshaft angular velocity in the UnloadedDown operation range with belt bending damping $= 10 \times 10^{-5} \, N \cdot m^2 \cdot s$ instead of $5 \times 10^{-5} \, N \cdot m^2 \cdot s$ in the base line
Figure 86 Drive shaft angular velocity in the UnloadedDown operation range with belt bending damping $= 10 \times 10^{-5} \, N \cdot m^2 \cdot s$ instead of $5 \times 10^{-5} \, N \cdot m^2 \cdot s$ in the base line
Figure 87 Drive shaft torque in the UnloadedDown operation range with belt bending damping $= 10 \times 10^{-5} \text{ N.m}^2.\text{s}$ instead of $5 \times 10^{-5} \text{ N.m}^2.\text{s}$ in the base line
Figure 88 Crankshaft angular velocity in the UnloadedUp operation range with belt bending damping $= 10 \times 10^{-5} \, N \cdot m^2 \cdot s$ instead of $5 \times 10^{-5} \, N \cdot m^2 \cdot s$ in the base line
Figure 89 Drive shaft angular velocity in the UnloadedUp operation range with belt bending damping $= 10 \times 10^{-5} \, N.m^2.s$ instead of $5 \times 10^{-5} \, N.m^2.s$ in the base line.
Figure 90 Drive shaft torque in the UnloadedUp operation range with belt bending damping \(10 \times 10^{-5} \text{ N.m}^2 \text{s}\) instead of \(5 \times 10^{-5} \text{ N.m}^2 \text{s}\) in the base line.
Belt Bending Stiffness Increases To 2 N.m2 Instead Of 0 N.m2 In The Base Line

Figure 91 Crankshaft angular velocity in the A100 operation range with belt bending stiffness increases to 2 N.m2 instead of 0 N.m2 in the base line
Figure 92 Drive shaft angular velocity in the A100 operation range with belt bending stiffness increases to $2\ N.m^2$ instead of $0\ N.m^2$ in the base line.
Figure 93 Drive shaft torque in the A100 operation range with bending stiffness increases to $2\, N\cdot m^2$ instead of $0\, N\cdot m^2$ in the base line.
Figure 94 Crankshaft angular velocity in the B100 operation range with belt bending stiffness increases to $2 \, N \cdot m^2$ instead of $0 \, N \cdot m^2$ in the base line.
Figure 95 Drive shaft angular velocity in the B100 operation range with belt bending stiffness increases to $2 \, N \cdot m^2$ instead of $0 \, N \cdot m^2$ in the base line
Figure 96 Drive shaft torque in the B100 operation range with bending stiffness increases to $2 \, N \cdot m^2$ instead of $0 \, N \cdot m^2$ in the base line
Figure 97 Crankshaft angular velocity in the C100 operation range with belt bending stiffness increases to $2 \, N \cdot m^2$ instead of $0 \, N \cdot m^2$ in the base line.
Figure 98 Drive shaft angular velocity in the C100 operation range with belt bending stiffness increases to $2 \, N \cdot m^2$ instead of $0 \, N \cdot m^2$ in the base line.
Figure 99 Drive shaft torque in the C100 operation range with bending stiffness increases to $2 \, N\cdot m^2$ instead of $0 \, N\cdot m^2$ in the base line
Figure 100 Crankshaft angular velocity in the idle operation range with belt bending stiffness increases to 2 \(N \cdot m^2 \) instead of 0 \(N \cdot m^2 \) in the base line.
Figure 101 Drive shaft torque in the idle operation range with bending stiffness increases to $2 \, N \cdot m^2$ instead of $0 \, N \cdot m^2$ in the base line
Figure 102 Drive shaft torque in the idle operation range with bending stiffness increases to $2 \, N \cdot m^2$ instead of $0 \, N \cdot m^2$ in the base line.
Figure 103 Crankshaft angular velocity in the UnloadedDown operation range with belt bending stiffness increases to $2 \, N\cdot m^2$ instead of $0 \, N\cdot m^2$ in the base line
Figure 104 Drive shaft angular velocity in the UnloadedDown operation range with belt bending stiffness increases to 2 \(N \cdot m^2 \) instead of 0 \(N \cdot m^2 \) in the base line.
Figure 105 Drive shaft torque in the UnloadedDown operation range with bending stiffness increases to $2 \, N \cdot m^2$ instead of $0 \, N \cdot m^2$ in the base line
Figure 106 Crankshaft angular velocity in the UnloadedUp operation range with belt bending stiffness increases to $2 \, N \cdot m^2$ instead of $0 \, N \cdot m^2$ in the base line.
Figure 107 Drive shaft angular velocity in the UnloadedUp operation range with belt bending stiffness increases to $2 \, N \cdot m^2$ instead of $0 \, N \cdot m^2$ in the base line.
Figure 108 Drive shaft torque in the UnloadedUp operation range with bending stiffness increases to $2 \, N\cdot m^2$ instead of $0 \, N\cdot m^2$ in the base line.
Belt Coefficient Of Friction Increased to 1 Instead of 0.6 in the Baseline

Figure 109 Crankshaft angular velocity in the A100 operation range with belt coefficient of friction increased to 1 instead of 0.6 in the baseline
Figure 110 Drive shaft angular velocity in the A100 operation range with belt coefficient of friction increased to 1 instead of 0.6 in the baseline.
Figure 111 Drive shaft torque in the A100 operation range with belt coefficient of friction increased to 1 instead of 0.6 in the baseline.
Figure 112 Crankshaft angular velocity in the B100 operation range with belt coefficient of friction increased to 1 instead of 0.6 in the baseline
Figure 113 Drive shaft angular velocity in the B100 operation range with belt coefficient of friction increased to 1 instead of 0.6 in the baseline
Figure 114 Drive shaft torque in the B100 operation range with belt coefficient of friction increased to 1 instead of 0.6 in the baseline
Figure 115 Crankshaft angular velocity in the C100 operation range with belt coefficient of friction increased to 1 instead of 0.6 in the baseline
Figure 116 Drive shaft angular velocity in the C100 operation range with belt coefficient of friction increased to 1 instead of 0.6 in the baseline
Figure 117 Drive shaft torque in the C100 operation range with belt coefficient of friction increased to 1 instead of 0.6 in the baseline
Figure 118: Crankshaft angular velocity in the idle operation range with belt coefficient of friction increased to 1 instead of 0.6 in the baseline.
Figure 119 Drive shaft angular velocity in the idle operation range with belt coefficient of friction increased to 1 instead of 0.6 in the baseline
Figure 120 Drive shaft torque in the idle operation range with belt coefficient of friction increased to 1 instead of 0.6 in the baseline
Figure 121 Crankshaft angular velocity in the UnloadedDown operation range with belt coefficient of friction increased to 1 instead of 0.6 in the baseline
Figure 122 Drive shaft angular velocity in the UnloadedDown operation range with belt coefficient of friction increased to 1 instead of 0.6 in the baseline
Figure 123 Drive shaft torque in the UnloadedDown operation range with belt coefficient of friction increased to 1 instead of 0.6 in the baseline
Figure 124 Crankshaft angular velocity in the UnloadedUp operation range with belt coefficient of friction increased to 1 instead of 0.6 in the baseline.
Figure 125 Drive shaft angular velocity in the UnloadedUp operation range with belt coefficient of friction increased to 1 instead of 0.6 in the baseline
Figure 126 Drive shaft torque in the UnloadedUp operation range with belt coefficient of friction increased to 1 instead of 0.6 in the baseline
Belt Coefficient of Friction Decreased to 0.4 Instead of 0.6 in the Baseline

Figure 127 Crankshaft angular velocity in the A100 operation range with belt coefficient of friction decreased to 0.4 instead of 0.6 in the baseline
Figure 128 Drive shaft angular velocity in the A100 operation range with belt coefficient of friction decreased to 0.4 instead of 0.6 in the baseline
Figure 129 Drive shaft torque in the A100 operation range with belt coefficient of friction decreased to 0.4 instead of 0.6 in the baseline
Figure 130 Crankshaft angular velocity in the B100 operation range with belt coefficient of friction decreased to 0.4 instead of 0.6 in the baseline.
Figure 131: Drive shaft angular velocity in the B100 operation range with belt coefficient of friction decreased to 0.4 instead of 0.6 in the baseline.
Figure 132 Drive shaft torque in the B100 operation range with belt coefficient of friction decreased to 0.4 instead of 0.6 in the baseline
Figure 133 Crankshaft angular velocity in the C100 operation range with belt coefficient of friction decreased to 0.4 instead of 0.6 in the baseline
Figure 134 Drive shaft angular velocity in the C100 operation range with belt coefficient of friction decreased to 0.4 instead of 0.6 in the baseline
Figure 135 Drive shaft torque in the C100 operation range with belt coefficient of friction decreased to 0.4 instead of 0.6 in the baseline
Figure 136 Crankshaft angular velocity in the idle operation range with belt coefficient of friction decreased to 0.4 instead of 0.6 in the baseline
Figure 137 Drive shaft angular velocity in the idle operation range with belt coefficient of friction decreased to 0.4 instead of 0.6 in the baseline
Figure 138 Drive shaft torque in the idle operation range with belt coefficient of friction decreased to 0.4 instead of 0.6 in the baseline.
Figure 139 Crankshaft angular velocity in the UnloadedDown operation range with belt coefficient of friction decreased to 0.4 instead of 0.6 in the baseline
Figure 140 Drive shaft angular velocity in the UnloadedDown operation range with belt coefficient of friction decreased to 0.4 instead of 0.6 in the baseline
Figure 141 Drive shaft torque in the UnloadedDown operation range with belt coefficient of friction decreased to 0.4 instead of 0.6 in the baseline
Figure 142 Crankshaft angular velocity in the UnloadedUp operation range with belt coefficient of friction decreased to 0.4 instead of 0.6 in the baseline.
Figure 143 Drive shaft angular velocity in the UnloadedUp operation range with belt coefficient of friction decreased to 0.4 instead of 0.6 in the baseline
Figure 144 Drive shaft torque in the UnloadedUp operation range with belt coefficient of friction decreased to 0.4 instead of 0.6 in the baseline
Pinion Tooth Backlash Increased To $25 \times 10^{-5}m$ Instead Of $5 \times 10^{-5}m$ In The Baseline

Figure 145 Crankshaft angular velocity in the A100 operation range with pinion tooth backlash increased to $25 \times 10^{-5}m$ instead of $5 \times 10^{-5}m$ in the baseline
Figure 146 Drive shaft angular velocity in the A100 operation range with pinion tooth backlash increased to $25 \times 10^{-5} m$ instead of $5 \times 10^{-5} m$ in the baseline.
Figure 147 Drive shaft torque in the A100 operation range with pinion tooth backlash increased to $25 \times 10^{-5}m$ instead of $5 \times 10^{-5}m$ in the baseline
Figure 148 Crankshaft angular velocity in the B100 operation range with pinion tooth backlash increased to $25 \times 10^{-5} m$ instead of $5 \times 10^{-5} m$ in the baseline.
Figure 149 Drive shaft angular velocity in the B100 operation range with pinion tooth backlash increased to $25 \times 10^{-5} m$ instead of $5 \times 10^{-5} m$ in the baseline.
Figure 150 Drive shaft torque in the B100 operation range with pinion tooth backlash increased to $25 \times 10^{-5} m$ instead of $5 \times 10^{-5} m$ in the baseline
Figure 151 Crankshaft angular velocity in the C100 operation range with pinion tooth backlash increased to $25 \times 10^{-5} m$ instead of $5 \times 10^{-5} m$ in the baseline.
Figure 152 Drive shaft angular velocity in the C100 operation range with pinion tooth backlash increased to $25 \times 10^{-5} \text{m}$ instead of $5 \times 10^{-5} \text{m}$ in the baseline
Figure 153 Drive shaft torque in the C100 operation range with pinion tooth backlash increased to $25 \times 10^{-5}m$ instead of $5 \times 10^{-5}m$ in the baseline
Figure 154 Crankshaft angular velocity in the idle operation range with pinion tooth backlash increased to $25 \times 10^{-5}m$ instead of $5 \times 10^{-5}m$ in the baseline.
Figure 155 Drive shaft angular velocity in the idle operation range with pinion tooth backlash increased to $25 \times 10^{-5}m$ instead of $5 \times 10^{-5}m$ in the baseline.
Figure 156 Drive shaft torque in the idle operation range with pinion tooth backlash increased to $25 \times 10^{-5} m$ instead of $5 \times 10^{-5} m$ in the baseline
Figure 157 Crankshaft angular velocity in the UnloadedDown operation range with pinion tooth backlash increased to $25 \times 10^{-5} m$ instead of $5 \times 10^{-5} m$ in the baseline
Figure 158 Drive shaft angular velocity in the UnloadedDown operation range with pinion tooth backlash increased to $25 \times 10^{-5} m$ instead of $5 \times 10^{-5} m$ in the baseline.
Figure 159 Drive shaft torque in the UnloadedDown operation range with pinion tooth backlash increased to $25 \times 10^{-5} m$ instead of $5 \times 10^{-5} m$ in the baseline.
Figure 160 Crankshaft angular velocity in the UnloadedUp operation range with pinion tooth backlash increased to $25 \times 10^{-5} m$ instead of $5 \times 10^{-5} m$ in the baseline.
Figure 161 Drive shaft angular velocity in the UnloadedUp operation range with pinion tooth backlash increased to $25 \times 10^{-5} m$ instead of $5 \times 10^{-5} m$ in the baseline
Figure 162 Drive shaft torque in the UnloadedUp operation range with pinion tooth backlash increased to $25 \times 10^{-5} m$ instead of $5 \times 10^{-5} m$ in the baseline
Pinion Tooth Stiffness Increased To $4 \times 10^{13} N/m$ Instead Of $2 \times 10^{13} N/m$ In The Baseline

Figure 163 Crankshaft angular velocity in the A100 operation range with pinion tooth stiffness increased to $4 \times 10^{13} N/m$ instead of $2 \times 10^{13} N/m$ in the baseline
Figure 164 Drive shaft angular velocity in the A100 operation range with pinion tooth stiffness increased to $4 \times 10^{13} \, N/m$ instead of $2 \times 10^{13} \, N/m$ in the baseline
Figure 165 Drive shaft torque in the A100 operation range with pinion tooth stiffness increased to $4 \times 10^{13} \text{N/m}$ instead of $2 \times 10^{13} \text{N/m}$ in the baseline.
Figure 166 Crankshaft angular velocity in the B100 operation range with pinion tooth stiffness increased to $4 \times 10^{13} \, N/m$ instead of $2 \times 10^{13} \, N/m$ in the baseline.
Figure 167 Drive shaft angular velocity in the B100 operation range with pinion tooth stiffness increased to 4×10^{13} N/m instead of 2×10^{13} N/m in the baseline.
Figure 168 Drive shaft torque in the B100 operation range with pinion tooth stiffness increased to $4 \times 10^{13} \, N/m$ instead of $2 \times 10^{13} \, N/m$ in the baseline.
Figure 169 Crankshaft angular velocity in the C100 operation range with pinion tooth stiffness increased to $4 \times 10^{13} \, N/m$ instead of $2 \times 10^{13} \, N/m$ in the baseline.
Figure 170 Drive shaft angular velocity in the C100 operation range with pinion tooth stiffness increased to $4 \times 10^{13} N/m$ instead of $2 \times 10^{13} N/m$ in the baseline
Figure 171 Drive shaft torque in the C100 operation range with pinion tooth stiffness increased to $4 \times 10^{13} \text{N/m}$ instead of $2 \times 10^{13} \text{N/m}$ in the baseline
Figure 172 Crankshaft angular velocity in the idle operation range with pinion tooth stiffness increased to $4 \times 10^{13} \, N/m$ instead of $2 \times 10^{13} \, N/m$ in the baseline.
Figure 173 Drive shaft angular velocity in the idle operation range with pinion tooth stiffness increased to $4 \times 10^{13} \, N/m$ instead of $2 \times 10^{13} \, N/m$ in the baseline
Figure 174 Drive shaft torque in the idle operation range with pinion tooth stiffness increased to $4 \times 10^{13} N/m$ instead of $2 \times 10^{13} N/m$ in the baseline.
Figure 175 Crankshaft angular velocity in the UnloadedDown operation range with pinion tooth stiffness increased to $4 \times 10^{13} \text{N/m}$ instead of $2 \times 10^{13} \text{N/m}$ in the baseline.
Figure 176 Drive shaft angular velocity in the UnloadedDown operation range with pinion tooth stiffness increased to $4 \times 10^{13} N/m$ instead of $2 \times 10^{13} N/m$ in the baseline
Figure 177 Crankshaft angular velocity in the UnloadedDown operation range with pinion tooth stiffness increased to $4 \times 10^{13} \text{N/m}$ instead of $2 \times 10^{13} \text{N/m}$ in the baseline.
Figure 178 Crankshaft angular velocity in the UnloadedUp operation range with pinion tooth stiffness increased to $4 \times 10^{13} \text{N/m}$ instead of $2 \times 10^{13} \text{N/m}$ in the baseline.
Figure 179 Drive shaft angular velocity in the UnloadedUp operation range with pinion tooth stiffness increased to $4 \times 10^{13} N/m$ instead of $2 \times 10^{13} N/m$ in the baseline
Figure 180 Drive shaft torque in the UnloadedUp operation range with pinion tooth stiffness increased to $4 \times 10^{13} N/m$ instead of $2 \times 10^{13} N/m$ in the baseline.
Pinion Tooth Damping Decreased To $2 \times 10^6 N. s/m$ Instead Of $4 \times 10^6 N. s/m$ In The Baseline

Figure 181 Crankshaft angular velocity in the A100 operation range with pinion tooth damping decreased to $2 \times 10^6 N. s/m$ instead of $4 \times 10^6 N. s/m$ in the baseline
Figure 182 Drive shaft angular velocity in the A100 operation range with pinion tooth damping decreased to $2 \times 10^6 N.s/m$ instead of $4 \times 10^6 N.s/m$ in the baseline.
Figure 183 Drive shaft torque in the A100 operation range with pinion tooth damping decreased to $2 \times 10^6 \text{N.s/m}$ instead of $4 \times 10^6 \text{N.s/m}$ in the baseline.
Figure 184 Crankshaft angular velocity in the B100 operation range with pinion tooth damping decreased to $2 \times 10^6 N \cdot s/m$ instead of $4 \times 10^6 N \cdot s/m$ in the baseline.
Figure 185 Drive shaft angular velocity in the B100 operation range with pinion tooth damping decreased to $2 \times 10^6 N.s/m$ instead of $4 \times 10^6 N.s/m$ in the baseline.
Figure 186 Drive shaft torque in the B100 operation range with pinion tooth damping decreased to $2 \times 10^6 N.s/m$ instead of $4 \times 10^6 N.s/m$ in the baseline.
Figure 187 Crankshaft angular velocity in the C100 operation range with pinion tooth damping decreased to $2 \times 10^6 N. s/m$ instead of $4 \times 10^6 N. s/m$ in the baseline.
Figure 188 Drive shaft angular velocity in the C100 operation range with pinion tooth damping decreased to $2 \times 10^6 \text{N.s/m}$ instead of $4 \times 10^6 \text{N.s/m}$ in the baseline.
Figure 189 Drive shaft torque in the C100 operation range with pinion tooth damping decreased to $2 \times 10^6 N.s/m$ instead of $4 \times 10^6 N.s/m$ in the baseline.
Figure 190 Crankshaft angular velocity in the idle operation range with pinion tooth damping decreased to $2 \times 10^6 N. s/m$ instead of $4 \times 10^6 N. s/m$ in the baseline.
Figure 191 Drive shaft angular velocity in the idle operation range with pinion tooth damping decreased to $2 \times 10^6 N \cdot s/m$ instead of $4 \times 10^6 N \cdot s/m$ in the baseline.
Figure 192 Drive shaft torque in the idle operation range with pinion tooth damping decreased to $2 \times 10^6 \text{N.s/m}$ instead of $4 \times 10^6 \text{N.s/m}$ in the baseline.
Figure 193 Crankshaft angular velocity in the UnloadedDown operation range with pinion tooth damping decreased to $2 \times 10^6 \, N.\, s/m$ instead of $4 \times 10^6 \, N.\, s/m$ in the baseline.
Figure 194 Drive shaft angular velocity in the UnloadedDown operation range with pinion tooth damping decreased to $2 \times 10^6 N.s/m$ instead of $4 \times 10^6 N.s/m$ in the baseline
Figure 195 Drive shaft torque in the UnloadedDown operation range with pinion tooth damping decreased to $2 \times 10^6 \, N \cdot s/m$ instead of $4 \times 10^6 \, N \cdot s/m$ in the baseline.
Figure 196 Crankshaft angular velocity in the UnloadedUp operation range with pinion tooth damping decreased to $2 \times 10^6 \text{ N.s/m}$ instead of $4 \times 10^6 \text{ N.s/m}$ in the baseline.
Figure 197 Drive shaft angular velocity in the UnloadedUp operation range with pinion tooth damping decreased to $2 \times 10^6 \text{ N.s/m}$ instead of $4 \times 10^6 \text{ N.s/m}$ in the baseline.
Figure 198 Drive shaft torque in the UnloadedUp operation range with pinion tooth damping decreased to $2 \times 10^6 \, N.s/m$ instead of $4 \times 10^6 \, N.s/m$ in the baseline.
Drive Shaft Torsional Stiffness Increased To 7500 Nm/rad Instead Of 5674 Nm/rad

Figure 199 Crankshaft angular velocity in the A100 operation range with drive shaft torsional stiffness increased to 7500 Nm/rad instead of 5674 Nm/rad
Figure 200 Drive shaft angular velocity in the A100 operation range with drive shaft torsional stiffness increased to 7500 Nm/rad instead of 5674 mN/rad.
Figure 201 Drive shaft torque in the A100 operation range with drive shaft torsional stiffness increased to 7500 Nm/rad instead of 5674 Nm/rad
Figure 202 Crankshaft angular velocity in the B100 operation range with drive shaft torsional stiffness increased to $7500 \, Nm/rad$ instead of $5674 \, Nm/rad$.
Figure 203 Drive shaft angular velocity in the B100 operation range with drive shaft torsional stiffness increased to 7500 Nm/rad instead of 5674 Nm/rad
Figure 204 Drive shaft torque in the B100 operation range with drive shaft torsional stiffness increased to 7500 Nm/rad instead of 5674 Nm/rad
Figure 205 Crankshaft angular velocity in the C100 operation range with drive shaft torsional stiffness increased to $7500\ \text{Nm/rad}$ instead of $5674\ \text{Nm/rad}$
Figure 206 Drive shaft angular velocity in the C100 operation range with drive shaft torsional stiffness increased to 7500 Nm/rad instead of 5674 Nm/rad
Figure 207 Drive shaft torque in the C100 operation range with drive shaft torsional stiffness increased to 7500 Nm/rad instead of 5674 Nm/rad
Figure 208 Crankshaft angular velocity in the idle operation range with drive shaft torsional stiffness increased to 7500 Nm/rad instead of 5674 Nm/rad
Figure 209 Drive shaft angular velocity in the idle operation range with drive shaft torsional stiffness increased to 7500 Nm/rad instead of 5674 Nm/rad
Figure 210 Drive shaft torque in the idle operation range with drive shaft torsional stiffness increased to 7500 \(Nm/rad \) instead of 5674 \(Nm/rad \)
Figure 211 Crankshaft angular velocity in the UnloadedDown operation range with drive shaft torsional stiffness increased to 7500 Nm/rad instead of 5674 Nm/rad
Figure 212 Drive shaft angular velocity in the UnloadedDown operation range with drive shaft torsional stiffness increased to 7500 Nm/rad instead of 5674 Nm/rad
Figure 213 Drive shaft torque in the UnloadedDown operation range with drive shaft torsional stiffness increased to 7500 Nm/rad instead of 5674 Nm/rad
Figure 214 Crankshaft angular velocity in the UnloadedUp operation range with drive shaft torsional stiffness increased to $7500 \, Nm/rad$ instead of $5674 \, Nm/rad$
Figure 215 Drive shaft angular velocity in the UnloadedUp operation range with drive shaft torsional stiffness increased to 7500 Nm/rad instead of 5674 Nm/rad.
Figure 216 Drive shaft torque in the UnloadedUp operation range with drive shaft torsional stiffness increased to 7500 Nm/rad instead of 5674 Nm/rad
Drive Shaft Damping Decreased To 35 N.m.s/rad Instead Of 45 N.s/rad In The Baseline

Figure 217 Crankshaft angular velocity in the A100 operation range with drive shaft damping decreased to 35 N.m.s/rad instead of 45 N.m.s/rad in the baseline
Figure 218 Drive shaft angular velocity in the A100 operation range with drive shaft damping decreased to 35N.m.s/rad instead of 45N.m.s/rad in the baseline
Figure 219 Drive shaft torque in the A100 operation range with drive shaft damping decreased to $35 \, \text{N.m.s/rad}$ instead of $45 \, \text{N.m.s/rad}$ in the baseline.
Figure 220 Crankshaft angular velocity in the B100 operation range with drive shaft damping decreased to $35 \text{N.m.s/\emph{rad}}$ instead of $45 \text{N.m.s/\emph{rad}}$ in the baseline
Figure 221 Drive shaft angular velocity in the B100 operation range with drive shaft damping decreased to $35 \, N.m.s/rad$ instead of $45 \, N.m.s/rad$ in the baseline.
Figure 222 Drive shaft torque in the B100 operation range with drive shaft damping decreased to $35\, N\cdot m\cdot s/rad$ instead of $45\, N\cdot m\cdot s/rad$ in the baseline.
Figure 223 Crankshaft angular velocity in the C100 operation range with drive shaft damping decreased to 35N.m.s/rad instead of 45N.m.s/rad in the baseline
Figure 224 Drive shaft angular velocity in the C100 operation range with drive shaft damping decreased to $35\, N.m.s/rad$ instead of $45\, N.m.s/rad$ in the baseline.
Figure 225 Crankshaft angular velocity in the idle operation range with drive shaft damping decreased to $35 \, N.m.s/rad$ instead of $45 \, N.m.s/rad$ in the baseline.
Figure 226 Drive shaft angular velocity in the idle operation range with drive shaft damping decreased to 35N.m.s/rad instead of 45N.m.s/rad in the baseline.
Figure 227 Drive shaft torque in the idle operation range with drive shaft damping decreased to 35 N.m.s/rad instead of 45 N.m.s/rad in the baseline.
Figure 228 Crankshaft angular velocity in the UnloadedDown operation range with drive shaft damping decreased to 35 N.m.s/rad instead of 45 N.m.s/rad in the baseline.
Figure 229 Drive shaft angular velocity in the UnloadedDown operation range with drive shaft damping decreased to 35 N.m.s/rad instead of 45 N.m.s/rad in the baseline.
Figure 230 Drive shaft torque in the UnloadedDown operation range with drive shaft damping decreased to $35 \text{ N.m.s}/\text{rad}$ instead of $45 \text{ N.m.s}/\text{rad}$ in the baseline.
Figure 231 Crankshaft angular velocity in the UnloadedUp operation range with drive shaft damping decreased to 35 N.m.s/rad instead of 45 N.m.s/rad in the baseline.
Figure 232 Drive shaft angular velocity in the UnloadedUp operation range with drive shaft damping decreased to 35N.m.s/rad instead of 45N.m.s/rad in the baseline
Figure 233 Drive shaft torque in the UnloadedUp operation range with drive shaft damping decreased to 35 N.m.s/ rad instead of 45 N.m.s/ rad in the baseline.
Turbine Shaft Torsional Stiffness Decreased To 1000 Nm/rad Instead Of 1442 N/rad

Figure 234 Crankshaft angular velocity in the A100 operation range with turbine shaft torsional stiffness decreased to 1000 Nm/rad instead of 1442 Nm/rad
Figure 235 Drive shaft angular velocity in the A100 operation range with turbine shaft torsional stiffness decreased to 1000 Nm/rad instead of 1442 Nm/rad
Figure 236 Crankshaft angular velocity in the B100 operation range with turbine shaft torsional stiffness decreased to 1000 Nm/rad instead of 1442 Nm/rad.
Figure 237 Drive shaft angular velocity in the B100 operation range with turbine shaft torsional stiffness decreased to 1000 Nm/rad instead of 1442 Nm/rad
Figure 238 Drive shaft torque in the B100 operation range with turbine shaft torsional stiffness decreased to 1000 Nm/rad instead of 1442 Nm/rad
Figure 239 Crankshaft angular velocity in the C100 operation range with turbine shaft torsional stiffness decreased to 1000 Nm/rad instead of 1442 Nm/rad.
Figure 240 Drive shaft angular velocity in the C100 operation range with turbine shaft torsional stiffness decreased to 1000 Nm/rad instead of 1442 Nm/rad
Figure 241 Drive shaft torque in the C100 operation range with turbine shaft torsional stiffness decreased to 1000 Nm/rad instead of 1442 Nm/rad
Figure 242 Crankshaft angular velocity in the idle operation range with turbine shaft torsional stiffness decreased to 1000 Nm/rad instead of 1442 Nm/rad
Figure 243 Drive shaft angular velocity in the idle operation range with turbine shaft torsional stiffness decreased to 1000 Nm/rad instead of 1442 Nm/rad
Figure 244 Drive shaft torque in the idle operation range with turbine shaft torsional stiffness decreased to 1000 Nm/rad instead of 1442 Nm/rad
Figure 245 Crankshaft angular velocity in the UnloadedDown operation range with turbine shaft torsional stiffness decreased to 1000 Nm/rad instead of 1442 Nm/rad
Figure 246 Drive shaft angular velocity in the UnloadedDown operation range with turbine shaft torsional stiffness decreased to 1000 Nm/rad instead of 1442 Nm/rad
Figure 247: Drive shaft torque in the UnloadedDown operation range with turbine shaft torsional stiffness decreased to 1000 Nm/rad instead of 1442 Nm/rad.
Figure 248 Crankshaft angular velocity in the UnloadedUp operation range with turbine shaft torsional stiffness decreased to 1000 Nm/rad instead of 1442 Nm/rad
Figure 249 Drive shaft angular velocity in the UnloadedUp operation range with turbine shaft torsional stiffness decreased to 1000 Nm/rad instead of 1442 Nm/rad
Figure 250 Drive shaft torque in the UnloadedUp operation range with turbine shaft torsional stiffness decreased to 1000 Nm/rad instead of 1442 Nm/rad
Turbine Shaft Torsional Damping Decreased To $2 \, N \cdot m \cdot s/\text{rad}$ Instead Of $4 \, N \cdot m \cdot s/\text{rad}$

Figure 251 Crankshaft angular velocity in the A100 operation range with turbine shaft torsional damping decreased to $2 \, N \cdot m \cdot s/\text{rad}$ instead of $4 \, N \cdot m \cdot s/\text{rad}$
Figure 252 Drive shaft angular velocity in the A100 operation range with turbine shaft torsional damping decreased to 2 N.m.s/rad instead of 4 N.m.s/rad
Figure 253 Drive shaft torque in the A100 operation range with turbine shaft torsional damping decreased to \(2 \text{ N.m.s/rad}\) instead of \(4 \text{ N.m.s/rad}\)
Figure 254 Crankshaft angular velocity in the B100 operation range with turbine shaft torsional damping decreased to 2 N.m.s/rad instead of 4 N.m.s/rad
Figure 255 Drive shaft angular velocity in the B100 operation range with turbine shaft torsional damping decreased to 2 N.m.s/rad instead of 4 N.m.s/rad.
Figure 256 Drive shaft torque in the B100 operation range with turbine shaft torsional damping decreased to 2 N.m.s/rad instead of 4 N.m.s/rad
Figure 257 Crankshaft angular velocity in the C100 operation range with turbine shaft torsional damping decreased to $2 \, N\cdot m\cdot s/\text{rad}$ instead of $4 \, N\cdot m\cdot s/\text{rad}$
Figure 258 Drive shaft angular velocity in the C100 operation range with turbine shaft torsional damping decreased to 2 N.m.s/rad instead of 4 N.m.s/rad
Figure 259 Drive shaft torque in the C100 operation range with turbine shaft torsional damping decreased to $2 \, N\cdot m/s/rad$ instead of $4 \, N\cdot m/s/rad$
Figure 260 Crankshaft angular velocity in the idle operation range with turbine shaft torsional damping decreased to 2 $N\cdot m/s/\text{rad}$ instead of 4 $N\cdot m/s/\text{rad}$
Figure 261 Drive shaft angular velocity in the idle operation range with turbine shaft torsional damping decreased to 2 N.m.s/rad instead of 4 N.m.s/rad
Figure 262 Drive shaft torque in the idle operation range with turbine shaft torsional damping decreased to $2 \, N \cdot m \cdot s/\text{rad}$ instead of $4 \, N \cdot m \cdot s/\text{rad}$
Figure 263 Crankshaft angular velocity in the UnloadedDown operation range with turbine shaft torsional damping decreased to 2 $N\cdot m\cdot s/\text{rad}$ instead of 4 $N\cdot m\cdot s/\text{rad}$
Figure 264 Drive shaft angular velocity in the UnloadedDown operation range with turbine shaft torsional damping decreased to 2 \(\text{N.m.s/rad} \) instead of 4 \(\text{N.m.s/rad} \).
Figure 265 Drive shaft torque in the UnloadedDown operation range with turbine shaft torsional damping decreased to 2 N.m.s/rad instead of 4 N.m.s/rad
Figure 266 Crankshaft angular velocity in the UnloadedUp operation range with turbine shaft torsional damping decreased to $2 \, N.m.s/\text{rad}$ instead of $4 \, N.m.s/\text{rad}$.
Figure 267 Drive shaft angular velocity in the UnloadedUp operation range with turbine shaft torsional damping decreased to \(2 \text{ N}.\text{m}.\text{s}/\text{rad}\) instead of \(4 \text{ N}.\text{m}.\text{s}/\text{rad}\).
Figure 268 Drive shaft torque in the UnloadedUp operation range with turbine shaft torsional damping decreased to 2 N. m. s/rad instead of 4 N. m. s/rad