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Abstract

If your neighborhood adopts greener, energy-efficient residential heating, ventilating, and air
conditioning (HVAC) systems, will your pro-environmental behavior become contagious, spilling over into
adjacent neighborhoods’ HVAC adoptions? Objective data on over 300000 detailed single-family house
sale records in the Greater Chicago area from 1992 to 2004 are aggregated to census block group
neighborhoods to answer that question.  Spatial lag regression models show that spatial dependence or
“contagion” exists for neighborhood adoption of energy-efficient HVACs. Specifically, if 625 of 726 homes
in a demonstration neighborhood upgraded to green HVAC, our data predict that at least 98 upgrades would
occur in adjacent neighborhoods, more than doubling their baseline adoption rates.  This spatial multiplier
substantially magnifies the effects of factors affecting adoption rates. These results have important policy
implications, especially in the context of new standards for neighborhood development, such as LEED ND

or Low Impact Development HUD standards.
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Introduction

Due to the growth in energy consumption and the pressures to reduce carbon dioxide emissions, there
has been an increased demand for energy efficiency. According to Chandler and Brown (2009), fully
deploying current cost-effective energy-efficient technologies could reduce residential electricity
consumption 12% by 2020. Moreover, according to the 2009 Building Energy Data Book, heating,
ventilating, and air conditioning (HVAC) together consume nearly one-third of building energy end-use,
which is the largest end-use among all residential energy consumption activities (D&R International, 2009).
Thus, if the goal is to reduce the residential energy consumption by improving energy efficiency, the
efficiency of HVACs should be a high priority.

While recent research reveals the benefits of adopting energy-efficient HVACS, research on the
adoption behavior is limited. Evidence indicates that adopting energy efficient technologies benefits
homeowners, but homeowners frequently forgo cost-effective technologies due to other reasons (Krause,
2009; Sovacool, 2009; Stern, 2011). Designing policies to enhance the adoption of energy-efficient HVACs
requires improving our understanding of adoption behavior.

This study assesses adoption patterns for energy-efficient technologies at the neighborhood level.
Considering adoption rates at a neighborhood level makes sense when determining the impact of land-use
policies or other geographically targeted policies. Several environmentally minded programs focus on the
neighborhood level. The U.S. Green Building Council developed the Leadership in Energy and
Environmental Design (LEED) certification system for individual buildings and has recently expended the
rating system to include “LEED for Neighborhood Development” (U.S. Green Building Council, 2010).
Another example is low-impact development (LID) projects. The U.S. Department of Housing and Urban
Development (HUD) (2003) supports LID projects to mitigate development activities’ environmental
impacts, especially on water. Addressing urban development means LID often focuses on the neighborhood
level. Moreover, traditional zoning regulations (and large-scale planned developments) target rules to
specific geographic areas or neighborhoods.

To determine the factors that affect the adoption of energy-efficient HVACS, this study seeks to
explain energy-efficient HVAC adoption behaviors with adoption costs, estimated savings, and spatial

contagion. This study is especially interested in contagion (i.e., spatial effects) of energy-efficient
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technology adoption. Learning from neighbors’ experiences, suggestions from the same real estate agent,
competing for resale value, or simply mimicking the behavior of neighbors can result in the “spillover” of
adoptions and thus spatially cluster the adoptions. Diffusion of innovation theory explains how one’s
technology adoption behavior affects other individuals or groups through either learning from success, peer
effects, or copycatting (Rogers, 1995). In this sense, technological change and social change are
interrelated, and the social structures involved in technological change are important (Schot & Geels,
2008). Innovation, in this sense, is both an individual act and a collective act (Hekkert, Suurs, Negro,
Kuhlmann, & Smits, 2007).

This study delves deeper into the mechanisms behind the adoption behavior of energy-efficient
HVACs by investigating the spatial interdependence of adoption and interactions across neighborhoods.
This is a novel contribution to the literature on household adoption of energy-efficient technologies. Most
previous studies are based on survey data with stated preferences, attitudes, or claims of adoption. Rather
than use survey data that may be prone to biases such as social desirability bias, this study uses data on
actual technology adoptions listed in home sales records in the greater Chicago area from 1992 to 2004 to

explain neighborhood adoption behavior.
Literature review

Most studies about HVAC or residential energy efficiency concentrate on either barriers to
technology diffusion or the modification of regulations (Jaber, Mamlook, & Awad, 2005; Lawrence,
Mullen, Noonan, & Enck, 2005; Menanteau & Lefebvre, 2000; Mills & Schleich, 2010). Several studies
directly analyze the adoption behavior of energy-efficient HVACs via case studies or through surveys.
Mlecnik (2010), based on a case study of space heating in Belgium, concludes that education,
communication via actor networks, economic incentives, and spatial spillover from neighbors may affect
the adoption of energy-efficiency improvements. Niemeyer (2010) and Nair, Gustavsson, and Mahapatra
(2010) use surveys to determine the factors affecting adoption behavior in Nebraska and Sweden,
respectively. The results of these studies are similar: they indicate that both personal factors (such as
knowledge and education), economic constraints, obstacles to making changes, demographic variables,
attitudinal and belief constraints, and contextual factors (such as the age of the house, thermal discomfort,

and perceived energy cost) affect homeowners’ adoption behavior. We improve on this past research by
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relying on house sales records, which provides a more comprehensive sample and avoids the self —
presentation biases inherent with survey data.

This study focuses on groups’ adoption of energy-efficient HVAC technologies. Several previous
studies examine the determinants of technology adoption and diffusion, in particular focusing on peer
effects. In particular, previous research focuses on the importance of family and social networks on
technology adoption (Baerenklau, 2005; Bandiera & Rasul, 2006; Goolshee & Klenow, 2002;
Gowrisankaran & Stavins, 2004; Oster & Thornton, 2009). Much of this research tests the proposition that
social networks enhance learning, and that technology diffuses through learning by doing (Arrow, 1962).
Under this model, productivity can increase through learning and experience, and can be enhanced by
social institutions, such as education and research (Foster & Rosenzweig, 1995). Several articles also model
a neighborhood diffusion model. Baerenklau (2005) identifies the drivers of farms’ adoption of agricultural
pollution protection practices in the U.S., including testing for neighborhood effects by grouping farms into
geographic groups. Kok, McGraw, and Quigley (2011) recently estimate the determinants of adoption
behavior by geographic groups in modeling the diffusion of energy-efficiency certified buildings at the
metropolitan-area level.

Based on the determinants identified in these studies, we hypothesize that three sets of variables
affect energy-efficient HVAC adoption behavior: cost to adopt, estimated cost savings, and spatial
contagion. For example, house vintage has an effect on costs to adopt, since the age or type of a house will
affect the feasibility of adoption (Nair et al., 2010). House size will influence the estimated savings, since
houses with larger square footage benefit more by adopting energy-efficient HVACs (Niemeyer, 2010). And
peer-group influences (Baerenklau, 2005) and diffusion (Kok et al., 2011) suggest the possibility of spatial
contagion. This study emphasizes the effect of contagion because this impact has not been addressed by
previous literature on household HVAC technology and because these spatial spillovers are often absent in
theoretical models of adoption.

Spatial econometric approaches can identify spatial contagion effects and are especially well-suited in
the presence of social norms, neighborhood effects, or copycatting. loannides and Zabel (2003) offer
considerable evidence that homeowners’ decisions about maintaining their houses are greatly

interdependent and that neighbor effects like “keeping up with the Joneses” are powerful phenomenon.
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However, spatial econometric models have not been used to explain the adoption behaviors of households
and neighborhoods for energy-efficiency technologies. Anselin (2000, 2001, 2003) develops several
econometric models to determine spatial dependence. Spatial regression models with aggregated data is
now common in urban and environmental related areas (e.g., Fragkias & Seto, 2007; Kiihn, Bierman,

Durka, & Klotz, 2006; Longley & Tob6n, 2004).

Methods

First, consider a linear adoption model at the household level:
Vig = XigB + &g 1)
where y denotes whether the household has adopted the technology, X is a vector of explanatory variables,
€ is a stochastic error term, and B is a vector of corresponding parameters. Household i (where i =1, ..., lg)
is observed in block group g (where g = 1, ..., G). With I, households in block group g, the aggregated
ordinary least squares (OLS) model becomes:
Vg =XB+%
where each variable is calculated as a group mean and is represented with a bar, such as
Vg = (Zﬁ*":lyig)/lg. In this model y, indicates the adoption rate in block-group g, and it is explained by

group-level averages of X.

An assumption in this basic model is that the adoption rates of neighborhood g are independent of
neighborhood h’s (for any g, h in G where g##). Similarly, the error term (g,) is assumed to be independent
across neighborhoods. OLS is an inconsistent estimator when y,, affects y, and is inefficient when g,
and g, are correlated. Yet nearby neighborhoods might share some unobservable characteristics or a
neighborhood’s adoption rate might affect its neighbor’s. A model that is robust to these spatial dependence
issues is needed.

There are two basic ways to introduce spatial dependence into standard linear regression model: a
spatial lag model or a spatial error model. The spatial lag model directly controls for the influence of the
values of the dependent variable in nearby observations — where “nearby” is defined by the analyst’s choice

of a spatial weights matrix. The spatial error model, in contrast, separates the residual caused by spatial
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dependence from the white noise error term, essentially allowing for the neighboring observations to share
unobservables or unexplained portions of their adoption rates. This model is appropriate when the spatial
dependence is more a statistical “nuisance” rather than a spatial effect of direct interest (Anselin, 2001).

Since the main purpose of this study is to determine the spatial effects of HVAC adoption behavior at
the neighborhood level, it is more appropriate to adopt spatial lag model. However, the selection of either
the spatial lag or the spatial error model can be evaluated by statistical tests, such as the Lagrange
Multiplier (LM) test (Anselin, 2000). The GeoDa software is used to estimate both the test statistics and the
spatial regressions.

The classical spatial lag model can be written as:

y=pWy+XB+E

(with subscripts dropped for parsimony here). The spatial autoregressive coefficient p is a parameter
representing the strength of the spatial lag, W is a (GxG) spatial weights matrix, and all the other terms are
as defined above. As mentioned previously, the spatial lag model can be viewed as an OLS regression
model plus a spatial correction term, and this correction term will reflect the strength of spatial effects on
the adoption behavior of energy-efficient HVACSs. This analysis defines W based on first-order queen
contiguity, meaning that each block group adjacent neighbors receive a positive weight (row-standardized)
and can directly affect it while all others have a zero weight. Of course, each block group can still be
affected by more distant block groups indirectly. (Other weights matrices were examined but the results
change negligibly and this W offers a simpler interpretation.)

The energy-efficient HVAC adoption rate in a block group results from decisions by property
developers and homeowners. The adoption rate due to developers can be isolated by looking at the adoption
rate of new construction only, since developers usually choose the HVAC systems used in new properties.
Looking at this sample has the added advantage of eliminating many unobservable determinants of
adoption that vary across older houses but are relatively uniform or unimportant for new homes (e.g.,
wear-and-tear on HVAC).

Even with detailed house sale records, some variables that belong in equation (1) are unavailable in
this dataset. One way to address this, while also isolating owner-occupants’ adoption decisions, involves

looking at the adoption rate only among houses that appear multiple times in the dataset. Examining the
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differences (in y and X) controls for potential omitted variable bias that can result when static elements of X
are omitted because they are unobserved. Thus, we estimate the model for the new construction sample and
for the repeat-observation sample to mitigate omitted variable concerns and to isolate and better understand
the adoption behavior by developers and homeowners, respectively.

The aggregation process for the repeat-observation sample is somewhat different than that of other
samples. It starts with the linear model in equation (1), modifies it to incorporate a time index t,
decomposes the regressors into time-varying (X) and time-invariant (Z) vectors, and allows for parameters
to vary over time:

Yigt = X,igtBt + Z’ith +t Eigt

The new Z vector includes all of the time-invariant explanatory variables (e.g., location). For
observations observed multiple times, in period t and again in period s, we can assess the change iny
between sales as follows:

YVigs = Vigt = X’igsBS - X,igtBt + X,igtBs - X’igtBs + Z;gYS - Z;th + Agyy

Ayig = AXigBs + Xy OB + Z;5 Ay + Agyy (5)
This model in equation (5) serves as the basis for the repeat-observations sample. Zoned HVAC adoption
between sales is explained by trends in X and trends in the effects of the determinants (X and Z).
Time-invariant factors that have constant parameters will drop out in the differencing model, effectively
controlling for those influences — observed or otherwise. Aggregating the data to the block-group level as

above, and including the spatial lag model yields:
By, = pWhy, + AX, B, + X,c AB + Z, Ay + Be,, (6)
where A_yg refers to the rate of new installations in block group g in repeat-observation sample (i.e.,

Eg = ( 21 Ayig)/lg* is the count of new adoptions, between sales, divided by I, the number of

repeat-observations within block group g), ﬂg represents the average change in X in block group g, X,
represents the average of X in block group g at the time of the initial sale, and Z, represents the average
of Z in block group g. Parameters p, B;, AB, and Ay remain to be estimated. (To be clear, Ay, and ﬁg are

the block-group averages of differences, not the differences in block-group averages between sales.)

Equation (6) models the trends in neighborhood adoption rates and draws flexibly on a micro-level
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adoption model. It allows for some parameters’ influence to vary over time, and also for trends in important
factors to influence adoption choices.

According to the discussion in previous section and limited by data availability, the factors (X) that
affect the adoption rate of zoned HVACs can be divided into four categories: cost to adopt; estimated
savings; spatial contagion; and other control variables that influence HVAC demand. In order to mitigate
the possible bias from unobservables, additional factors that might affect the demand of energy-efficiency

are controlled for, such as neighborhood characteristics and time trends.

Data

This study employs a dataset on home sales in over 160 municipalities in the greater Chicago area,
containing over 340,000 sale records (of roughly 260,000 unique houses) from January 1, 1992 to June 30,
2004. The property data are originally from the Multiple Listing Service (MLS) of Northern Illinois, an
information clearinghouse for most residential property sales in that area. All the records are for
single-family houses from counties surrounding the city of Chicago (i.e., Cook, DuPage, Kane, Lake,
McHenry and Will counties). (The City of Chicago is not included in order to keep the population of
suburban areas with single-family homes more comparable.) The estimated effective property tax rate,
detailed school quality information, and local impact fees, are derived from multiple sources. The
demographic information is from the 2000 Census. Unlike the sales record data which is at the household
level, these demographic data are only available at the block-group level using the GeoLytics database.

In the dataset, the majority of heating systems is forced air with natural gas. More than 88%
households use forced air heating systems, and 90% of households use natural gas as the energy source for
heating. The majority of A/C systems is central air, which is used in over 80% of homes. This study uses
zoned heating and air conditioning systems to represent more energy-efficient HVACs. Actual energy
savings of zoned HVAC systems depends on the size of the house and many other factors. Ardehali and
Smith (1996), however, note a 50-53% savings from zoned HVAC systems. The adoption rate of zoned
HVAC:s is relatively low in the dataset. Only 2.2 percent and 3.1 percent of houses have zoned heating
systems and zoned A/C systems installed, respectively. The frequency of installation is about six times

greater for new construction. The adoption rates by block groups are mapped in Figure 1. Both figures are
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classified by natural breaks, and darker shades indicate higher adoption rates. Spatial clustering in the

adoption rates appears in both figures.

The variables used in the analysis are defined in Table 1. Table 2 shows their descriptive statistics.

They fall into several categories.

1.

Cost to adopt: The house vintage, 30-year mortgage interest rate, mean effective property tax rate,
median household income, and median house value proxy for the cost of upgrading the HVAC system.
This study hypothesizes that block groups with newer houses, where it is easier to adopt new HVAC
technology, will have higher adoption rates. Moreover, homeowners may be more willing to invest to
keep newer vintages updated. The prevailing mortgage interest rate, as a proxy for the cost of capital
investments, should affect the cost to adopt, since the interest rate affects the high up-front costs of
renovations. Previous research shows that higher tax rates will lower the rate of return on property
investment (Tse & Webb, 1999) and thus lower the adoption rate. Block groups with higher median
income and house value should exhibit higher adoption rates, since greater wealth and access to capital
makes adoption more affordable.

Estimated savings: This study uses the average lot size, average square footage, and share of college
graduates in a block group to estimate the perceived savings. Block groups with more large houses
should have higher adoption rates, since the estimated energy savings for large houses are usually
greater. The education variable, percent of college graduates, might affect adoption if it proxies for the
ability of homeowners to understand information related to the energy savings from HVAC adoption.
Contagion: The spatial dependence in the spatial lag model will be used to directly measure the
contagion effect.

Control variables: Block-group means for neighborhood amenities, distance to central business
district (CBD), vacancy rate, population density, percent of households that are renters, and county
dummies, serve as control variables in these models. We have no prior expectation of the relationships
of these variables to the adoption rate. We control for them because they may be correlated with the
demand for HVACs. Some variables reflect the quality of a neighborhood and thus might influence the
adoption rate of energy-efficient HVACs insofar as the goods are complements or substitutes. The

percentage of a population renting also suggests the presence of principal-agent problems, where the
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incentives of the property owner are not aligned with the incentives of the renter — something
frequently claimed to undermine adoption (Lawrence, et al., 2005). Since property owners lack
incentives to invest in expensive energy efficiency improvements for rental properties, block groups
with higher percentages of renters should have lower adoption rates. Also, the county dummies are
used in our models to control for the possible effects of different regulations.

Since the sales data span twelve years, it is important to control for the effect of time on the change in
adoption rates. More recent sales in a block group might increase the adoption rate as technology improves,
public awareness of sustainability issues grows, incomes rise, or prices fall over time. In order to control
for the effect of time in the models, the share of sales that occur within each year in each block group is
included in the model. Also, for the purpose of controlling for the effect of sales occurring in different
seasons, the shares of sales in the four seasons are included. Although perhaps unlikely to matter at the
aggregate level, this allows for a block group with, for example, a disproportionate share of fall sales to

have higher zoned heating adoption rates.

Results

Tables 3, 4, and 5 show the results of spatial lag regressions and the robust LM test statistics for the
full sample, repeat-observation sample, and the new-construction sample, respectively. For each sample,
two regression models are estimated to determine the effects of independent variables on two dependent
variables: the share of zoned heating systems in the block group, and the share of zoned A/C in the block
group.

The robust LM diagnostic tests, derived from OLS regressions and reported at the bottom of the
tables, show the applicability of spatial lag and spatial error models for each model and sample.
(Interested readers can find the OLS regression results using the same data and model specification in the
on-line Appendix.) According to Anselin (2000), the Robust LM (Error) statistic tests for spatial error
robust to the presence of spatial lag, and the Robust LM (Lag) statistic tests for spatial lag robust to the
presence of spatial error. Both Robust LM test statistics are distributed chi-square with one degree of
freedom. The p-values for the Robust LM (lag) test in all six models are below conventional values of o,

letting us confidently reject the null hypothesis and employ the spatial lag model. The spatial error model is

10
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not appropriate to the zoned A/C model in the repeat-observations sample or to the zoned heat model in
new-construction sample. Because a primary purpose of this study is to determine the effects of spatial
interdependence on HVAC adoption behavior, it is more useful to adopt the spatial lag model. Moreover,
the greater LM test statistic for the lag model than the error model in all instances offers consistent
diagnostic evidence to support the spatial lag specification (Anselin, 2000).

Table 3 shows the spatial lag regression results of the full sample, for both zoned heating and zoned
air conditioning systems. The spatial dependence in both cases is explicit and statistically significant.
Holding all the other variables constant, if the weighted average of the adoption rate of zone heating
systems for the neighboring block groups increased by one percentage point (or if every neighbor’s rate
increased uniformly), then we expect an increase the adoption rate in this block group of 0.39 percentage
points. In a rough sense, nearly two-fifths of changes in a neighborhood’s adoption behavior spills over to
its neighbor. For air conditioning systems, the effect is even higher: p = 0.44.

The full sample analysis in Table 3 shows the broad picture of how both spatial and non-spatial
factors influence adoption rates. Overall, the model fit is substantial, explaining most of the variation in
neighborhood adoption rates. The repeat-observations and new-construction sample models, however, offer
more focused results that should also be less susceptible to confounding effects from unobserved
characteristics. The results of these models warrant emphasis here. The repeat-observations sample model
(Table 4) helps identify the adoption decisions made by the homeowners within the neighborhood. Next,
using only the sample of new-construction sales (Table 5) enables a comparison between homeowners and
developers.

The results in Table 4 resemble the full sample spatial lag results, with a few key modifications. As
described in the previous section, the dependent variable in the repeat-observations model represents the
adoption rate by existing homeowners as renovations or replacements. New and Rehabilitated are dropped
because they make less sense in a differenced model. Also, the variables showing the average difference
between each sales record (_Xg) are listed near the bottom of the table. All the other independent variables
represent the conditions at first sale. As in the full sample, the spatial effects of the repeat-observation
sample are also positive and statistically significant. The spillover of the adoption rate is roughly 0.15 for

both zoned heating and A/C systems. This statistically significant result is much smaller in magnitude than
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the p in the full sample. This more conservative estimate may also be a more accurate estimation of the
contagion effect, since differencing controls for some unobserved home traits that may be spatially
clustered. In addition, this estimate more directly measures the behavior of homeowners, which may not be
as clustered as developer decisions.

Table 4 illustrates how cost variables determine neighborhood adoption rates. The house vintage
variables are not as easily interpreted here as in the full sample, because they only measure the average
house age at the time of first sale and the date of adoption is unknown. Still, the results suggest that newer
homes and much older homes are significantly more likely to upgrade to zoned HVAC systems. Adoptions
are more common in wealthier neighborhoods, although the average home prices do not explain adoptions.
Unsurprisingly, average interest rates at the time of the initial sale have only a marginal impact on adoption
rates, likely because that interest rate poorly proxies for the rates facing current owners making the
investment decisions. The change in (average) interest rates between sales, on the other hand, exhibits
unexpected effects. The change in interest rates does not matter for zoned A/C adoption, and it has a
positive effect on the adoption of zoned heating system. This is inconsistent with the theory that predicts
that rising interest rates will discourage adoption of high up-front-cost investments. We attribute this
unexpected result to a poor proxy for actual interest rates faced by homeowners, although the lack of
evidence that lower interest rates drive adoption certainly merits further research with better data, ideally at
the household level.

The energy savings measures exhibit straightforward effects in Table 4. The role of lot size in the
repeat-observations sample is simply positive. Larger lots at the time of initial sale and increasing lot sizes
predict greater neighborhood adoption rates. Ten percent larger lot sizes at the time of first sale are
associated with roughly 0.2 percentage points greater adoption rates of zoned HVAC systems, which is
substantial relative to the baseline average adoption rate of two percent. The case of square footage is even
stronger. In both models, larger average square footage of the first sale has positive effects on the adoption
behavior. For example, block groups with average square footage ten percent larger will tend to have
adoption rates 0.5 percentage points greater. Unlike the full sample results, the model in Table 4 shows
higher adoption rates in neighborhoods with larger homes and with homes that are growing in size.

Increasing the average difference in square footage between sales by ten percent is associated with the

12
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share of repeat-observation homes adopting increasing by 0.7 percentage points for zoned heating, and 0.9
percentage points for zoned A/C. Renovations and expansions clearly play a vital role in the adoption of
green HVAC technologies, perhaps because the cost to install is relatively lower when bundled with other
home renovations and because the energy savings rise as homes’ footprints grow.

Some of the demand-shifting control variables in the repeat-observation sample have significant
effects on the adoption rate. Neighborhoods with higher vacancy rates have higher adoption rates, perhaps
because vacancy facilitates the installation of HVAC and thus lowers the cost to adopt. Park and lake
access, population density, the percent renters, and the host county do not appear to influence adoption
rates.

Finally, Table 5 illustrates the results of spatial lag models for the sample of new constructions. Note
that all the house vintage variables are dropped in the new sample models, because the age of houses in this
sample are all zero. The most striking result in Table 5 is the spatial dependence. The spatial “contagion” p
parameter in the new-construction sample is not larger than that of the repeat-observations sample. This
might be due to a limitation of the data. The full sample dataset contains 2,539 block groups, but only 1,142
of them have new construction home sales records during this timeframe. Aside from leaving a possibly
biased subsample of block-groups, this means that many block groups lose some adjacent block groups,
and leaving some of them more isolated. This could bias the true spatial contagion effect. Still, it is
remarkable that the lag effect p for new-construction adoption — presumably driven by developers who
certainly produce suburban housing in highly positively spatially correlated ways — is similar in magnitude
to the p for existing homeowners in Table 4. This might be a result of spatial competition among
developers, where the expected clustering is at least partially offset by developer efforts to differentiate
their products from nearby substitutes. This negative spatial lag process might explain the weaker net
spillover effect in the new-construction sample.

Other results in Table 5 differ from those in Table 4, reflect different adoption patterns of
homeowners and developers. Home value, not income, has a strong positive effect on adoption rates in the
new-construction sample, nearly opposite that of the repeat-observation sample. Apparently developers’
installation decisions track with home values more than neighborhood wealth, and vice versa for

homeowners. Interestingly, the percent of college graduates positively influences adoption rates in the
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new-construction sample only; it is insignificant in Table 4. The negative effect of parks in the
new-construction sample is interesting to note. It seems that parks and indoor energy efficiency are
substitutes. The geographic and temporal controls add little explanatory power to the new-construction
model, although zoned heating is more common when more of the newly constructed homes are sold in the

fall and winter.

Discussion

In this study, the spatial effect is a very strong factor affecting neighborhood adoption behavior for
energy-efficient residential HVACSs. The estimated spillover parameter, p, ranged from 0.11 to 0.44 across
different models and samples, indicating roughly that 11% — 44% of neighboring block-groups’ adoptions
spill over or are reflected in each block group. We illustrate this mechanism further below. Since the
repeat-observation models focus on owners making changes to their own properties, this more conservative
estimate of p (roughly 0.14) might also be more reliable and meaningful.

The mechanisms behind this contagion effect remain to be explored empirically. However, several
socially-oriented mechanisms (e.g., shared information, spatial competition, mimicking) have been
explored in recent research. Ambrahamse, Steg, Vlek, and Rothengatter (2005) review 38 studies that
examine decision-making behind household level energy consumption and emphasize the role that social
pressure and feedback play in relationship to information or learning. Osbaldiston and Schott (2011)
provide an overview of 253 experimental treatments across 87 published articles, noting that social
modeling — which includes the diffusion of technology and norms — plays a role in individual level
environmental behavior. And Stern (2011) suggests that social motives and learning play a major role in
influences of energy efficiency equipment adoptions. While these studies do not speak directly to spatial
diffusion, they explore social mechanisms that could be drivers of spatial diffusion.

Building codes might be another important driver for adopting energy efficiency. This study does not
directly control for building codes due to the unavailability of data spanning over 160 municipalities and 12
years. Limiting the analysis to only sales records for single-family houses should keep zoning
classifications relatively consistent. Though we do have controls for different counties, variation in

single-family residential building codes across municipalities and even across time is not observed in this
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data. We are not aware of differences in building codes in these suburbs that might play a major role in
neighborhood adoption. If variation in building codes does help explain the variation in adoption rates, the
spatial regression models (tables 3 — 5) will at least partly capture this effect. Interestingly, a spatial error
model would treat the omitted regressor of “building codes” as part of a spatially autocorrelated error. Yet
the diagnostic tests clearly indicate that a spatial lag model is more appropriate given this data. In short,
explicitly incorporating the spatial dependence into these models mitigates the concerns about missing
variables like these.

Market-based data might have their own limitations. For example, the dataset lacks micro-level data
regarding the attitudes and demographics of individual homeowners, and the sample of sales might not be
representative of the housing stock. Houses with higher turnover might have different determinants (i.e., p
is different) of adoptions than the population as a whole. Moreover, weaker local connections for more
transitory homeowners might affect the strength of spatial spillovers, which is consistent with the lower lag
effects (p) observed in the repeat-observation and new-construction samples than the full sample. A more
direct test of this hypothesis, however, finds little support. Including the block-group’s share of population
living in the same home over the past ten years, as a proxy for social networks, adds little to the models
reported here, and a comparison of maps of this variable and maps of local measures of spatial
autocorrelation shows no clear relationship. Less neighborhood turnover neither promotes nor detracts from
localized spillovers. Further tests of mechanisms for this spatial diffusion are needed.

According to the results from the full sample models, neighborhoods with more newly constructed or
recently rehabilitated houses, with larger square footage, and with higher median income and lower
population density areas tend to adopt energy-efficient HVACs. These factors reflect the adoption behaviors
of both developers and owners. Using the results from the repeat-observations models, neighborhoods with
homes experiencing larger remodels and expansions tend to have greater adoption rates for energy-efficient
HVACs. Also, neighborhoods with houses with larger lot sizes and square footage, with greater wealth, and
lower tax rates are more likely to adopt energy-efficient HVACs. Importantly, across all the models, it is
lower property tax rates that tell a consistent story in promoting energy-efficient HVAC adoption (rather

than lower interest rates).
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The implications for policy are significant. When designing a policy to promote the adoption of green
HVACs, according to our results, the effect of picking several demonstration block groups as the “seeds” of
contagion might be significant. For example, suppose a LEED-certified development project occurred in a
block group that previously had no green HVAC systems. A seed project that upgraded 90% of the block
group homes to zoned A/C and zoned heat systems would have 650 adoptions in an average block
containing 726 homes. If that block group had four neighboring block groups (which each had four
neighboring block groups), according to our estimates using the repeat-observations sample, holding all
else equal, this shift in the adoption rate would bring an increase in the adjacent block groups’ adoption
rates of 3.4% (bringing the adoption rate up to 5% from under 2%). (This is computed by multiplying the
increase in the weighted average of the four neighbors, 0.9/4=0.225, by the lag operator, p=0.15.) Those
650 adoptions would translate to an additional 98 adoptions across the four immediate neighboring areas.
These adoptions, in turn, affect their adjacent neighbors, and so on. This suggests that small-scale localized
efforts to promote energy efficient adoption among homeowners might diffuse outward and have much
greater effect than originally anticipated. (In principle, this cuts both ways: the adoption of inefficient
HVAC systems may have similar contagion effects.) It also suggests that strategic placement of efficiency
enhancements (e.g., in areas with many neighbors and other variables predicting adoption rates, such as
locating projects farther away from parks) could have particularly large impacts on adoption behavior. This
is consistent with theory that suggests that niche markets that nurture new technologies are important for
technological diffusion (Schot & Geels, 2008). In fact, the “LEED for Homes” program offers additional
points toward certification for homes offering outreach and promoting public awareness (via tours,
websites, signage, etc.). Programs like LEED already leverage the power of diffusion of green homes.

Beyond “seeding” demonstration projects, other findings presented above point to ways that
policymakers can stimulate the adoption rates of energy-efficient HVACs — and how spatial contagion can
amplify those impacts. Suppose a policy to boost green HVAC installations lowered tax rates by half a
percentage point. Based on Table 4, this policy should increase adoption rates by about one percentage
point for zoned HVAC systems. This large impact, relative to the low mean adoption rates, is a direct policy
effect. It does not take into account the spatial spillovers identified above. The spatial multiplier of 1/(1 — p)

magnifies the marginal impact of the tax break by a factor of 1.18 for zoned heating and 1.16 for zoned A/C
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(Kim, Phipps, & Anselin, 2003). Neglecting this spatial contagion would substantially underestimate the
policy impact on adoption rates. The possibility of a threshold or tipping point in the contagion, also,
warrants further investigation, as this analysis assumes a linear spillover effect.

All the results in this study are based on the aggregation of individual-level transactions into the
block-group level. Though we still have a large dataset of over 2,500 observations after the aggregation,
and those data exhibit considerable geographic variation, the aggregation process will obscure some
information. Exploring the mechanisms for individual-level, rather than neighborhood-level, spatial
interdependence in adoption behaviors for energy efficiency requires applying a spatial econometric
approach to data at the household level. In light of these results showing strong spatial dependence at the
neighborhood level, future work that seeks to inform policies promoting energy efficiency adoption at the
household level would do well to investigate these interactions.

It remains to be seen whether these results generalize to other contexts or green technologies. We
expect similar results for similar models of other major appliances, but this study offers no direct evidence
on this. As our findings are consistent with previous research that shows social factors matters and that
simple economics plays a modest role, this consistency suggests some generalizability to other residential
technology adoptions. The limited success of energy-efficient technologies in penetrating markets generally
is consistent with our findings. Although we look at just one type of technology, admittedly a major one,

there are obviously other residential technologies that merit studies of their own.

17



O 00 N o u B W N

W W W W W W N N NN NN NN N NN NN P PR R R, R R R R
u A W N P O O 0 N O U0 B W N P O O O N O OO B W N —» O

References

Abrahamse, W., Steg, L., Vlek, C., & Rothengatter, T. (2005). A review of intervention studies aimed at
household energy conservation. Journal of Environmental Psychology, 25(3), 273-291.

Anselin, L. (2000). Spatial econometrics: Oxford: Basil Blackwell.

Anselin, L. (2001). Spatial Effects in Econometric Practice in Environmental and Resource Economics.
American Journal of Agricultural Economics, 83(3), 705-710.

Anselin, L. (2003). Spatial Externalities. International Regional Science Review, 26(2), 147-152.

Ardehali, M. M., & Smith, T. F. (1996). Evaluation of variable volume and temperature HVAC system for
commercial and residential buildings. Energy Conversion and Management, 37(9), 1469-1479.

Arrow, K. (1962). The economic implications of learning by doing. Review of Economic Studies, 29,
155-173.

Baerenklau, K. A. (2005). Toward an Understanding of Technology Adoption: Risk, Learning, and
Neighborhood Effects. [Article]. Land Economics, 81(1), 1-19.

Bandiera, O., & Rasul, I. (2006). Social Networks and Technology Adoption in Northern Mozambique. The
Economic Journal, 116(514), 869-902.

Chandler, S., & Brown, M. (2009). Meta-Review of Efficiency Potential Studies and Their Implications for
the South. Georgia Institute of Technology, School of Public Policy Working Papers 51.

D&R International, L. (2009). 2009 Buildings Energy Data Book.

Foster, A., & Rosenzweig, M. (1995). Learning by doing and learning from others: Human capital and
technical change in agriculture. Journal of Political Economy, 103(6), 1176-1209.

Fragkias, M., & Seto, K. C. (2007). Modeling urban growth in data-sparse environments: a new approach.
Environment and Planning B: Planning and Design, 34(5), 858-883.

Goolsbee, A., & Klenow, P. J. (2002). Evidence on Learning and Network Externalities in the Diffusion of
Home Computers. Journal of Law & Economics, 45(2), 317-343.

Gowrisankaran, G., & Stavins, J. (2004). Network externalities and technology adoption: Lessons from
electronic payments. RAND Journal of Economics, 35(2), 260-276.

Hekkert, M. P., Suurs, R. A. A., Negro, S. O., Kuhlmann, S., & Smits, R. E. H. M. (2007). Functions of
innovation systems: A new approach for analysing technological change. Technological
Forecasting and Social Change, 74(4), 413-432.

loannides, Y. M., & Zabel, J. E. (2003). Neighbourhood effects and housing demand. Journal of Applied
Econometrics, 18(5), 563-584.

Jaber, J. 0., Mamlook, R., & Awad, W. e. (2005). Evaluation of energy conservation programs in residential
sector using fuzzy logic methodology. Energy Policy, 33(10), 1329-1338.

Kim, C. W., Phipps, T. T., & Anselin, L. (2003). Measuring the benefits of air quality improvement: a spatial

hedonic approach. Journal of Environmental Economics and Management, 45(1), 24-39.

18



O© 00 N o uu A W N B

W W W W W W W N N N N N NN NN N NN P PR R R R R R R
a U A W N P O O 0 N OO0 1 B W N P O O O N O O B W NN » O

Kok, N., McGraw, M., & Quigley, J. M. (2011). The Diffusion of Energy Efficiency in Building. American
Economic Review, 101(3), 77-82.

Krause, R. (2009). Energy Efficiency and Conservation. Paper presented at the The Search for Wise Energy
Policy Conference, Washington, D.C.

Kahn, 1., Bierman, S. M., Durka, W., & Klotz, S. (2006). Relating Geographical Variation in Pollination Types
to Environmental and Spatial Factors Using Novel Statistical Methods. New Phytologist, 172(1),
127-139.

Lawrence, T. M., Mullen, J. D., Noonan, D. S., & Enck, J. (2005). Overcoming Barriers to Efficiency. ASHRAE
Journal, 47(9), S40-S47.

Longley, P. A., & Tobdn, C. (2004). Spatial Dependence and Heterogeneity in Patterns of Hardship: An
Intra-Urban Analysis. Annals of the Association of American Geographers, 94(3), 503-519.

Menanteau, P., & Lefebvre, H. (2000). Competing technologies and the diffusion of innovations: the
emergence of energy-efficient lamps in the residential sector. Research Policy, 29(3), 375-389.

Mills, B. F., & Schleich, J. (2010). Why don't households see the light?: Explaining the diffusion of compact
fluorescent lamps. Resource and Energy Economics, 32(3), 363-378.

Mlecnik, E. (2010). Adoption of Highly Energy-efficient Renovation Concepts. Open House International,
35(2), 39-48.

Nair, G., Gustavsson, L., & Mahapatra, K. (2010). Factors influencing energy efficiency investments in
existing Swedish residential buildings. Energy Policy, 38(6), 2956-2963.

Niemeyer, S. (2010). Consumer voices: adoption of residential energy-efficient practices. International
Journal of Consumer Studies, 34(2), 140-145.

Osbaldiston, R., & Schott, J. P. (2011). Environmental Sustainability and Behavioral Science: Meta-Analysis
of Proenvironmental Behavior Experiments. Environment and Behavior. Advance online
publication. doi: 10.1177/0013916511402673.

Oster, E., & Thornton, R. (2009). Determinants of Technology Adoption: Private Value and Peer Effects in
Menstrual Cup Take-Up. NBER Working Paper 14828.

Rogers, E. M. (1995). Diffusion of Innovations (4th ed.). New York: Free Press.

Schot, J., & Geels, F. W. (2008). Strategic niche management and sustainable innovation journeys: theory,
findings, research agenda, and policy. Technology Analysis & Strategic Management, 20(5), 537 -
554.

Sovacool, B. K. (2009). The cultural barriers to renewable energy and energy efficiency in the United
States. Technology in Society, 31(4), 365-373.

Stern, P. C. (2011). Contributions of psychology to limiting climate change. American Psychologist, 66(4),
303-314.

Tse, R. Y. C., & Webb, J. R. (1999). Property Tax and Housing Returns. Review of Urban & Regional
Development Studies, 11(2), 114-126.

19



U.S. Department of Housing and Urban Development Office of Policy Development and Research. (2003).
The Practice of Low Impact Development.
U.S. Green Building Council. (2010). Leadership in Energy and Environmental Design (LEED), from

http://www.usgbc.org/

20


http://www.usgbc.org/

1

2

Appendix

Figure 1. Map of zoned heating and zoned A/C adoption
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Table 1. Definitions of variables

Variable Description

Zoned Heating Share of zoned heating system in the block group (BG)

Zoned A/C Share of zoned A/C system in the BG

New Share of New-ready, New-proposed construction, New-under construction

or New-will built to suite properties in the BG

1-5years Share of property age in the BG

6- 10 years Share of property age in the BG

11- 25 years Share of property age in the BG

26- 50 years Share of property age in the BG

51- 100 years Share of property age in the BG

100+ years Share of property age in the BG

Age unknown Share of age unknown properties in the BG

Rehabilitated Share of recent rehabilitated houses in the BG

30-yr mortgage rate Averaged 30 year fixed mortgage rate in the BG, from HSH Associates

National Monthly Mortgage Statistics

Effective tax Mean Effective tax rates in the BG
Median household Block Group Median Household Income, interpolated 1992-2004
income (log)

Median house value (log) Block Group Median House Value, interpolated 1992-2004
Lot size (log) Average lot size in the BG
Square footage (log) Average square footage in the BG

Percent college graduate Percent of college graduates in the BG, interpolated 1992-2004

Clubhouse Share of properties listing a clubhouse

Park Share of properties listing a Park/Playground around

Lake Share of properties listing a Pond/lake around

Distance to CBD (log) Distance to Central Business District, measured from the center of BG

Vacant housing unit rate  Interpolated rate of vacant housing units in the BG

Population density (log)  block group population density (people per square mile), interpolated

1992-2004
Percent renters Percentage of housing units occupied by renters in the BG
Cook county Dummy of BG in Cook county
DuPage county Dummy of BG in DuPage county
Kane county Dummy of BG in Kane county
Lake county Dummy of BG in Lake county
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McHenry county
Will county
Spring

Summer

Fall

Winter

Sales in (year)

Dummy of BG in McHenry county

Dummy of BG in Will county

Share of properties sold in spring (March — May) in the BG

Share of properties sold in summer (June — August) in the BG

Share of properties sold in fall (September — November) in the BG
Share of properties sold in winter (December — February) in the BG
Thirteen variables represent the share of properties sold in each block

group, each year from 1992-2004
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Table 2. Descriptive statistics

Repeat-observations

New-construction

Full sample
sample sample
Number of Obs. 2539 2411 1142
Variables Mean Std. Dev. Mean Std. Dev. Mean . Dev.

Zoned Heating 0.021 0.053 0.018 0.059 0.120 0.255
Zoned A/C 0.031 0.071 0.022 0.062 0.184 0.320
New 0.021 0.059 - - - -
1-5years 0.061 0.133 0.059 0.141 - -

6- 10 years 0.053 0.096 0.055 0.120 - -

11- 25 years 0.162 0.218 0.165 0.242 - -

26- 50 years 0.437 0.302 0.435 0.332 - -

50- 100 years 0.195 0.243 0.191 0.266 - -

100+ years 0.021 0.065 0.018 0.069 - -

Age unknown 0.049 0.065 0.058 0.115 - -
Rehabilitated 0.010 0.018 0.008 0.031 - -

30-yr mortgage rate 7.377 0.226 7.628 0.327 7.273 0.732
Effective tax 1.664 0.316 1.664 0.315 1.645 0.335
Med. household income (log) 10.989 0.363 10.974 0.356 11.115 0.378
Med. house value (log) 12.101 0.487 12.111 0.479 12.232 0.491
Lot size (log) 9.046 0.323 9.032 0.303 9.138 0.332
Square footage (log) 7.192 0.255 7.157 0.278 7.443 0.333
Percent college graduate 0.330 0.198 0.328 0.195 0.379 0.213
Clubhouse 0.018 0.050 0.022 0.058 0.013 0.091
Park 0.034 0.077 0.029 0.077 0.037 0.140
Lake 0.013 0.050 0.011 0.050 0.018 0.099
Distance to CBD (log) -0.993 0.453 -0.990 0.453 -0.902 0.433
Vacant housing unit rate 3.072 3.270 3.016 3.169 3.138 3.162
Population density (log) 8.268 0.938 8.272 0.914 7.970 0.950
Percent renters 20.284 19.543 19.712 18.928 16.083 15.812
Cook county 0.549 0.498 0.541 0.498 0.421 0.494
DuPage county 0.192 0.394 0.201 0.401 0.243 0.429
Kane county 0.082 0.274 0.084 0.278 0.078 0.268
Lake county 0.061 0.240 0.060 0.238 0.102 0.302
McHenry county 0.041 0.199 0.042 0.200 0.070 0.255

24



Will county
Spring
Summer

Fall

Winter

Sales in 1992
Sales in 1993
Sales in 1994
Sales in 1995
Sales in 1996
Sales in 1997
Sales in 1998
Sales in 1999
Sales in 2000
Sales in 2001
Sales in 2002
Sales in 2003
Sales in 2004

Difference in lot size (log)
Diff. in square footage (log)
Diff. in 30-yr mortgage rate

Diff. in year of sale

0.074
0.218
0.256
0.193
0.140
0.026
0.029
0.035
0.058
0.066
0.066
0.077
0.079
0.081
0.079
0.081
0.088
0.042

0.263
0.132
0.150
0.124
0.096
0.043
0.062
0.057
0.058
0.069
0.060
0.062
0.065
0.070
0.067
0.066
0.076
0.041

0.072

0.035
0.041
0.055
0.095
0.098
0.084
0.088
0.082
0.082
0.061
0.046
0.025
0.004
-0.010
0.044
-0.586
3.262

0.258

0.075
0.083
0.093
0.125
0.124
0.105
0.117
0.114
0.121
0.110
0.103
0.082
0.029
0.117
0.109
0.469
1.235

0.087
0.216
0.206
0.182
0.154
0.022
0.020
0.033
0.055
0.055
0.068
0.073
0.077
0.074
0.069
0.067
0.092
0.055

0.282
0.313
0.297
0.294
0.265
0.111
0.101
0.142
0.171
0.169
0.186
0.192
0.200
0.194
0.190
0.188
0.237
0.187
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Table 3. Spatial lag regression results for the full sample

Zoned Heating Zoned A/C

Variables Coef. Std. Err. Coef. Std. Err.
Spatial lag (p) 0.384 0.023 *** 0.445 0.021 ***
Constant -0.393 0.084 *** -0.699 0.100 ***
New 0.136 0.014 *** 0.134 0.017 ***
1-5years 0.019 0.008 ** 0.011 0.010
6- 10 years 0.011 0.012 0.036 0.014 **
26- 50 years 0.018 0.005 *** 0.024 0.006 ***
50- 100 years 0.025 0.006 *** 0.040 0.007 ***
100+ years -0.018 0.014 0.019 0.017
Age unknown 0.073 0.016 *** 0.097 0.020 ***
Rehabilitated 0.154 0.047 *** 0.258 0.056 ***
30-yr mortgage rate -0.031 0.008 *** -0.037 0.009 ***
Effective tax -0.012 0.004 *** -0.018 0.004 ***
Med. household income (log) 0.008 0.002 *** 0.014 0.003 ***
Med. house value (log) -0.002 0.001 * -0.003 0.002 **
Lot size (log) -0.018 0.004 *** -0.011 0.004 ***
Square footage (log) 0.104 0.005 *** 0.139 0.007 ***
Percent college graduate -0.027 0.007 *** -0.034 0.008 ***
Clubhouse 0.041 0.017 ** 0.066 0.020 ***
Park -0.045 0.012 *** -0.056 0.015 ***
Lake -0.036 0.017 ** 0.011 0.021
Distance to CBD (log) -0.001 0.004 0.002 0.004
Vacant housing unit rate 0.001 0.000 ** 0.001 0.000 *
Population density (log) -0.004 0.001 *** -0.005 0.001 ***
Percent renters 0.000 0.000 0.000 0.000
Summer 0.033 0.012 *** 0.018 0.014
Fall 0.019 0.012 0.031 0.014 **
Winter -0.008 0.014 0.007 0.017

Value Prob Value Prob

Robust LM (lag) 31.699 0.000 68.238 0.000
Robust LM (error) 19.974 0.000 34.871 0.000
Number of obs. = 2539 2535
Log likelihood = 4729.98 4253.55
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R’ = 0.507 0.605

*p <.10. ¥*p < .05. ***p < .01.
Note. The above analyses control for the six counties listed in Table 2 and the proportional sales in each of

the 13 years from 1992-2004.
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Table 4. Spatial lag regression results for the repeat-observations sample

Zoned Heating Zoned A/C

Variables Coef. Std. Err. Coef. Std. Err.
Spatial lag (p) 0.151 0.029 *** 0.142 0.029 ***
Constant -0.782 0.116 *** -1.007 0.119 ***
1-5years 0.022 0.010 ** 0.041 0.010 ***
6- 10 years -0.011 0.011 0.007 0.012
26- 50 years 0.007 0.006 0.020 0.006 ***
50- 100 years 0.013 0.007 * 0.023 0.007 ***
100+ years 0.033 0.017 ** 0.075 0.017 ***
Age unknown 0.039 0.012 *** 0.058 0.012 ***
30-yr mortgage rate 0.015 0.008 * 0.007 0.008
Effective tax -0.024 0.005 *** -0.016 0.005 ***
Med. household income (log) 0.019 0.007 *** 0.028 0.007 ***
Med. house value (log) 0.002 0.002 0.003 0.002
Lot size (log) 0.017 0.006 *** 0.024 0.006 ***
Square footage (log) 0.050 0.007 *** 0.051 0.007 ***
Percent college graduate -0.014 0.011 -0.007 0.011
Clubhouse 0.010 0.019 0.009 0.020
Park -0.026 0.016 -0.023 0.017
Lake -0.018 0.038 -0.009 0.039
Distance to CBD (log) -0.010 0.005 ** -0.019 0.005 ***
Vacant housing unit rate 0.001 0.000 *** 0.001 0.000 **
Population density (log) 0.000 0.002 0.000 0.002
Percent renters 0.000 0.000 0.000 0.000
Difference in lot size (log) 0.005 0.010 0.022 0.010 **
Diff. in square footage (log) 0.077 0.011 *** 0.091 0.011 ***
Diff. in 30-yr mortgage rate 0.013 0.005 ** 0.009 0.005
Diff. in year of sale 0.005 0.002 *** 0.000 0.002

Value Prob Value Prob

Robust LM (lag) 39.105 0.000 9.376 0.002
Robust LM (error) 22.979 0.000 1.698 0.193
Number of obs. = 2411 2411
Log likelihood = 3721.16 3668.63
R’= 0.233 0.271
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1 *p <.10. ¥*p < .05. ***p < .01.
2 Note. The above analyses control for the six counties listed in Table 2 and the proportional sales in each of

3 the 13 years from 1992-2004.
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Table 5. Spatial lag regression results for the new-construction sample

Zoned Heating Zoned A/C

Variables Coef. Std. Err. Coef. Std. Err.
Spatial lag (p) 0.115 0.032 *** 0.136 0.031 ***
Constant -2.189 0.541 *** -2.631 0.631 ***
30-yr mortgage rate -0.008 0.015 -0.018 0.018
Effective tax -0.051 0.032 -0.108 0.037 ***
Med. household income (log) -0.046 0.043 -0.059 0.050
Med. house value (log) 0.100 0.034 *** 0.113 0.040 ***
Lot size (log) 0.030 0.023 0.026 0.027
Square footage (log) 0.160 0.030 *** 0.251 0.035 ***
Percent college graduate 0.144 0.066 ** 0.205 0.077 ***
Clubhouse 0.042 0.082 0.075 0.095
Park -0.077 0.046 * -0.121 0.053 **
Lake -0.116 0.086 0.003 0.101
Distance to CBD (log) -0.004 0.029 -0.015 0.034
Vacant housing unit rate 0.006 0.002 *** 0.002 0.002
Population density (log) 0.017 0.009 * 0.014 0.010
Percent renters 0.000 0.001 0.000 0.001
Summer 0.041 0.027 0.020 0.031
Fall 0.052 0.028 * 0.019 0.032
Winter 0.061 0.029 ** 0.052 0.034

Value Prob Value Prob

Robust LM (lag) 4.660 0.031 13.224 0.000
Robust LM (error) 1.084 0.298 4.564 0.033
Number of obs. = 1142 1142
Log likelihood = 173.057 -2.190
R®= 0.338 0.428

*p <.10. ¥*p < .05. ***p < .01.
Note. The above analyses control for the six counties listed in Table 2 and the proportional sales in each of

the 13 years from 1992-2004.

30



Online Appendix

Table Al. OLS regression results for the full sample

Number of obs. =

Log likelihood = 4588.59 4035.71
Prob. > )(2 =
R®=
Zoned Heating Zoned A/C

Variables Coef. Std. Err. Coef. Std. Err.
Constant -0.510 0.090 *** -0.960 0.112 ***
New 0.141 0.015 *** 0.143 0.019 ***
1-5years 0.026 0.009 *** 0.020 0.011 *
6- 10 years 0.009 0.013 0.031 0.016 **
26- 50 years 0.019 0.005 *** 0.024 0.006 ***
50- 100 years 0.024 0.006 *** 0.041 0.008 ***
100+ years -0.026 0.015 * 0.011 0.019
Age unknown 0.099 0.018 *** 0.141 0.022 ***
Rehabilitated 0.212 0.051 *** 0.404 0.063 ***
30-yr mortgage rate -0.031 0.008 *** -0.034 0.010 ***
Effective tax -0.026 0.004 *** -0.041 0.005 ***
Med. household income (log) 0.009 0.002 *** 0.018 0.003 ***
Med. house value (log) -0.002 0.001 * -0.004 0.002 **
Lot size (log) -0.018 0.004 *** -0.009 0.005 *
Square footage (log) 0.120 0.006 *** 0.167 0.007 ***
Percent college graduate -0.015 0.007 ** -0.015 0.009 *
Clubhouse 0.050 0.018 *** 0.082 0.022 ***
Park -0.055 0.013 *** -0.070 0.017 ***
Lake -0.031 0.019 * 0.017 0.023
Distance to CBD (log) -0.005 0.004 -0.003 0.005
Vacant housing unit rate 0.001 0.000 *** 0.001 0.000 ***
Population density (log) -0.006 0.001 *** -0.008 0.001 ***
Percent renters 0.000 0.000 0.000 0.000
DuPage county 0.056 0.026 ** 0.075 0.032 **
Kane county 0.012 0.005 ** 0.009 0.006
Lake county 0.027 0.004 *** 0.023 0.005 ***
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McHenry county

Will county
Summer

Fall

Winter

Sales in 1993
Sales in 1994
Sales in 1995
Sales in 1996
Sales in 1997
Sales in 1998
Sales in 1999
Sales in 2000
Sales in 2001
Sales in 2002
Sales in 2003
Sales in 2004

0.003
0.011
0.035
0.023
-0.005
0.072
0.138
0.091
0.052
0.010
0.001
0.039
0.055
0.017
0.005
-0.041
0.025

0.005 0.000
0.004 *** 0.008
0.013 *** 0.021
0.013 * 0.035
0.015 0.013
0.032 ** 0.114
0.031 *** 0.122
0.028 *** 0.129
0.027 * 0.084
0.028 0.036
0.030 -0.009
0.028 0.015
0.027 ** 0.136
0.029 0.039
0.031 0.028
0.032 -0.017
0.038 0.076

0.007
0.005
0.016
0.016
0.019
0.040
0.038
0.035
0.033
0.035
0.038
0.035
0.033
0.036
0.039
0.040
0.047

* %k

* %k %

* %k %

* %k %

* %k

* %k %

*p <.10. ¥*p < .05. ***p < .01.
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Table A2. OLS regression results for the repeat-observations sample

Number of obs. = 2411 2411
Log likelihood = 3707.33 3655.71
Prob. > = 0.0000 0.0000
R®= 0.221 0.260
Zoned Heating Zoned A/C

Variables Coef. Std. Err. Coef. Std. Err.
Constant -0.850 0.118 *** -1.055 0.121 ***
1-5years 0.021 0.010 ** 0.041 0.010 ***
6- 10 years -0.012 0.012 0.007 0.012
26- 50 years 0.008 0.006 0.021 0.006 ***
50- 100 years 0.014 0.007 ** 0.025 0.007 ***
100+ years 0.033 0.017 * 0.079 0.018 ***
Age unknown 0.042 0.012 *** 0.060 0.012 ***
30-yr mortgage rate 0.016 0.008 * 0.007 0.008
Effective tax -0.029 0.005 *** -0.020 0.005 ***
Med. household income (log) 0.021 0.007 *** 0.030 0.007 ***
Med. house value (log) 0.002 0.002 0.004 0.002
Lot size (log) 0.019 0.006 *** 0.025 0.006 ***
Square footage (log) 0.053 0.007 *** 0.054 0.007 ***
Percent college graduate -0.010 0.011 -0.002 0.011
Clubhouse 0.010 0.019 0.014 0.020
Park -0.028 0.017 * -0.025 0.017
Lake -0.015 0.038 -0.007 0.039
Distance to CBD (log) -0.012 0.005 ** -0.022 0.005 ***
Vacant housing unit rate 0.002 0.000 *** 0.001 0.000 ***
Population density (log) -0.001 0.002 0.000 0.002
Percent renters 0.000 0.000 0.000 0.000
DuPage county -0.021 0.020 0.029 0.020
Kane county 0.008 0.007 0.011 0.007 *
Lake county 0.005 0.006 0.000 0.006
McHenry county 0.001 0.008 0.013 0.008
Will county 0.006 0.005 0.005 0.006
Sales in 1993 -0.075 0.025 *** 0.041 0.026
Sales in 1994 -0.055 0.022 ** 0.018 0.022
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Sales in 1995 -0.064 0.019 *** 0.032 0.019 *

Sales in 1996 -0.050 0.019 *** 0.018 0.019
Sales in 1997 -0.068 0.020 *** 0.012 0.021
Sales in 1998 -0.025 0.021 0.042 0.022 *
Sales in 1999 -0.006 0.020 0.065 0.021 ***
Sales in 2000 -0.009 0.020 0.031 0.021
Sales in 2001 -0.037 0.023 0.027 0.023
Sales in 2002 -0.020 0.025 0.025 0.026
Sales in 2003 -0.016 0.029 0.027 0.029
Sales in 2004 0.036 0.046 0.049 0.047
Difference in lot size (log) 0.004 0.010 0.021 0.010 **
Diff. in square footage (log) 0.080 0.011 *** 0.092 0.012 ***
Diff. in 30-yr mortgage rate 0.014 0.005 *** 0.009 0.005 *
Diff. in year of sale 0.005 0.002 *** -0.001 0.002

*p <.10. **p < .05. ***p < .01.
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Table A3. OLS regression results for the new construction sample

Number of obs. = 1142 1142
Log likelihood = 166.975 -11.4167
Prob. > = 0.0000 0.0000
R®= 0.328 0.415
Zoned Heating Zoned A/C

Variables Coef. Std. Err. Coef. Std. Err.
Constant -2.366 0.553 *** -2.903 0.646 ***
30-yr mortgage rate -0.009 0.016 -0.017 0.018
Effective tax -0.061 0.032 * -0.131 0.038 ***
Med. household income (log) -0.047 0.044 -0.063 0.051
Med. house value (log) 0.113 0.035 *** 0.134 0.041 ***
Lot size (log) 0.031 0.024 0.027 0.028
Square footage (log) 0.163 0.031 *** 0.259 0.036 ***
Percent college graduate 0.164 0.067 ** 0.236 0.079 ***
Clubhouse 0.043 0.084 0.065 0.098
Park -0.078 0.047 * -0.122 0.055 **
Lake -0.114 0.088 0.005 0.103
Distance to CBD (log) -0.008 0.030 -0.022 0.035
Vacant housing unit rate 0.006 0.002 *** 0.002 0.003
Population density (log) 0.018 0.009 ** 0.015 0.011
Percent renters 0.000 0.001 0.000 0.001
DuPage county 0.025 0.068 0.027 0.080
Kane county 0.004 0.035 0.029 0.041
Lake county -0.012 0.030 0.023 0.035
McHenry county 0.016 0.039 0.033 0.046
Will county 0.026 0.031 0.047 0.036
Summer 0.044 0.028 0.020 0.032
Fall 0.057 0.028 ** 0.025 0.033
Winter 0.063 0.030 ** 0.057 0.035
Sales in 1993 0.007 0.091 0.139 0.107
Sales in 1994 -0.057 0.074 -0.056 0.087
Sales in 1995 -0.038 0.070 0.057 0.082
Sales in 1996 0.052 0.070 0.035 0.082
Sales in 1997 -0.009 0.069 0.026 0.081
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Sales in 1998
Sales in 1999
Sales in 2000
Sales in 2001
Sales in 2002
Sales in 2003
Sales in 2004

-0.040
0.056
0.025
0.073
0.054
0.087
0.123

0.071
0.068
0.068
0.071
0.075
0.076
0.079

-0.053
0.116
0.045
0.122
0.074
0.078
0.073

0.083
0.080
0.079
0.083
0.087
0.089
0.093

*p <.10. **p < .05. ***p < .01.
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