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ABSTRACT

Beale, Michael P. M.S.E.C.E., Purdue University, August 2012. New Approaches to
Analyze Sound Barrier Effectiveness. Major Professor: Eliza Du.

Highway noise can cause annoyance, affect sleep patterns, and reduce the property

value for people in the proximity. Current methods for analyzing the effectiveness

of sound barriers only take loudness into consideration. This paper introduces new

methods that can be used to analyze the effectiveness of the sound barriers. Our

approach uses psychoacoustic measures including sharpness, roughness, fluctuation

strength and annoyance. Highway noise is non-stationary, therefore each of these

metrics are calculated over a short time. Finally analysis is performed the distribution

and change over time. We used nth nearest neighbor algorithm to remove sounds that

are not a part of the experiment. In the future this data can be combined with human

surveys to see if the change in sound quality do to the presents of a sound barriers

have a meaningful impact people’s lives.
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1. INTRODUCTION

Highway noise can cause annoyance, affect sleep patterns, and reduce the property

value for people in the proximity [1–8].

Soundwalls are built to reduce highway noise and by doing so improve the quality

of life for people living near the soundwalls. However, soundwall are very expensive.

Soundwall cost about 2.5 million dollars per mile in construction cost alone. Some

have proposed alternatives to soundwalls, such as the line of the side (LOS) walls.

However it is unclear how effective LOS walls are at stopping sound. To better

understand the effectiveness of the sound barrier for highway noise, it is important to

develop evaluation methods that can provide an objective measurement of the impact

soundwalls have. Current methods for analysis use just the loudness calculated using

A-weighted equivalent sound pressure level to analyz traffic noise. This method is

widely used for several different models [9–12] and is widely accepted because it is

easy to compute, and it provides policy makers a definitive threshold. This method is

used in most current models and policies that relate traffic noise. However it provides

a minimum amount of information about a sound and it could not provide information

about of how people perceive the sound.

Many factors account for how people feel about a sound [13]. Some of these factors

like temporal variation, and frequency density are not accounted for using A-weighted

sound pressure level. Highway noise, is a result of many different sound sources, and

as result is a complex and dynamic signal. Many of these acoustic features greatly

affect how people feel about a sound, however they are not accounted for when sound

is measured using only loudness. In this thesis, we propose using parameters that

provide additional information about the acoustic properties of the highway noise

to evaluate the effectiveness of the soundwall. Similar psychoacoustic tests have

been used for commercial products [14–17]. These methods have proven effective for
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predicting how people feel about sounds, and helping engineering improve the sound

quality of various products, however no extensive environmental noise evaluation has

performed analysis using psychoacoustic parameters.
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2. BACKGROUND

2.1 Acoustic Signal Processing

In this section is a review of acoustic signal processing. We will also formalize the

some of the terminology that is used throughout the thesis.

2.1.1 Signal vs. Noise

Time domain representation of sound signals is a one dimensional signal where

the magnitude references to the pressure of the air at a given time. In this research

the sound from the highway (traffic noise) is considered to be the signal.

2.1.2 Acoustic Signal Characteristics

Fig. 2.1 plots two different sound signals in time and frequency domains. For

keyboard sound, we can see that there is a fundamental frequency just below 200Hz

and some energy at multiples of the fundamentals or harmonics. However, for the

traffic sounds, the sound frequency is more distributed and no regular pattern is

observed. There is a peak at 135 Hz in the traffic noise example.
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Fig. 2.1. Examples of sound signals
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Fig. 2.2. Two time domain sound signals magnified a) tranquil piano
sound b) chalk board sound

In Fig. 2.2 two sounds with contrasting properties in terms of annoyances are

compared. These images show very little difference in time. In Fig. 2.2 a) the

natural decay of the sound observed, and in Fig. 2.2 b) this change is more drastic.

Other than this characteristic there is no obvious difference between these sounds.

The visual similarity highlights the need to process the signal inorder to understand

how the properties of these signals.
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2.1.3 Human Perception of Sound

Sound is a change in pressure of the air over time. Pressure is measured in Pascals

(Pa). The human ear is capable detecting changes in pressure; this is what is causes

the sensation of hearing. The quietest sound detectable is about 0.0001 Pa and the

threshold of pain is 100 Pa. Because the range of sound pressure is so wide sound is

described in terms of sound pressure level (L) [18,19].

L = 10log
p2

p20
(2.1)

Here, p0 is a standard reference pressure of p0 = 20Pa, and p is the sound pressure

in Pascals. In the real world sound signal vary over time so it is necessary to find how

loud an equivalent steady sound is. This value is called equivalent sound pressure

level.

Leq = 10log
1

t2 − t1
[

∫ t2

t1

P 2
A

P02

dt] (2.2)

Leq is the equivalent continuous sound pressure level [dB], p0 is the reference

pressure level = 20Pa, pA is the acquired sound pressure in Pa, t1is the start time

for measurement, t2 is the end time for measurement.

2.2 Review of Environmental Noise Evaluation

Since the 1960 researchers have been studying environmental noise and its effect

on people [6]. Most of these early studies use A-weighted equivalent sound pressure

level and correlate perceived loudness and/or annoyance.

In [20]Crocker compared perceived annoyance with dBA sound pressure level per-

centiles of environmental noise. This data did not have many data points, but it

showed a nonlinear relation between dBA and perceived annoyance. Berglund et al.

uses different environmental sounds at a set loudness to see how well Zwickers loud-

ness and sharpness correlated to perceived loudness and annoyance[33]. Berglund

concluded that for all sounds, besides the powerline noise, Zwickers loudness was a
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good judge of loudness and annoyance, but the variance of annoyance was far greater.

They also suggested sharpness would be helpful in predicting perceived annoyance.

In [21] researchers created several new methods for analyzing traffic and train

noise. They created two new metric, the spectral variance and temporal variance.

They then used 6 participates to rate the annoyance of the data they recorder. At

the end they showed that the method they came up with fit was a considerably better

method for predicting annoyance than Zwicker loudness calculated over 10 minutes

and LAeq calculated over ten minutes. However this is limited group of subjects to

evaluate the sound. In [22] Zwickers loudness was able to predict perceived loud-

ness and annoyance in short sound samples of urban environmental noise. They used

twenty 15 second sound samples of environmental noise. In this research perceived an-

noyance was predicted less accurately than perceived loudness. They concluded that

sounds such as children, birds, moped and buses created different levels of annoyance

in different people.

Another interesting study of evaluating experimental sounds was performed in [23].

In this paper data was gather at a location with a soundwall and a location without

a soundwall. This paper compares perceived annoyance and loudness to A-weighted

SPL. They found at close distances 10-50m that at a given SPL, the sounds recorder

at locations with a sound wall were perceived as more annoying. The researcher

suggested this is because of the underestimation of low frequency sounds.

2.3 Previous Work in Soundwall Effectiveness Evaluations

This is a review of the methods to evaluate soundwalls. A classical approach

is insertion loss [8, 18, 19, 24, 25]. In this method a before and after measurement is

taken at the same location and reference measurement are used before and after. This

method is very effective because the reference can be used to mitigate changes in traffic

patterns. This allows for a equal comparison regardless of the traffic patterns. Also,

because the data is taken in the same location, no other geographical changes effect
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the measurement. The equation below shows how insertion loss would be performed

using LAeq data:

ILi = (LAref + Ledge− LArec) − (LBref − LBrec) (2.3)

ILi is insertion Loss for location I; LAref is reference SPL after wall; Ledge is edge

diffraction correction factor; LArecis rceiver SPL after wall; LBref is receiver SPL

before wall; LBrec is reference SPL before wall. The insertion loss method has some

limitations. First although this method is not limited to a certain metric, it most

commonly performed with simply A-weighted sound pressure level. Also, before and

after measurements are required in order to analyze the wall. An in-situ method for

analyzing sound walls are outlined in [26]. This is for calculating insertion loss of a

barrier if the barrier is already built. This method works by finding a site with similar

geographic and acoustic properties, but without a wall and using data collected from

that site as the before results. This method is necessary if there is no way to remove

the soundwall, however it is difficult to find a location with the same properties, so this

method could only provide an estimate of the noise reduction. In [27] researchers used

an indirect predicted method given in [23] to evaluate different kinds of walls. The

model these researchers used was based on the FHWA 1978 standard. The accuracy

of this method is a concern as they reported insertion losses in the range of 6-21 dBA.

This is unusually high for any material; it is criticized to be inaccurate [28]. Another

method for analysis of a soundwalls effectiveness is the Andrienne method [29–35]. In

this method the reflection loss measurement and the transmission loss measurement

can be calculated. Like insertion loss, when calculating transmission loss there is a

before and after data. However, for both cases a maximum length sequence (M.L.S.)

is generated and using a loudspeaker, transmitted to a microphone on the other side

of the wall or future site of the wall. Then the M.L.S. signal is extracted from the

noise and an accurate measure for how much the M.L.S. signal decayed is calculated.

Comparing the before and after signal gives a measure of the soundwalls effectiveness.

Because this method using a sound source is considered an active method.
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Fig. 2.3. Adrienne method

The Adrienne method has several advantages, it can analyze how a sound barrier

would attenuate sounds of various frequencies. However this method does not take

into account the sound that is being stopped or relate the information about the

reduction of the sound to the how people perceive the sound. Also, the Andrienne

method requires additional equipment to generate sound in that aspect it is more

complicated. This sound has to be at least 10dB higher than the background noise,

so near a highway where the noise can be near dangerous level around 80dB at times,

the signal that would need to be generated would be very loud to overcome the

background noise. Or the traffic would have to be stopped so the background noise

is low enough to perform this method.
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2.4 Problems with Existing Methods

The existing methods for analysis are useful, however all of them only focus on

loudness. A-weighted sound pressure level does not account for the effect that time

varying sound has on people. The Adrienne method is good for measure how much

sound is stopped by a sound barrier. But the effect this will have on people really

depends on what the characteristics of the sound are at the location of the barrier.



11

3. OUR APPROACHES

Fig. 3.1 illustrates the model highway noise transmission. Highway noise, it is a non-

stationary signal. As the highway noise propagates from the highway to the observers,

the highway noise can be reflected, absorbed, and/or attenuated depending on the

frequency of the sound and propagation routs. Hbi is the filter for observer i before

the construction of the wall and Hai is the filter for observeri after the construction of

the wall. By observing the difference of the filters Hi and Hi it is possible to ascertain

to what extent the soundwall changed the sound for each location. The local noise is

represented by n1 to nN for this experiment. This factor varies from time to time and

location to location. In order to maintain consistence in the experiment, this factor

will be mitigated. Local noise is created by wildlife, local traffic, and instrument

noise. To select locations to setup the data collect equipment, we used the standard

method that is adopted by environmental engineers and government organizations at

the Indiana Department of Transportation. Of the appropriate locations to set the

equipment, selections were made to minimize local noise, and to compare different

conditions.

3.1 Method for Evaluation

To more accurately evaluate the soundwall effect, we need to mitigate the impact

of environmental variances. In this research, we propose to use reference data to

measure the sound in such a way that the presences of a soundwall will not affect the

reference measurement. In order to evaluate the soundwall, several factors need to

be adjusted to get a reasonable comparison of the before and after conditions. In this

way the only factor that affects the observed noise is the affect of the soundwall. The

traffic noise and environmental factors vary from time to time because of changes in
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Fig. 3.1. a) The model of highway noise transmission before con-
struction of the wall b)The model of highway noise transmission after
construction of the wall

traffic patterns therefore, this must be taken into. The location of the observer must

remain constant from experiment to experiment to insure that only the sound wall

is the only factor that changes in the filter. Local noise must be mitigated to reduce

the error it causes.

3.1.1 Reference Data

Reference data is used to account for the variation of different traffic patterns and

different environmental factors. The traffic noise is not a stationary sound, it varies

as vehicles enter and exit the soundscape. Even for similar vehicles there is a large
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range of different sounds that are observed. The condition and speed of the vehicle

greatly influence the sound. Rather than trying to model and predict this, we have

devised a method that will allow a reasonable comparison regardless of variations

of the highway noise. This method involves using a reference data to gather data

that is not affected by the wall. The idea of using reference is well know it is used

when calculating insertion loss (section 2.4). In this equation if the reference data is

brought out front, the following factor is added to the difference in of the before and

after receiver, we will call this reference correction RefC.

RefC = LAref − LBref (3.1)

In this equation the reference correction is calculated using subtraction, this is because

dB is used (dB is a log value). If the values are not logarithmic then this value can

be calculated as a ratio of the after value over the before value. In this way the RefC

can be created for any metric used to quantify a sound.

3.2 Location

There are many factors that affect how sound propagates over an area. Atmo-

spheric adsorption is how much of the sound is absorbed by the air. Ground effect

is how much of the sound is absorbed or reflected off the ground, this is determined

by the reflective index of the ground, frequency and location of the receiver. Barrier

including houses and foliage can reflect and/or absorb sounds [19]. The elevation

will also makes huge impact on how sounds travel through an area. Because of this

complex interdependence of variables each different location has a unique acoustic

distance from the highway noise. Therefore, it is important to measure several differ-

ent locations and repeat the same location of the before and after condition. In the

data acquisition section the procedure for locating the same position was outlined.
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Fig. 3.2. Map of measurement locations from Google Earth

3.2.1 Data Acquisition

A non-trivial aspect of this experiment was designing and executing a data acqui-

sition method that was highly accurate and very robust. This involved selection, and



15

Fig. 3.3. Pictures of equipment at different locations

maintaining of proper equipment. Executing the data collection was also a challenge

as only certain days worked with the weather and schedule constraints.

Equipment

A description of the equipment is provided in this section. To acquire the data,

ANCI type 1 sound level meters (SLMs) were used to record the traffic noise. For this

experiment Larson Davis 831 with a inch microphone was the equipment used. The

SLMs were calibrated with ANCI type 1 calibrator before and after an experiment

to verify the accuracy of the instruments. The sample rate used was 48kHz, as this

allowed for analysis up to the highest frequency that humans can hear.
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Fig. 3.4. Pictures of equipment at different locations

Setup

For the measurement behind the wall, camera style tripods were used to hold the

SLMs. For the reference SLM a system was devised to hold the SLM higher than the

wall. A handheld gps unit was used to record the location of the each SLM. Digital
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images of all the locations were taken as well to insure that exact locations can be

repeated on future visits. To synchronize the SLMs the internal clocks were used.

Fig. 3.5. Picture of SLM setup. Notice the reference and the local SLM

3.2.2 Local Noise Reduction

When measuring highway the goal is gather data from the highway only, and

minimize noise called by other sources. In gather data for INDOT Ive noticed bird

sounds that affect the measurements greatly. The first is bird noise, in some locations

when birds are chirping the data recorded is twice as loud as when there are no birds.

The wel used in the next section that will be covered. This includes how the training
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Fig. 3.6. A close-up look at the reference SLM

data was obtained. The pattern recognition algorithm and parameters that will be

used are also covered in this section.

Training Data

To gauge how well our system performed we manually listened to two 15 minutes

and classified each 100ms segment based whether it had a bird chirping or not. We

used a binary classifier and our best judgment; this is what we have used as ground

truth in this experiment. However, this process is not 100 percent perfect as some

of the sounds contained some degree of bird noise. There is also a degree of human

error that is impossible to escape in a process as tedious as this.
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Algorithms Selected and Parameter Selection

To remove bird sounds, specific loudness was selected as it was the parameter most

affected by the birds chirping. The algorithm that is used is the nearest neighbor[50,

51] (NN), to select an appropriate number of neighbors a test was performed using

up to 25 neighbors.

Fig. 3.7 contains the results of this preliminary experiment. Because this only

had a small amount of data from the loc2C, the second location substantially out

performed loc1C. This test showed that about 3 neighbors are optimal for reducing

error. More tests were performed but omitted from this report for the sake of brevity.

This also showed I needed training data from both categories. It also shows that

with more than 17 neighbors, all the data gets classified as no noise. In Fig. 3.8 an

experiment is conducted only using data from from loc2c.

This shows that using NN is less accurate than leaving the data alone when the

training came from a different location. In our case the loud sounds were generally

misclassified as bird sounds in loc1c resulting in lower loudness calculation when bird

sounds were removed. This method does provide better results when the training data

came from the same location. With the lower number of neighbors, the average from

the obtained result is almost exactly the same as the ideal case. Using the knowledge

we gained in the preliminary experiments we set up the following experiment. We

ran tests with randomly selected training sets; 900 points (10 percent ), 300 points

(3.33 percent ) 100 points (1.11 percent) from each data set (9000 data point each).

We then used 3-nearest neighbor to classify the data. In each experiment we used 20

different random samples for each experiment. The results are in Figs. 3.9,3.10 and

3.11.

These results show that the even when training data is selected from both datasets,

loc2c performs better than loc1c. This data shows that the number of misses is far

less than the false alarms for most cases. This data also shows that accuracy is

greatly dependent on the training set. In test 2 both loc2c and loc1c have a higher
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Fig. 3.7. Results from a training set consisting of 10 seconds of data
(100 points) from the loc2c, the specific loudness to classify the data

than usual number of misses. The data also shows that as more data is used the

greater the accuracy. Rather than explain the results using false rejection rate (FRR)

and false acceptance rate (FAR) we plan to evaluate the effectiveness of this method

based on how much improvement is observed in the final result of the experiment.

The goal of this experiment is to measure the loudness so, if removing the bird sounds

makes the output close to the ideal case, then it is successful. Figs. 3.12,3.13, and

3.14, are most important output of the experiment; it shows that using this method

can improve the accuracy of the test. The red line shows the ideal result using

the loudness of the training data. The blue line is the loudness that was actually



21

Fig. 3.8. Using training data from only loc2c and the specific loudness
method, the following average loudness was obtained only from sounds
not classified as bird noise.

obtained. The difference between the red and blue lines for any of these cases signifies

an inconsequential change in loudness.

Figs. 3.15, 3.16 and 3.17 show the loudness of the bird sounds that were removed

in comparison to the ideal case obtained using the result obtained manually. This

data is less important to experiment but it provides some insight and underlines the

need for this procedure. As it is plainly seen the loudness of the bird sound are

greater than that of the non-bird sounds. This difference is greater in the loc2c, and

this explains the reason that loc2c performed better than loc1c. This follows the

background knowledge of the experiment; loc2c was closer to the birds.
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Fig. 3.9. The accuracies of 20 randomly selected training sets. This
included 900 points from both loc1c and loc2c.

3.3 Sound Quality Metrics

Sounds have many different characteristics explained in section 3.3.2.1 to 3.3.2.5.

This section shows why and how they will be used in experiment.

3.3.1 Rational for Use of Sound Quality Metrics

For metrics to evaluate the soundwall we used several in order to be as compres-

sive as possible. There are limitations of LAeq; it is in a sense averages the sound

over the length of the data acquisition. The signal is not exactly averaged but rather

squared, integrated and divided by time, before the log of the value is taken. Because
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Fig. 3.10. The accuracies of 20 randomly selected training sets. This
included 300 points from both loc1c and loc2c.

of this the distribution of different sound levels is not taken into account, besides their

contribution to the total value. Although the A-weighting process accounts for the

frequency response of the ear, this method is not as compressive as other methods for

doing so. As show in Fig. 3.18 the human ear senses low frequencies better at higher

SPL. Because of this the A-weighting curve can underestimate the contribution of

the low frequency sounds. Also, masking might be a factor in this experiment as the

sound source, traffic noise, consists of complex sounds coming from tires, engines and

exhausts of many different vehicles. Many researchers believe that the distribution of

sound, particularly N5 has an important effect on the perception of annoyance and

loudness[28]. Observing how much a soundwall stops sound of a certain distribu-
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Fig. 3.11. The accuracies of 20 randomly selected training sets. This
included 300 points from both loc1c and loc2c.

tions of loudness could be key in quantifying how much the soundwall improved the

soundscape. For example, if a soundwall was only effective at stopping the quietest

sounds, a high insertion loss could be calculated with LAeq. However, this would not

provide much improvement to the soundscape. The averaging that happens when

LAeq is calculated also hides various temporal patterns. These temporal patterns

are perceived by humans as fluctuation strength and roughness. It has been shown

that these sound quality properties contribute to annoyance when they come from

noise. The balance of high frequency components to other frequency components has

an effect on annoyance. This property is not accounted for in LAeq.
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Fig. 3.12. The accuracies of 20 randomly selected training sets. This
included 100 points from both loc1c and loc2c.

3.4 Models for Sound Quality

Sound quality characteristics (aside from loudness) are not standardized and there

many different way that they can be calculated. Below we have given an explanation

and justification for the model to be used.

3.4.1 Review of Loudness

Loudness is an important sound quality metric, it is the perceived magnitude of

a sound.
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Fig. 3.13. The result of removing the bird sounds on the test with
900 training points from each dataset.

Phons and Equal Loudness

The earliest important method for evaluating the loudness of a sound was pre-

sented by Barkhausen [13]. This method involved comparing different sounds to a

reference sound. The most common reference sound is a 1kHz sin wave. To test a

sound the decibel level of the reference sound was changed so that it was as loud

as the sound being tested. Using the technique described it is possible to compare

the loudness of two sounds, one being a reference with known values, the other with

different properties. The unit associated with the equivalent loudness of a 1kHz sin

wave is Phons. Using this technique equal loudness curves can be constructed for
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Fig. 3.14. The result of removing the bird sounds on the test with
300 training points from each dataset.

given loudness using pure tones of various frequencies Fig. 3.18. This figure shows

how sensitive humans are to pure tones over the frequency spectrum. It is important

to note that the functions are not just shifted copies of each other. The low frequency

tones are not as comparatively loud at lower levels. This is evident in the steep slope

of the low frequencies part of the functions. This method for analyzing loudness is

important for a first step in understanding how the human ear responds to different

frequencies. However this method insufficient by its self as to loudness depends on

several other factors besides frequency and level. The bandwidth, spectral density,

and temporal variations all effect loudness in a meaningful way therefore it is to get

a true evaluation of loudness a single filter is not adequate.
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Fig. 3.15. The loudness of the removed sounds using 900 training
points from each dataset.

Weighted Sound Pressure Level

From knowledge obtained from equal loudness studies it is possible to make a filter

that compensates for the different responses of frequencies. This is called weighted

filters. The most common filters are the A, C filters, Fig. 3.19, [19,36]. A weight filter,

is based on the 40 Phon equal loudness curves, this is the filter that is most common

for analyzing traffic noise. C weight is for louder sounds. By filtering an acoustic

signal then calculating the equivalent sound pressure level the weighted equivalent

sound pressure can be calculated LAeq or LCeq depending on the filter. This is the

method currently used to evaluate sound wall [8].
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Fig. 3.16. The loudness of the removed sounds using 300 training
points from each dataset

Phons and Sones

To get a sound that is twice as loud the sound needs to increase by 10dB. In this

sense it is not as easy to directly compare two loudness values in Phon or any other

dB value. The unit that was defined to be directly related to loudness is Sone. One

Sone is defined as a sound equivalent to a 40 dB 1kHz sound. To get a sound that is

two Sones the sound would twice as loud as 40 dB1kHz sound. Using the ISO523B

and ANSI S34 2007 interpretations the following mapping can be defined [38,39].

Phon = 40 ∗ Sone0.35ifSoneislessthan1other (3.2)
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Fig. 3.17. The loudness of the removed sounds using 100 training
points from each dataset

Phon = 40 + 10 ∗ log2(Sone)ifSoneisgreaterthanorequalto1 (3.3)

For the ANSI S34 2007 standard a table of values is given and values in between the

given values are calculated using linear interpolated. These functions are important

and allow a loudness level to be mapped to direct measure of loudness. However

there still other areas that need to be addressed, if we hope to calculate loudness

analytically without using a human to test the sounds.
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Fig. 3.18. Equal Loudness Contours

Fig. 3.19. A and C weight Functions [37]

Critical Band Analysis

The frequency distribution has a great effect on how the loudness is perceived.

A sound is heard because different areas of the basilar membrane vibrate. Each of
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Fig. 3.20. Loudness mapping Sones to Phons both of these methods
are very similar, especially in the range of traffic noise. For ISO523B
the mapping is performed

these separate regions responds to a certain frequency range. In this way the ear

interprets sound like a filterbank, breaking down a sound by frequency regions [36].

The loudness associated with a specific critical band is called specific loudness. There

are two common critical band filterbanks Equivalent Rectangular Bands (ERB) and

Critical Bands (Barks).

Models for Steady State Loudness Calculation

One common method for calculating loudness is published in ISO523B, Fig. 3.21.

This standard compensates for a change in frequency response as a function of level

and the filterbank characteristic of the human hearing system. An implementation of

this standard uses 1/3 octave band data to calculate specific and total loudness [38].

The programs maps the 1/3 octave bands to critical bands or Barks. When the

program is mapping the 1/3 octave band to Barks it also compensates for 1/3 octave

bands that are in the same critical band. The program also accounts for spectral

masking. Moore et al. have a method for calculating loudness similar to that of

Zwicker with a few differences [40]. The first difference with these is that Zwicker

and Moore use different filters to simulate the transfer of sound through the outer and

middle ear. Another difference between the two models is that Moore uses equivalent
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rectangular bands (ERB) rather than critical bands (Barks). Finally Zwicker and

Moore have a different method for calculating the excitation pattern. Zwicker makes

uses a masking for each tone. Moore on the other hand has modeled excitation

pattern by calculating the output of the auditory filters centered on the frequencies

composing the sound.

Fig. 3.21. Model for loudness

Dynamic Loudness Calculation

The Zwicker Dynamic Model is a method to calculate the loudness for sounds that

are continuously varying. This model is similar to the equal loudness but it accounts

for the temporal characteristics of loudness. See Fig. 3.21. It does this with both a

postmasking filter and a upward spread masking filter

3.4.2 Sharpness

Sharpness is a sensation sound quality characteristic that is caused by high fre-

quency sound [13]. Sharpness is a sensation independent from total sound pressure

level. The spectral envelope has little effect on sharpness, however the spectral con-

tent does greatly influence this calculation because this metric quantifies how much of

a sound is made up of high frequency components. It is used to calculate annoyance

and pleasantness models create by Zwicker.
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Fig. 3.22. Dynamic Loudness Model (DLM)

3.4.3 Roughness

Roughness is a sensation caused by the fluctuation of sound in the 15Hz to 300Hz

range. Roughness for a single tone amplitude modulated is maximized when a 1kHz

tone is modulated at 70Hz. The unit to describe roughness is asper. In order to

standardize roughness, 1 asper is defined by a 1kHz tone 100 percent modulated by

a 70Hz tone with a sound intensity of 60dB. In order to characterize this sensation

Zwicker used juries to see how changing parameters of synthetic sounds affected the

perception of roughness [13].

The degree of modulation obviously affects the perception. When Zwicker plotted

the subject data vs. the degree of modulation he found that it was related by the
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Fig. 3.23. Amplitude modulated signal

power law with an exponential of 1.6. If a 1kHz tone is modulated 25 percent then

it produces a roughness of 0.1, or a sensation that many subjects described as no

longer rough. In another graph Zwicker describes the affect of modulation frequency

and carrier on roughness. The 1kHz carrier is maximized at a modulation frequency

of 70Hz and decreases steadily at higher and lower modulation frequencies. Higher

carrier frequencies have the same pattern but are less rough throughout. Lower

frequencies follow a similar pattern too but as the frequency of the carrier frequency

gets lower the modulation frequency at which the roughness is maximized also gets

lower. To get a model for roughness Zwicker concludes that roughness is proportion

to the modulation frequency times the depth of modulation. To be more precise
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Zwicker noted that the modulation depth L is dependent on the critical band so a

more comprehensive form.

R = 0.3
fmod

khz

∫ 24

0

∆LE

dB/Bark
(3.4)

Fmod is the modulation frequency and LE is the modulation depth for each critical

band excitation level. The factor of 0.3 is to make the data conform to the standard

scale. This model is important because it clearly calculates roughness for amplitude

modulated sounds. However this model does not provide methods for calculating

frequency modulated tones because no L value is present for such signals. This

method is implemented in [15]. In this thesis sewing machines are being analyzed so

the signals are stationary, therefore it is possible to make to find fmod manually for

each test. LE was calculated by dividing the max specific loudness by the min specific

loudness for each critical band. Another method proposed by Aures [41]. Aures

method was implemented in matlab by [42]. In Aures method takes an excitation

pattern, in the case of [42] ERB was used. Then an overlapping filterbank with offset

of half a critical band and bandwidth of a critical band are used. Then each specific

excitation is filtered with a bandpass filter equivalent to how much each frequency

contributes to roughness. These filters are designed based on the graphs made by

Zwicker and vary based on how modulation frequencies contribute to roughness in

each critical band. In this way the separate contribution of each critical can be added

together.

The cross correlation of the filtered signal are then taken. This is done because

roughness in adjacent bands causes an overestimation of the total roughness, espe-

cially for broadband sound. Next the modulation depth is estimated. To estimate the

modulation depth, the magnitude of the filtered signal is divided by the average ex-

citation pattern. Finally the modulation depth is multiplied by the correlation factor

and g(zi) which is a function that adjust the specific roughness of each critical band.

Other methods for extracting roughness have been proposed, these are generally used

for analysis of music. In [43] Pressnitzer performs a roughness calculation similar to

Aures, without processing the each critical band channel separately. Another method
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Fig. 3.24. Filters used for each critical band filter

for roughness calculation is called Spectral and Roughness Analysis of Sound Signals

(SRA) [44–46].

R = (Amin ∗ Amax)0.1 ∗ 0.5(Y 3.11) ∗ Z (3.5)

Where Amin and Amax are the minimum and maximum amplitudes of frequency

components respectively.

Y = 2Amin/(Amin + Amax) (3.6)
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Where fmax and fmin are the maximum and minimum frequency respectively.

Spectral analysis in SRA uses an improved Short-Time Fourier Transform (STFT)

algorithm that is optimized for this application.

3.4.4 Review of Fluctuation Strength

Fluctuation strength is a sensation similar to roughness as in it is caused by a vari-

ation of sound, but the range of variation for fluctuation strength is 2 to 30Hz. Fluc-

tuation strength and roughness having a similar description and overlapping range.

The transition from roughness and fluctuation strength is not a black and white one;

a sound can stimulate both of these sensations. The equation for fluctuation strength

is described in [13]:

F =
0.008

∫ 24

0
(∆L/dBBark)dz

(fmod/4Hz) + (4Hz/fmod)
(3.7)

Here, is the modulation depth of each critical band and fmod is the modulation

frequency. The units for this measure is vacil and the 0.008 is in this equation to

normalize the measurement. This method is good for describing synthetic sounds,

but when L is not supplied, in the case fm modulated sound, this model will be

inadequate for calculating. This method would also be very difficult to implement for

sounds that are varying. Fastl said that methods using specific loudness can be used

similar to Aures roughness [41,47].

3.4.5 Review of Psychoacoustic Annoyance

Psychoacoustic Annoyance is a method to combine several different sound quality

metrics to get a single value that describes a sound. In [13] Zwicker based this formula

off quantitative experiments evaluating many different sounds. This method was also

show to work very well in predicting the annoyance of car sounds in a survey.

PA = N5(1 +
√

w2
S + w2

FR) (3.8)
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Where N5 is the 5th percentile loudness and

ws = (
S

acum
− 1.75) ∗ 0.25lg(

N5

sone
) + 10 (3.9)

wFR =
2.18

(N5/sone)2
(0.4 ∗ F + 0.6 ∗R) (3.10)

where S is sharpness S greater than 1.75 acum where F is fluctuation strength and R

is roughness

3.5 Models Used

3.5.1 Sharpness

To calculate sharpness the specific loudness is used. The unit of sharpness is acum,

1 acum is a narrow-band noise one critical-band wide centered at 1kHz with a level

of 60dB.

S = 0.11

∫ 24

0
N ′g(z)zdz∫ 24

0
N ′dz

(3.11)

Where N is the specific loudness.

Fig. 3.25. G(Z) used in calculation of sharpness
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For sharpness the method above was used. The results were calculated every

100ms with the specific loudness obtained from the loudness calculation. To normalize

sharpness the following method is performed. First a reference correction value was

calculated. This value is a ratio that corrects for the difference of the highway noise

in the before and after tests.

SRefC = SAref/SBref (3.12)

SRefC is sharpness reference correction, SAref is sharpness of a location after the wall

is built, and SBref is sharpness at the reference before the wall. Next, the sharpness

wall reduction is calculated. This is done by taking the ratio of the sharpness of the

before construction of the soundwall measurement and dividing by the after construc-

tion of the soundwall measurement. This value is then multiplied by the sharpness

reference correction.

SWR = SRefC ∗ SBloc/SAloc (3.13)

SWR is sharpness wall reduction, SAloc is the observed sharpness after the wall,

SBloc is the observed sharpness before the wall.

3.5.2 Loudness

Methods for calculated loudness were discussed in a previous section. ISO523B is

one technique that generally applied to stationary sound[28]. However, if ISO523B

loudness is calculated numerous time this method can offer insight into the varying

nature of traffic noise without the overly computational heavy requirements of the

dynamic loudness models. This assumption is valid because even though highway

noise varies, the nature of these variations is generally not rapid or extremely drastic.

By heuristically evaluating the wav files it was noticed that a single vehicle influenced

the loudness of the recording for about one to ten seconds. We calculated loudness

every 100ms to make sure the influence of multiple cars entering or leaving the sound-

scape is accounted for in an accurate fashion. To use loudness the data needs to be

normalized to account for random variations in the traffic noise. Because loudness is a
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direct comparison of how a sound is perceived, a ratio is used to describe the division

between the reference and the location data. In this way, this model is similar to

that of insertion loss. NRefC= NAref/NBref NRefC is loudness reference correction,

NAref is loudness of a location after the wall is built, and NBref is loudness at the

reference before the wall. NWR=NRefC*NBloc/NAloc NWR is Loudness wall reduc-

tion, NAloc is the observed loudness after the wall, NBloc is the observed loudness

before the wall.

3.5.3 Roughness

The model of roughness we will use is Daniels optimized Aures method [47]. This

model was implemented in the PsySound3 software package. Like Aures method

Daniels method uses the bark scale. Rather than directly filtering the excitation to

get specific excitation a different method is used. Daniels uses an adaptive filter that

compensates for the location and magnitude of each frequency component. Similar to

the method used by Moore to calculate loudness. The only other difference in Daniels

method is a squared cross correlation factor.
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Fig. 3.26. Diagram of roughness model
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To normalize roughness the following method is performed:

RRefC = RAref/RBref (3.14)

RRefC is roughness reference correction, RAref is roughness of a location after the

wall is built, and RBref is roughness at the reference before the wall.

RWR = RRefC ∗RBloc/RAloc (3.15)

RWR is roughness wall reduction, RAloc is the observed roughness after the wall,

RBloc is the observed roughness before the wall.

3.5.4 Fluctuation Strength

Fluctuation strength is sensation like roughness [47]; the difference between rough-

ness and fluctuation strength is the modulation frequency. Do to the fact that rough-

ness and fluctuation strength are similar, an adaptation of the roughness model was

used to find the fluctuation strength. In roughness the different modulation frequen-

cies are extracted by using different HBPi that are tuned for each critical band

channel. By changing these filters to accommodate the range of fluctuation strength

this model will provide fluctuation strength. To design these filter the figures in

Fastl’s book will be used. The graph in Fastl’s book of modulation frequency vs.

relative fluctuation strength is the one that will be used. This graph shows how dif-

ferent frequencies of modulation effect how people perceive the fluctuation strength

of a sound. Fastl provided three different graphs in this section, one for am broad

band noise, one for am tone and one for fm tone. Since traffic noise is broad band,

the am broad band noise plot will be used. In the roughness model there were several

different ıHBPi for different ranges of critical bands, but Fastl says that fluctuation

strength is less dependent on carrier frequency in terms of am modulation. Therefore

our model will only have one ıHBPi which will be used for all critical bands.
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Fig. 3.27. Bandpassfilter used for fluctuation strength

This is the resulting HBP that will be used, that data had to be interpolated so

that it lines up with the frequency domain samples. To normalize fluctuation strength

method is performed as following

FSRefC = FSAref/FSBref (3.16)

FSRefC is fluctuation strength reference correction, FSAref is fluctuation strength of

a location after the wall is built, and FSBref is fluctuation strength at the reference

before the wall.

FSWR = FSRefC ∗ FSBloc/FSAloc (3.17)

FSWR is fluctuation strength wall reduction FSAloc is the observed fluctuation

strength after the wall, FSBloc is the observed fluctuation strength before the wall.

3.5.5 Annoyance

To calculate annoyance Zwicker’s method will be used [47]. The average roughness,

fluctuation strength, and sharpness is used, the N5 is also calculated from loudness(it

is the fifth percentile loudness). For the after condition the normal values will be
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used. But to get a fair comparison the normalized before values will be used. Each

of the respective metrics will be normalized in the following method:

PA = N5(1 +
√

w2
S + w2

FR) (3.18)

Where N5 is the 5th percentile loudness and

ws = (
S

acum
− 1.75) ∗ 0.25lg(

N5

sone
) + 10 (3.19)

wFR =
2.18

(N5/sone)2
(0.4 ∗ F + 0.6 ∗R) (3.20)

where S is sharpness S greater than 1.75 acum where F is fluctuation strength and R

is roughness
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4. DATA AND ANALYSIS

This section has the data and analysis of the data that was collected. Data was

collected at residential locations that are near a highway. These locations were chosen

because at these locations a sound is going to be constructed. The data is a sound

recording collected using a sound level meter. The length of the recording is 15

minutes.

Fig. 4.1. Loudness data from times 1, 2, and 3



47

Fig. 4.2. Loudness distribution data from times 1, 2, and 3
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Fig. 4.1 A) shows that at a close distance, there is only a slight difference in

loudness in the two measurements, the closer measure experienced a slightly louder

sound. The distributions show that the majority of the energy is in the same range,

however the closer measurement point has more data in higher loudness. For the

second time, the loudness between data had line of sight and a location where the

view was obscured by bushes was compared. The data in Fig. 4.1 B) shows that the

measure from behind the bush attenuated the loudness slightly. The distributions

of the two locations have similar but slightly offset distributions. In the third time

measuring the data, another comparison was made between data at the same distance

from the road, but a different location along the road. This time the data shown in

Fig. 4.1 C). This time the location with the line of sight obscured experienced more

loudness. The distribution of this sound seen in Fig. 4.1 C) shows that location E

has a more data than most of the distributions located in the range of 4.6 Sones.
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Fig. 4.3. Loudness data from times 4, 5, and 6
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Fig. 4.4. Loudness distribution data from times 4, 5, and 6
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The forth time of data collect was collected at two locations at different locations

from the road, Fig. 4.3 A). This data was taken further away than previous compar-

isons made at time 1. The attenuation experienced at this distance was far greater

than the first time. The distributions of this time show similarly distributed, but

shifted centers, Fig. 4.3 A).

The data collected at the fifth time compares data taken at the same distance

from the road, but at different locations Fig. 4.3 B). One of these locations was close

to a house and it did not have a line of sight due to a houses and vegetation. In this

experiment the location that did not have line sight to the road was almost half as

loud.

At the sixth time the data collected was two locations similar distances from

the road Fig. 4.1. Once again the location were the there was no line of sight less

loudness was experienced. The reference data for all locations roughly followed a

similar distribution Fig. 4.2 and Fig. 4.4. The data is has a mean around 8 Sones

and that is where most of the energy in the distribution is located. All the loudness

of the reference data then roughly fits into a bell like shape, except for extra energy

around 10 Sones.
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Fig. 4.5. Loudness data from test locations
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Fig. 4.6. Loudness distribution data test locations
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The loudness at the test sites Location A Fig. 4.5 and Fig. 4.6 show a decrease

in loudness at the locations further away from the highway. The distribution show

that the furthest distance is particularly skewed to the less loud end. This is because

there is no wall at this location and therefore distance is the only factor that effects

the loudness experienced.

The second location Location B the first location is particularly less loud than

the section location while the third location is the least loud of any of the three

test locations. This is caused because the first location is very close to the wall

and attenualted the sound greatly, while the second location benefited less from the

soundwall. The third location was far enough aways that the loudness was attenuated

by the distance.

For location C a similar pattern was observed. The first location experienced less

loudness than the second but the third location was least loud. This again is because

the soundwall’s effectiveness is reduced as the distance from the wall is increased, but

moving away from the wall causes attenuation.



55

Fig. 4.7. Roughness data from times 1, 2, and 3
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Fig. 4.8. Roughness distribution data from times 1, 2, and 3
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For the first time of data collection an interesting pattern emerged Fig. 4.7 and

Fig. 4.8. The reference experienced less roughness than either location and the closer

distance experienced less roughness than the further distance. This suggests that

fluctuation that causes roughness is less prevalent very close to the road.

The second time compares two different levels of obstruction. Location C (the

site with the line of sight obstruction) experiences less roughness than location D.

This suggest that obstructing the light of sight at this distance will no cause the

roughness of the sound to be more prevalent, even though moving further away from

the location can cause an increase in roughness.

The third time represents another location where one of the data collection lo-

cations has an obstructed line of sight. In this collection time the location with the

obstructed view has a greater roughness. This time the obstructed location experi-

enced more roughness. This is in line with the other metrics that also saw an increase

in this location.
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Fig. 4.9. Roughness data from times 4, 5, and 6
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Fig. 4.10. Roughness distribution data from times 4, 5, and 6
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The fourth time show a location where the two different distance are compared in

Fig. 4.9, and Fig. 4.10. In this experiment the distance from the road is greater. At

this distance the increase in distance from the road caused the roughness to decrease.

The fifth time of data collection showed that even at 500 feet from the road,

roughness decrease when line of sight is obstructed.

The sixth time compares another distance where the line of sight is obstructed. At

this distance the location with the line of sight obstruction experienced less roughness.

This experiment showed that at a close location there is less roughness, this is because

the sound is more constant. At slightly further distances more roughness is observed.
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Fig. 4.11. Roughness data from test location
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Fig. 4.12. Roughness distribution data from test location
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The roughness data and distribution are shown in Fig. 4.11 and Fig. 4.12. The

data from Location A shows that the roughness increasing as the distance from the

road is increasing. This same pattern is experienced in the other experiments.

The roughness in Location B and Location C follow the same pattern as well,

this is because at the close location the sound is dominated by a single source, but

at further distance the combination of sound sources increases the roughness. The

soundwall in Location B or Location C did not effect the roughness observed in a

significant way.
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Fig. 4.13. Fluctuation strength data from times 1, 2, and 3
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Fig. 4.14. Fluctuation strength distribution Data from times 1, 2, and 3
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For the first time of data collection there is only a slight difference between the

data collected at different distances from the road. As seen in Fig. 4.13, the data

collected further from the road observed slightly less fluctuations strength during this

test. The distributions in Fig. 4.14 are similar in shape, but the reference data is

shifted to the right. Because the difference in fluctuation strength is so small between

these two locations despite the fact that location A is almost twice as close to the

road as location B; at close distances the change in distance has a nominal effect on

the attenuation of the sounds that contribute to fluctuation strength. The second

location shows that location C observed less fluctuation strength than location D.

The obstruction caused by bushes and shrubs attenuated the Fluctuation strength.

Although this change is still rather small, it is greater than the difference between

location A and B. This suggests that although the line of sight obstruction of the

foliage provides better attenuation than the changing the distance. The third time is

another comparison of the effect of foliage on the attenuation of foliage on the sounds

that contribute to fluctuation strength. This test, however, seems to contradict the

test of time 2. In time 3 location E experiences less fluctuation strength than location

F even though location F is behind the foliage and a house. A similar inconsistency

is observed in the other phycoacoustic metrics. This is caused by noise from the

adjacent house.
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Fig. 4.15. Fluctuation strength from times 4, 5, and 6
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Fig. 4.16. Fluctuation strength sata from times 4, 5, and 6
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At time four two different distances are compared Fig. 4.15 and Fig. 4.16. At this

further distance the attenuation of the fluctuation strength is far greater than that at

time one. The distributions of these results show that the they have a similar shape

but an offset center. At time five a comparison of another line of sight location and

a non-line of sight location is made. This result show that the fluctuation strength

is significantly attenuated when the observation were made behind foliage and struc-

tures. The distribution of these plots have a similar bell like distribution, however

location H is center far left location F. For the sixth time another comparison of line

sight is made. In this measurement location I is compared to location J it is observed

that location J has been significantly attenuated. This data shows that even slight

foliage coverage can result in some reduction of fluctuations strength.
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Fig. 4.17. Fluctuation strength from test location
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Fig. 4.18. Fluctuation strength data from test location
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The fluctuation strength for the test location is shown in Fig. 4.17 and Fig. 4.18.

For Location A the fluctuation strength was high at the close and further distances

than at the medium range test. Close to the sound barrier the fluctuation strength

was reduced greatly, however further from the wall this change was less noticable.

However, once the data was taken significantly further from the sound source the

attenuation do to distance is has a great effect on the reduction of fluctuation strength

than the wall. This same pattern followed for Location B and Location C.
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Fig. 4.19. Sharpness data from times 1, 2, and 3
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Fig. 4.20. Sharpness distribution data from times 1, 2, and 3
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For the first time of data collection both of the location data samples look almost

identical. Even their distributions have a similar shape. From this data collection

experiment moving the collection location 80 feet back makes no difference on the

sharpness.

The second time also shows two locations with the same distance from the road,

but the second location out of the line of sight of the road. The difference between

these locations is minimal. This suggests that sharpness is not attenuated because of

folliage.

At the third time two more locations at the same distance from the road are

compared, the line of sight of one these locations is obstructed. In this location the

location where there was not obstruction experienced more sharpness. This location

also experienced more loudness.
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Fig. 4.21. Sharpness from times 4, 5, and 6
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Fig. 4.22. Sharpness data from times 4, 5, and 6
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The Sharpness for time is shown in Fig. 4.21 and the distribution is shown in

Fig. 4.22. For time 4 the sharpness of both locations were very similar. This shows

that moving the collection from 380 feet to 500 feet made a nominal difference in the

sharpness. This is in contrast to some of the other parameters that analyzed, such

as loudness. For time 5 the obstruction of the houses cause a significant reduction

in the sharpness, this is similar to the other parameters that were analyzed. The

distributions for time 5 show a shifted of about 0.1 Acum. For time 6 there was a

slight reduction in sharpness for the data collected behind the foliage.
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Fig. 4.23. Sharpness from test location
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Fig. 4.24. Sharpness data from test location
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The sharpness from the test location exhibited different behavior Fig. 4.23 and

Fig. 4.24. In location A the data collected at the first had more sharpness than the

reference. This is because the first location was located much lower in elevation than

the other data points. The data from the other two collection points at Location A

acted as expected and decreased sharpness was the distance increased. For location

B the second location experienced more sharpness than the reference data. In this

experiment the other two locations had progressively less sharpness. Each location

in the second location B has more sharpness than the location B. This means that

there the wall can contribute to sharpness. Location C the sharpness decreased as

the distance from the wall increased. The first location once again experienced more

sharpness than the reference location. The other two distances then experienced

progressively less sharpness. Location D is another location with a wall. This data

collection location experienced similar patterns as Location B and Location C.
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Fig. 4.25. Annoyance data from times 1, 2, and 3
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For the first time of data collection a similar annoyance was obtained from both

data collection point Fig. 4.25 and Fig. 4.26. This shows that moving 80 feet

aways from the sound source makes a nominal change in the annoyance. The second

time of data collection slightly less annoyance was observed at the location with the

location with the line of sight obstruction. It is also interesting that the relative to

the reference data, this annoyance is higher than the first time. This has to do with

the increase in roughness at this time. For the third time the location near the house,

but behind the obstructions experienced more annoyance. This has to do with the

household noise from this location that caused an increase in sharpness and loudness

at this time. This is why despite being behind foliage, and line of sight obstructions

there is more annoyance observed.
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Fig. 4.26. Annoyance distribution data from times 1, 2, and 3
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Fig. 4.27. Annoyance from times 4, 5, and 6
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For time four annoyance was reduced as the distanced was increased Fig. 4.27 and

Fig. 4.28. A the fourth time all of the psychoacoustic parameters were reduced so the

annoyance was less at this location. For the fifth time the location with line of sight

obstruction observed a significant reduction in annoyance. In this experiment, all of

the psychoacoustic parameters were reduced significantly, so there is a very noticeable

reduction in annoyance. The sixth time collecting data a significant reduction in

annoyance was measured. At this location, the roughness was higher causing the

annoyance to be greater at the first test location. The line of sight reduction caused

significant reduction in annoyance.
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Fig. 4.28. Annoyance data from times 4, 5, and 6
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Fig. 4.29. Annoyance from test location
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At the test locations the annoyance was calculated Fig. 4.29 and Fig. 4.30. For

location A the annoyance was reduced as the sound got further and further from the

sound source. Location B a different pattern was observed, the first location saw a

significant reduction in annoyance, however, the second location, the benefit of the

sound is reduced. Finally, the third location experienced even less annoyance than

the first or second location. This shows that close to the barrier it is very effect

but at a distance the effectiveness of the sound barrier decreases. However there is

an improvement in annoyance for all three locations even relative to the reference

annoyance. At the third location the measurement closest to the wall had the most

annoyance while and the annoyance decreased as the locations were farther from the

wall. The reference data at this location has less annoyance so there is significantly

different characteristic happening at this location. However even in relation to the

reference data, this location shows an improvement in annoyance to location A.
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Fig. 4.30. Annoyance data from test location
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5. ANALYSIS

5.1 Loudness Analysis

4.1 A) shows that at a close distance, there is only a slight difference in loudness in

the two measurements, the closer measure experienced a slightly louder sound. The

distributions show that the majority of the energy is in the same range, however the

closer measurement point has more data in higher loudness.

For the second time, the loudness between data had line of sight and a loca-

tion where the view was obscured by bushes was compared. The data in Fig. 4.1

shows that the measure from behind the bush attenuated the loudness slightly. The

distributions of the two locations have similar but slightly offset distributions.

In the third time measuring the data, another comparison was made between data

at the same distance from the road, but a different location along the road. This time

the data shown in Fig. 4.1, this time the location with the line of sight obscured

experienced more loudness. The distribution of this sound seen in Fig. 4.1 shows

that location E has a more data than most of the distributions located in the range

of 4.6 Sones.

The forth time of data collect was collected at two locations at different locations

from the road, Fig. 4.3. This data was taken further away than previous comparisons

made at time 1. The attenuation experienced at this distance was far greater than

the first time. The distributions of this time show shapes, but shifted centers, Fig.

4.3.

The data collected at the fifth time compares data taken at the same distance

from the road, but at different locations Fig. 4.3. One of these locations was close

to a house and it did not have a line of sight due to a houses and vegetation. In this
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experiment the location that did not have line sight to the road was almost half as

loud.

At the sixth time the data collected was two locations similar distances from

the road Fig. 4.1. Once again the location where there was no line of sight, less

loudness was experienced. The reference data for all locations roughly followed a

similar distribution Fig. 4.2 and Fig. 4.4. The data has a mean around 8 Sones and

that is where most of the energy in the distribution is located. All the loudness of the

reference data then roughly fits into a bell like shape, except for extra energy around

10 Sones.

5.2 Roughness Analysis

For the first time of data collection an interesting pattern emerged Fig. 4.7 and

Fig. 4.8. The reference experienced less roughness than either location and the closer

distance experienced less roughness than the further distance. This suggests that

fluctuation that causes roughness is less prevalent very close to the road.

The second time compares two different levels of obstruction. Location C (the

site with the line of sight obstruction) experiences less roughness than location D.

This suggest that obstructing the light of sight at this distance will no cause the

roughness of the sound to be more prevalent, even though moving further away from

the location can cause an increase in roughness.

The third time represents another location where one of the data collection lo-

cations has an obstructed line of sight. In this collection time the location with the

obstructed view has a greater roughness. This time the obstructed location experi-

enced more roughness. This is in line with the other metrics that also saw an increase

in this location.

The fourth time shows a location where the two different distance are compared

Fig. 4.9 and Fig. 4.10. In this experiment the distance from the road is greater. At

this distance the increase in distance from the road caused the roughness to decrease.
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The fifth time of data collection showed that even at 500 feet from the road,

roughness decreased when the line of sight is obstructed.

The sixth time compares another distance where the line of sight is obstructed. At

this distance the location with the line of sight obstruction experienced less roughness.

This experiment showed that at close location there is less roughness, this is because

the sound is more constant. At slightly further distances more roughness is observed.

5.3 Fluctuation Strength Analysis

For the first time of data collection there is only a slight difference between the

data collected at different distances from the road. As seen in Fig. 4.13, the data

collected further from the road observed slightly less fluctuation strength during this

test. The distributions in Fig. 4.14 are similar in shape, but the reference data is

shifted to the right. Because the difference in fluctuation strength is so small between

these two locations despite the fact that location A is almost twice as close to the

road as location B; at close distances the change in distance has a nominal effect on

the attenuation of the sounds that contribute to fluctuation strength. The second

location shows that location C observed less fluctuation strength than location D.

The obstruction caused by bushes and shrubs attenuated the fluctuation strength.

Although this change is still rather small, it is greater than the difference between

location A and B. This suggests that although the line of sight obstruction of the

foliage provides better attenuation than the changing the distance. The third time is

another comparison of the effect of foliage on the attenuation of foliage on the sounds

that contribute to fluctuation strength. This test however seem to contradict the test

of time 2. In time 3 location E experiences less fluctuation strength than location

F even though location F is behind the foliage and a house. A similar inconsistency

is observed in the other phycoacoustic metrics. This is caused by noise from the

adjacent house. At time four, two different distances are compared Fig. 4.15, Fig.

4.16. At this further distance the attenuation of the fluctuation strength is far greater
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than that at time one. The distributions of these results show that the they have a

similar shape but an offset center. At time five a comparison of another line of sight

location and a non-line of sight location is made. This result show that the fluctuation

strength is significantly attenuated when the observation were made behind foliage

and structures. The distribution of these plots have a similar bell like distribution,

however location H is center far left location F. For the sixth time another comparison

of line sight is made. In this measurement location I is compared to location J it is

observed that location J has been significantly attenuated. This data shows that even

slight foliage coverage can result in some reduction of fluctuations strength.

5.4 Sharpness Analysis

For the first time of data collection both of the location data samples look almost

identical. Even their distributions have a similar shape. From this data collection

experiment moving the collection location 80 feet back makes no difference on the

sharpness.

The second time also shows two locations the same distance from the road, with

one location out of the line of sight of the road. The difference between these locations

is minimal. This suggests that sharpness in not attenuated because of foliage.

At the third time two more locations at the same distance from the road are

compared, the line of sight of one these locations is obstructed. In this location the

location where there was not obstruction experienced more sharpness. This location

also experienced more loudness.



95

6. CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

In conclusion, we proposed using psychoacoustic metrics to analyze effectiveness

of sound barriers, relative sharpness method, KNN approach to remove local bird

noise. To evaluate these methods we propose an engineering setup for data collection

and analyzed the real-life data we collected. Our contribution will allow for engi-

neers to provide a more comprehensive evaluation of how a sound barrier changes the

sound and how people persevere sound. In our experiments, we found that loudness

decreases as distance increases. This result is similar to that obtained with LAeq.

However, other psychoacoustic parameters do not follow this trend. Roughness is

greater when closer to the sound source. The fluctuation strength decreases with dis-

tance, however, its decrease is far less than loudness. Local foliage can help mitigate,

particularly at far distances. We concluded that sound barriers can help mitigate

highway noise however, its effectiveness reduces with distance.

6.2 Future Works

The first area that future work should be directed is to include more data into the

experiment. Test and analyze the data from after the wall is built. Conduct similar

studies on different sound barriers; a survey has been performed at the future location

of a line of sight wall. Future research should also be directed at human subject tests

to see how people feel about various highway noise sound with different sound quality

properties. Another suggestion for future work would be to use the knowledge gained

from this experiment to explore new methods for sound barriers. Active noise control,

using destructive sound wave interference to reduce the amplitude of a wave, is used
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in headphones and for specific industrial applications; however these techniques have

not been used to control highway noise.
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[22] B. Defréville and C. Lavandier, “Unpleasantness of urban sound environment
based on identification of sources: a perceptive and an acoustic approach,” in
Forum Acusticum, Budapest, 2005.
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