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SUMMARY
CD4+ T cells have a remarkable potential to differentiate into diverse effector lineages following activation.
Here, we probe the heterogeneity present among naive CD4+ T cells before encountering their cognate an-
tigen to ask whether their effector potential is modulated by pre-existing transcriptional and chromatin land-
scape differences. Single-cell RNA sequencing shows that key drivers of variability are genes involved in
T cell receptor (TCR) signaling. Using CD5 expression as a readout of the strength of tonic TCR interactions
with self-peptideMHC, and sorting on the ends of this self-reactivity spectrum, we find that pre-existing tran-
scriptional differences among naive CD4+ T cells impact follicular helper T (TFH) cell versus non-TFH effector
lineage choice. Moreover, our data implicate TCR signal strength during thymic development in establishing
differences in naive CD4+ T cell chromatin landscapes that ultimately shape their effector potential.
INTRODUCTION

Heterogeneity is a fundamental property of cellular systems

(Altschuler and Wu, 2010; Mayer et al., 2016). Even clonally

derived cell populations exhibit variations in gene expression

that impact cell fate decisions (Carter and Zhao, 2021; Chang

et al., 2008). Single-cell studies of immune cells have begun to

reveal the diversity present in populations thought to be homo-

geneous and emphasized its role in the immune response (Villani

et al., 2017; Xie et al., 2020). Such heterogeneity is perhaps no-

where as intimately tied to cellular function as it is in adaptive im-

mune cells. T cell populations comprise a breadth of T cell recep-

tors (TCRs), with individual cells expressing unique TCRs

generated by somatic recombination (Schatz and Ji, 2011).

CD4+ T cells, in particular, possess a remarkable capacity for

diversification into distinct effector lineages following activation
C
This is an open access article under the CC BY-N
that are defined by the cytokines they make and immune cells

they act on. Indeed, CD4+ T cell effector fate is critical in tailoring

an immune response to the specific pathogen encountered

(Zhou et al., 2009; Zhu et al., 2010).

CD4+ T cell differentiation relies on dynamic metabolic and

transcriptional changes (Almeida et al., 2016; Rodriguez et al.,

2015). An early CD4+ T cell fate decision is between effector sub-

sets (T helper [Th] 1, Th2, Th9, and Th17) and follicular helper T

(TFH) cells. TFH cells are essential to germinal center (GC) forma-

tion and generation of high-affinity plasma and memory B cells.

TFH development requires TCR engagement, expression of the

lineage-defining transcription factor Bcl6 with inhibition of

Blimp1, and upregulation of surface proteins, such as PD-1,

CXCR5, and ICOS, enabling interaction with B cells (Crotty,

2019; Ruterbusch et al., 2020). Remarkably, a single CD4+

T cell clone can expand into both TFH and non-TFH cells
ell Reports 37, 110064, November 30, 2021 ª 2021 The Authors. 1
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(Becattini et al., 2015; Tubo et al., 2013). CD4+ T cell clones are

not equal, however. The propensity of a single CD4+ T cell to

differentiate into one helper subset over another varies between

cells expressing distinct TCRs (Cho et al., 2017; Khatun et al.,

2021; Tubo et al., 2013). Whether this clonal variability in cell

fate is determined entirely by TCR signal strength upon antigen

encounter or whether naive T cells are pre-wired with specific

effector biases remains incompletely understood.

It is increasingly appreciated that naive CD4+ T cells already

differ prior to antigen stimulation. Despite their quiescence, naive

CD4+ T cells remain ready to rapidly respond to antigen

(Chapman et al., 2020; Stefanová et al., 2002; Wolf et al.,

2020). This is mediated, at least in part, by sub-threshold interac-

tions with self-peptide presented on MHC (self-pMHC) that pro-

vide tonic survival signals (Vrisekoop et al., 2014). Several

markers provide readouts of self-pMHC signal strength. Ly6C

distinguishes naive CD4+ T cells with high (Ly6C–) from low

(Ly6C+) self-pMHC reactivity (Guichard et al., 2017; Martin

et al., 2013). The expression levels of two other markers, CD5,

a surface protein and negative regulator of TCR signaling, and

the orphan nuclear receptor Nur77 (Nr4a1), positively correlate

with sub-threshold TCR signal strength (Azzam et al., 1998;

Moran et al., 2011). Measures of CD5 expression revealed that

self-reactivity of naive T cells spans a wide spectrum, whereby

the upper and lower bounds are likely set in the thymus by pos-

itive and negative selection (Fulton et al., 2015; Mandl et al.,

2013). Even within amonoclonal TCR transgenic (Tg) population,

cells may vary with regard to self-pMHC reactivity (Zinzow-

Kramer et al., 2019). Importantly, not only does self-pMHC reac-

tivity impact competition between T cells for homeostatic signals

(Vrisekoop et al., 2017), it also influences their responses to

antigen. CD5hi naive CD4+ T cells express higher basal levels

of NF-kB, phosphorylated TCRz, and ERK; make more IL-2

post-activation; preferentially differentiate into regulatory

T cells (Tregs); predominate in acute infections; and contribute

disproportionately to the memory T cell pool (Fulton et al.,

2015; Henderson et al., 2015; Mandl et al., 2013; Matson et al.,

2020; Persaud et al., 2014). Similarly, Ly6C– cells preferentially

differentiate into Tregs and Th17 cells (Martin et al., 2013). In

contrast, CD5lo naive CD4+ T cells producemore IFNg upon acti-

vation (Sood et al., 2019). However, it remains unclear whether

T cells are pre-programmed entirely by tonic peripheral TCR sig-

nals or whether early self-ligand encounters in the thymus play a

role.

Here, we adopted an unbiased systems approach,

combining single-cell RNA sequencing (scRNA-seq) with

bulk RNA-seq and assay for transposase-accessible chro-

matin using sequencing (ATAC-seq) to comprehensively

investigate the drivers of heterogeneity among naive CD4+

T cells. We report that individual cell-level biases in the

expression of modulators of TCR signal strength and in TFH
versus non-TFH effector lineage choice are driven, at least in

part, by pre-existing transcriptional and epigenetic (chromatin

accessibility) differences between cells with low (CD5lo)

versus high (CD5hi) self-pMHC reactivity. Unexpectedly, our

data reveal that many of the differences in gene expression

among naive CD4+ T cells do not require continuous signaling

through the TCR via self-pMHC interactions but are likely
2 Cell Reports 37, 110064, November 30, 2021
a result of variable signal strengths obtained during

development.

RESULTS

TCR signaling-induced gene expression differences are
drivers of variability among individual naive CD4+ T cells
To define transcriptional differences among naive CD4+ T cells

with single-cell resolution, we performed scRNA-seq on 1,152

cells sorted from the spleen, of which 697 passed quality control

(Table S1). For each individual T cell, we measured CD5 protein

expression during sorting given prior studies implicating CD5 as

a key readout of diversity among naive T cells (Fulton et al., 2015;

Mandl et al., 2013; Persaud et al., 2014). We verified that Cd5

transcript counts correlated with CD5 protein (Figure S1A),

consistent with prior evidence for CD5 transcriptional regulation

(Arman et al., 2004; Tung et al., 2001). In total, we detected

14,040 genes and an average of 1,389 genes per cell. Among

the top 5% most variable genes, after accounting for technical

variation, non-detection drop-outs, and removing mitochondrial

genes (Table S2) (Lun et al., 2016), we detected genes important

for trafficking between blood and lymphoid organs, including

Cd69, S1pr1, Sell, Klf2, Itag4, Tln1, and Foxo1; genes involved

in TCR signaling, such as Ptpn6, Folr4, Il7r, Cd4, Jun, Il2rg,

Thy1, Lck, Klf6, Bcl2, Nr4a1, and also Cd5; and chromatin mod-

ifiers, including Dnmt1, Hdac4, Sirt1, and Smc4 (Figure 1A).

Gene Ontology (GO) enrichment analyses of the most variable

genes showed an enrichment of GO terms associated with

TCR signaling, including ab T cell activation and T cell selection

(Figure 1B). UMAP analysis of the 2,000 most variable genes did

not reveal any detectable sub-clustering of naive cells by CD5

expression (Figure S1B). However, principal-component ana-

lyses (PCAs) based on the expression of 55 genes in the GO

terms involved in T cell activation from Figure 1B (Table S3)

showed that the transcriptional state of CD5lo naive CD4+

T cells differed from that of CD5hi naive CD4+ T cells, albeit

with considerable overlap between the two populations (Fig-

ure 1C). Overall, our data highlighted the diversity between indi-

vidual naive CD4+ T cells that was detectable at the transcript

level and identified expression differences in genes involved in

TCR signaling as key drivers of cellular variability.

CD5 expression reveals the existence of distinct gene-
expression profiles and chromatin landscapes in naive
CD4+ T cells
To characterize the transcriptional heterogeneity of naive CD4+

T cells in greater depth, we performed bulk RNA-seq, focusing

on the top and bottom 15% of the self-reactivity spectrum

defined by CD5 expression. We used FoxP3GFP+ reporter mice

to exclude Tregs, including them as an ‘‘outgroup’’ in our initial

analyses (Figures 2A, 2B, S2A, and S2B) because Tregs express

high levels of CD5 (Ordoñez-Rueda et al., 2009). We confirmed

that sorted naive T cells did not contain Tregs (Figures S2C

and S2D). Given the detection of chromatin modifiers in our

scRNA-seq (Figure 1A), we also performed ATAC-seq to investi-

gate the open-chromatin landscape of CD5lo and CD5hi

naive CD4+ T cells. PCAs highlighted that at the transcriptional

level, CD5lo and CD5hi cells clustered into distinct populations
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Figure 1. Cellular variability among naive CD4+ T cells at the single-

cell level is driven by TCR signaling gene expression

(A) Plot of top 5% most variable genes (blue) across individual sorted naive

CD4+ T cells. Select genes involved in TCR signaling (purple), T cell lymphoid

organ trafficking (green), and chromatin modification (orange) are labeled.

(B) Immune system processGO enrichment analyses of top 5%variable genes

from (A). Circles correspond to unique GO groupswith related groups coded in

the same color. Circle size reflects enrichment significance (FDR cut-offs are

shown).

(C) PCA projection of scRNA-seq profiles based on genes that were in the top

5%most variable genes and also in GO terms involved in T cell activation from

(B). The surface protein expression of CD5 is overlaid with the 15%CD5lo (blue)

and CD5hi (red) naive CD4+ T cells. Shaded colored circles represent group

means. Each data point represents a single cell.

See also Figure S1; Tables S1, S2, and S3.

Article
ll

OPEN ACCESS
(Figure 2C). The CD5lo and CD5hi cells were distinguishable in

PC2 and separated from Tregs in PC1 (Figure 2C). The CD5lo

and CD5hi segregation was similarly reflected by their chromatin

accessibility profiles (Figure 2D). Overall, CD5lo and CD5hi cells

had comparable numbers and genomic annotation of accessible

peaks (Figures S2E and S2F). Importantly, we identified a total of

1,006 differentially expressed genes (DEGs) at false discovery

rate (FDR) % 0.01 between CD5lo and CD5hi cells, of which

90% were found among detected differentially accessible re-

gions (DARs) (Figure 2E). Indeed, there was significantly greater

correspondence between gene expression and chromatin

accessibility among DEGs than for a random gene set (Figures

2F and S2G). Plotting the fold changes (FCs) between CD5lo

and CD5hi naive CD4+ T cells from the bulk RNA-seq versus

the ATAC-seq emphasized the dataset concordance (Fig-

ure S2H). Among the DEGs and DARs identified was Cd5 itself,

which had a �6.7-fold greater transcript expression in CD5hi

cells and was less accessible in CD5lo cells (Figures 2G and

2H). Consistent with Nur77 expression reflecting tonic signal

strength, Nr4a1 was among the DEGs (Figure 2G), and as previ-

ously described (Moran et al., 2011), Nr4a1 expression was

greater in Tregs than in CD5hi naive CD4+ T cells. Like Cd5, the

Nr4a1 locus was more open in CD5hi cells (Figure 2H). Together,

our findings revealed considerable differences both at the tran-

scriptional and the chromatin level between CD5lo and CD5hi

naive CD4+ T cells.
Differences in expression of transcriptional regulators
and chromatin modifiers may contribute to functional
differences among CD5lo and CD5hi naive CD4+ T cells
Wenext examined the DEGs identified between CD5lo and CD5hi

naive CD4+ T cell populations. More DEGs were upregulated in

CD5hi cells and more transcripts were expressed at a FC R 2

compared with CD5lo cells (Figure 3A; Table S4). Importantly,

we found strong concordance between the bulk and scRNA-

seq datasets with regard to specific genes. For instance, Cd5,

Folr4, Cd6, Nr4a1, Tox, Ptpn6, and Tcf25 were more highly ex-

pressed in CD5hi cells, while Ly6c1 and Dntt were higher among

CD5lo cells (Figure 3B). Indeed, as was described in CD5-sorted

naive CD8+ T cells (Fulton et al., 2015) and in human naive CD4+

T cells (Sood et al., 2021), one of the top DEGs was Dntt (encod-

ing the DNA polymerase terminal deoxynucleotidyl transferase

[TdT], which inserts non-templated nucleotides during V(D)J
Cell Reports 37, 110064, November 30, 2021 3
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Figure 2. Sorting on CD5 expression reveals

that naive CD4+ T cells encompass distinct

gene-expression profiles and chromatin

landscapes

(A) Sorted CD5lo and CD5hi naive CD4+ T cells, and

Tregs for RNA- and ATAC-seq.

(B) Relative fluorescence intensity (RFI) of surface

CD5 expression on sorted populations from (A),

relative to pre-sorted naive CD4+ T cells. Lines

represent group means (n = 4).

(C and D) PCA of populations in (A) for RNA-seq

(n = 4) (C) and ATAC-seq (n = 2) (D). Percents in

parentheses indicate the variation described by

each PC.

(E) Venn diagram illustrating overlap in number of

DEGs (FDR % 0.01) identified by RNA-seq and

DARs identified by ATAC-seq in CD5lo versus CD5hi

cells.

(F) Correlation between CD5hi versus CD5lo FC dif-

ferences in identified DEGs and corresponding

DARs as compared with the correlation with a

random gene set.

(G) Cd5 and Nr4a1 mRNA expression from bulk

RNA-seq (counts per million [CPM]). All group

comparisons are significant at FDR % 0.01. Lines

represent group means (n = 4).

(H) ATAC-seq signal profiles across Cd5 and Nr4a1

gene loci from two biological replicates of sorted

samples.

Statistics: paired t test (B), significant DEGs had

FDR % 0.01 (E and G), correlation coefficient

with 95% confidence intervals (F). *p < 0.05,

****p < 0.0001. See also Figure S2.
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TCR rearrangement), at a 143 greater abundance in CD5lo cells.

Given the greaterDntt expression in CD5lo cells in both CD4+ and

CD8+ T cells, we asked whether other DEGs were shared by

naive CD8+ T cells sorted on CD5. Interestingly, in line with the

narrower CD5 distribution in CD8+ T cells (Mandl et al., 2013),

far fewer DEGs with a FC cut-off R 2 were identified in CD8+

T cells than in our CD4+ dataset, and there was little overlap (Fig-

ure S3A). Among overlapping DEGs, all but 2 of the 24 DEGs

showed expression concordance in CD4+ and CD8+ T cells (Fig-

ure S3B). Unlike CD8+ T cells, CD5hi naive CD4+ T cells were

smaller and expressed less CD44 compared with CD5lo cells

(Figure S3C). Overall, there were few parallels between naive

CD4+ and CD8+ T cells sorted on CD5 expression with regard

to the specific DEGs.

To investigate patterns in DEGs increased among CD5lo or

CD5hi naive CD4+ T cells, we performed GO analyses. In CD5lo

cells, we found an enrichment for tumor-mediated immunity

and regulation of IFN-g responses (Figure 3C), consistent with

work showing that CD5lo CD4+ T cells produce more IFNg than

CD5hi cells upon activation (Sood et al., 2019). In contrast,

CD5hi cells were enriched for gene networks involved in leuko-

cyte activation, regulation of signaling, and cell migration (Fig-

ure 3C). In line with this, gene set enrichment analysis (GSEA)

indicated that genes associated with CD4+ T cell activation

and effector responses (Gottschalk et al., 2012; Hale et al.,
4 Cell Reports 37, 110064, November 30, 2021
2013) were overrepresented in CD5hi cells (Figure S3D). Of

note, genes involved in the active maintenance of a quiescent

state among naive T cells (Chapman et al., 2020; ElTanbouly

et al., 2020; Hamilton and Jameson, 2012; Yusuf and Fruman,

2003), were detected in both CD5lo and CD5hi cells, but not

significantly different (Tables S4 and S5). Moreover, no cytokines

were among the DEGs, except Il16, which is constitutively ex-

pressed in naive CD4+ T cells (Ren et al., 2005) and was slightly

increased in CD5lo cells (Tables S4 and S5). Indeed, the chro-

matin loci for effector cytokines, such as Ifng, Il5, Il17a, and

Il10, were closed; only the transcription start site (TSS) for Il2

and a few peaks surrounding the TSS for Il21 had marginally

greater accessibility in CD5hi cells (Figure S3E). These data indi-

cated that although CD5hi cells were enriched for gene networks

associated with activation, both gene expression and accessible

chromatin regions were largely consistent with an equally quies-

cent and non-differentiated cell state among naive CD4+ T cells

with different self-reactivities.

Quiescence exit occurs when naive T cells are activated by

antigen, after which they undergo chromatin remodeling, tran-

scriptional changes, and ultimately effector differentiation. To

understand whether naive CD4+ T cells were poised to

respond differently to activation as a function of our identified

transcriptome and chromatin accessibility differences, we

first investigated whether they differed in expression of
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Figure 3. Transcriptional diversity among naive CD4+ T cells suggests functional differences through transcriptional regulator activity and

chromatin modifiers

(A) Volcano plot of DEGs identified by RNA-seq comparison of CD5lo and CD5hi naive CD4+ T cells. Positive FC values indicate increased expression in CD5hi

naive CD4+ T cells. Significant DEGs (FDR % 0.01) are indicated in gray, and a subset of DEGs are labeled (blue). Dotted lines are drawn at FC = 2.

(B) scRNA-seq gene expression level (color) and frequency of cells with detectable expression (circle size) of select DEGs.

(C) GO enrichment analysis for genes upregulated in CD5lo (left) or CD5hi (right) cells. Circles correspond to unique GO groups; related groups are coded in the

same color. Circle size reflects enrichment significance (FDR cut-offs shown).

(D) Heatmap of all differentially expressed TRs between CD5lo and CD5hi naive CD4+ T cells (n = 4), grouped by function.

(E) Significant (p % 10�4) unique enriched TF motifs in DARs from ATAC-seq for CD5lo (blue) and CD5hi (red) cells.

(F) Protein expression of TOX, LEF-1, and TCF-1 in CD5lo and CD5hi cells (RFI is relative to total naive CD4+ T cells). Representative flow cytometry histograms are

shown (with mean fluorescence intensity [MFI] in top right). Data are summarized from 2–5 independent experiments. Dotted lines in histograms denote CD5lo

modes; data points in graphs represent individual mice (n = 10–20); lines denote group means, and average fold differences are indicated.

Statistics: all TRs had FDR % 0.01 except Lef1 (*, FDR = 0.012) (D), Wilcoxon matched-pairs signed rank test (F). **p < 0.01, ****p < 0.0001. See also Figure S3;

Tables S4 and S5.
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Figure 4. Pre-existing transcriptional and protein differences among naive CD4+ T cells are maintained post-activation

(A) Heatmap of curated list of DEGs involved in positive and negative regulation of T cell activation and TCR signaling (n = 4).

(B) Representative histograms of protein expression (measured by flow cytometry) of select DEGs identified from bulk RNA-seq analyses comparing CD5lo and

CD5hi naive CD4+ T cells. Numbers in top right of histograms indicate MFI in CD5lo (blue) and CD5hi (red) cells.

(C) Summary of fold expression differences of proteins measured in (B) that were significantly different between CD5lo and CD5hi groups from 2–5 independent

experiments. Non-significant DEGs (CD4, CD98, and CD45) were used as controls to establish a cut-off for biological significance. Greater expression in CD5lo

(blue shading) and greater expression in CD5hi (orange shading). Each data point is from an individual mouse (n = 4–15); red lines denote group means.

(legend continued on next page)
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transcriptional regulators (TRs). We used a predefined list of

1,680 known or putative TRs (Mingueneau et al., 2013) and de-

tected 31 TRs upregulated in CD5hi cells involved in T cell prolif-

eration or survival (Atf6, Myb, and Bcl3) and T cell activation or

differentiation (Egr1, Egr2, Egr3, Nfatc3, Ikfz3, Ikzf4, Tox, Tox2,

Nr4a1, Nr4a3, Klf9, Lef1, Bcl6, Eomes, Irf6, Id2, and Id3) (Fig-

ure 3D). We also detected 21 TRs that mediate chromatin mod-

ifications, such as acetylation (Hdac5, Hdac9, and Etv6) and

methylation (Dmnt3a, Klf10, Kdm2b, and Gfi1) (Figure 3D), as

well as other TRs (Figure S3F). Twenty TRs were enriched in

CD5lo cells, including repressors (Hdac7, Nr1d1, Prdm1, Rara,

and Trps1) (Figures 3D and S3F).

We next asked whether there were TR binding motifs enriched

among chromatin peaks that were unique to either CD5lo or

CD5hi cells. Indeed, CD5hi cells were enriched in binding motifs

for TR networks downstream of TCR activation, including AP-1

and JNK transcription factors, FOS, FOSL2, AP-1, and JUNB,

as well as NUR77, NFAT, and NF-kB (Figures 3E and S3G).

Conversely, CD5lo cells were enriched in binding motifs for

IRF-4 and PRDM1 (BLIMP-1), both of which promote non-TFH
effector differentiation (Johnston et al., 2009; Krishnamoorthy

et al., 2017). Notably, although not represented in TR binding

motif analysis, TOX and TOX2 were among identified upregu-

lated TRs in CD5hi cells, which function downstream of the

TCR through NFAT signaling (Khan et al., 2019; Scott et al.,

2019; Seo et al., 2019) and promote TFH differentiation by

increasing Bcl6 expression through enhanced chromatin acces-

sibility of TCF-1 and LEF-1 bound regions of the Bcl6 locus (Xu

et al., 2019). Thus, we asked whether TOX, LEF-1, and TCF-1

expression was greater at the protein level in CD5hi cells.

Although the detected differences were small (1.3- to 1.4-fold),

they were robust across mice (Figure 3F), were not observed in

unstained controls (Figure S3H), and corresponded to increased

chromatin accessibility in the loci for Tox, Tox2, Lef1, and Tcf7 in

CD5hi cells (Figure S3I).

Together, our data suggested the possibility that a network of

TRs and unique chromatin accessibility profiles results in differ-

ences in cell states among CD5lo and CD5hi naive CD4+ T cells,

impacting their function and/or differentiation upon activation,

particularly with regard to the early TFH versus non-TFH
bifurcation.

Pre-existing expression differences in regulators of TCR
signaling among naive CD4+ T cells are maintained after
activation
To investigate the cell signaling and lymphocyte activation sig-

natures in CD5hi CD4+ T cells, we curated a list of DEGs involved

in regulating T cell activation. CD5hi cells had increased expres-
(D) Representative histograms of protein expression measured by flow cytometry

activation with anti-CD3/CD28. Numbers in top of histograms indicate fold differ

(E) Single-cell flow cytometry analysis for SHP-1, CD6, and Ly6C expression am

represents MFI of proteins of interest in bins of at least 10 cells across the distrib

(F) Naive CD4+ T cells were sorted into CD5lo and CD5hi, and CD5 and CD6 pro

normalized to CD5 or CD6 expression in the CD5hi population. Data are summar

mice (n = 6); error bars represent mean ± SD.

(G) ATAC-seq signal profiles across Ptpn6 and Cd6 gene loci shown from 2 biol

Statistics: all genes had FDR % 0.01 (A), paired t test (F). **p < 0.01, ***p < 0.001
sion of genes involved in co-stimulation, such as Icos, Rankl,

Itgb2, and Gitr (Figure 4A). More predominantly, CD5hi cells

had a higher expression of genes involved in the negative regu-

lation of TCR signaling or T cell activation, including Cd6, Nt5e

(CD73), Ptpn6 (SHP-1), Ctla4, Pdcd1, Btla, IL10ra, P2rx7, Nrp1,

Nrp2,Cd200, andAdora2a (Figure 4A). Given the role of negative

regulators in T cell exhaustion during chronic antigen stimulation,

and perhaps indicative of a greater frequency and/or strength of

self-pMHC signals obtained by CD5hi T cells, GSEA identified an

enrichment in exhaustion-associated genes among CD5hi cells

(Figure S4A). Corroborating our RNA-seq, we observed expres-

sion differences between CD5lo and CD5hi cells at the protein

level for a subset of the regulators of TCR signaling, including

GITR, LFA-1, CD6, FolR4, PD-1, and CD73 (Figures 4B and

4C). Of note, FCs in CD6, Ly6C, FolR4, and CD73 between

CD5lo and CD5hi cells were detectable in neonates and remained

stable with age (Figures S4B and S4C). Interestingly, signaling

through LFA-1 has been shown to promote Bcl6 expression

and be required for TFH differentiation (Meli et al., 2016), and

some of the other genes modulating the TCR signal were also

shown to play a role in TFH differentiation, including Tox, Tox2,

FolR4, and Icos, all of which are expressed at greater levels in

CD5hi cells (Figure 4A). In addition, we confirmed greater protein

expression in CD5hi cells of SHP-1, a negative regulator of TCR

signaling that modulates T cell antigen sensitivity (Feinerman

et al., 2008; Stefanová et al., 2003), associates with CD5, CD6

(Blaize et al., 2020; Gonçalves et al., 2018), and other negative

regulators of TCR signaling, such as PD-1, BTLA, and CTLA-4

(Lorenz, 2009) (Figures 4B and 4C). Further, CD5lo cells ex-

pressed higher levels of Ly6C. The non-significant DEGs CD4,

CD98 (LAT1), and CD45 were used as controls to establish a

cut-off for biologically significant protein FCs (Figures 4B and

4C). Thus, at least for the subset of tested DEGs, transcriptional

differences among naive CD4+ T cells correlatedwith differences

in protein expression.

We next asked whether the differential expression of TCR

signal regulators was maintained following TCR stimulation.

We found that sorted CD5lo and CD5hi naive CD4+ T cells stimu-

lated with anti-CD3/CD28, which bypasses individual TCR affin-

ity for their agonist peptides, retained expression differences

24 h after stimulation, albeit for some proteins at reduced FCs

(Figures 4D and S4D). In unsorted CD4+ T cells, SHP-1 and

CD6 expression increased with greater CD5 levels, and this rela-

tionship was maintained following activation (Figure 4E). In

contrast, Ly6C had a bimodal distribution, with most cells

becoming Ly6C negative after activation (Figures 4D and 4E).

In addition, the transcription factor TOX, which promotes

expression of exhaustion-associated genes (Scott et al., 2019;
in sorted 15%CD5lo and CD5hi naive CD4+ T cells pre-activation and 24 h post-

ence between CD5lo (blue) and CD5hi (red) populations.

ong naive CD4+ T cells pre-activation and 24 h post-activation. Color scale

ution of CD5 (x axis) and TCRb (y axis).

tein expression was measured pre- and post-activation (anti-CD3/CD28). RFI

ized from 2 independent experiments; each data point represents 4–5 pooled

ogical replicates of sorted samples.

. See also Figure S4.
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Seo et al., 2019), followed a similar expression pattern as SHP-1

across the full spectrum of CD5, but its expression range was

reduced post-activation (Figure S4E). Mutual information anal-

ysis confirmed that CD5 was a strong predictor of both CD6

and SHP-1 expression pre- and post-activation, whereas

TCRb became predictive only post-activation for SHP-1 and

was a poor predictor of CD6 (Figures S4F and S4G).

Cd5 andCd6 are gene homologs located on the same chromo-

someand have functional similarities (Lecomte et al., 1996; Padilla

et al., 2000). Our data indicated a tight correlation between CD5

and CD6 levels, with CD5 expression being a robust predictor of

CD6 expression both pre- and post-activation (Figures 4E and

S4G). Interestingly, the FCdifference inCD6 expression on sorted

CD5lo and CD5hi CD4+ T cells remained slightly greater post-acti-

vation thanCD5, suggesting thatCD6mightmore reliably read out

self-pMHC reactivity after activation (Figure 4F). Themaintenance

of differences among naive CD4+ T cells in the expression of reg-

ulators of TCR signaling even following a strong TCR stimulus

raised the possibility that thesemight be regulated through epige-

netic modifications rather than modulated entirely by TCR signal

strength. Indeed, akin to the differences in chromatin accessibility

of the Cd5 locus (Figure 2H), the Cd6 and Ptpn6 loci were more

accessible in CD5hi cells (Figure 4G). In summary, we corrobo-

rated expression differences between CD5lo and CD5hi naive

CD4+ T cells at the protein level for genes important in tuning

TCRsignal strengthandshowed that thesedifferencesweremain-

tained even after strong TCR stimulation.

CD5hi cells have a greater propensity to develop into TFH

cells than CD5lo naive CD4+ T cells
We next investigated whether the observed transcriptional and

chromatin accessibility differences alter T cell differentiation.

GSEA of our RNA-seq indicated that CD5hi cells were enriched

for genes expressed in natural Tregs (Figure S5A). To determine

whether CD5hi cells were more likely to differentiate into Tregs

in vivo than CD5lo cells, we adoptively transferred Treg-depleted

CD4+ T cells into TCRb�/� mice in a model of inflammatory bowel

disease (Martin et al., 2004; Powrie et al., 1993). Consistent with

prior in vitro Treg polarization experiments (Henderson et al.,

2015) and studies of Ly6C– naive CD4+ T cells (Martin et al.,

2013), TCRb�/� mice given CD5hi cells subsequently had an

increased survival time likely because of increased frequency of

Tregs, compared with mice that received CD5lo cells (Figures

S5B and S5C).

Interestingly, GSEA also showed that CD5hi cells were en-

riched for TFH gene signatures (Figure 5A). Across all replicates,

CD5hi cells expressed higher levels of Pdcd1, Cxcr5, and Bcl6,

while CD5lo cells expressed higher levels of the TFH repressor

Prdm1 (Blimp-1) (Figure 5B). Moreover, the Pdcd1, Cxcr5, and

Bcl6 loci were more accessible in CD5hi cells (Figure 5C). These

data suggested the possibility of a pre-existing disposition

among CD5hi cells to become TFH cells relative to their CD5lo

counterparts. In support of this hypothesis, CD5hi naive CD4+

T cells were shown to produce more IL-2 than CD5lo cells

post-stimulation (Persaud et al., 2014), and data have high-

lighted the importance of early IL-2 production in TFH lineage

choice, with IL-2 producers becoming TFH cells and paracrine

IL-2 signaling reinforcing non-TFH lineage commitment of CD4+
8 Cell Reports 37, 110064, November 30, 2021
T cells obtaining weaker TCR signals (Ballesteros-Tato et al.,

2012; DiToro et al., 2018).

To directly assess whether CD5hi naive CD4+ T cells gave rise

to a greater proportion of TFH cells in vivo than CD5lo cells, we

first sorted 15% CD5lo and CD5hi naive CD4+ T cells and adop-

tively transferred �13 107 cells of each into separate recipients

that were infected with LCMV. An estimated eight LCMV-GP66-

specific CD4+ T cells are present per 106 naive CD4+ T cells (Jen-

kins and Moon, 2012; Nelson et al., 2015), and so it was not sur-

prising that the proportion of activated cells postinfection (day 8)

was highly stochastic among the transferred cells. However, as

in our in vitro assays, the CD5 expression difference between

transferred CD5lo and CD5hi CD4+ T cells was maintained

following activation (Figures 5D and 5E). As an alternative

approach, we asked whether we would be better able to assess

differences in TFH differentiation potential by transferring sorted

populations into TCRb�/� mice. Given the lack of competitor

T cells in these recipients, we first investigated whether this

would impact TFH lineage choice in CD4+ T cells with a fixed

TCR. We performed adoptive transfers of LCMV-specific TCR

Tg SMARTA CD4+ T cells into both wild-type (WT) and TCRb�/�

recipients, infected them 1 day later with LCMV, and then as-

sessed the response 8 days postinfection (Figure S5D). Overall,

the clonal expansion of SMARTA TCR Tg cells was greater in the

TCRb�/� mice (Figure S5E). Interestingly, we found that when

SMARTA TCR Tg cells were transferred into TCRb�/� recipients,

CD5 surface expression was increased compared with cells

transferred into WT mice (Figure S5F), suggesting that SMARTA

Tg cells were receiving stronger TCR signals upon antigen

encounter in the absence of other competitor T cells, as has

been previously shown in lymphopenia-induced expansion (Vri-

sekoop et al., 2017). Importantly, the percent of TFH cells among

transferred SMARTA TCR Tg cells was halved in the infected

TCRb�/� compared with WT recipients (Figure S5G). Given the

role of IL-2 in TFH differentiation and the modulation of IL-2 pro-

duction by TCR signal strength (DiToro et al., 2018), we postu-

lated that the decreased TFH differentiation of SMARTA TCR

Tg cells in TCRb�/� mice was a result of greater IL-2 production

mediated by greater TCR signaling. Indeed, we observed that

SMARTA TCR Tg cells produced more IL-2 and had greater

CD25 (IL-2Ra) surface expression in the infected TCRb�/�

mice (Figures S5H and S5I). Due to the impact of the lack of other

T cells in the TCRb�/� mice on TFH frequency post-infection, we

concluded that this experimental approach would not accurately

identify TFH potential differences between CD5lo and CD5hi poly-

clonal naive CD4+ T cells.

Instead, based on the observation that CD5 expression re-

mained detectably different after transfer, we quantified TFH dif-

ferentiation among activated endogenous CD5lo and CD5hi

CD4+ T cells post-LCMV infection. We found �2-fold increased

TFH differentiation within the 15% CD5hi activated CD4+ T cells

compared with CD5lo cells (Figures 5F, 5G, and S5J). Moreover,

among CD5hi cells, TFH (PD-1hi CXCR5+) and PD-1hi CXCR5–

cells expressed greater levels of PD-1 than their CD5lo counter-

parts (Figure S5K). TFH cells were also overrepresented among

CD6hi CD4+ T cells and had increased PD-1 expression over their

CD6lo counterparts (Figures 5F, 5G, S5J, and S5K). In line with an

increased TFH population from CD5hi cells, these TFH cells
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Figure 5. CD5hi naive CD4+ T cells are en-

riched for TFH-associated genes and have a

greater TFH differentiation potential upon

infection than CD5lo cells

(A) GSEA of TFH signatures enriched in CD5hi naive

CD4+ T cells.

(B) Pdcd1, Cxcr5, Bcl6, and Prdm1 mRNA expres-

sion from bulk RNA-seq for sorted CD5lo and CD5hi

naive CD4+ T cell populations. Lines indicate group

means (n = 4).

(C) ATAC-seq signal profiles across Pdcd1, Cxcr5,

and Bcl6 gene loci from 2 biological replicates of

sorted CD5lo and CD5hi naive CD4+ T cell samples.

(D and E) 15% CD5lo and CD5hi naive CD4+ T cells

were sorted and adoptively transferred into re-

cipients and infected 1 day later with LCMV.

Representative flow cytometry plot of activated

(CD44hi) transferred cells with numbers in top right

indicating CD5 MFI of sorted CD5lo (blue) and CD5hi

(red) cells (D), and summary of CD5 RFI (relative to

endogenous total naive CD4+ T cells) of sorted

CD5lo and CD5hi naive or activated CD4+ T cells (E).

Data are summarized from 2 independent experi-

ments (D and E); each data point is from an individual

recipient mouse (n = 2–6); error bars represent

mean ± SD.

(F and G) Activated (CD44hi) CD4+ T cells isolated at

day 8 after LCMV infection were gated on the top

and bottom 15% CD5- or CD6-expressing cells and

the percent TFH was determined. Representative

flow cytometry plots are shown, with numbers indi-

cating percent cells within each gate (F); data are

summarized from 2 independent experiments; each

data point is from an individual mouse (n = 13); error

bars represent mean ± SD (G).

Statistics: all genes had FDR % 0.01 except Cxcr5

(FDR = 0.044) (B), one-way ANOVA with Tukey’s

multiple comparison (E), or Wilcoxon matched-pairs

signed rank test (G). ***p < 0.001, ****p < 0.0001. See

also Figure S5.
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expressed higher TOX, LEF-1, and TCF-1 (Figure S5L). Thus, our

data suggested that TFH and non-TFH cell fate decision was

altered by pre-existing differences present in naive CD4+

T cells prior to foreign antigen encounter.

Removing naive CD4+ T cells from continuous self-
pMHC interactions reveals gene expression differences
that are independent of post-thymic self-ligand
recognition
Continuous tonic self-pMHC signals obtained by naive T cells in

the periphery facilitate antigen recognition by maintaining partial

TCRz-chain phosphorylation and through polarization of the TCR

and its signaling components (Stefanová et al., 2002). Interrupt-

ing signals from self-pMHC interactions for only 30min leads to a

loss of antigen sensitivity (Stefanová et al., 2002). It is unknown

whether described differences between naive CD4+ T cells of

low and high self-reactivity are similarly dependent on sub-

threshold tonic self-signals. An alternative hypothesis is that

naive T cells are pre-wired by TCR signals obtained during selec-

tion in the thymus, and that these differences are then epigenet-

ically imprinted. Given our findings that somemodulators of TCR

signal strength remained distinct post-activation, we examined
which DEGs between CD5lo and CD5hi cells were dependent

on continuous self-pMHC interactions and which might be a

result of thymic imprinting.

To investigate this, we sorted 15%CD5lo andCD5hi naive CD4+

T cells and cultured them ex vivo in the absence of self-pMHC for

22 h with IL-7 and performed bulk RNA-seq. After resting, sorted

cells segregated into clusters distinct from their freshly isolated

counterparts along PC1, while differences between CD5lo and

CD5hi cells were preserved in PC2 (Figure 6A). As described pre-

viously, levels of CD5 protein and transcript rapidly decreased

upon resting (Figure 6B) (Mandl et al., 2012; Smith et al., 2001).

Interestingly, however, CD5 mRNA and protein expression re-

mained distinct in rested CD5lo compared with CD5hi cells (Fig-

ure 6C). Therefore, although CD5 expression levels are main-

tained by peripheral self-interactions, our data suggested that

the retention of CD5 expression differences between CD5lo and

CD5hi cells were independent of tonic self-signals.

To examine whether other genes in our identified CD5lo versus

CD5hi DEGs followed a similar pattern to Cd5, we compared

expression levels in fresh and rested cells and designed classifi-

cation criteria to subset genes into two groups: DEG-ND, genes

where expression differences between CD5-sorted populations
Cell Reports 37, 110064, November 30, 2021 9
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were not dependent on tonic self-pMHC interactions; and

DEG-D, genes where differences were lost upon resting (i.e.,

expression differences were dependent on tonic self-pMHC in-

teractions) (Figure 6D). A gene was classified as being DEG-ND

if it was a DEG (FDR % 0.01) in the fresh comparison and re-

mained a DEG (FDR% 0.01) after resting. Conversely, to be clas-

sified as DEG-D, the gene was a DEG (FDR % 0.01) in the fresh

comparison but became non-significant (FDR R 0.3) after

resting. With these criteria, 513 DEGs were DEG-ND and 212

DEG-D, while 281 DEGs did not fall into either group (Figure 6D;

Tables S4 and S5). Plotting the CD5lo versus CD5hi FC of the

fresh versus the rested confirmed that DEG-ND were unaffected

by the absence of self-pMHC, while DEG-D converged to zero

after resting (Figure 6E). Thus, transcriptional heterogeneity

among the naive CD4+ T cell population was explained by both

differences that depended on continuous self-pMHC interac-

tions and that were independent of tonic self-pMHC signals.

Interestingly, most of the negative regulators of TCR signaling

and Dntt were DEG-ND, consistent with their expression level

being set during thymic development (Figure 6E). In addition,

more than half of the TFH-associated genes were DEG-ND,

including Icos, Itgb2, P2rx7, and Adora2a, whereas 20% of TFH
associated genes were DEG-D, including Tox2 and Dusp6. Of

note, the TRs Jun, Egr1, Egr3, Ikzf3, and Nfatc3 were classified

as DEG-D, while Stat1, Eomes, Ikzf2, Id2, Sox4, and Nr4a1

were DEG-ND, indicating that even at the level of regulation of

TRs some expression differences rely on continuous self-ligand

interactions, whereas others do not (Figure 6E). To verify whether

the maintenance of differences among transcripts following

resting was also observed at the protein level, we chose a subset

involved in TCR signaling (CD6, CD73, FolR4, Ly6C, PD-1, and

SHP-1) from the DEG-ND group and measured expression in

sorted CD5lo versus CD5hi cells rested for 5 days to give protein

levels time to turn over. We observed no loss in cell viability dur-

ing this period (Figure S6A), and although protein levels did

change upon resting, the differences between CD5lo and CD5hi

cells were retained (Figures 6F and S6B).

Our classification of genes into two distinct groups based on

their reliance on tonic self-pMHC interactions suggested that

at least a subset of the described transcriptionally wired hetero-

geneity among naive CD4+ T cells may reflect epigenetic differ-

ences established in the thymus. To test this hypothesis, we

probed our ATAC-seq dataset to ask whether there were detect-

able differences in chromatin states between the genes in the

two groups. We predicted that loci of DEG-ND genes would

show a greater difference in accessible regions between CD5lo

and CD5hi cells than would the loci of DEG-D genes. Indeed,

on average, the fold difference in chromatin accessibility was

greater in the DEG-ND compared with the DEG-D group (Figures

6G and 6H). In line with this, gene expression differences be-

tween CD5lo and CD5hi cells were greater in the DEG-ND set

than the DEG-D set (Figure 6I). Collectively, these data sug-

gested that there were two sources of heterogeneity among

naive CD4+ T cells that impacted their responsiveness to foreign

antigen and their effector differentiation: differences that

required continuous self-pMHC interactions in the periphery,

and differences that did not require self-pMHC interactions

that may be imprinted in the thymus.
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DISCUSSION

CD4+ T cells play a critical role in orchestrating an immune

response, with early fate decisions between TFH and non-TFH
effector subset lineage decisions thought to be primarily deter-

mined by TCR engagement with cognate pMHC during priming

(Ruterbusch et al., 2020). Here, we showed that there are tran-

scriptional and open-chromatin differences between CD4+

T cells that are present prior to their activation, maintained after

activation in the short term, and impact TCR signal strength and

early lineage choice upon antigen encounter. At the single-cell

level, our data highlight that heterogeneity among naive CD4+

T cells is mediated by many interacting genes. Importantly,

although we show that CD5 expression alone does not establish

discrete clusters among naive CD4+ T cells, other work has

defined subpopulations that change with infectious challenge

(ElTanbouly et al., 2020; Meli et al., 2020). Here, we identified

expression in modulators of TCR signaling, chromatin modifiers,

and steady-state T cell trafficking genes as key drivers of be-

tween-cell variability. Our data suggest that CD5 expression is

a better predictor of cellular behavior at the population level

than at the single-cell level. Population averages of sorted poly-

clonal naive CD4+ T cells are therefore not always mirrored when

studying the behavior of a few specific TCR clonotypes, explain-

ing some of the contradictory results with regard to TFH-lineage

differentiation biases described based on specific pairs of TCR

Tg clones (Bartleson et al., 2020; Persaud et al., 2014).

Our findings expand on previous work implicating self-pMHC

reactivity in the effector potential of CD4+ T cells (Henderson

et al., 2015; Martin et al., 2013; Sood et al., 2019). Our work impli-

cates self-reactivity in early TFH cell lineage bifurcation. Previous

work showed that T cells obtaining stronger TCR signals during

activation become IL-2-producing cells and signal in trans to IL-

2 non-producing cells to reinforce non-TFH effector differentiation

(Ballesteros-Tato et al., 2012; DiToro et al., 2018). We found that

increasing the strength of self-pMHC signals obtained by

SMARTA TCR Tg CD4+ T cells transferred into T cell-deficient

mice led toadecrease inTFHdifferentiationasa result of enhanced

IL-2production. Thus, removing competitor T cells, bymodulating

both IL-2 and TCR signal strength, led to the opposite outcome

with regard to TFH differentiation predicted by TCR signal strength

alone, in line with recent observations that Nur77lo CD4+ T cells

adoptively transferred into TCRa�/� gave rise to a greater TFH fre-

quency than transferred Nur77hi cells (Bartleson et al., 2020). A

recent study has corroborated the use of CD5 as a marker for

the self-ligand reactivity in human T cells (Sood et al., 2021), but

it will be important to investigate whether the relationships

described between self-reactivity and effector potential hold.

Although we implicate thymically imprinted epigenetic differ-

ences in the transcriptional heterogeneity among naive CD4+

T cells, we did not address here whether such signals are

impacted at different times during development. It is increasingly

appreciated that T cell development is a layered process, with

neonatally derived T cells being distinct from adult-derived

T cells with regard to responsiveness to stimulation and effector

potential (Rudd, 2020).Moreover, in bothmice and humans, CD5

expression on naive CD4+ T cells is lower in adults than in neo-

nates (Dong et al., 2017; Mandl et al., 2013). Although we
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Figure 6. Withdrawal of naive CD4+ T cells from self-pMHC identifies transcriptional and chromatin differences between CD5lo and CD5hi

cells that do not rely on continuous self-pMHC interactions

(A) PCA of RNA-seq data from fresh and rested CD5lo and CD5hi naive CD4+ T cells (n = 4).

(B) CD5mRNA (normalized toGapdh) and protein expression, relative to day 0, measured for naive CD4+ T cells rested in culture in the presence of IL-7. Data are

summarized from 2 independent experiments; each data point is from an individual mouse (n = 3–9).

(C) CD5 mRNA (normalized to Tbp) and protein expression determined after resting as in (B) of sorted 15% CD5lo and CD5hi naive CD4+ T cells. Data are from 1

experiment; each data point represents 9–10 pooledmice. Days 0, 1, and 5 (n = 4) and day 10 (n = 2). There is a significant effect between CD5lo and CD5hi in both

mRNA (p < 0.05) and protein (p < 0.0001) groups post-resting.

(D) Venn diagram dividing DEGs identified by RNA-seq into two groups: DEG-ND (orange) were differentially expressed (FDR % 0.01) in the fresh CD5hi versus

CD5lo comparison and remained differentially expressed (FDR% 0.01) in the rested CD5hi versus CD5lo comparison; DEG-D (blue) were differentially expressed

(FDR % 0.01) in the fresh CD5hi versus CD5lo comparison but were not differentially expressed (FDR R 0.3) in the rested comparison.

(E) FC expression of DEG-ND and DEG-D identified in (D), in both the fresh and rested samples from bulk RNA-seq. Lines indicate best fits; slopes are shown.

(F) Naive CD4+ T cells were sorted into CD5lo and CD5hi cells and rested in culture in the presence of IL-7. RFI (normalized to total naive CD4+ T cells) from genes

identified from (D). Data are from 1 experiment; each data point represents 3 mice pooled (n = 4); lines denote group means.

(G) ATAC-seq chromatin accessibility heatmap for open chromatin regions among DEG-ND and DEG-D groups.

(H) Summary of data in (G) with fold differences between CD5lo and CD5hi open chromatin peaks indicated on the graph.

(I) Gene expression FCs from RNA-seq between CD5lo and CD5hi cells in DEG-ND and DEG-D groups identified in (D). Lines denote group means.

Statistics: two-way ANOVA with Sidak’s multiple comparison (C), paired t test (F), or Mann-Whitney U test (I). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Figure S6; Tables S4 and S5.
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showed that differences between CD5lo and CD5hi naive CD4+

T cells remained stable between neonates and older mice, it

will be important to determine whether T cell developmental or-

igins (fetal versus adult) are a contributing factor in their diversity.

Whether differences among naive CD4+ T cells can ultimately

be related back to features of their specific TCRs remains an

open question. It is intriguing that in CD5lo naive CD4+ T cells,

one of the top DEGs was Dntt (encoding TdT), as was also

observed in mouse naive CD8+ T cells and human naive CD4+

T cells (Fulton et al., 2015; Sood et al., 2021). TdT is responsible

for adding n-nucleotides during V(D)J recombination and thus

diversifying the TCR repertoire (Benedict et al., 2000; Cabaniols

et al., 2001). It has been proposed that CD5hi T cells have a

greater proportion of germline TCRs (lacking n-nucleotides)

and were evolutionarily optimized to strongly bind to pMHC (Vri-

sekoop et al., 2014). It is possible that differences inDntt expres-

sion play a role in dictating TCR sequence length and self-pMHC

reactivity. Ultimately, patterns in TCR sequences may exist that

enable some prediction of self-pMHC reactivity and, therefore,

the differentiation potential of individual T cell clones.

Together, our data shed light on which pre-existing transcrip-

tome-level differences among naive CD4+ T cells are accessible

to interventions targeting self-pMHC peripheral interactions,

compared with others that would require modulation at the chro-

matin level, which may aid in optimizing protocols for enhancing

desirable T cell functions in clinical settings, such as in adoptive

cell therapies (Alspach et al., 2019; Borst et al., 2018).

Limitations of the study
Our data imply that naive CD4+ T cell heterogeneity is partly

thymically imprinted and retained independent of interactions

with self-pMHC in the periphery. Thus, our work reconciles prior

studies that have described specific heterogeneous traits

among naive CD4+ T cells, not all of which were dependent on

tonic TCR signals (Mandl et al., 2013; Matson et al., 2020; Per-

saud et al., 2014; Stefanová et al., 2002). One limitation of our

work is that not all DEGs identified could be classified into

DEG-ND or DEG-D groups and, given the lack of commercially

available antibodies for all genes of interest, only some of our

classified genes were validated at the protein level. Further,

future work will be needed to more clearly define the link be-

tween expression differences in chromatin modifiers, epigenetic

changes in individual T cells, and the interactions with self-

pMHC made in the thymus.
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Judith

Mandl (judith.mandl@mcgill.ca).
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This study did not generate new unique reagents.

Data and code availability

d The data reported in this paper have been deposited in the Gene Expression Omnibus (GEO) database and are publicly avail-

able as of the date of publication. Accession numbers are listed in the Key resources table.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the Key

resources table.

d Additional information required to reanalyze the data reported in this paper are available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
C57BL/6mice, CD45.1+, FoxP3GFP+ Tg (Oukka, 2007), SMARTA TCRTg (Oxenius et al., 1998), and TCRb�/� (Mombaerts et al., 1992)

were purchased from Jackson Laboratories (Bar Harbor, ME) and bred in-house. RAG2GFP Tg mice (Yu et al., 1999) were obtained

from Sylvie Lesage (Université de Montréal). All mice were on a B6 background, both male and female mice were used, and were

6-12weeks of age. Animal housing, care and research were in accordance with theGuide for the Care andUse of Laboratory Animals

and all procedures performed were approved by theMcGill University, Maisonneuve-Rosemont Hospital Research Center, Radboud

University, or NIAID Animal Care Committee.

Infections
LCMV Armstrong was propagated from a strain provided by Dr. J. Harty (University of Iowa). Mice were infected with 2x105 plaque

forming units (PFU) by intra-peritoneal injection (Wherry et al., 2003). Cellular responses were assessed 8 days post-infection.

METHOD DETAILS

Lymphocyte isolation, resting, activation, and restimulation
Spleen and peripheral lymph nodes (inguinal, axillary, brachial, superficial cervical, and mesenteric) were passed through a 70 mm

filter with 1% RPMI (1% FBS, 1% L-glutamine, and 1% pen/strep). ACK lysis buffer (Life Technologies) was added for 3 minutes

and samples were refiltered and resuspended in 1% RPMI. Cell counts were determined by diluting a single-cell suspension 1:10

in Trypan Blue (ThermoFisher Scientific) and manually counting live single cells (Trypan Blue-negative) on a hemocytometer. For ex-

periments where naive CD4+ T cells were rested in culture, cells (either total or sorted, as specified) were kept in complete RPMI (10%

FBS, 1% L-glutamine, 1% pen/strep, 1% HEPES buffer, 1% Sodium Pyruvate, 1% non-essential Amino Acids, and 0.1% 2-mer-

capto-ethanol 1000X solution) supplemented with IL-7 (10 ng/mL, Biolegend). To activate T cells, sorted cells or total splenocytes

were cultured in complete RPMI in 96-well plates coated with anti-CD3 and anti-CD28 (Invitrogen; both at 3 mg/mL). Restimulation

of splenocytes for cytokine production was performed with anti-CD3 and anti-CD28 (Invitrogen; both at 2 mg/mL) in 96-well plates

with brefeldin A and monensin (Invitrogen, both diluted 500X) for 5 hours at 37�C.

Flow cytometry
Sampleswere incubated in Fixable Viability Dye (AF780 or eF506, Life Technologies; Zombie UV, BioLegend) diluted in PBS for 20mi-

nutes at 4�C. Extracellular antibodies were diluted in FACS buffer (2% FBS and 5mM EDTA in PBS) with Fc Block (Life Technologies)

and incubated for 30 minutes at 4�C. Samples requiring intracellular staining were subsequently incubated in FoxP3 Transcription

Factor Fixation/Permeabilization Concentrate and Diluent (Life Technologies) for 30 minutes at 4�C. Intracellular antibodies were

diluted in permeabilization wash buffer and incubated for 30-60minutes at 4�C. Directly conjugated antibodies used were as follows:

TCRb (H57-597), CD4 (RM4.5), CD8a (53-6.7), CD5 (53-7.3), Foxp3 (FJK-16 s), CD44 (IM7), CD62L (MEL-14), CD25 (PC61.5), CD45

(30F11), CD98 (RL388), GITR (DTA-1), LFA-1 (H155-78), CD73 (TY/11.8), PD-1 (29F.1A12), FolR4 (eBio12A5), Ly6C (HK1.4), CD6 (OX-

129), CXCR5 (SPRCL5), CD45.1 (A20), CD45.2 (104), TOX (TXRX10), CD69 (H1.2F3), B220 (RA3-6B2), F4/80 (BM8), Ly6G (1A8),

CD11b (M1/70), CD11c (N418), NK1.1 (PK136), CD19 (eBio1D3), and IL-2 (JES6-5H4). Primary unconjugated antibodies used

were: LEF-1 (C12A5), TCF-1 (C46C7), SHP-1 (C14H6). Secondary conjugated antibodies used were either Goat anti-Rabbit IgG

(H+L) Alexa Fluor 488 or Donkey anti-Rabbit IgG (H+L) Alexa Fluor 647. For samples assessed for SHP-1 expression, cells were fixed

with 1X TFP Fix/Perm Buffer for 50 minutes at 4�C, then incubated in Perm Buffer III (BD Biosciences) for 20minutes on ice. Fc Block,

surface, and intracellular antibodies were diluted in 1X TFP Perm/Wash Buffer and incubated for 50 minutes at 4�C, and secondary

antibody diluted in 1X TFP Perm/Wash Buffer was added for an additional 50minutes at 4�C. For all flow cytometry experiments, cells

were acquired using an LSRFortessa (BD Bioscience) and analyzed with FlowJo software (BD Bioscience).
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Cell sorts
Lymphocytes from B6 or CD45.1+ congenic mice were isolated in single cell suspension as described. Samples for bulk RNA-seq,

ATAC-seq, in vivo or in vitro assays were pooled from spleen and lymph nodes (inguinal, axillary, brachial, mesenteric, and cervical)

from 2-10 mice. Samples for scRNA-seq were from a spleen from a single mouse. Total isolated cells or cells magnetically enriched

for CD4+ or total T cells (Stemcell EasySep mouse total T cell or CD4+ T cell enrichment kits) were then incubated in fixable viability

dye, and subsequently stained with surface antibodies for 1 hour at 4�C. Naive CD4+ T cell were sorted on CD5 expression (top and

bottom 15%) for bulk analyses; single naive CD4+ T cells were sorted into 384-well plates for subsequent scRNA-seq. Naive CD4+

T cells were sorted on singlets, live, dump-negative (RNA-seq and ATAC-seq), TCRb+ (bulk- and scRNA-seq), CD4+, CD8-, CD25-

(scRNA-seq and in vivo and in vitro assays) or FoxP3GFP- (RNA-seq), CD44lo, CD62Lhi, and 15%–25% CD5lo and CD5hi (RNA-

seq, ATAC-seq, and in vivo and in vitro assays). Dump channel included B220, CD11b, CD11c, F4/80, Ly6G, NK1.1, and CD69

for RNA-seq; the ATAC-seq dump channel also included CD19 and CD25 (ATAC-seq). Sorts were performed on either a FACS

Aria Fusion, Aria III, or Aria II SORP (BD Bioscience). All cell populations were sorted to > 90% purity for bulk populations.

Adoptive cell transfers
For all adoptive cell transfer experiments, donors and recipients were sex-matched.

TCRb�/� adoptive transfer

25%CD5lo and CD5hi cells were sorted from CD45.2+ mice and 1x106 cells were adoptively transferred by i.v. injection into CD45.1+

TCRb�/� recipients and mice were followed for 91 days.

LCMV infection

15-18 CD45.1+ or CD45.2+ mice were used as donors to obtain a total of 12-20x106 cells from each of 15% CD5lo and 15% CD5hi

cells sorted as detailed above. 6-10x106 sorted donor cells were adoptively transferred by i.v. injection into CD45.2+ or CD45.1+ re-

cipients (n = 2 per group), respectively. One day post-transfer, mice were infected with LCMV as described. Cells were isolated from

the spleens and peripheral lymph nodes of recipient mice 8 days post-infection.

SMARTA transgenic T cell adoptive transfer

1x104 CD45.2+ SMARTACD4+ T cells were adoptively transferred by i.v. injection into CD45.1 recipients. One day post-transfer, mice

were infected with LCMV as described. Cells were isolated from the spleens of recipient mice 8 days post-infection.

Bulk RNA sequencing
1x106 cells from four independent samples, each with cells pooled from 2mice, were sorted as described and CD5lo and CD5hi naive

CD4+ T cells were either directly added to 500 mL TRIzol (ThermoFisher Scientific) or rested in complete RPMI supplementedwith IL-7

for 22 hr first. RNA was purified using RNA miniprep kit (Zymo Research) according to manufacturers’ recommendations. 500ng of

purified RNA was used to prepare RNA-seq libraries using TruSeq mRNA library preparation kit v2 (Illumina). Libraries were

sequenced on an Illumina HiSeq 2000 using v3 chemistry and 50 cycle paired end reads. Illumina bcl files were converted to FASTQ

using CASAVA1.8.2 and mapped to the UCSCmm9Musmusculus genome annotation using Tophat 2.0.11 (Kim et al., 2013). Reads

overlapping exons were counted using featureCounts version 1.4.5 from the SubRead package (Liao et al., 2014), with a minimum

read mapping quality score of 10. Normalized read counts differential gene expression analysis was performed with EdgeR (Robin-

son et al., 2010). In order for a gene to be included in thematrix aminimumCPMvalue of 5 in at least 3 of the 4 replicates was required.

The p values were corrected using the Benjamini-Hochberg method and an FDR threshold of% 0.01 was considered significant. No

FC threshold was set unless stated otherwise.

Single cell RNA sequencing
Each well within a 384-well plate contained CEL-Seq2 primers covered by mineral oil. Primers consisted of a 24bp polyT stretch, a

6bp randommolecular barcode (UMI), a cell-specific barcode, the 50 Illumina TruSeq small RNA kit adaptor and a T7 promoter. After

sorting, the plates were frozen at �80�C until further use. Single cell RNA-seq library preparation and sequencing was performed by

Single Cell Discoveries (Utrecht, Netherlands) (Artegiani et al., 2017). Libraries were prepared following the SORT-seq protocol (Mur-

aro et al., 2016), which consists of an automated and improved version of the CEL-Seq2 protocol (Hashimshony et al., 2016). Briefly,

cells were first lysed for 5 minutes at 65�C, and reverse transcription and second strand mixes were dispensed by the Nanodrop II

liquid handling platform (GC Biotech). Single cell double stranded cDNAs were pooled together and in vitro transcribed for linear

amplification. Illumina sequencing libraries were prepared using the TruSeq small RNA primers (Illumina) and sequenced paired-

end at 75 bp read length the Illumina NextSeq. Paired-end reads from Illumina sequencing were aligned to the mouse transcriptome

genome by BWA (Li and Durbin, 2010). Read 1 contained the barcode information and was used for assigning reads to correct cells

and libraries, while read 2 was mapped to gene models. Reads that mapped equally well to multiple locations were discarded. Read

counts were first corrected for UMI barcode by removing duplicate reads that had identical combinations of library, cell-specific, and

molecular barcodes andweremapped to the same gene. For each cell barcode the number of UMIs for every transcript was counted,

and transcript counts were then adjusted to the expected number of molecules based on counts, 256 possible UMI’s and poissonian

counting statistics (Gr€un et al., 2014). A unique feature of this protocol is the combination of both flow cytometry staining and RNA

sequencing; this allowed for the simultaneous tracking of select protein expression and gene expression on single cells.
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Single-cell RNA-seq data analysis
Raw read counts were first subjected to quality control. We identified two blocks of wells with fewer than 500 non-spike-in reads. To

exclude these and similar low-content wells, we applied a UMAP clustering on all wells (including the spike-in reads) and excluded

the cluster of cells that were mainly composed by the low-read wells. After quality control, 697 wells out of 1152 were kept in the

analysis. R packages ‘scater’ (McCarthy et al., 2017) and ‘scran’ (Lun et al., 2016) were used for further processing, the spike-in reads

were removed and expression values were normalized to library size and normalized log expression values, and gene variance were

determined as previously described (Lun et al., 2016). Mitochondrial genes were excluded before modeling gene variance. The pro-

cessed data was then plotted or subjected to UMAP clustering (McInnes et al., 2020), performed with the R package ‘uwot’ (Melville,

2019) using the cosine distance and a neighborhood size of 30. For defining CD5 low, mid, and high cells the CD5MFI was logged by

the flow cytometer when we sorted the cells into individual wells.

ATACseq library preparation, sequencing, and visualization
Two independent biological replicates of CD5lo and CD5hi naive CD4+ T cells were sorted as described, counted and 1x105 nuclei

pelleted. ATAC-seq libraries were prepared from the fresh nuclei pellets using Illumina Tagment DNA TDE1 Kit by the Institut de re-

cherches cliniques de Montréal (Montreal, Canada). Briefly, paired-end 42bp sequencing reads were generated by Illumina

sequencing (using a NovaSeq6000). The quality of the sequenced reads was checked using FastQC tool v0.10.1 (Babraham Bioin-

formatics), and low-quality bases removed using Trimmomatic v.0.33 (Bolger et al., 2014). The trimmed reads were mapped to the

mouse UCSC mm9 genome using Bowtie 1.0.0 (Langmead et al., 2009), in paired-end mode with–best parameter. Peak calling was

performed using MACS1.4.1 (Zhang et al., 2008) with p values < 10�7. Subpeaks were identified using PeakAnalyzer (Salmon-Divon

et al., 2010), with parameters: valley = 0.5 and cutoff = 5 counts per million (cpm). Normalized sequenced read density profiles

(bigwig) were generated using makeUCSCfile from Homer package (Heinz et al., 2010), normalizing the total number of reads in

each sample to 106, and visualized on Integrative Genomics Viewer (IGV) (Thorvaldsdóttir et al., 2013). When visualizing ATAC-

seq signal profiles for individual genes, group scaling was performed. Peaks identified in the biological replicates were pooled using

mergePeaks from Homer package, merging peak summits within 50bp to each other. Read densities around the peak summits were

retrieved using annotatePeaks from Homer package and quantiles normalized for FC comparison between CD5lo and CD5hi repli-

cates (Bolstad, 2020). Transcription factor binding motif enrichment analysis was performed using Homer package on unique peaks

found only in CD5lo or CD5hi replicates with a P-value < 10�4. Hierarchical clustering of the peaks near the DEG-ND and DEG-D gene

sets were performed using Pearson correlation with complete linkage method.

RNA extraction and quantitative real-time PCR
To assess Cd5 and Foxp3 expression in total and sorted CD5lo and CD5hi naive CD4+ T cells or Tregs, lymphocytes from B6 or

CD45.1+ congenic mice were isolated in single cell suspension as described. Lymphocytes were then magnetically enriched for total

T cells or CD4+ T cells (Stemcell EasySep mouse total T cell or CD4+ T cell enrichment kits) and sorted as described. RNA was ex-

tracted using Purelink RNA Mini Kit (Life Technologies) and cDNA converted using High-Capacity cDNA Reverse Transcription Kit

(Life Technologies) according to manufacturers’ recommendations. RT-qPCR analysis was performed with TaqMan Gene Expres-

sion Master Mix (Life Technologies) and TaqMan Gene Expression Assay (Life Technologies; FAM, Cd5, Mm00432417_m1; FAM,

Foxp3, Mm00475162_m1). Housekeeping genes Gapdh (Life Technologies, FAM, Mm99999915_g1) or Tbp (Life Technologies,

VIC, Mm01277042_m1) were used.

QUANTIFICATION AND STATISTICAL ANALYSIS

Heatmaps
For RNA-seq these were created by either showing individual replicates or average expression within replicates. Log10(CPM+1) were

visualized using the pheatmap package in R-Project on a color scale of black-blue-white-orange-red (Raivo, 2018). For ATAC-seq,

heatmapswere created using annotatePeaks fromHomer package, taking read densities ± 2.5kbwith bin size of 50bp for the highest

peak summit near each gene TSS. Images were generated using MeV tool with blue-white-red scale (Howe et al., 2011).

Gene set enrichment analysis
GSEAs were performed as previously described (Subramanian et al., 2005) using gene sets defined by the Molecular Signatures

Database (Liberzon et al., 2015) or otherwise described.

Gene ontology pathway analysis
Enrichment of GO terms in naive CD4+ T cells was performed using ClueGO (version 2.5.4) (Bindea et al., 2009) on Cytoscape (version

3.8.1) (Shannon et al., 2003). The following parameters were used when running ClueGO on the top 5%most variable genes from the

scRNA-seq: Min GO Level = 4, Max GO Level = 6, Minimum Number of Genes associated to GO term = 6, and Minimum Percentage

of Genes associated to GO term = 6. The following parameters were used when running ClueGO on bulk RNA-seq DEGs: Min GO

Level = 3; Max GO Level = 4. For CD5lo cells: Minimum Number of Genes associated to GO term = 3; Minimum Percentage of Genes

associated to GO term = 5. For CD5hi cells: Minimum Number of Genes associated to GO term = 20; Minimum Percentage of Genes
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associated to GO term = 10. Enrichment p values were based on a hypergeometric test and Benjamini-Hochberg method used for

multiple testing correction. For bulk RNA-seq only pathways with p % 0.05 were considered significant.

PCA
PCA plots were built using filtered log2CPM (RNA-seq) or log2-transformed read densities around peak summits (ATAC-seq) using

ggplot2 package in R-Project (Wickham, 2016).

Mutual Information
Mutual Information (MI) is a robust, non-parametric measure of the statistical relationship between observables with distinct advan-

tages over simple correlation measures (Chan et al., 2017). MI is computed as:

MI =
X
x;y

pðx; yÞlog 2

�
pðx; yÞ
pðxÞpðyÞ

�

(Joint) probability distributions are obtained by binning the data into 96 geometrically spaced bins over the full MFI range (10� – 106)
for TCRb, CD5, CD6, and SHP-1.

ScatterSlice analysis
Scale values corresponding to single CD4+ T cells with expression of TCRb, Ly6C, CD5, CD6, TOX, and SHP-1 from flow cytometry

data were identified and exported as csv files for analysis in the R-Project ScatterSlice (Cotari et al., 2013). Cells were divided into

defined bins (15x15matrix with aminimum of 15 cells per bin) and within each bin, the averageMFI of SHP-1, Ly6C, TOX, or CD6was

projected in false-color onto a plot of TCRb versus CD5 expression.

Statistical analyses
Group comparisons were performed using Prism V9 (GraphPad). Unless specified, data are presented as mean ± standard devia-

tions (SD) with each data point representing an individual mouse. The cut-off for significance considered was p<0.05 for all analyses

unless otherwise stated. Information about specific statistical tests used for each experiment are listed in the figure legends.
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