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Abstract: Volatile organic compounds (VOCs) in urine are potential biomarkers of breast cancer.
Previously, our group has investigated breast cancer through analysis of VOCs in mouse urine and
identified a panel of VOCs with the ability to monitor tumor progression. However, an unanswered
question is whether VOCs can be exploited similarly to monitor the efficacy of antitumor treatments
over time. Herein, subsets of tumor-bearing mice were treated with pitavastatin at high (8 mg/kg) and
low (4 mg/kg) concentrations, and urine was analyzed through solid-phase microextraction (SPME)
coupled with gas chromatography-mass spectrometry (GC-MS). Previous investigations using X-ray
and micro-CT analysis indicated pitavastatin administered at 8 mg/kg had a protective effect against
mammary tumors, whereas 4 mg/kg treatments did not inhibit tumor-induced damage. VOCs from
mice treated with pitavastatin were compared to the previously analyzed healthy controls and tumor-
bearing mice using chemometric analyses, which revealed that mice treated with pitavastatin at high
concentrations were significantly different than tumor-bearing untreated mice in the direction of
healthy controls. Mice treated with low concentrations demonstrated significant differences relative to
healthy controls and were reflective of tumor-bearing untreated mice. These results show that urinary
VOCs can accurately and noninvasively predict the efficacy of pitavastatin treatments over time.

Keywords: volatile organic compounds (VOCs); gas chromatography (GC); mass spectrometry (MS);
solid-phase microextraction (SPME); breast cancer biomarkers; pitavastatin; principal component
analysis (PCA); linear discriminant analysis (LDA)

1. Introduction

Breast cancer is the most common cancer diagnosed in women worldwide, comprising
~30% of all diagnosed cancer cases in women in 2021 [1]. Although most diagnosed, breast
cancer has high treatment potential, especially if detected in the earlier stages [2]. Current
breast cancer screening methods include mammography, ultrasound, and MRI [3]. How-
ever, these methods have limitations with regard to diagnostic sensitivity/specificity [4].
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Nonetheless, confirmatory diagnostics for breast cancer is undertaken through biopsies,
and breast cancer staging is performed using pathological grading as well as imaging with
ultrasound and CT/PET scans [5]. After breast cancer diagnostics, breast cancer treatment
regimens are implemented. Stage 0 breast cancer (ductal carcinoma in situ, DCIS) is treated
with surgery (mastectomy or breast-conserving surgery) with or without radiation therapy.
However, although most cases of DCIS do not progress, there is no method to distinguish
tumors that will remain indolent from ones that will become aggressive. Therefore, in many
cases, DCIS lesions may be overtreated [6].

For stage I–III breast cancer, localized therapies are usually implemented and include
surgery followed by radiation therapy. Systemic therapies, including chemotherapeutics
and other drugs (hormone suppressive therapy and Her-2 targeted therapy), are also used
before (neoadjuvant) and/or after (adjuvant) surgery. Stage IV breast cancer (metastatic)
is generally treated with systemic therapies, and in some cases, surgery and radiation
may also be beneficial [7]. The efficacy of treatments are usually monitored using CT
scans and bone scans or PET scans every 3–6 months after treatment. However, CT scans
and/or PET scans present significant challenges for monitoring treatment efficacy. It can
be difficult to differentiate tumor progression from pseudoprogression or infection on CT
scans [8]. PET scans are expensive and are often challenging to get reimbursed by insurance
providers. Many of these imaging techniques require the administration of iodinated
contrast for accurate monitoring and interpretation, which can be nephrotoxic. There is
a definite need for a less time-consuming and less invasive test to monitor breast cancer
during treatment. Therefore, identifying alternative methods for monitoring breast cancer
treatment efficacy is of significant interest. An accurate and noninvasive assay to diagnose
breast cancer, monitor tumor progression, and determine treatment efficacy over time
could decrease overdiagnosis/overtreatment and aid in patient decision making during
the treatment process.

Previous investigations have shown the potential of volatile organic compounds
(VOCs) as biomarkers of breast cancer, along with other diseases [9–14]. VOCs present a
noninvasive opportunity for disease detection, as they are differentially expressed in biolog-
ical samples in the presence of disease [15–17]. Several groups have employed solid-phase
microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS)
to profile VOCs for breast cancer biomarker discovery [16,18–20]. Through instrumental
and chemometric analyses, VOCs have been previously shown to be biomarkers for breast
cancer in urine. One study published by Silva et al. reports a human urinary VOC biosig-
nature that can discriminate patients with breast cancer from healthy patients with 100%
accuracy by using unsupervised multivariate statistical analysis on a panel of six VOCs [21].
Further investigation by the same group identified a panel of ten urinary VOCs that can
differentiate breast cancer from healthy controls with more than 90% accuracy [22]. Both
studies report carbonyls (ketones and aldehydes), terpenes, and sulfur-containing VOCs as
potential biomarkers for breast cancer in urine.

A study published by the current authors explored utilizing murine urinary VOCs
to track mammary tumor progression for three weeks after tumor injection. Results of
this study identified a unique panel of VOCs that discriminated between healthy and
tumor-bearing mice with 94% accuracy and differentiated the end points (cancer week 1
and cancer week 3) with 97% accuracy. In the same study, we also reported a principal
component regression model that predicts the number of days after tumor injection with
R2 equal to 0.71, indicating the capability of VOCs to noninvasively monitor breast cancer
progression in real time as early as one week after induced tumor injection [23]. Another
study based on the same cohort of mice investigated the use of pitavastatin as a therapeutic
agent. Statins inhibit 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), the enzyme leading
to the biosynthesis of cholesterol [24]. Therefore, these drugs also inhibit the production
of mevalonate and are used clinically to lower cholesterol [25]. Blocking the production
of mevalonate and cholesterol has been previously demonstrated to induce antitumor
properties [26–28]; therefore they were previously used to treat induced mammary tumors
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in mice. This study showed that pitavastatin administered at high doses (8 mg/kg body
weight) resulted in significant antitumor effects. This was also reflected in the VOC profile
analyzed three weeks after tumor injection and pitavastatin treatment [29]. However,
urine samples were not analyzed in mice administered pitavastatin at low doses, and the
previous studies did not profile VOCs over the course of time. Herein, we extend these
previous studies using the same cohorts of mice [23,29] to analyze the ability of urinary
VOCs to determine the efficacy of pitavastatin (pita) at high and low doses over the course
of three weeks using two approaches (approach 1 and 2).

2. Results
2.1. Urine Collection and Data Screening

A total of 139 urine samples were collected and aliquoted from mice across four
sample classes over the course of three weeks. A total of 20 urine samples were collected
before mice were injected with tumor cells, serving as the control class. A total of 45 urine
samples were collected from the cancer sample class (cancer week 1 (12), cancer week 2
(15), and cancer week 3 (18)). A total of 33 urine samples were collected from the pita
high (PH) sample class (PH week 1 (7), PH week 2 (12), and PH week 3 (14)), and 41 urine
samples were collected from the pita low (PL) class (PL week 1 (7), PL week 2 (18), and
PL week 3 (16)). Data screening showed 212 VOCs, which were qualified for analysis. A
total of 74 of these VOCs were statistically significant (p-value < 0.05) between either cancer
weeks 1–3 vs. control (44 VOCs) or cancer week 3 vs. control (60 VOCs), with 30 of the
features identified with a p-value < 0.05 for both comparisons. These VOCs were subject to
further investigation to probe for differences in mice treated with pitavastatin to determine
treatment efficacy.

2.2. Univariate Statistical Analyses

Prior to undertaking approaches 1 and 2, PH Weeks 1–3 and PL Weeks 1–3 were
compared relative to cancer weeks 1–3 using all 212 VOCs. The Student’s t-test was
undertaken to identify statistical significance between each treatment and cancer. A volcano
plot was generated by plotting the −log10 (p-value) against the log2 fold change (FC) for
both treatments to visualize which treatment had more differences in VOC expression
relative to cancer. Most VOCs were upregulated in both the PH samples and in the PL
samples when compared to cancer samples. This is interesting, as the majority of VOCs
were downregulated in cancer weeks 1–3 compared to control samples. There is a handful of
VOCs that are downregulated in PL samples and show high absolute FC values relative to
cancer; however, many of these VOCs did not display statistical significance (relatively high
p-values). Moreover, the volcano plot demonstrates that PH presents more considerable
differences in VOC expression relative to PL when compared to cancer (VOCs here have
relatively lower p-values in PH relative to PL), which is initially indicative that PH treatment
is more effective when compared to PL treatment (Figure 1).

Approach 1 was then undertaken to screen for differences between PH and cancer in
a time-dependent fashion. Upon implementation of two-tailed Student’s t-tests between
PH week 1 vs. cancer week 1, PH week 2 vs. cancer week 2, PH week 3 vs. cancer
week 3, and PH weeks 1–3 vs. cancer weeks 1–3, a total of eight VOCs (Supplementary
Table S1) were statistically significant (p-value < 0.05) across two or more comparisons.
Two VOCs (2-nonanone (2-NON) and dicyclohexylmethanone (DCHM)) were significant
between PH week 3 and cancer week 3, whereas five VOCs (2-hexanone (2-HEX), 2-
heptanone (2-HEP), 5-methyl-2-hexanone (5M2H), 2-NON, and DCHM) were significant
for PH weeks 1–3 vs. cancer weeks 1–3 after adjusting p-values for false discovery rate
(FDR). A hierarchical heatmap was generated using these eight VOCs (the five noted above,
along with 3,3-dimethyl-2-butanone (DMB), 2,4-di-tert-butylphenol (DTB) and safranal
(SAF)) (Figure 2). VOCs within cancer weeks 1–3 are mostly downregulated upon tumor
injection and throughout progression (compared to control samples). Some VOCs displayed
low intraclass variation across all weeks of cancer, and other features were progressively
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dysregulated from cancer week 1 to cancer week 3. Control samples for all VOCs presented
in the heatmap have high reproducibility between replicates. The heatmap also shows that
VOCs within PH weeks 1–3 appear to be expressed at similar levels as the control class,
which is seen as early as the first week of treatment. On the other hand, the PL treatment
sample class shows that VOCs are downregulated when compared to control samples
and showed a high degree of similarity to cancer weeks 1–3 samples. There are limited
differences in VOC expression between the weeks within the PH and PL treatment samples.
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expression in the cancer sample class.

Approach 2 was then undertaken to screen for univariate differences in PH relative to
cancer week 3 and highlighted 30 VOCs (Supplementary Table S2) differentially expressed
across two or more of the following comparisons: control vs. cancer week 3, PH week 1
vs. cancer week 3, PH week 2 vs. cancer week 3, and PH week 3 vs. cancer week 3. VOCs
found to be significant by FDR have an underlined asterisk in Supplementary Table S2; 3
VOCs were found to be significant between PH week 1 vs. cancer week 3, 12 VOCs between
PH week 2 and cancer week 3, and 2 VOCs were significant between PH Week 3 and cancer
Week 3. VOCs in Supplementary Table S2 were utilized for multivariate analysis. Overall,
the univariate statistical analyses showed that VOCs had higher statistical significance
between pita high and cancer samples when compared to pita low and cancer samples. In
addition, the results displayed similarities in urinary VOC expression between the pita
high and control sample classes, with both sample classes demonstrating differences when
compared to the pita low and cancer samples.
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2.3. Multivariate Chemometric Analyses
2.3.1. Approach 1

Principal component analysis (PCA) was undertaken to visualize global data patterns
using VOCs identified through both approach 1 and approach 2. Scores of the first principal
component (PC 1) using the eight VOCs from approach 1 can be observed in Figure 3.
PC 1 in this case accounts for 42.3% of the variance in the sample data. Significantly, PH
clusters with control (p-value relative to Control = 0.33) and PL clusters with cancer (p-value
relative to cancer weeks 1–3 = 0.47). Along the same lines, PL shows low p-values when
compared to control samples (p-value = 0.0023). PH and control samples, on the other
hand, demonstrate high statistical significance relative to cancer, with p-values < 0.001.
Furthermore, VOCs are differentially expressed when comparing the PH treatment to the
PL treatment, with a p-value equal to 0.0057. Differences in VOC expression are clearly
seen as early as the first week of treatment, and no correlations with time were observed
for this panel of VOCs when analyzed by PCA for all of the sample classes presented.
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sample classes of interest (PH = pitavastatin high, PL = pitavastatin low, C = cancer). ** p-value < 0.01,
*** p-value < 0.001.

Continuing with the VOCs highlighted from approach 1, forward feature selection
coupled with linear discriminant analysis (LDA) was implemented to distinguish control
and cancer week 1–3 samples. This method identified a panel of four VOCs (DCHM, 5M2H,
DTB, and 2-HEX) with the ability to distinguish cancer from control with sensitivity = 91%
and specificity = 100%. No significant trends over the course of three weeks were observed
within the cancer samples. This model of four VOCs was then tested on the PH and
PL samples. The first linear discriminant can be visualized for all sample classes (both
training and testing) in Figure 4. PH samples displayed an intermediate response in
between cancer weeks 1–3 and control samples in the LDA plot. PH trends towards healthy
controls and showed significant differences when compared to cancer (p-value < 0.001)
and is also statistically significantly different from PL (p-value = 0.015). No correlation
over time was observed for the PH samples. However, PL is time-dependent, trending
towards cancer and clusters with cancer week 1–3 samples by the third week (PL week 3
vs. cancer week 1–3; p-value = 0.42). This is observed because PL week 3 was significantly
different from PL week 1 (p-value = 0.023). The PL samples throughout the three weeks also
showed significant differences when compared to the control (p-value < 0.001). Multivariate
analyses using approach 1 showed that both large and small panels of VOCs identified
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that pita low samples were trending in the direction of cancer samples, whereas pita high
samples displayed a response more similar to that of the control sample class.
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2.3.2. Approach 2

For approach 2, PCA was implemented on the 30 VOCs identified as statistically
significant by univariate analysis in a similar fashion to the VOCs identified in approach 1,
and PC 1 accounted for 33.5% of the variance in the samples. However, these results showed
high variability within sample classes, no interesting observable trends, and no statistical
significance between classes of interest. All sample classes showed similar correlations over
time, further indicating that this large panel of 30 VOCs is not useful for monitoring the
efficacy of pitavastatin (Figure 5).
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Next, although PCA did not generate any relevant trends, sample analysis proceeded
with supervised multivariate statistical analysis. A supervised approach using a small panel
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of VOCs trained to distinguish cancer week 3 may more effectively show the impact of
treatments. LDA was trained initially to distinguish cancer week 3 from control. Through
LDA, a panel of five compounds (2-HEP, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate
(PDIB), 1,3,5-trichlorobenzene (TCB), DCHM, and 2-NON) was identified that accurately
differentiated control and cancer week 3 with sensitivity = 100% and specificity = 100%.
Cancer weeks 1 and 2, along with PH weeks 1–3 and PL weeks 1–3, were then tested using
this panel, and the resulting LD 1 scores are shown in Figure 6.
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Using this model, cancer weeks 1–2 samples showed similar trends as cancer week 3
when tested (no correlation over the course of time). On the other hand, PH week 1 was
statistically significant relative to PH week 3 (p-value = 0.0012), trending towards control,
indicating that PH can also be monitored in a time-dependent fashion using this LDA
model. Additionally, in the presence of PH treatment, the panel of VOCs is differentially
expressed relative to both cancer (p-value < 0.001) and PL (p-value = 0.027) across all three
weeks. Lastly, the PL treatments clustered with cancer week 1–3 samples and showed
large differences when compared to the control sample class (p-value < 0.001). Unlike
the previous approach, there were no observable differences among PL weeks 1–3. Taken
as a whole, unsupervised analysis through approach 2 yielded no significant differences
between sample classes of interest. However, supervised LDA showed significant differ-
ences between pita low and pita high, with pita high samples trending significantly toward
control samples and pita low clustering with cancer samples.

3. Discussion

The volcano plot (Figure 1) shows that many more VOCs are differentially expressed
in the presence of pitavastatin treatment at high concentration relative to pitavastatin
administered at low concentration when both sets are compared to cancer without treatment.
This aligns well with previously reported X-ray and micro-CT results, which showed that
pitavastatin at high concentrations was an effective treatment, whereas when administered
at low concentrations, no antitumor effect was observed [29]. Furthermore, the hierarchical
heatmap (based on approach 1, Figure 2) shows similar results, where VOCs are mostly
downregulated in the cancer class and in the pita low class relative to control and pita
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high samples. VOCs in the pita high class are expressed similarly to the healthy controls,
whereas the VOCs in the pita low samples are more similar to cancer week 1–3 samples.
In a previous paper, we identified VOCs of breast cancer, some of which did change over
time (modeling cancer progression) and some of which did not [23]. In this case, statistical
methods were not trained to identify differences due to tumor progression, and therefore,
were more in favor of those VOCs remaining consistently dysregulated.

Employing PCA in approach 1 enabled the separation of sample classes of interest
(Figure 3). Four VOCs (DCHM, 5M2H, DTB, and 2-HEX) were identified using LDA in
approach 1 (Figure 4). Pita high samples showed significant differences relative to cancer
in the direction of control samples, and pita low samples showed significant differences
relative to control in the direction of cancer samples. There were also differences between
pita high and pita low samples, and pita low demonstrated significant differences over time.
Approach 2 was used to probe differences between each week of pita high and cancer week
3 (the endpoint). PCA was implemented on this set of VOCs, and no significant differences
were observed between the samples of interest (Figure 5). LDA results using five VOCs
(2-HEP, PDIB, TCB, DCHM, and 2-NON) identified through approach 2 (Figure 6) showed
that pita high samples had significant differences in the direction of healthy samples
(opposite direction of pita low and cancer samples). These results show that VOCs can
predict the efficacy of pitavastatin treatments and mirror traditional analyses as early as
the first week after tumor injection and treatment. The previous investigation on the
efficacy of pitavastatin was conducted by micro-CT, X-ray analysis, mechanical testing,
and histological imaging, which showed the same results as those obtained from VOCs in
mouse urine, namely that pita high slows tumor progression and inhibits tumor-induced
osteolytic lesions, whereas pita low does not alleviate osteolysis [29]. For an example,
X-ray analysis and histological imaging showed decreased osteolytic lesions within pita
high samples, whereas micro-CT images showed proximal tibia destruction due to tumors,
which was alleviated upon administration of pita at high doses. Furthermore, pita high
significantly increased the mechanical strength of the tibia, whereas pita low did not [29].

Interestingly, many of the VOCs have been previously reported as biomarkers for
breast cancer. For example, 2-HEX and many other ketone bodies have been reported by
Silva et al. [30] and in our previous studies [17,23] to be potential biomarkers of breast
cancer, as they are biological products of lipid peroxidation. Ketones have also been im-
plicated as potential biomarkers for other diseases, including hypoglycemia and different
cancer types [4,31–33]. In our previous studies, ketone expression was downregulated in
the presence of mammary tumors. However, in this study, we report that their expression
is enriched when mice receive pitavastatin treatment at high concentrations, which is
indicative of the treatment efficacy. A previous independent study by some of the authors
of the present paper demonstrated that the upregulation of ketones is correlated with anti-
tumor effects induced by bone loading [34]. In vitro assays demonstrated that two specific
ketones (2-pentanone and 2-HEP) reduce tumor cell viability, which was also correlated
with increases in aralkylamine N-acetyltransferase (AANAT) and tyrosine hydrogenase
(TH). These analytes are enzymes involved in the syntheses of dopamine and melatonin,
which have also previously been shown to play a role in the suppression of tumors [34].

Limitations of this study include that the results were based on a relatively small sam-
ple size, and there was no independent external validation performed for the multivariate
analyses. Additionally, all mice were housed in the same environment and fed the same
diet. Therefore, probing VOC differences due to breast cancer and antitumor therapies in
humans will be more difficult, as they will present higher heterogeneity from varying diets,
levels of activity, etc. Breast cancer treatments in humans may also significantly alter VOC
expression, regardless of the efficacy of the treatment, which will make utilizing VOCs
for monitoring treatment efficacy more difficult. Finally, there is also an array of breast
cancer treatments (surgery, radiation, systemic, etc.) which may or may not be able to
be monitored using VOCs in urine. Another potential downfall of this study is the fact
that no healthy control mice were given pitavastatin treatments (only tumor-bearing mice).
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Pitavastatin alters the mevalonate pathway [29], which is a rich source of volatile terpenes
(VTs). However, the LDA panels for both approaches excluded the use of VTs and included
mainly ketones and aromatics. To the best of our knowledge, there is no direct correlation
between ketones/aromatics and the mevalonate pathway. The origin of VOCs in this study
was speculative, and VOCs were not correlated to other types of biomarkers, including
but not limited to genes, proteins, other metabolites, etc. Future studies should aim to
correlate VOCs to other types of biomarkers for validation and exploring the potential
origin of these molecules. The long-term goal is to translate these results to women with
breast cancer, potentially aiding in the decision-making processes during treatment and
decreasing overdiagnosis/overtreatment. In the short-term, however, future investigations
utilizing murine models to assess the efficacy of different therapeutics may analyze urinary
VOCs as an alternative or complementary method to micro-CT, X-rays, and histological
techniques.

4. Materials and Methods
4.1. Instrumentation and Materials

A two-centimeter divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/ PDMS)
SPME fiber (purchased from Sigma Aldrich, St. Louis, MO, USA) was used to precon-
centrate VOCs. Guanidine hydrochloride (GHCl; pH = 8.5) was purchased from Sigma
Aldrich and used to denature major urinary proteins (MUPs), as they bind VOCs in hy-
drophobic pockets [35]. Headspace vials with a volume of 10 mL were purchased from
Thermo Fisher Scientific (Waltham, MA, USA) and were used for urine sample storage and
analysis. An Agilent (Santa Clara, CA, USA) 7890A GC system coupled to an Agilent 7200
MS quadrupole time-of-flight (QTOF) equipped with a PAL autosampling system (CTC
Analytics, Zwingen, Switzerland) was used to incubate, extract, and analyze VOCs. The
GC column utilized for VOC separation was an Agilent Ultra Inert HP-5 ms with 30 m
length, 250 µm internal diameter, and 0.25 µm film thickness. MATLAB R2020a and Origin
were used to generate figures.

4.2. Tumor Injection, Drug Administration, and Urine Collection

All procedures conducted were approved by the Indiana University Animal Care and
Use Committee and complied with the Guiding Principles in the Care and Use of Animals,
supported by the American Physiological Society (APS). Twenty female BALB/c mice
(6 weeks old) were acquired from Harlan Laboratories (Indianapolis, IN, USA) and injected
in the iliac artery with 4T1.2 mammary tumor cells obtained from Dr. R. Anderson at the
Peter MacCallum Cancer Institute (Melbourne, VIC, Australia). Pitavastatin (Livalo) was
administered each day via intraperitoneal injection at high (8 mg/kg body weight) and low
(4 mg/kg body weight) doses to subsets of mice after tumor injection. All tumor-bearing
mice were sacrificed on day 21 after tumor injection, as this timeline allowed for sufficient
tumor progression and treatment effect. Physical changes due to tumor progression and
treatment effect were evaluated by measuring tumor-induced bone damage by micro-CT,
X-ray analysis, mechanical testing, and histological imaging [29]. Prior to tumor injection,
urine from all 20 mice was obtained to serve as the control group. Following tumor injection,
urine was collected from both treated (at low and high doses) and untreated tumor-bearing
mice for three weeks. Mice were caged at room temperature and fed the same diet (mouse
chow ad libitum) during the experiment. Urine was collected over dry ice using Pasteur
pipettes into glass centrifuge tubes. Furthermore, 50 µL aliquots of urine were transferred
to a 10 mL headspace vial and stored in a −80 ◦C freezer before SPME GC-MS QTOF
analysis was implemented.

4.3. SPME GC-MS QTOF Analysis

Urinary VOCs were detected and analyzed through headspace SPME coupled to
GC-MS QTOF. The DVB/CAR/PDMS SPME fiber was conditioned before the first sample
was run each day and between runs. Because a limited amount of urine was collected from
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the mice, one aliquot was analyzed per sample. GHCl was added to urine samples in a 1:1
volumetric ratio prior to GC-MS analysis. Urine samples were heated to 60 ◦C for 30 min
prior to SPME to drive VOCs into the headspace. The preconditioned SPME fiber was then
inserted into the vial and incubated in the sample headspace for 30 min to extract VOCs.
Upon completion of extraction, the SPME fiber was inserted into the inlet of the GC (at
250 ◦C) for two minutes to thermally desorb VOCs. The chromatographic protocol began
by maintaining the oven at 40 ◦C for two minutes, which was followed by an 8 ◦C/min
ramp to 100 ◦C, a 15 ◦C/min ramp to 120 ◦C, an 8 ◦C/min ramp to 180 ◦C, a 15 ◦C/min
ramp to 200 ◦C, and finally, an 8 ◦C/min ramp to 260 ◦C. The mass transfer line was held at
250 °C during the chromatographic run. Electron ionization at 70 eV was used for the MS
with a source temperature of 250 °C. The MS operated in full-scan mode, scanning from 26
to 400 amu with a rate equal to 5 spectra per second.

4.4. Data Processing and VOC Identification

Deconvolution and spectral alignment of chromatographic peaks across samples was
based on mass-to-charge ratio (m/z) and retention time similarities and performed in
MassHunter Profinder. Silanes and siloxanes, degradation products of both the GC column
and SPME fiber, were removed from the matrix, as these are regarded as instrumental and
method artifacts. Features appearing in less than 50% of either control or cancer weeks 1–3
sample classes were excluded from further analyses. Data normalization was performed
through MS Total Useful Signal (MSTUS). Finally, MSTUS values were autoscaled (z-
scored) to generate a matrix with a similar signal range. Upon completion of data screening,
VOCs were identified through Agilent MassHunter Profinder and MassHunter Unknowns
Analysis coupled with the NIST17 mass spectral library. Upon comparison of the features
in Unknowns Analysis with the NIST17 library, VOCs with a match factor >70, along
with similar non-polar retention index (NPRI), were tentatively identified. Experimental
NPRI was determined through a previously implemented instrument-specific calibration
curve [16,17].

4.5. Chemometric Analyses

Univariate statistical analyses were implemented via the Student’s t-test to identify
VOCs differentially expressed between the sample classes of interest. Two approaches were
undertaken to screen for VOCs that were potentially useful for monitoring the efficacy of
pitavastatin treatment at high doses. For both approaches, only VOCs that were identified
to have a p-value < 0.05 for all weeks of cancer and control or between cancer week 3 and
control were included for analysis. Approach 1 screened for differences between treatment
and cancer in a time-dependent fashion through four comparisons: pitavastatin at high
doses (pita high, PH, 8 mg/kg body weight) week 1 vs. cancer week 1, PH week 2 vs.
cancer week 2, PH week 3 vs. cancer week 3, and all PH (weeks 1–3) vs. cancer (weeks 1–3).
Approach 2 screened for differences relative to cancer week 3 through four comparisons:
control vs. cancer week 3, PH week 1 vs. cancer week 3, PH week 2 vs. cancer week 3,
and PH week 3 vs. cancer week 3. These comparisons are useful, as tumor-bearing mice at
this point in time (cancer week 3) should show the most significant differences relative to
healthy controls. For both approaches, VOCs that were significant for multiple comparisons
(at least two of those listed above) were identified and further utilized. Pitavastatin at low
doses (pita low, PL, 4 mg/kg body weight) was not used to probe VOC differences initially,
as this treatment did not show antitumor capabilities [29]. P-values were adjusted using
the Benjamini–Hochberg procedure to account for false discovery rates [36].

Volcano plots were generated by plotting statistical significance against FC values to
visualize the difference between PH vs. cancer and PL vs. cancer. Hierarchical heatmaps
were generated for VOCs that were identified through approach 1. Multivariate chemomet-
ric analyses were also carried out to observe global data patterns and build classification
models. PCA was applied to VOCs with a p-value < 0.05 across two or more comparisons
for both approach 1 and approach 2 to visualize the highest amount of variation in the
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sample data with relatively low dimensions. Forward feature selection coupled with LDA
was then applied to VOCs highlighted through approach 1 and approach 2 to build classi-
fication models and test the pitavastatin-treated samples. For the VOCs identified using
approach 1, LDA was initially trained to classify cancer weeks 1–3 from healthy control
samples. Samples belonging to PH weeks 1–3 and PL weeks 1–3 were independently
tested using this classification model. On the other hand, for VOCs that were significant
for approach 2, LDA was trained to classify cancer week 3 from control samples. Then,
samples from cancer weeks 1–2, PH weeks 1–3, and PL weeks 1–3 were independently
tested using this model of VOCs. Two-tailed Student’s t-tests were utilized to demonstrate
significant differences in the multivariate output (both PCA and LDA) between the sample
classes of interest (control, cancer weeks 1–3, PH weeks 1–3 and PL weeks 1–3).

5. Conclusions

The results of this study show that previously reported VOC biomarkers can be
exploited to determine pitavastatin treatment efficacy. Through chemometric analyses,
pitavastatin administered at high concentration was determined to have antitumor effects,
as pita high trended towards healthy controls and displayed significant differences when
compared to cancer week 1–3 samples. On the contrary, urinary VOC expression for
pitavastatin administered at low concentration is highly reflective of cancer samples and
showed considerable differences when compared to control samples; therefore, the VOC
analyses indicated that the treatment is not effective in slowing tumor progression. The
results from the VOC assays are highly reflective of the traditional analyses (micro-CT
and X-ray analysis), which showed that pitavastatin administered at high doses inhibits
tumor-induced bone damage, and pitavastatin at low concentrations does not. Upon
validation of the results using humans with breast cancer, we found that urinary VOCs may
be able to be used to accurately and noninvasively monitor the efficacy of breast cancer
treatments in real time in the future, which would potentially decrease overtreatment and
treatment-related morbidity without reducing survival rates.
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//www.mdpi.com/article/10.3390/molecules27134277/s1, Table S1. VOCs of interest identified
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samples (ns—no significance, * p < 0.05, ** p < 0.01, *** p < 0.001, underlined asterisk—p < 0.05 by FDR,
name bolded—LDA); Table S2. VOCs of interest identified using approach 2, with p-values when
comparing each week for pita high (PH) samples to cancer (C) week 3 samples (ns—no significance,
* p < 0.05, ** p < 0.01, *** p < 0.001, underlined asterisk—p < 0.05 by FDR, name bolded—LDA).
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