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ABSTRACT
Introduction Although various lipid and non- lipid 
analytes measured by nuclear magnetic resonance 
(NMR) spectroscopy have been associated with type 
2 diabetes, a structured comparison of the ability of 
NMR- derived biomarkers and standard lipids to predict 
individual diabetes risk has not been undertaken in 
larger studies nor among individuals at high risk of 
diabetes.
Research design and methods Cumulative 
discriminative utilities of various groups of biomarkers 
including NMR lipoproteins, related non- lipid biomarkers, 
standard lipids, and demographic and glycemic traits 
were compared for short- term (3.2 years) and long- term 
(15 years) diabetes development in the Diabetes Prevention 
Program, a multiethnic, placebo- controlled, randomized 
controlled trial of individuals with pre- diabetes in the USA 
(N=2590). Logistic regression, Cox proportional hazards 
model and six different hyperparameter- tuned machine 
learning algorithms were compared. The Matthews 
Correlation Coefficient (MCC) was used as the primary 
measure of discriminative utility.
Results Models with baseline NMR analytes and 
their changes did not improve the discriminative 
utility of simpler models including standard lipids or 
demographic and glycemic traits. Across all algorithms, 
models with baseline 2- hour glucose performed the 
best (max MCC=0.36). Sophisticated machine learning 
algorithms performed similarly to logistic regression in 
this study.
Conclusions NMR lipoproteins and related non- lipid 
biomarkers were associated but did not augment 
discrimination of diabetes risk beyond traditional diabetes 
risk factors except for 2- hour glucose. Machine learning 
algorithms provided no meaningful improvement for 
discrimination compared with logistic regression, which 
suggests a lack of influential latent interactions among the 
analytes assessed in this study.
Trial registration number Diabetes Prevention Program: 
NCT00004992; Diabetes Prevention Program Outcomes 
Study: NCT00038727.

Significance of this study

What is already known about this subject?
 ► A large number of lipid and lipoprotein biomark-
ers demonstrate robust associations with type 2 
diabetes, and certain lipid biomarkers such as 
triglycerides and high- density lipoprotein choles-
terol are components of established clinical type 
2 diabetes risk prediction models.

 ► High- throughput, large- scale, low- cost assess-
ments of previously unconsidered biomark-
ers, such as full nuclear magnetic resonance 
(NMR)- derived biomarker panels, are becoming 
commonplace.

What are the new findings?
 ► Lipoproteins and other NMR- derived analytes do 
not offer clinically meaningful improvement in 
the prediction of type 2 diabetes compared with 
standard laboratory lipids or a minimal model 
that comprised age, sex, ethnicity and fasting 
glucose in a population of individuals with pre- 
diabetes.

 ► Association is not prediction: while numerous bio-
markers demonstrate robust statistical associations 
with type 2 diabetes, their cumulative discriminative 
utility can be low.

 ► Baseline postprandial 2- hour glucose levels offer a 
meaningful improvement in discriminating future di-
abetes when compared with simpler models includ-
ing fasting glucose.

How might these results change the focus of 
research or clinical practice?

 ► Future studies should evaluate NMR- derived an-
alytes and biomarkers from other ‘omics’ profiles 
with regard to their discriminatory utilities for type 
2 diabetes in diverse, prospective, general popula-
tion cohorts using statistically appropriate predictive 
models.
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INTRODUCTION
Lipid and lipoprotein abnormalities are well- established 
risk factors for type 2 diabetes.1 Elevated triglyceride and 
reduced high- density lipoprotein cholesterol (HDL- C) 
levels have been shown to associate with incident diabetes 
after adjustment of other standard diabetes risk factors,2–4 
and triglyceride values >250 mg/dL and HDL- C <35 mg/
dL have been recommended by the American Diabetes 
Association as screening criteria for pre- diabetes and 
diabetes5 and are routinely used in diabetes risk scores.4 
Furthermore, alterations in lipoprotein size and concen-
tration such as those characterized by nuclear magnetic 
resonance (NMR) have been found to associate with inci-
dent diabetes6–10 and have been shown to identify insulin 
resistance- based dyslipoproteinemia early in the course 
of diabetes development.6 7 In most studies to date, 
these associations remained statistically significant after 
adjusting for standard lipid measurements.6–9

While alterations in lipids and lipoproteins demon-
strate reproducible, robust statistical associations with 
type 2 diabetes, it is unknown whether standard lipid 
measurements have predictive utility (good classification 
of future cases) for diabetes incidence and whether lipo-
proteins improve prediction over standard lipids or stan-
dard diabetes risk factors.11 This is especially pertinent 
in subjects at high risk of developing diabetes, such as 
those with pre- diabetes, where improved individualized 
prediction12 might allow more targeted implementation 
of prevention strategies. The statistical methods under-
lying evaluation of risk factor association differ from 
those used for assessing outcome prediction. Specifically, 
to properly assess whether a biomarker can classify an 
individual correctly according to whether they eventu-
ally develop a disease or not requires specific statistical 
testing pertaining to outcome prediction and discrimina-
tive utility13 14 using measures such as the receiver oper-
ating characteristic area under the curve (ROC AUC) 
and other metrics.

We leveraged data from the Diabetes Prevention 
Program (DPP) and the Diabetes Prevention Program 
Outcomes Study (DPPOS) to evaluate the predictive 
utility of standard lipid measurements as well as NMR- 
measured lipoprotein size and concentration for inci-
dent diabetes. The DPP was a randomized clinical trial 
that tested the effect of lifestyle and metformin interven-
tions compared with placebo in preventing diabetes in 
a large cohort with pre- diabetes who were at high risk 
of diabetes development.15 We evaluated whether lipid 
measures added predictive utility to standard glycemic, 
anthropometric and other established risk factors in the 
three intervention groups. Since these interventions have 
significant effects on metabolic markers,16 we included 
in the analysis both baseline measures and their changes 
1 year after randomization, and we tested whether these 
factors predicted incident diabetes differently in partic-
ipants who progressed relatively rapidly compared with 
those who progressed more slowly. In addition, because 

the NMR method has been extended to include several 
novel non- lipid biomarkers that have been shown to 
associate with diabetes,17 these were tested as well. Lastly, 
based on the assumption that state- of- the- art machine 
learning algorithms might have advantages over logistic 
regression models when latent interactions exist in the 
data matrix,18 we examined whether there were differ-
ences in discriminative utilities using a range of standard 
statistical and machine learning algorithms. All models 
were internally validated using a robust, nested cross- 
validation framework.

MATERIALS AND METHODS
Participants
The DPP was a multiethnic, multicenter, randomized 
controlled trial (RCT) located in the USA. Initially, 3234 
individuals with fasting glucose levels 95–125 mg/dL and 
impaired glucose tolerance who were overweight or obese 
were randomized into four arms: intensive lifestyle inter-
vention, metformin, troglitazone and placebo control.15 19 
The troglitazone arm was subsequently terminated due 
to side effects. Individuals in the metformin arm received 
850 mg metformin two times per day, and those in the 
lifestyle arm received individual and group- based coun-
seling and were encouraged to maintain a moderate level 
of physical activity and reduce their dietary fat consump-
tion.15 The placebo arm received general advice on 
healthy lifestyle habits. The primary endpoint of the DPP 
was type 2 diabetes incidence, assessed semiannually by a 
fasting glucose test and annually by an oral glucose toler-
ance test, and the RCT was terminated at 3.2 years.20 The 
DPPOS was established as a continuation of the DPP. By 
maintaining the three original intervention groups, the 
main aim of the DPPOS was to investigate whether the 
treatment effects on diabetes would translate into long- 
lasting health effects.21 After removing individuals who 
were initially randomized to the troglitazone arm and 
those with no NMR analytes measured, the total sample 
size for this study was 2590 at baseline. All participants 
provided written, informed consent.

Standard laboratory and NMR methods
Information on basic and clinical variables in the DPP 
has been reported elsewhere.19 22 In brief, anthropo-
metric measures, blood pressure and clinical data were 
collected using standard methods. Measures of insulin, 
glycemia and standard lipids were obtained at the Central 
Biochemistry Laboratory (Northwest Lipid Research 
Laboratories, University of Washington, Seattle, Wash-
ington).16 The reciprocal of the fasting insulin level (1/
FI or IFI) was used as a marker of insulin resistance, and 
the insulinogenic index (Δ-insulin (30–0 min)/Δ-glucose 
(30–0 min)) was used as a marker of insulin secretion. 
The insulinogenic index was determined during an oral 
glucose tolerance test.23 Lipoprotein subclass concen-
trations and lipoprotein sizes at randomization (the 
beginning of the DPP) and 1 year after randomization 
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were quantified by NMR spectroscopy at LipoScience 
using fasting heparin samples stored at −70°C.16 Labora-
tory lipids included serum triglycerides, total cholesterol, 
HDL- C and low- density lipoprotein cholesterol (LDL- C) 
levels. NMR analytes included lipid/lipoprotein and 
non- lipid measures. The lipid- related analytes included 
HDL- related measures: large, medium, small HDL and 
H1P, H2P, H3P, H4P, H5P, H6P, and H7P concentrations, 
and HDL size; LDL- related measures: large, small LDL 
concentrations and LDL size; and triacylglycerol- rich 
lipoprotein (TRL)- related measures: very large, large, 
medium, small TRL concentrations, TRL- carried choles-
terol and triglyceride levels, TRL size, LDL peak particle 
density, apolipoprotein B and apolipoprotein A1.16 22 The 
H1P–H7P subclasses represent a refined classification of 
HDL particles from the smallest (H1P) to the largest 
particles (H7P). Non- lipid analytes were also measured 
using NMR, including amino acids (glycine, valine, 
leucine, isoleucine, alanine), ketones (acetone, beta- 
hydroxy- butyrate, acetoacetate, total ketones), citrate, 
and glycoprotein acetylation (GlycA), a novel inflamma-
tory biomarker.24 The predictive utility of these analytes 
was evaluated for incident diabetes at the end of the DPP 
(short- term, 3.2 years) and at the end of the DPPOS (long- 
term, 15 years).

Statistical analyses
Statistical analyses were performed using R v.3.6.1.25 
In the analytic framework, single analytes measured at 
baseline were evaluated in univariate prediction models. 
In addition, the following multivariable models were 
evaluated:

 ► Model 1: age at randomization, sex (male, female), 
self- reported ethnicity (non- Hispanic white, African 
American, Hispanic, American Indian and Asian 
American), laboratory lipids, lipid- lowering medica-
tion use (yes/no), and treatment arm (placebo, life-
style, metformin).

 ► Model 2: Model 1 + all baseline lipid- related NMR 
analytes.

 ► Model 3: age at randomization, sex, self- reported 
ethnicity, fasting glucose, baseline hemoglobin A1c 
(HbA1c), and treatment arm.

 ► Model 4: Model 3 + family history of diabetes (yes/
no), gestational diabetes mellitus history (yes/no for 
women and not applicable for men), systolic blood 
pressure (SBP), blood pressure medication use 
(yes/no), waist circumference, and body mass index 
(BMI).

 ► Model 5: Model 3 + all laboratory lipids and lipid- 
lowering medication use.

 ► Model 6: Model 3 + all laboratory lipids, all baseline 
lipid- related NMR analytes, and lipid- lowering medi-
cation use.

 ► Model 7a: Model 6 + all baseline NMR analytes.
 ► Model 7b: Model 6 + all baseline NMR analytes and 

their changes.

 ► Model 8: Model 7a + family history of diabetes, gesta-
tional diabetes mellitus history, SBP, blood pressure 
medication use, waist circumference, and BMI.

 ► Model 9: Model 4 + postprandial glucose, insulino-
genic index, and IFI.

In Model 7b, NMR analytes changes were defined as:

 ∆analyte = analyte1yr − analytebaseline   

As NMR data at 1 year were available in a smaller sample 
(n=2067 vs N=2590), model comparison was undertaken 
in two separate analytic steps: (1) using the total sample 
size at baseline (N=2590) and not considering model 
7b; and (2) using the total sample size at baseline and 
follow- up (n=2067) and considering all models, including 
model 7b. The data contained no missing values.

Before analyses, variables with zero or near- zero vari-
ances and linearly dependent variables were removed. 
To determine the effect of correlation among included 
variables on the subsequent analytic framework, three 
distinct pairwise correlation filters were used in separate 
models: (1) Pearson’s |r|>0.6; (2) Pearson’s |r|>0.8; and 
(3) no correlation filter. Model comparisons were 
undertaken in a 5- fold nested cross- validation frame-
work (illustrated by online supplemental figure 1) using 
the caret package.26 In brief, the outer cross- validation 
loops split the data into five training and validation 
sets (80%) and five hold- out test sets (20%). The inner 
cross- validation loops split the five training + validation 
sets into five training (80%) and validation sets (20%). 
In this construct, the inner loops are used for hyperpa-
rameter optimization using a grid search, and the outer 
loops are used to establish discriminative utility using the 
hold- out test sets. The hyperparameter optimization step 
was implemented as machine learning algorithms have 
a large number of parameters (eg, number of hidden 
units and layers in a neural network, number of trees 
in random forest) that can alter the performance of 
the algorithms. As the performance of the algorithms 
depends on the used data, it is of importance to systemat-
ically evaluate a wide range of these tunable parameters 
during the training + validation phase.

All numeric variables have been scaled to mean=0 and 
SD=1 in the training sets, and the summary statistics of 
the training data were used to scale the test data in a sepa-
rate step.27 Downsampling of the majority outcome class 
in the training set was implemented to ensure outcome 
balance. No downsampling was undertaken in the test 
sets. In the inner and outer cross- validation loops, the 
Matthews Correlation Coefficient (MCC) was used as a 
measure of discriminative utility, as it has been shown to 
be one of the most robust measures in binary classifica-
tion problems.28 MCC is defined as:

 
MCC = TP×TN−FP×FN√(

TP+FP
)(

TP+FN
)(

TN+FP
)(

TN+FN
)
  

where TP, TN, FP and FN correspond to the number 
of true positives, true negatives, false positives and false 
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negatives from the confusion matrix, respectively. ROC 
AUC values were also presented as a secondary measure. 
MCC and ROC AUC values from the five tests sets were 
averaged. Of note, ROC AUC values range between 0 and 
1, with 0.5 representing random guess. In contrast, MCC 
values range between −1 (perfect negative correlation) 
and 1 (perfect correlation), with 0 representing random 
guess (no correlation).

Logistic regression (generalized linear model, GLM), 
Cox proportional hazards model and six hyperparameter- 
tuned machine learning algorithms were employed to 
assess the discriminative utilities of the models. The six 
algorithms were stochastic gradient boosting, random 
forest, support vector machines with linear kernel (SVM- 
L), polynomial kernel (SVM- P) and radial kernel (SVM- 
R), and artificial neural network (ANN). The methods 
and hyperparameters are described in online supple-
mental file 2. We hypothesized that any improvement in 
discriminative utilities between GLM and the more elab-
orate machine learning algorithms will be due to linear 
and/or non- linear interactions that the logistic regres-
sion framework would not be able to detect without 
adding explicit interaction terms. To test this hypothesis, 
we conducted an experiment on simulated data to assess 
whether latent interactions would be detected or not 
using the eight algorithms above. This simulation exper-
iment and its results are described in detail in online 
supplemental file 3.

RESULTS
Baseline and 1-year characteristics
Baseline clinical characteristics are shown in table 1. 
Concentrations and sizes of the main lipoprotein classes 
and their 1- year changes have been reported previously 
in a smaller subset of the DPP.16 Additional NMR analysis 
contributed more detailed phenotypic resolution with 
additional measured metabolites, in a larger sample size. 
Thus, the descriptive statistics of baseline and 1- year NMR 
analytes and their changes by treatment and overall were 
recalculated and shown in online supplemental tables 
1–3, respectively. At 3.2 and 15 years following randomiza-
tion, 20.9% and 50.4% of the study cohort had developed 
diabetes, respectively. A heatmap representing Spearman 
correlations among laboratory lipids and NMR analytes 
is shown in the interactive online supplemental figure 2.

Comparison of lipid-related models
We first evaluated Model 1 and Model 2 to compare the 
predictive utilities of standard lipids and all lipid- related 
NMR analytes. MCC and ROC AUC values from these 
models are presented in figure 1. The means and SD for 
MCC and ROC AUC for all models, methods, and correla-
tion filters are browsable in the interactive online supple-
mental table 4. The discriminative utilities of models 
for short- term and long- term diabetes demonstrated a 
maximum observed MCC of 0.16 and a maximum ROC 
AUC of 0.62. Model 2 offered small improvement in the 

discriminative utilities compared with model 1 for both 
short- term and long- term diabetes. A maximum MCC of 
0.12 was observed for model 1 using the GLM and ANN 
methods for short- term diabetes (max ROC AUC=0.61) 
and a maximum MCC of 0.14 using ANN for long- 
term diabetes (max ROC AUC=0.58). In comparison, a 
maximum MCC of 0.16 was observed for model 2 using 
the SVM- L method for short- term diabetes (max ROC 
AUC=0.62) and a maximum MCC of 0.16 using SVM- R 
for long- term diabetes (max ROC AUC=0.60).

Univariate prediction models
As a second step, we examined univariate prediction 
models. The results from these models for short- term 
and long- term diabetes, using GLM, are presented in 
figure 2A. In these analyses, standard lipid and lipid- 
related NMR analytes as well as clinical and glycemic 
risk factors and non- lipid NMR analytes were included. 
Using MCC, the strongest predictors of both short- term 
and long- term diabetes were glycemic traits, although the 
insulinogenic index and IFI were considerably weaker 
than others. Among standard lipids, triglycerides showed 
the strongest prediction for short- term diabetes using 
both MCC and ROC AUC (MCC=0.15; ROC AUC=0.62), 
while HDL- C was the strongest predictor of long- term 
diabetes development (MCC=0.08; ROC AUC=0.56). 
Among NMR lipid analytes, TRL size had the highest 
prediction for short- term diabetes (MCC=0.15; ROC 
AUC=0.56), while large and small LDL particles, LDL size 
and TRL size demonstrated the highest predictive utility 
for long- term diabetes (MCC ~0.10; ROC AUC ~0.57 for 
these four lipid analytes).

The outcome- stratified distributions of the top six clas-
sifiers for short- term diabetes, namely fasting glucose 
(MCC=0.25), 2- hour glucose (MCC=0.23), HbA1c 
(MCC=0.19), insulinogenic index (MCC=0.15), TRL 
size (MCC=0.15) and glycine (MCC=0.15), are shown in 
figure 2B. The main difference for long- term diabetes 
was that after the glycemic traits, the next three strongest 
univariate predictors were all branched chain amino acids 
(valine, isoleucine, leucine). The associations between 
baseline analytes and the outcomes, the development of 
diabetes at 3.2 and 15 years, are shown in online supple-
mental tables 5 and 6, respectively.

Comparison of all models
In order to test whether the inclusion of lipid data 
augmented the predictive utility of models incorporating 
usual epidemiological measures, we next evaluated 
seven additional models of increasing complexity. Base-
line models are presented in figure 3, while all models 
(including model 7b with the 1- year change variables and 
a smaller sample size) are presented in online supple-
mental figure 3. The means and SD for MCC and ROC 
AUC for all methods, models and correlation filters are 
browsable in the interactive online supplemental table 4.

The standard and NMR lipid measures or the full NMR 
panel did not improve prediction (max MCC=0.30; max 
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ROC AUC=0.74) when added to the simpler clinical model 
including fasting glucose (max MCC=0.30; max ROC 
AUC=0.73).

The highest discriminative utility was observed for Model 
9 (including 2- hour glucose). This was seen in evaluation of 
short- term diabetes prediction (using SVM- R; MCC=0.36) 
and long- term diabetes prediction (using SVM- P and ANN; 
MCC=0.34). For prediction of short- term diabetes the ANN, 
SVM- L and SVM- R resulted in ROC AUC=0.77, and for 
long- term diabetes the SVM- P, SVM- R and ANN methods 
produced ROC AUC=0.73.

In a sensitivity analysis, Model 9 was repeated without 
the IFI and insulinogenic index variables. This analysis 

yielded very similar results to the original Model 9 metrics, 
indicating that 2- hour glucose alone here is sufficient to 
achieve the highest MCC and ROC AUC values.

Although Cox models and random forest generally 
underperformed the other methods in both short- term 
and long- term T2D classification (figure 3), there were 
no large differences in discriminative utilities between 
GLM and the other machine learning algorithms.

No meaningful differences were observed when 
comparing the results from models filtered by the other 
evaluated correlation thresholds (|r|>0.8 and no filter). 
Rank transformation of NMR analytes did not materially 
affect the results.

Table 1 Clinical characteristics at baseline among participants with available data (N=2590)

All Placebo Metformin Lifestyle P value

Treatment 2590 867 865 858

Age 50.8 (44.4, 58.3) 50.4 (45.0, 57.9) 50.7 (43.5, 59.2) 51.0 (44.9, 57.9) 0.508

Sex 0.441

  Male 898 (34.7) 292 (33.7) 294 (34.0) 312 (36.4)

  Female 1692 (65.3) 575 (66.3) 571 (66.0) 546 (63.6)

Ethnicity 0.290

  Non- Hispanic white 1395 (53.9) 464 (53.5) 445 (51.4) 486 (56.6)

  African American 510 (19.7) 170 (19.6) 170 (19.7) 170 (19.8)

  Hispanic 428 (16.5) 144 (16.6) 154 (17.8) 130 (15.2)

  Asian American 116 (4.5) 37 (4.3) 49 (5.7) 30 (3.5)

  American Indian 141 (5.4) 52 (6.0) 47 (5.4) 42 (4.9)

  HbA1c (%) 5.9 (5.6, 6.2) 5.9 (5.6, 6.2) 5.9 (5.6, 6.2) 5.9 (5.6, 6.2) 0.702

  Fasting glucose (mg/dL) 105.0 (100.0, 111.0) 105.0 (100.0, 111.0) 105.0 (100.0, 111.0) 104.0 (100.0, 111.0) 0.748

  BMI (kg/m2) 32.6 (28.9, 37.2) 32.8 (28.8, 37.5) 32.5 (28.9, 36.9) 32.6 (29.1, 37) 0.795

  Waist (cm) 103.8 (94.8, 113.2) 103.5 (94.1, 113.2) 103.2 (95.1, 113) 104.4 (94.9, 113.2) 0.779

  Systolic blood pressure (mm Hg) 122.0 (113.0, 133.0) 122.0 (113, 132.0) 122.0 (113.0, 133.0) 123.5 (113.0, 133.8) 0.429

Family history of diabetes 0.786

  No 803 (31.0) 270 (31.1) 261 (30.2) 272 (31.7)

  Yes 1787 (69.0) 597 (68.9) 604 (69.8) 586 (68.3)

GDM history 0.645

  No 1450 (56.0) 491 (56.6) 485 (56.1) 474 (55.2)

  Yes 242 (9.3) 84 (9.7) 86 (9.9) 72 (8.4)

  Not applicable (male) 898 (34.7) 292 (33.7) 294 (34.0) 312 (36.4)

Blood pressure medication 0.569

  No 2166 (83.6) 733 (84.5) 715 (82.7) 718 (83.7)

  Yes 424 (16.4) 134 (15.5) 150 (17.3) 140 (16.3)

  2- hour glucose (mg/dL) 162.0 (149.0, 178.0) 163.0 (149.0, 178.0) 162.0 (150.0, 178.0) 163.0 (149.0, 179.0) 0.801

  Insulinogenic index (uU/mg) 103.8 (66.7, 158.2) 105.8 (66.3, 163.6) 104.8 (67.2, 160.3) 101.8 (66.7, 152.3) 0.729

  IFI (mL/uU) 4.2×10−2 (0, 6.2×10−2) 4.2×10−2 (0, 6.2×10−2) 4.4×10−2 (0, 6.2×10−2) 4.2×10−2 (0, 6.2×10−2) 0.600

  Triglycerides (mg/dL) 144.0 (102.0, 204.0) 149.0 (105.0, 206.5) 142.0 (98.0, 201.0) 142.0 (100.2, 201.0) 0.096

  Total cholesterol (mg/dL) 203.0 (179.0, 227.8) 202.0 (177.0, 227.5) 205.0 (180.0, 229.0) 202.5 (178.2, 226) 0.541

  LDL- C (mg/dL) 124.0 (102.0, 145.0) 123.0 (101.0, 146.5) 125.0 (102.0, 145.0) 122.0 (103.0, 144.0) 0.720

  HDL- C (mg/dL) 44.0 (37.0, 52.0) 43.0 (37.0, 51.0) 45.0 (37.0, 53.0) 44.0 (38.0, 53.0) 0.018

The table shows the median and 25th and 75th percentiles for continuous variables and counts and percentages for categorical variables.
P values are calculated using Kruskal- Wallis rank sum tests (for continuous variables) and Χ2 tests (for categorical variables) to assess mean differences between 
the three treatment arms.
BMI, body mass index; GDM, gestational diabetes mellitus; HbA1c, hemoglobin A1c; HDL- C, high- density lipoprotein cholesterol; IFI, reciprocal of the fasting 
insulin level; LDL- C, low- density lipoprotein cholesterol.
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DISCUSSION
We have undertaken analyses of the predictive utility 
of traditional clinical factors, biochemical measures of 
routinely measured blood lipids, and NMR measures of 
lipoproteins as predictors of short- term and long- term 
incident diabetes in the DPP and the DPPOS. We found 
that standard lipids such as triglycerides and HDL- C 
were poor predictors of both short- term and long- term 
incident type 2 diabetes in the DPP and the DPPOS. 
Triglyceride level was a somewhat better predictor of 
short- term diabetes than HDL- C in univariate analysis, 
whereas HDL- C was the better predictor of longer- term 
diabetes development. This may at least in part be due to 
the fact that HDL- C is a more stable measure over time 
than triglycerides. Although TRL size appeared overall to 
be the best individual NMR- based predictor of incident 
diabetes, a model containing NMR- measured lipopro-
tein measures provided minimal added discriminative 
utility in predicting incident diabetes over the model 
containing only standard lipids in our study. The best 
predictive models included measures of glycemia; the 

inclusion of standard lipids or NMR- based lipoprotein 
size and concentration measures did not augment the 
predictive utility of models incorporating glycemia.

Multiple studies demonstrate that elevated triglyceride 
and reduced HDL- C are strongly associated with insulin 
resistance and diabetes development.2–4 In our analyses, 
total HDL and triglycerides were also significantly associ-
ated with diabetes development. These lipid alterations 
were shown to be due to lipoprotein size and concentra-
tion abnormalities resulting from insulin resistance, which 
manifest prior to the development of dysglycemia.6–10 
There may also be other mechanisms linking lipoprotein 
abnormalities to diabetes development.29 These studies 
also showed that these epidemiological associations 
remained statistically significant after the adjustment 
of conventional risk factors for diabetes development 
such as BMI, family history and glycemic measures. This 
observation suggests that lipid and lipoprotein markers 
may have value for risk stratification in patients with 
dysglycemia. In addition, in most studies,6–9 lipoprotein 
abnormalities such as higher very- low- density lipoprotein 

Figure 1 MCC and ROC AUC statistics across all machine learning algorithms and baseline lipid- related prediction models 
in relation to short- term and long- term diabetes incidence (N=2590). MCC averages are represented by circles and ROC AUC 
averages are represented by squares. The averages are calculated from the five obtained MCC and ROC AUC values from the 
five separate test sets in the nested cross- validation framework. The error bars represent SD of the five obtained MCC and 
ROC AUC values. The left panel shows the discriminative utilities for short- term, while the right panel shows the discriminative 
utilities for long- term diabetes incidence. Model 1 includes predictors: age at randomization, sex, self- reported ethnicity, all 
laboratory lipids, lipid- lowering medication use and treatment arm. Model 2 includes all Model 1 predictors and all baseline 
lipid- related NMR analytes. ANN, artificial neural network; GLM, generalized linear model (refers to logistic regression here); 
MCC, Matthews Correlation Coefficient; NMR, nuclear magnetic resonance; RF, random forest; ROC AUC, receiver operating 
characteristic area under the curve; SGB, stochastic gradient boosting; SVM- L, support vector machine with linear kernel; 
SVM- P, support vector machine with polynomial kernel; SVM- R, support vector machine with radial kernel; T2D, type 2 
diabetes.
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(VLDL) size remained associated with incident diabetes 
after adjusting for triglyceride and HDL- C concentra-
tions, suggesting increased sensitivity as markers of risk 
compared with standard lipid measurements.

Single or multiple NMR analytes, related measures, 
or composite scores based on NMR analytes such as 
the lipoprotein insulin resistance score have been 
shown to strongly associate with glycemia30 31 and type 
2 diabetes.10 32 33 However, the question as to whether 
various lipid and non- lipid NMR analytes can offer 
improvement in the classification of future type 2 diabetes 
status is debated. Recent studies showing strong associ-
ations between the lipoprotein insulin resistance score 
and type 2 diabetes incidence showed no or very small 
improvement in discriminative utilities of NMR lipopro-
teins when compared with established predictors.9 32

The apparent contradiction between our find-
ings (showing limited predictive utility) versus our 

supplemental analysis of associations and previous 
studies (reporting strong associations of the same 
biomarkers) showcases a common, yet poorly under-
stood, phenomenon. Biomarkers with robust statistical 
associations in populations are often poor classifiers of 
future disease status in individuals13 34 35 and therefore 
may not have value for individualized (n=1) prediction.12 
While association studies are important in demonstrating 
a link between a biomarker and a disease, and may point 
to potential interventions for preventing or treating a 
disease, prediction of disease is more useful in making 
clinical decisions in a given individual. Thus, while lipids 
and lipoprotein abnormalities are linked to the patho-
physiological changes underlying the development of 
type 2 diabetes and may have importance in identifying 
individuals with pre- diabetes at increased risk of cardio-
vascular disease, in our analyses they did not add discrim-
inative value in predicting incident diabetes.
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Figure 2 (A) Univariate discriminative utilities of continuous analytes at baseline in relation to short- term and long- term 
diabetes incidence (N=2590). The MCC and ROC AUC values are averages, calculated from the five obtained MCC and 
ROC AUC values from the five separate test sets in the nested cross- validation framework using the GLM method (logistic 
regression). The black circles represent MCC and ROC AUC values for short- term diabetes, while the red circles represent 
MCC and ROC AUC values for long- term diabetes. The predictors are sorted according to their MCC values for short- term 
diabetes. Model 1 includes predictors: age at randomization, sex, self- reported ethnicity, all laboratory lipids, lipid- lowering 
medication use and treatment arm. Model 2 includes all model 1 predictors and all baseline lipid- related NMR analytes. (B) 
Distributions of the six best performing univariate predictors for short- term diabetes, stratified by incident diabetes status 
(N=2590). The upper panel of the figure shows a schematic explanation for distributions that generally indicate good versus 
poor discriminative utility. The lower panel of the figure shows the density plots of the variables fasting glucose, 2- hour glucose, 
HbA1c, insulinogenic index, TRL size and glycine. AcAc, acetoacetate; ApoA1, apolipoprotein A1; ApoB, apolipoprotein B; 
BHB, beta- hydroxy- butyrate; BMI, body mass index; GlycA, glycoprotein acetylation; GLM, generalized linear model; HbA1c, 
hemoglobin A1c; HDL- C, high- density lipoprotein cholesterol; IFI, reciprocal of the fasting insulin level; LDL- C, low- density 
lipoprotein cholesterol; MCC, Matthews Correlation Coefficient; NMR, nuclear magnetic resonance; PPD, peak particle density; 
ROC AUC, receiver operating characteristic area under the curve; SBP, systolic blood pressure; T2D, type 2 diabetes; TC, total 
cholesterol; TG, triglycerides; TRL, triglyceride rich lipoprotein; TRL- C, TRL- cholesterol; TRL- G, TRL- triacylglycerol.
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Of note, the expanded NMR assessment that included 
measurement of branched chain amino acids and glycine, 
which have been shown to be associated with insulin resis-
tance and incident diabetes,36 also did not add discrimi-
native utility to the glycemic model, although glycine and 
TRL size were among the best individual non- glucose 
predictors of short- term diabetes and branched chain 
amino acids were the best univariate predictors of long- 
term diabetes after glycemic traits in this cohort. Interest-
ingly, TRL size has been shown to improve risk prediction 
for diabetes elsewhere, particularly in individuals with 
lower HbA1c values.37 Since lifestyle intervention and to 
a lesser extent metformin treatment caused beneficial 
changes in lipids and lipoproteins16 in the DPP, we also 
tested an NMR model that included changes in analytes 
after 1 year of lifestyle and metformin treatment, but 
found that these treatment- related changes added no 
additional discriminative utility for incident diabetes.

Other than known strengths and limitations of using 
data emanating from randomized trials,38 a further limita-
tion of our analysis should be considered. Our findings 
were obtained in a clinical trial with pre- diabetes who 

were at high risk of developing diabetes and whose risk 
factor distributions may be different from individuals in 
the general population. Thus, these results might not be 
generalizable to populations with different distributions 
of diabetes risk factors. Specifically, our findings might 
not apply when assessing risk or predicting diabetes in 
people with normal glucose response. Predictive models 
for incident diabetes that also include data from healthier 
populations might provide evidence for stronger 
discriminative utilities of non- glycemic markers.39 On 
the other hand, the importance of more precise predic-
tion of diabetes in high- risk subjects remains, since in 
the DPPOS, even after 15 years of follow- up, over 40% 
of participants in the placebo group did not develop 
diabetes.40 An additional potential limitation is the long- 
term storage of blood samples before the NMR analysis—
as all samples were analyzed >7 years after the samples 
had been obtained, it is possible that some more sensi-
tive molecules, for instance amino acids, could have been 
affected.41

In our study, the fasting glucose and 2- hour glucose 
levels at baseline were the best univariate predictors 

Figure 3 MCC and ROC AUC statistics across all machine learning algorithms and all prediction models in relation to short- 
term and long- term diabetes incidence (N=2590). MCC averages are represented by circles and ROC AUC averages are 
represented by squares. The averages are calculated from the five obtained MCC and ROC AUC values from the five separate 
test sets in the nested cross- validation framework. The error bars represent SD of the five obtained MCC and ROC AUC values. 
The left panel shows the discriminative utilities for short- term, while the right panel shows the discriminative utilities for long- 
term diabetes incidence. This figure demonstrates the model results for all baseline models (N=2590). ANN, artificial neural 
network; GLM, generalized linear model (refers to logistic regression here); MCC, Matthews Correlation Coefficient; RF, random 
forest; ROC AUC, receiver operating characteristic area under the curve; SGB, stochastic gradient boosting; SVM- L, support 
vector machine with linear kernel; SVM- P, support vector machine with polynomial kernel; SVM- R, support vector machine with 
radial kernel; T2D, type 2 diabetes.
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(mean MCC ~0.25 and ROC AUC ~0.67) outperforming 
all other risk factors including BMI and measures of 
insulin resistance and insulin secretion. This is not 
unexpected since these glycemic measures define the 
criteria for the diagnosis of incident diabetes in the DPP/
DPPOS. The addition of 2- hour glucose to the glycemic 
model including fasting glucose increased its discrimina-
tive utility, and although 2- hour glucose measurement is 
less widely used than it once was to identify people with 
pre- diabetes, it clearly improved prediction of diabetes 
over other measures. This improvement in discrimina-
tive utility when adding 2- hour glucose to the model had 
been observed elsewhere in large populations.42 Of note, 
even the best model (Model 9, max MCC=0.36, max ROC 
AUC=0.77) that included both the fasting and 2- hour 
glucose measurements was not able to predict future 
diabetes well in our study. New biomarkers arising from 
various ‘omics’ platforms, environmental and lifestyle 
determinants, personal disease histories and other layers 
of personal data may prove useful in improving predic-
tion models.43 Lipidomics and metabolomics, in partic-
ular, offer promising avenues for further research;44 
multiple recent reports demonstrate that these more 
refined assessments have the potential to yield well- 
performing predictive models, even when compared with 
simpler models incorporating glycemic measures.45–50 
Future studies should evaluate lipidomic and metabo-
lomic profiles, sampled at multiple occasions—in both 
fasting and metabolically challenged states—to gain a 
more holistic picture and hopefully superior predictive 
models to predict diabetes.

Overall prediction was somewhat superior for all 
models for short- term diabetes (metrics of discriminative 
utility consistently higher in these models compared with 
those in the long- term diabetes models), although this 
was only apparent when assessing predictive validities 
using ROC AUC. This could reflect a higher predictive 
validity of risk factors in those at highest risk of diabetes 
development.

In this study, we chose to compare standard statistical 
methods for prediction with sophisticated machine 
learning algorithms that can provide improvement 
to established methods in prediction modeling.51 We 
acknowledge that the relatively small sample size in our 
study is a limitation when applying machine learning 
algorithms. We aimed to offset the small sample size by 
establishing a nested cross- validation framework so that 
all observations can be used in test sets and thereby maxi-
mize test data size and decrease the chances of mismatch 
between the random test data and the whole cohort. 
A simulation study was undertaken to test the utility of 
machine learning algorithms to detect latent interactions 
that might impact discriminative utilities. The result of 
the performed simulation experiment was that latent 
interactions, if present, would be detected using some 
of the more sophisticated machine learning algorithms, 
compared with simpler methods, such as GLM and 
SVM- L. As no large improvement in the discriminative 

utilities was observed when comparing prediction models, 
the results of this study are indicative of the lack of inter-
actions that would meaningfully impact the performance 
of the used predictive models, for example, between our 
measures and the treatment arms.

In conclusion, although lipid and lipoprotein size and 
concentration measures associate strongly with incident 
diabetes, they did not add predictive utility to other 
standard clinical and glycemic risk factors in the DPP/
DPPOS. Even using the best predictors, namely fasting 
and 2- hour glucose measurements, binary prediction 
of diabetes development was only moderate. Given that 
machine learning algorithms were not superior to tradi-
tional logistic regression in this setting, we conclude 
that influential non- linearities in the analyzed data were 
limited.
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