
BIOMARKER-AND PATHWAY-INFORMED POLYGENIC RISK SCORES FOR 

ALZHEIMER'S DISEASE AND RELATED DISORDERS 

 
 
 
 
 
 
 
 
 
 
 
 

Danai Chasioti 
 
 
 
 
 
 
 
 
 
 

Submitted to the faculty of the University Graduate School 

in partial fulfillment of the requirements 

for the degree 

Doctor of Philosophy 

in the School of Informatics and Computing, 

Indiana University 

 
 

May 2022 



ii  

Accepted by the Graduate Faculty of Indiana University, in partial 

fulfillment of the requirements for the degree of Doctor of Philosophy. 

 
 
Doctoral Committee 
 
 
 
 
 

Jingwen Yan, Ph.D., Chair 
 
 
 
 
 
 

Andrew J. Saykin, Psy.D. 
 
 

March 18, 2022 
 
 

Kwangsik Nho, Ph.D. 
 
 
 
 
 
 

Shannon L. Risacher, Ph.D. 
 
 
 
 
 
 

Huanmei Wu, Ph.D. 



iii  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2022 
 

Danai Chasioti 



iv  

DEDICATION 
 

Dedicated to my parents that offer me the world. 
 
 



v  

ACKNOWLEDGEMENT 
 

I would like to express my deepest appreciation to my advisor Dr. Andrew J. Saykin, for 

providing me his invaluable expertise by allowing me to work by his side all these years. 

I will always remember our inspiring and constructive discussions, his patience, support, 

and guidance through this tough journey. I was blessed to work with one of the top 

scientists in the neuroscience field. 

 
 
Of course, I cannot overlook the key role my co-advisor Dr. Jingwen Yan played in this 

work, which would not be possible without her directions and valuable feedback. Her 

assistance and advice were critical for the fulfillment of every research project I undertook. 

Special thanks to all the committee members for their valuable contribution and 

constructive criticism that helped me accomplish this thesis. 

 
 
I would like to also thank all the colleagues and professors from the Indiana Alzheimer’s 

Disease Research Center who supported me not only by sharing their domain expertise but 

also by providing me with invaluable data resources. I would like to personally thank Dr. 

Brenna C. McDonald, Dr. Kwangsik Nho, Kelly N.H. Nudelman and Dr. Shannon L. 

Risacher. Many thanks to Dr. J. Mandelblatt and all the collaborators from the Georgetown 

University. Last but not the least, I would like to thank Dr. Constantin T. Yiannoutsos and 

Dr. Li Shen for guiding me during the first steps of my carrier. 



vi  

Finally, I would like to express my sincere gratitude to my dear family for believing in me, 

being always on my side, and supporting me at every step in my life. I could not have 

become the person I am, and achieve my highest goals without my mother Helen, my father 

George and my grandmother Eleftheria. 



vii  

Danai Chasioti 

BIOMARKER-AND PATHWAY-INFORMED POLYGENIC RISK SCORES FOR 

ALZHEIMER'S DISEASE AND RELATED DISORDERS 

 
Determining an individual’s genetic susceptibility in complex diseases like Alzheimer’s 

disease (AD) is challenging as multiple variants each contribute a small portion of the 

overall risk. Polygenic Risk Scores (PRS) are a mathematical construct or composite that 

aggregates the small effects of multiple variants into a single score. Potential applications 

of PRS include risk stratification, biomarker discovery and increased prognostic accuracy. 

A systematic review demonstrated that methodological refinement of PRS is an active 

research area, mostly focused on large case-control genome-wide association studies 

(GWAS). In AD, where there is considerable phenotypic and genetic heterogeneity, we 

hypothesized that PRS based on endophenotypes, and pathway-relevant genetic 

information would be particularly informative. In the first study, data from the NIA 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) was used to develop 

endophenotype-based PRS based on amyloid (A), tau (T), neurodegeneration (N) and 

cerebrovascular (V) biomarkers, as well as an overall/combined endophenotype-PRS. 

Results indicated that combined phenotype-PRS predicted neurodegeneration biomarkers 

and overall AD risk. By contrast, amyloid and tau-PRSs were strongly linked to the 

corresponding biomarkers. Finally, extrinsic significance of the PRS approach was 

demonstrated by application of AD biological pathway-informed PRS to prediction of 

cognitive changes among older women with breast cancer (BC). Results from PRS analysis 

of the multicenter Thinking and Living with Cancer (TLC) study indicated that older BC 

patients with high AD genetic susceptibility within the immune-response and endocytosis 
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pathways have worse cognition following chemotherapy±hormonal therapy rather than 

hormonal-only therapy. In conclusion, PRSs based on biomarker- or pathway- specific 

genetic information may provide mechanistic insights beyond disease susceptibility, 

supporting development of precision medicine with potential application to AD and other 

age-associated cognitive disorders. 
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Chapter 1 

INTRODUCTION 

 
 
1.1 POLYGENIC RISK SCORE IN PRECISION MEDICINE, ALZHEIMER’S, 

AND OTHER DEMENTIAS 

The rapid advancement in genome sequencing technology, the innovative solutions for data 

storing, and the continuously improving computational power, have brought us closer to 

precision medicine than ever before, by enabling the collection and processing of enormous 

amounts of data. Precision medicine, aims to improve health by preventing, diagnosing, 

treating, or delaying the disease progress. Informed therapeutic decisions are made possible 

through individual risk assessment, based on environmental, lifestyle and genetic patient 

information. In contrast to lifestyle and age-related factors whose effect on a disease or a 

trait can be only assessed later in life, genetic information can be utilized at any point in 

life and support early disease prediction. While evaluation of a person’s genetic 

predisposition is easier in the case of monogenic disorders, where single gene mutation is 

responsible for the disease development, that is not the case for complex disorders [1]. The 

majority of the human disorders are considered as complex, meaning that the disease risk 

is partly associated with multiple genetic variations, most of which individually account 

only for a small portion of an individual’s overall genetic risk. 

 
 
Alzheimer’s disease (AD), one of the most common types of dementia, is an example of 

complex disease with high socioeconomic impact. It is a neurodegenerative disease, 

characterized by progressive deterioration in cognition, affecting the lives of patients 
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andtheir caregivers. According to recent data, in the U.S alone, more than 6 million people 

over the age of 65 are living with AD, the healthcare cost of which reached the $355 billion 

in 2021 [2]. With more deaths attributed to AD than breast cancer and prostate cancer 

combined, AD is considered as one of the leading causes of death [2]. As the pre- 

symptomatic AD diagnosis is currently very challenging, and no medications have yet 

proven to ameliorate the patients’ cognition, it is important to focus on efforts that improve 

detection of high-risk individuals. Such efforts have the potential to advance public health 

by improving the quality of study cohorts and in turn the innovation in treatment 

development and biomarker discovery. On patient level, that could support decisions 

regarding dietary and lifestyle changes that could modify the lifetime-risk for AD by as 

much as 35%, according to recent studies [3]. Moreover, decision regarding treatment 

allocation and dosage/duration of medication can benefit by estimating the patient’s genetic 

predisposition. 

 
 
In complex diseases like non-familial AD, one of the challenges in determining a patient’s 

genetic risk is identifying the (common) genetic variants that are contributing to the 

disease. Part of the perplexity of identifying new genes associated with the risk of sporadic 

AD, is that they are either rare mutations or they tend to have very small individual effect 

with exception those in APOE gene. Genome wide association studies (GWASs) have been 

traditionally used as one of the first steps in gene discovery. As solely experimental 

approach, GWAS’s power to identify informative variants largely depends on the sample 

size. Fortunately, the current methodological and technological advancements have led to 

GWASs of substantially larger size compared to the past, which have greatly assisted the 
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variant discovery process [4]. Whereas association studies provide a great step in 

identifying candidate genetic variants, accounting for the overall genetic risk of these 

variants is a challenging task. 

 
 
Polygenic Risk Score (PRS), which was by definition designed to account for the 

aggregated effect of multiple genetic variants, has gained much attention in the last decade 

[5]. The recent explosion in the availability of genetic and other biomedical data, has led 

to promising applications of PRS which in combination with other clinical measures could 

enhance the precision of disease prediction and diagnosis. Based on years of research, it is 

yet clear that “one PRS fits all” is not realistic and the decision on the best PRS highly 

depends on the data and the disease/trait of interest. Although the refinement of PRS is an 

ongoing research area with many potentials for improvement, the continuous release of 

new interesting biomedical data provides new application opportunities for PRS that could 

further support its efficiency and usefulness in promoting biomedical research. 

 
 
1.2 OBJECTIVE AND AIMS 
 
The overall goal of this work is the advancement of AD (and related dementias) research 

by introduction of biological relevant information in PRS. PRS is a mathematical 

formulation tallying the effects of multiple genetic markers through a single value, that 

expresses an individual’s genetic liability for a disease. We embraced PRS as the main tool 

of this dissertation motivated by its unique characteristic to account for multiple genetic 

variants and thus, amplify the individually weak genetic effect on disease outcomes. This 

feature makes PRS an especially compelling tool for complex diseases like AD. In addition, 
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this decision was supported by the expanding evidence showcasing the potential of PRS to 

promote precision medicine when combined with other clinical measures. 

 
 
This work is comprised by three aims. The objective of the first aim is to identify 

opportunities for novel applications and the potential for improvement in PRS. Through a 

rigorous literature review, based on 85 publications in several complex diseases especially 

focusing on AD, I present an overview that covers the PRS-related work, including 

methodological advancements, limitations, and applications of PRS. An extensive list of 

factors that can impact the performance of the score is provided along with a step-by-step 

guide for the PRS calculation. I provide an overview of findings that emanate by the PRS 

studies on several complex diseases and dedicate a section especially to AD. 

 
 
The detailed appraisal of the PRS literature led to the realization that existing research is 

mainly focusing on PRSs derived by case-control studies, whereas there is a lack of 

approaches that integrate disease-specific biomarker. Taking this observation into 

consideration, the second aim focuses on the development of AD-related endophenotype 

PRSs and their assessment as predictive tool of AD outcomes of interest. Here, I utilize the 

ADNI study to answer the question of how individual AD-specific endophenotype PRSs 

perform compared to a combined PRS, in terms of various aspects of disease pathogenesis 

and progression. As a first step, I use selected AD biomarkers to retrieve four 

endophenotypes: amyloid (A), tau (T), neurodegeneration (N) and cardiovascular (V). 

Endophenotype GWASs are performed and used for the development of four individual 

endophenotype-PRSs (PRSA, PRST, PRSN, PRSV) as well as one combined-PRS 
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(PRSATNV). A series of responses of interest, including dementia risk, dementia hazard, age 

at dementia diagnosis, and multiple biomarker trajectories, are studied for their association 

to each of the PRSs. Lastly, I provide a performance comparison between the individual 

and combined endophenotype PRSs. The findings point to the indication that, the level of 

genetic complexity and the implicated biological mechanisms of the responses that are 

linked to the combined PRS are different than these associated with the biologically more 

restricted individual endophenotype PRSs. 

 
 
Driven by this observation, I hypothesize that if biologically targeted PRSs can enhance 

the prediction of specific biomarkers then, incorporating pathway-level information in a 

PRS, might help capturing changes in different cognitive domains. Specifically, for the 

third aim I utilize data from the TLC study to examine the potential link between AD- 

specific pathway-PRSs and the BC post-treatment changes in six cognitive domains over 

the span of three years. The rationale behind this study lies in the previously observed link 

between the two diseases that pinpoints to shared biological pathways. For the purpose of 

this project, I generate seven pathway-PRSs based on genome-wide significant SNPs that 

have been previously strongly linked to AD and have been enriched to seven distinct 

biological pathways. Further association analysis examines the potential role of the 

aforementioned scores in the treatment-related cognitive changes of six domains, both 

cross-sectionally and longitudinally. The results returned significant association of post- 

treatment cognitive performance of older BC survivors with genetic risk linked to immune 

and endocytosis pathways. Each of these pathways was associated with a different set of 

cognitive domains. They also suggested worse executive function and visuospatial ability 
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for participants that were following chemotherapy±hormonal therapy rather than 

hormonal-only therapy. 

 
 
1.3 SIGNIFICANCE 
 
Determining an individual’s genetic susceptibility in complex diseases is not a trivial task 

as multiple variants are involved, each contributing a small portion of the overall risk. In 

addition, Alzheimer’s disease is characterized by phenotypic heterogeneity and highly 

unstable progression which further complicates the efforts early prediction and treatment 

development. Traditionally, case-control PRSs have been developed and utilized as tools 

of risk assessment, but it is challenging for such scores to provide any further insights 

regarding the disease’s pathogenesis and progression. 

 
 
This is the first study to investigate the potential of endophenotype-PRSs and its ability to 

ameliorate our understanding of complex diseases such as AD. As far as I know, currently 

there is no other publication about developing or studying AD-related endophenotype- 

PRS. Here it was shown that individual endophenotype-PRSs are beneficial for responses 

like amyloid and tau that are linked to specific biological function, but for responses that 

involve multiple biological pathways, like dementia risk and neurodegeneration, a 

combined/overall PRS is preferred. That information is important for several reasons. First, 

it suggests that there is no universal PRS that performs equally well in predicting every 

outcome of interest. Second, indicates that the biological function of the PRS SNPs is 

important and needs to be accounted for depending on the outcome one wish to study. This 

contradicts the established practice of using a single risk-based polygenic score (either 

based on the odds or hazard of the disease) for prediction of any type of disease outcome. 
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Based on data from older BC patients, it was also found that different cognitive domains 

are associated with dementia-related genotypic information. In the past, it has been 

observed that APOE risk can contribute to post-treatment cognitive impairment among BC 

survivors. In this work it was observed that, changes in executive function and visuospatial 

abilities are linked to immune-response genetic risk, whereas memory and language 

abilities are related to endocytosis-PRS. This further confirms that different type of 

information can be captured by aggregated genetic scores that embed SNPs with distinct 

biological characteristics. It also provides additional information regarding the biological 

function of the dementia-related genes that are possibly implicated in cognitive changes of 

BC individuals. Finally, it suggests mechanistic pathways that can be used to enhance the 

understanding of the cancer-induced cognitive problems. 

 
 
1.4 CONTRIBUTION 
 
The present work recognized the potentials of utilizing biomarker information in the 

development of polygenic risk scores, for promoting AD research. It offers opportunities 

for generating and studying novel hypothesis on the role of endophenotype-PRS in AD and 

other complex diseases. The synopsis of the existing PRS methods and the presentation of 

the elements that affect PRS’s predictive accuracy, can be utilized to support future efforts 

for methodological refinement and implementation. Furthermore, it can be of use to 

investigators that are interested in utilizing PRS to support their research. Endophenotype-

specific SNP weights derived by endophenotype GWASs, reflecting a risk which is 

biomarker-related rather than disease-status-related. Although AD biomarker GWASs 
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exist, endophenotype GWASs that represent a broader class of biomarkers, have not been 

previously reported. In addition to biomarkers that fall in the widely adopted A/T/N 

classification scheme, a cardiovascular biomarker was also considered in the PRS 

development. To the best of my knowledge, no other work has ever developed or studied 

the vascular-PRS before. The fact that both the endophenotype- and pathway- PRSs that 

were studied here, consist of SNPs with common biological characteristics, makes them 

highly interpretable. That could be a much-desired characteristic for PRS depending on the 

research question. The results obtained from pathway-PRS on BC survivors, can be utilized 

toward understanding the cancer-induced changes in different cognitive domains and assist 

with treatment decisions. Finally, another important remark that resulted by this 

dissertation the need for generating larger datasets that contain an extensive collection of 

AD biomarkers comparable to ADNI.
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Chapter 2 
 

PROGRESS IN POLYGENIC COMPOSITE SCORES IN ALZHEIMER'S AND 

OTHER COMPLEX DISEASES 

 
 

In this review chapter we will explore how polygenic approaches that incorporate the 

aggregate influence of multiple genetic variants can contribute to a better understanding of 

the genetic architecture of many complex diseases and facilitate patient stratification. 

Polygenic risk scores (PRS) can serve as tools which combined with other clinical 

measures, could enhance clinical study designs through enrichment strategies. This review 

addresses polygenic concepts, methodological developments, hypotheses, and key issues 

in study design. PRSs have been applied to many complex diseases and here we focus on 

Alzheimer’s disease (AD) as a primary exemplar. 

 
 
2.1 POLYGENIC LANDSCAPE OF COMPLEX DISEASES 
 
The hypothesis of multifactorial etiology of complex diseases has its roots in Fisher’s 1918 

quantitative demonstration that human variability in traits such as height and other 

biometric characteristics can be explained by the additive effect of multiple genetic factors 

[6]. In contrast to the single-gene etiology of Mendelian diseases, complex diseases are 

influenced by multiple gene variants and environmental factors [7]. The individual effects 

of these variants are usually very small [8] making determination of the genetic architecture 

of complex diseases challenging. Combinatorial genetic metrics such as the polygenic risk 

score (PRS) and its variations are designed to address these challenges.  

The PRS expresses the cumulative genetic risk for an individual as an additive function of 
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the effect of each genetic marker. Polygenic methods have been widely utilized to 

investigate many diseases, e.g., congenital malformations [9], breast cancer (BC) [10, 11], 

type 2 diabetes (T2D) [12], schizophrenia and other psychiatric disorders [13, 14], and 

Alzheimer’s disease (AD) [15, 16]. Use of PRS for risk stratification and classification is 

contributing toward the goals of precision medicine. This is enabled by advances in high- 

throughput genotyping and next generation sequencing (NGS) and the availability of large- 

scale genome-wide association studies (GWAS), which continuously expand the list of 

disease-related genetic markers [17]. Additional PRS applications include patient 

stratification [12, 15, 18, 19], exploration of genetic architecture [11, 20, 21], and studies 

of genetic overlap between traits [10, 13, 22]. 

 

Several review articles have been dedicated to facets of research on PRS [22-26]. Wray et 

al. [26] discussed some of the methodological aspects that influence PRS in the context of 

psychiatric disorders. Mistry et al. [24] systematically reviewed the association of 

schizophrenia-related PRS with different phenotypes; others mainly focus on disease- 

specific findings (e.g., [22, 23, 25]) or do not examine methodological factors related to 

the development and application of PRS. 

 
 
Here, we review key methodological issues to assist researchers interested in employing 

PRS for studies of complex disease and for clinicians interested in potential future clinical 

applications in precision medicine. We overview the state-of-the-art methods for PRS 

construction and discuss study design and disease characteristics related to performance. 

Finally, we provide an overview of the contributions of PRS to a wide spectrum of diseases 

and a detailed overview of applications to Alzheimer’s disease. 
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2.2 CALCULATION OF POLYGENIC COMPOSITE SCORES 
 
By combining the influence of each single nucleotide polymorphism into a single measure, 

the PRS represents the aggregate influence of the genetic variation. There are two 

approaches for PRS calculation: 1) simple sum of SNPs, and 2) weighted sum of SNPs 

(Figure 2.1). The first approach [10, 12, 27, 28] assumes an equal contribution of all SNPs 

to disease risk and is rarely realistic as some variants carry a much larger contribution to 

disease heritability (e.g., the APOE ε4 allele in AD [29]). In the weighted sum approach, 

each SNP is weighted by its estimated disease effect size, therefore accounting for its 

unique contribution to disease risk or outcome [10-16, 18-20, 30-57]. Next, we discuss 

SNP selection and weight estimation in more detail as these are two important 

methodological aspects of developing weighted PRS. 

 
 
2.3 SNP SELECTION 
 
The selection of candidate SNPs is critical because these variants constitute the building 

blocks of the PRS. A simple strategy is to retain all the SNPs without filtering. This may 

be effective for genetically underexplored diseases or diseases with many small to 

moderate SNP effects. However, the PRS’s performance may suffer by incorporating many 

non-informative or very weakly associated SNPs. Alternatively, one can retain a subset of 

SNPs based on predefined criteria (e.g., those passing an arbitrary p-value threshold in the 

GWAS results). 
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Figure 2.1: Polygenic risk score calculation. Step1) SNP selection, Step2) weight calculation: After 
selecting candidate SNPs for the score (with or without filtering), one can choose to not assign any 
weights to the SNPs (PRS is a simple sum of SNP alleles), to use the existing GWAS effect sizes as 
SNP weights, or to re-calculate the weights (re- weighting). In the case of re-weighting, new weights 
can be estimated by including the SNPs in a regression model (e.g., Cox). The resulting effect estimates 
will be the new weights for the PRS calculation. Penalization techniques (either frequentist e.g., Lasso 
or Bayesian e.g., LDpred) can also be used for re-weighting. These methods can achieve SNP selection 
and weight estimation simultaneously, by setting some of the SNP weights to zero. Penalization methods 
can be either applied on the filtered or on the original SNP list. 
 
 
This ad-hoc cut-off selection, however, may omit some informative markers with small 

effect size. Thus, the PRS-disease association may significantly vary under different 

thresholds [13, 35, 53]. 

 
 
Another challenge is redundancy of informativeness of variants, especially in the case of 

linkage disequilibrium (LD) where nearby SNPs have highly similar associations without 

adding further explanatory power. This can be addressed by SNP filtering techniques such 

as LD pruning followed by p-value thresholding. The majority of the SNPs in a LD block 

are removed by random pruning or clumping. The remaining SNPs are further filtered by 

thresholding their p-values. PRSice is an example of a software approach employing LD 

pruning for automated calculation of the PRS [58]. It allows SNP selection under a range 
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of p-value thresholds offering a more precise cut-off choice. One caution is that overfitting 

issues may arise based on threshold selection criteria [59, 60]. 

 
 
Stepwise regression can also be used for SNP selection [15, 49, 55, 56]. In this approach, 

a SNP is retained based on whether it significantly improves the model’s predictive ability. 

This purely statistical approach has the disadvantage of ignoring prior knowledge of LD 

structure and possible disease-variant relations. 

 
 
2.4 SNP-WEIGHT CALCULATION 
 
Another key factor for PRS performance is the choice of SNP weights. GWAS-derived 

statistics or risk estimations on an independent sample are commonly used as PRS weights 

[11, 15, 49, 56, 61]. A polygenic hazard score (PHS) extension of this approach that has 

been promising in AD research was reported by Desikan et al [11, 15, 49, 56, 61]. The 

PHS is also derived as a weighted sum of SNPs but in this case each SNP’s weight is 

expressed by a hazard ratio (HR) estimated using a survival model where SNPs are entered 

as predictors. 

 
 
GWAS genotypes in a PRS discovery sample may not be sufficiently representative of 

those in the validation or application set leading to attenuated performance of the PRS. 

Other factors that influence performance are LD and regression to the mean or “winner’s 

curse”. Adjusting SNP weights may help address these concerns. Next, we consider the 

two main approaches to optimized SNP re-weighting: 1) those based on Bayesian inference 

and 2) those based on frequentist inference.  
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LDpred [62] uses known LD structure as a prior to derive new SNP weights, without 

requiring raw genotype data or p-value thresholds. When applied on simulation data, 

LDpred demonstrated improved trait prediction accuracy compared to traditional methods 

without LD information [62]. AnnoPred [63] further improved LDpred, by assuming that 

each SNP’s biological identity contributes to the SNP-specific heritability. With this 

additional assumption and tested on 5 diseases, AnnoPred achieves higher precision in 

weight estimation (using functional annotation as a prior), better prediction accuracy of 

disease status, and better risk stratification ability, compared to LDpred [63]. Another 

Bayesian based method [44] is the doubly-weighted PRS, which addresses the “winner’s 

curse”. It weights each SNP by both its estimated effect on the trait and the probability that 

its p-value is less than a cut-off. In a study of prevalent T2D, inclusion of the doubly- 

weighted PRS in a logistic model showed significantly better fit than the model with the 

conventional GWAS-based weighted PRS. Although evidence was not presented in their 

study, the authors propose that, their method reduces “winner’s curse” bias compared to 

the conventional GWAS-based weighted PRS. The efficiency of the aforementioned 

methods is highly dependent on parameter tuning. An alternative Bayesian method that 

requires no parameter tuning [60] corrects a SNP effect by utilizing GWAS z-statistics and 

by assigning a probability for the SNP being not causal.  

 

Frequentist approaches, including shrinkage regression (e.g., Least Absolute Shrinkage 

and Selection Operation (Lasso) [64]) and linear mixed models (LMM) (e.g., GeRSI [65]), 

have also been utilized for PRS calculation. Shrinkage methods, which penalize the SNP 

effect estimates to avoid overfitting, show higher precision and power, compared to 
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univariate tests [66]. They can successfully handle LD, SNP interactions, and non-genetic 

covariates [67]. Lasso estimates minimize the sum of squared residuals and assign a penalty 

on the absolute sum of the predictors’ coefficients. Hence, less informative predictors are 

assigned smaller weights or removed from the model. Lassosum [68] is an example that 

applies a Lasso-type formula for SNP effect estimation. Despite the need for parameter 

tuning, it is computationally appealing and outperforms both pruning-thresholding and 

LDpred methods [68]. LMM, by contrast, treat the most significant SNPs as fixed effects 

with regard to disease status, and less significant SNPs as having random effects [65]. Here, 

the fixed effect SNPs are treated as parameters that need to be individually estimated, 

whereas the random effect SNPs do not require individual estimation since they are 

considered to be random variables with a common distribution. Both methods, however, 

are based on distributional assumptions of the genetic effects. Specifically, the shrinkage 

methods assume a skewed effect distribution, where the majority of the SNPs have small 

effects and only few have large effects; LMM assumes a normal distribution of effects. If 

these assumptions are violated, the PRS performance may suffer. To overcome this issue, 

“hybrid” methods such as Bayesian sparse linear mixed model’’ (BSLMM) [69, 70] and 

LMM-Lasso [69, 70] were developed that combine the LMM and regularization 

methodologies.  

 

Both Bayesian and frequentist methods can be further improved by embedding non-genetic 

information. For example, Sleegers et al [71] used age-specific odds ratio (OR) as APOE 

weight in the PRS and showed significantly improved discriminative power compared to a 

simple weighted score. The above referenced Desikan et al [15] PHS approach employed 
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age-specific PRS weights. Although SNP selection and weighting are key elements in PRS 

performance, other factors also play an important role. We next consider factors 

influencing power and accuracy. 

 
 
2.5 POWER AND ACCURACY OF POLYGENIC COMPOSITE SCORE 
 
In addition to the methodological factors discussed above, PRS performance is also 

influenced by study design. Here, we describe some of the factors that could negatively 

influence analysis results (Fig 2.2). Power and accuracy are positively correlated with 

sample size [63, 72]. For a highly heritable and loosely defined trait (e.g., heterogeneous 

psychiatric disorders), the sample size required to achieve the maximum possible area 

under the curve (AUC), is significantly smaller than that for a less heritable but strictly 

defined trait (e.g. specific cardiovascular diseases such as myocardial infarction or stroke) 

[17]. For less strictly defined diseases with larger the sample sizes, more “liberal” SNP p- 

value inclusion thresholds are required [73]. However, heterogeneity problems may arise 

as the sample size increases [17]. An alternative strategy to improve power is by varying 

the p-value thresholds for SNP selection. The optimal p-value threshold is determined by 

the underlying genetic architecture of disease and the sample size [17, 73]. For example, 

loosely defined traits will benefit more by a relaxed p-value threshold, compared to strictly 

defined traits (e.g., diseases with a small number of informative SNPs) [72] because the 

heritability of loosely defined traits spreads among a larger number of genetic markers and 

a relaxed cut-off allows more heritability to be explained. However, threshold increases 

should be made cautiously as these are usually accompanied by increases in Type I error 

and reduced power [73], and may lead to biased effect estimates with high levels of LD. In 



17  

contrast, a strict p-value cut-off will be more beneficial for strictly defined traits by 

eliminating non-informative SNPs [17]. 

 
 
Figure 2.2: Factors affecting PRS accuracy. Disease related factors (e.g., heritability, functional 
annotation, LD structure, and number of informative SNPs) as well as study design aspects (e.g., sample 
size, p-value threshold for SNP selection, and sampling variability), can affect the power and 
performance of the PRS. Given the hypothesis tested and the disease characteristics, the best PRS 
performance can be achieved by identifying the appropriate sample size, SNP selection threshold and 
LD handling approach. 
 

 

In some cases, the desired AUC for a given trait cannot be achieved using only genetic data 

and incorporation of additional information (e.g., functional annotation of the PRS markers 

[63] and pathway specific PRS [74]) may be beneficial. 

 
 
As in all research, study goals should be clearly and operationally defined. Since PRS is 

used either for association analysis or for individual prediction, the sample requirements 

vary in each case. Dudbridge [17] discusses sample size and power and suggests that 

sample sizes are adequate to ensure a well powered association study when independent 

datasets for training and testing are available. If the latter is not possible, 1:1 splitting ratio 
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between the two sets is advised [17]. In contrast, individual prediction requires a 

significantly larger training set compared to the testing set [17]. PRS may be unable to 

successfully discriminate risk groups when there are limited training sample sizes which 

attenuates precision in the PRS-explained variation [17]. 

 

Additionally, false positive results can occur from the presence of population stratification, 

due to systematic genetic differences among populations [13]. In multi-site studies or 

multi-ethnicity samples, the population structure should be controlled to avoid such bias. 

 
 
2.6 POLYGENIC RISK SCORE APPLICATIONS 
 
Existing research using PRS mainly focuses on two problems: 1) association analysis and 

2) outcome prediction. Although use of PRS has not achieved clinical accuracy levels yet, 

use of such composites has led to some interesting discoveries and shown potential in 

diseases like cancer [10, 11, 33, 47, 55], psoriasis [18], rheumatoid arthritis (RA) [18], 

multiple sclerosis (MS) [30], mental disorders [13, 14], atherosclerosis [46], T2D [12, 28, 

33, 44], asthma [27], Parkinson’s disease (PD) [20, 41], and cardiovascular diseases (CVD) 

[19] including coronary heart disease (CHD) [32]. 

 

Association analysis quantifies the relation between two sets of features such as phenotype 

and genotype (e.g., SNPs). In this context, PRS is used to assess the differential biology 

between disease types or stages [11, 14, 48], to identify risk strata [18], to assess treatment 

response [46] and to identify genetic overlap between diseases [10, 13]. Association of a 

simple sum PRS with T2D genetic risk strata found that, men and women in the highest 

PRS quantile had ~2.8 and ~2.2 times higher risk of developing T2D respectively, 
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compared to those in the lowest PRS quantile [12]. Similar findings were reported with a 

GWAS weighted PRS [12]. Another study showed that adopting a healthy lifestyle can 

reduce the CVD risk, regardless of the individual’s genetic background [19]. For 

participants with high genetic risk, those with healthy lifestyle had 46% lower risk of CVD 

compared to those with unhealthy lifestyle [19]. 

 

The PRS has also been employed to explore genetic overlap between different diseases, 

where the PRS derived from one disease is evaluated on another disease. Motivated by this, 

a multi-polygenic score [75] was proposed recently, where multiple PRSs from different 

GWASs are combined for outcome prediction. Compared to a single PRS, this method 

explained more variability when applied to three traits (i.e., BMI, educational achievement 

and cognitive ability). Its use is advised for situations with modest sample size [75]. 

 
 
As a tool for individual prediction, PRS has also shown potential in screening process. For 

example, in a study on aggressive prostate cancer (PCa) and using polygenic hazard score 

(PHS) it was observed that, males in high genetic risk (>98th centile) have almost triple 

PCa hazard, compared to those in average genetic risk [55]. For PCa patients who had 

undergone radical prostatectomy, PCa recurrence was predicted with AUC= 88.8% [47]. 

Moreover, the 10-year recurrence-free rate for those in high genetic risk is almost half 

(46.3%), compared to people in the lowest genetic risk group (81.8%). 
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The use of PRS in public health and medicine has significant potential. The above results 

indicate the potential role of PRS to serve as a biomarker relevant to treatment 

optimization. PRS can support primary prevention by quantitating the overall burden of 

genetic risk factors in various subpopulations and for risk stratification. In secondary 

prevention, PRS may help identifying high risk individuals who warrant screening for 

disease or enriched samples for clinical trials. In tertiary prevention, use of single or 

multiple PRS in a precision medicine framework may provide criterion for decisions about 

optimal medications and/or lifestyle interventions tailored to genetic risk and protective 

factors and for the avoidance of side-effects of specific treatments. 

 

2.7 POLYGENIC RISK SCORE IN ALZHEIMER’S DISEASE 
 
Late onset AD (LOAD) is a highly prevalent neurodegenerative dementia characterized 

pathologically by brain accumulation of amyloid beta (Aβ) plaques and neurofibrillary 

tangles composed of hyperphosphorylated tau. These classic pathological hallmarks of AD 

are only the most obvious manifestation and belie a broad array of pathophysiological 

changes affecting numerous systems within the brain and periphery. A small percent of 

AD cases, typically with an early onset (EOAD) and aggressive course, are monogenic 

with an autosomal dominant inheritance pattern. Over 95% of AD is genetically complex, 

highly heritable, and therefore well-suited to polygenic investigation including analysis of 

heterogeneity and subgroups to support development of a precision medicine approach. 

Since the mechanistic drivers of LOAD remains unclear, substantial effort is being 

dedicated to genetic risk score modelling for individual risk prediction and to a systems 

approach to understanding disease pathogenesis. 



21  

 
 
APOE ε4, the strongest genetic variant associated with increased risk and earlier onset of 

LOAD, only partially accounts for the estimated heritability [29]. The contribution of other 

genetic markers has frequently been highlighted by PRS [51, 71, 76, 77]. One PRS study 

including 19 non-APOE SNPs successfully stratified APOE ε4 carriers into risk subgroups 

where those with the highest scores exceeded the risk of those with the lowest score by 

62% [61]. Another PRS study using 31 non-APOE SNPs found that age at onset (AAO) of 

AD is modulated by the genetic score [15]. APOE ε3/ε3 carriers in the highest AD risk 

stratum, could progress to AD as many as 10 years faster than those in the lowest group 

[15]. Non-APOE PRS has also been associated with disease stage and progression (e.g., 

MCI-converters [34] and cognitively normal individuals [15, 36]), suggesting that genetic 

contributions to AD manifest in a stage-specific manner [36]. In addition, non-APOE PRS 

have been used for AD-patient classification [15, 51, 56, 61, 71, 76-80] and AD-subtype 

discrimination [36], which has helped to reveal diverse mechanisms underlying various 

AD subtypes. 

 
 
In addition to clinical indicators of disease status, endophenotypes such as cerebrospinal 

fluid (CSF) and MRI and PET imaging measures are important AD biomarkers. In most 

studies, their relation to the genetic composite score was either driven by the APOE [38] 

or could not be established [35, 38, 74, 81] (possibly due to low statistical power and a 

small number of SNPs in the PRS [39, 75, 81]). One study [16] observed that relaxing the 

SNP inclusion threshold from the conventional GWAS-based p<5x10-8 to a nominal 

p<0.01 led to several associations becoming significant, even after excluding APOE. This 
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result, however, was not replicated in other studies [36, 75]. The optimal threshold remains 

an open question and may be related to multiple factors as discussed above. 

 
 
Accepted CSF biomarkers for AD include Aβ1-42, total tau (t-tau), and phosphorylated tau 

(p-tau). However, the relation between genetic scores and these CSF biomarkers has not 

been consistent. Genetic association studies of Aβ1-42 with non-APOE PRS were not 

successful in the past [71, 74]. The evidence for the PRS’s relation to p-tau [71], t-tau [15, 

71] and p-tau/ Aβ1-42 ratio [77] remains limited. Recently, Desikan et al. [82] observed that 

their PHS was associated with increased intracranial Aβ plaque accumulation over time (p- 

value = 1.28x10−7). In another study [37], the variability explained for Aβ1-42 was increased 

by 1.8%, when in addition to APOE other markers were included in PRS. 

 
 
For neuroimaging measures, many studies have failed to detect a significant association of 

PRS with baseline AD imaging phenotypes (e.g., hippocampal volume) in cognitively 

normal older adults [81], young adults and older MCI individuals [80]. However, when 

older adults from 4 cohorts where combined into one large sample (>1,600 individuals), 

the same analysis revealed significant association of the PRS with the mean hippocampal 

volume at the baseline [80]. In a more recent study [15], PRS was associated with 

longitudinal volume loss, in both hippocampal and entorhinal cortex areas. In cognitively 

normal adults, a PRS was marginally associated with annual cortical thinning rates [57] 

and significantly associated with bi-annual hippocampal complex thinning rates [81]. 

 
 
Currently, PRS seems to be a useful tool for predicting the AAO of AD [15, 49, 71, 76, 77] 

for both sporadic late and early onset [77], even after excluding APOE. However, the 
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degree of prediction varies across studies. One unit increase in the non-APOE PRS is 

estimated to accelerate the AAO by 8 months to a year [76, 77]. Another study with >1,300 

AD patients suggested that a unit increase in PRS (22 IGAP SNPs, including APOE) 

decreases the AAO by up to 2.4 years [71]. As above, APOE ε3/ε3 homozygotes showed 

PRS strata differences in AAO can reach 10 years [15]. 

 
 
Using PRS, the maximum case/control classification accuracy level of most AD studies is 

~78% [51, 71, 77, 78]. Although PRS is not sufficiently accurate for clinical classification, 

more important applications are subtype stratification and prediction of disease trajectory. 

Prediction analysis requires larger sample sizes compared to association analysis [17] but 

the goal of prognostic prediction may be within range. The AD heritability explained by 

additive genetic effects as captured by GWAS is estimated to be 24%-33% [29, 83] with 

the majority attributed to APOE [82]. The sample size required to observe reliable PRS 

effect for prediction is a function of disease heritability [17]. The largest AD GWAS [84] 

included 25,580 AD cases and 48,466 controls. As sample sizes continue to increase 

rapidly the AUC is expected to soon reach levels acceptable for clinical application. 

Ongoing efforts to improve the accuracy and interpretability of PRS can also be expected 

to advance our knowledge about AD pathogenesis and help to identify new combinatorial 

diagnostic/biomarker strategy for the early intervention. 

 
 
 

2.8 CONCLUDING REMARKS 
 
Polygenic composite score approaches have been used to identify optimized sets of SNPs 

whose cumulative genetic effect can better identify susceptibility and predict AAO and 
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phenotypic features that characterize complex diseases. With applications in a wide range 

of disease, PRS, the most common genetic composite score, has promise for patient 

screening and genetic enrichment for therapeutic intervention trials. In AD research, PRS 

have contributed to risk stratification for early detection and helped to elucidate the genetic 

contribution to disease endophenotypes. 

 
 
Despite the advances in PRS methodologies discussed above, current polygenic composite 

score approaches have limitations, including extent of ability to account for disease 

heritability and insufficient development for full clinical deployment in precision 

medicine. A number of strategies may lead to better PRS performance (see Outstanding 

Questions). While current methods focus on additive effects and common variants, future 

approaches may incorporate the potential role of epistasis and gene-environment 

interactions, transcriptomic and epigenetic variation, and other patient information through 

combinatorial strategies. Recent advances in machine learning can be expected to improve 

PRS models. Another limitation is interpretability. PRS reflect enriched pathways but the 

downstream mechanisms through which they influence disease is not identified. New 

computational biology tools and databases can be expected to enhance interpretation of 

polygenic effects. Future polygenic models developed in relation to quantitative 

endophenotype data from disease specific biomarkers hold promise for clinically and 

mechanistically useful prediction. We can look forward to further development of these 

methods to support the evolving precision medicine of complex disease. 
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Chapter 3 
 

ENDOPHENOTYPE-BASED POLYGENIC RISK SCORES: PREDICTION OF 

BIOMARKER AND CLINICAL PROGRESSION AND DEMENTIA 

 
 
In its most simple version, PRS is a weighted sum of alleles frequencies, but this might not 

be the most efficient formulation, especially for complex diseases. In the previous chapter 

we went over several factors, some data-related and some methodology-related, that could 

have a significant on impact the performance of the score. We overviewed approaches 

concerning re-adjustment of the original SNP-weights, some of which incorporate 

biological-relevant information of the SNPs. We came across approaches that showcasing 

the benefits of incorporating biological-relevant information in the PRS, including their 

increased interpretability. By studying the existing literature on PRS exploitation in AD, 

we came to the realization that most effort is focused on case-control PRS refinement and 

application, and there is only limited evidence on how biological-relevant information 

could contribute to the understanding of AD-related outcomes. 

 
 
3.1 INTRODUCTION 
 
According to the multifactorial etiology [85] for complex diseases, the phenotypic 

variability can be explained by the additive effect of multiple genetic factors. A PRS is a 

mathematical formulation of this hypothesis, being a single combinatorial measure of 

multiple individual genetic effects that express an individual’s overall genetic liability [5, 

86]. In Alzheimer’s disease, PRS studies have focused primarily on risk and prognosis [15, 

74, 78, 86-91], with the majority focusing on late onset AD (LOAD) based on large case-
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control genome wide association studies (GWAS). However, the increased phenotypic and 

genetic heterogeneity among LOAD patients calls for more personalized solutions and 

thus, for approaches that integrate biologically relevant genetic information [15, 74, 89, 

92-94]. Here we employed AD endophenotype-specific GWAS to develop individual and 

combined endophenotype-PRSs. Our goal was to investigate the potential of 

endophenotype-PRSs for prediction of biomarker progression and prognosis of dementia. 

 
 

3.2 MATERIALS AND METHODS 
 
Briefly, in this work we first studied whether the individual endophenotype and combined 

endophenotype-PRSs can capture the risk of dementia (expressed as both odds ratio and 

hazard ratio) and the age of dementia diagnosis. Next, we tested the potential of 

endophenotype-PRS to capture the genetic risk beyond APOE by examining differences in 

dementia risk and median survival among ε3/ε3 participants. Finally, we computed linear 

mixed models to determine the relationship with longitudinal trajectories of known AD 

endophenotypes. 

 

 
3.2.1 STUDY POPULATION 
 
For the analysis, we used data from the publicly available ADNI1,GO/2 study [95]. ADNI 

is a multisite study that aims to track the progression of AD across the entire spectrum to 

discover new biomarkers, understand the relations between them, and develop treatments 

and optimize clinical trial measures. Since 2003, ADNI has collected clinical, imaging, 

genetic and biospecimen data for individuals over the age of 55 within the U.S and Canada. 
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For the purpose of developing endophenotype-PRSs, we focused on 11 biomarkers from 

ADNI1,GO/2, each biomarker representing either amyloid, tau, neuronal or vascular 

pathology (Figure 3.1). From the 1,550 individuals available, only 585 participants had 

complete baseline information on all 11 biomarkers of interest. Of these 585 participants, 

80% were used for training, 20% for validation, and the remaining 965 participants were 

used for testing (Table 3.1) [96]. Diagnosis was based on clinical criteria and consisted of 

five different categories: cognitively normal (CN), significant memory concerns (SMC), 

early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI) and 

demented (Dem), with dementia being characterized as participants whose diagnosis was 

based on clinical rather than pathological evidence [97]. 

Table 3.1: Data description 
 

Characteristic Full Training Validation Testing 

Count 1550 468 117 965 
Age     

Mean 73.4 72.2 71.6 74.4 
Range 47-91 47-91 55-88 54-90 

Gender (%)     
Male 59.3% 53.5% 50% 58.8% 
Female 40.7% 46.5% 50% 41.2% 

 Baseline Final Baseline Final Baseline Final Baseline Final 
Diagnosis (%) Diagnosis Diagnosis Diagnosis Diagnosis Diagnosis Diagnosis Diagnosis  Diagnosis 

CN 23.7 22.1 21.8 22.1 19.5 22.0 24.2 21.5 
SMC 6.0 5.7 12.0 11.6 11.9 11.9 2.4 2.2 
EMCI 18.0 17.5 29.8 26.6 32.2 26.3 10.4 11.9 
LMCI 33.1 20.0 18.6 10.9 18.6 11.0 41.5 25.8 
Dem 19.2 34.7 17.8 28.9 17.8 28.8 21.5 38.7 

 
 
 
3.2.2 BIOMARKER PCA 
 
We focused on integrating information from 11 biomarkers that fall under the A/T/N/V 

framework [97]. This is an expansion of the A/T/N framework [98], which was developed 

to reflect the pathophysiology progress of the disease and thus, provide a better 

understanding of its clinical stages. The set of biomarkers that we selected for PRS 

development is presented in Figure 3.1. These include CSF and PET amyloid (A), CSF tau 
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(r2=0.1, window=1K kb) 

    AT 
 
 
 

     

 

(T), MRI and FDG-PET (N) from selected regions of interest (ROI), as well as white matter 

hyperintensity (V). To summarize the information from these biomarkers, we performed 

principal components analysis (PCA) simultaneously on the residuals of all 11 biomarkers 

that were first pre-adjusted for age, sex, years of education, and the first two genetic PCs 

that controlled for population stratification. PCA was applied on the 585 individuals with 

full baseline biomarker data (Figure 3.1). For each participant, the baseline was defined as 

the first time point with available measurements for all 11 biomarkers. The analysis 

returned 4 components, each representing one biomarker group (A, T, N, and V). 

 
 
 
 

Amyloid (A) Tau(T) Neurodegen eration (N) Vascular (V) 

1. CSF-amyloid 
2. PET-amyloid 

3. CSF-tau 
4. CSF-ptau 

MRI FDG-PET 11. White matter 
hyperitensity (WMHI) 5. Medial temporal lobe 

6. Medial lateral lobe 
7. Hippocampal volume 

8. Cingulate 
9. Angular gyrus 
10. Temporal lobe 

 
 
 
 
 
 

Figure 3.1: PRS calculation steps 
 
 
 
3.2.3 SINGLE NUCLEOTIDE POLYMORPHISM (SNP) FILTERING 
 
For each of the 4 endophenotype components obtained, we ran GWASs on the same 585 

participants that had been used for the PCA step (Figure 3.1). The genotype data were HRC 

imputed, with a total number of 5,406,481 SNPs. The GWASs results have been filtered 

based on a range of p-value cut-offs (5e-05, 8e-05, 1e-04, 8e-04, 1e-03, 5e-03, 1e-02). To 

address the linkage disequilibrium problem (LD), we performed clumping using PLINK 

on SNPs with MAF≥5%, r2=0.1 and window=1K kb. From the APOE region (defined as 

1Mb up and downstream of the gene position, 44,409,039 to 46,412,650) only rs429358 
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and rs7412 were retained. 

 

3.2.4 FURTHER SNP FILTERING AND SNP WEIGHT CALCULATION 
 
In addition to p-thresholding, we further filtered the SNPs by applying Lasso [99], a type 

of penalized regression. At each p-threshold and for each biomarker component, Lasso 

returned a list of SNPs and their corresponding weights. The Lasso penalty was determined 

by tuning the lambda parameter using 10-fold cross-validation. The criterion for optimal 

lambda selection was minimization of the mean square error (MSE). While shrinkage was 

applied to SNPs, the baseline age, sex, years of education, and the two APOE SNPs, 

rs429358 and rs7412, were not subject to penalization. To increase the stability of the 

result, Lasso was repeated on 100 bootstrap samples from the training set, returning at each 

iteration a list of SNPs and SNP weights. The final SNP list was obtained by retaining the 

most frequently selected SNPs (selection frequency ≥	80%, Figure 3.1). 

 
 
According to the literature, re-weighted SNP coefficients may achieve improved PRS performance 

[15, 68] compared to the traditional case/control GWAS SNP effects. Because Lasso estimates tend 

to be biased [100], we followed a two-step procedure by refitting a linear regression model on the 

Lasso selected SNPs. The regression model was adjusted for the covariates, age, sex, and years of 

education and was performed separately for each of the four endophenotype components. The 

process was bootstrapped 100 times on the training set, and the final PRS SNP weight was 

calculated by averaging the corresponding regression coefficient over the 100 bootstrap iterations, 

as described in equation (1). Here, 𝑤! is the new weight for SNP s, 𝑖 is the bootstrap iteration index,  

𝑁 is the total number of bootstrap iterations (in this case 𝑁 = 100), and 𝑐𝑜𝑒𝑓!" is the regression 

coefficient for the SNP s at the 𝑖th iteration. 
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3.2.5 INDIVIDUAL AND COMBINED BIOMARKER-PRS 
 
At each p-threshold and for every participant 𝑗, we calculated four individual 

endophenotype-PRSs (PRSA, PRST, PRSN, PRSV) based on equation (2). The PRS was 

expressed as the sum over the weighted number of alleles per SNPs. Specifically, for the 

𝑗&' individual, the endophenotype 𝑏 PRS (𝑃𝑅𝑆()) was obtained by multiplying the minor 

allele count 𝑑!) of the SNP s by the SNP weight 𝑤! (described in equation 1). 

 𝑃𝑅𝑆() =%𝑤!𝑑!)

*!

!$%

 (2) 

 
Finally, we generated two combined endophenotype-PRSs (PRSATNV, PRSAT) for each 

individual. The PRSATNV was expressed as the weighted sum of the individual 

biomarker- PRSs as shown in (3). In equation (3), 𝑃𝑅𝑆( is the individual endophenotype-

PRS as described in equation (2). To obtain the weights 𝑤(, we used the training set to 

regress each of the four endophenotype components on the corresponding 𝑃𝑅𝑆( while 

controlling for age, sex and years of education. The final weight 𝑤( for each 𝑃𝑅𝑆( was the 

average coefficient over 100 bootstrap iterations. A similar approach was followed for 

generating the PRSAT. 

 𝑃𝑅𝑆+,#- =% 𝑤(𝑃𝑅𝑆(
(∈{+,,,#	,-}

 (3) 
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3.2.6 PRS THRESHOLD SELECTION 
 
Deciding on the GWAS p-threshold is important as it directly affects the number of SNPs 

to be considered in a PRS and subsequently the performance of the score. To select the 

optimal p-threshold and thus the final PRS for the remainder of the analysis, we assessed 

the prediction performance of the endophenotype-PRSs on the validation set for each of 

the seven p-thresholds. Specifically, we obtained the adjusted variance explained (Adj.R2) 

by regressing each endophenotype on the corresponding endophenotype-PRS while 

controlling for baseline age, sex and years of education. The average Adj.R2 over 100 

bootstrap iterations indicated the best overall p-threshold. 

 

 
3.2.7 DEMENTIA RISK IN RELATION TO PRS 
 
To study the association between the six PRSs and the risk of dementia, we ran a logistic 

regression model, treating the PRS as a predictor while adjusting for the centered covariates 

of age, sex, and years of education. In the model described here, age was defined as either 

the age of clinical diagnosis of dementia or the age at the last clinical visit for the non- 

demented participants. To simplify the interpretation, the PRSs, originally ranging from 0 

to 1 with values closer to 1 indicating higher risk, were multiplied by 10. Among the 585 

participants of the training set, 367 individuals that were either CN, SMC or Dem were 

used for model training. Having estimated the odds of AD for each PRS, we replicated the 

results on 712 individuals from the testing set, after excluding MCI patients. As an 

additional step to assess the predictive ability of SNPs beyond APOE, we obtained the risk 

of developing dementia among 𝜀3/𝜀3 participants. 
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3.2.8 DEMENTIA HAZARD AND AGE TO DEMENTIA DIAGNOSIS IN 

RELATION TO PRS 

Other statistical measures of interest in AD research include the hazard of dementia and 

the age of dementia onset. To assess the strength of the relationship between these measures 

and the biomarker PRSs, we ran a Cox proportional hazard (PH) model, which was trained 

using 367 individuals from the training set. The “event” was considered the diagnosis of 

dementia (clinical manifestation), and age at dementia diagnosis (AAD) was treated as 

survival time in the model. PRS was used as a predictor in the model, after adjusting for 

the years of education and sex. To simplify interpretation, the PRSs were multiplied by 10 

and education was centered. The PH assumption was tested using the cox.zph() function in 

R. To get predictions of the age at dementia diagnosis among the Dem cases, we predicted 

the survival curves using the Cox model that was previously applied on the training data. 

The actual and the predicted age to dementia were divided into deciles. The relationship 

between the predicted age and actual age of dementia onset was assessed using Pearson 

correlation (r). The analysis was replicated on 712 non-MCI individuals from the test set 

as well as on the 𝜀3/𝜀3 participants. 

 

 
3.2.9 PRS FOR BASELINE LEVELS AND LONGITUDINAL TRAJECTORIES 

OF RESPONSES OF INTEREST 

In addition to dementia risk prediction, which may be useful at the prevention stage, 

information about disease progression and key outcomes are also important. Here, we 

assessed the baseline and longitudinal effects of PRSs on 14 responses of interest. These 

included three cognitive measures (ADNI-MEM, ADNI-EF and FAQ), as well as 11 
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biomarkers that were described earlier (Figure 3.1). For each of the 14 responses, we 

applied a random intercept linear mixed model to account for the correlation between 

repeated measurements. The data were aligned for all participants, with time 0 representing 

the first visit when a measurement was available for each biomarker. All biomarkers were 

transformed to range between 0 to 1, and MRI biomarkers were pre-adjusted for 

intracranial volume (ICV). Whenever necessary, the biomarkers were log10 transformed. 

The model was adjusted for sex and centered covariates, including years of education and 

baseline age. Fixed effects included years since baseline, as well as the PRS and their 

interaction. To simplify interpretation, the PRSs were multiplied by 10. The random 

intercept term allowed for varying intercepts among the participants. The performance was 

assessed by the Nakagawa’s marginal pseudo-R2 on the testing set. The significance of the 

increase in the pseudo-R2 was assessed by ANOVA, which compared the (full) model, PRS 

and its interaction with time, to the (base) model, which contained covariates only. The p- 

values of the main PRS effect (baseline effect) and the interaction effect (longitudinal 

change) were corrected for multiple comparisons. Specifically, for each endophenotype, a 

Bonferroni correction was applied to account for testing against six PRSs (Bonferroni p- 

value=8.3e-03). 

 

3.3 RESULTS 
 
 
3.3.1 PRS CALCULATION 
 
The best PRS performance was achieved for the GWAS p-value threshold of 8e-04, based 

on the average Adj.R2 over 100 bootstrap iterations. Because that was the best threshold 

for all biomarkers, except for vascular, we considered it to be the overall optimal p- 
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threshold. At this optimal threshold, the number of PRS SNPs (including the APOE SNPs 

rs429358 and rs7412) was 145 for PRSA, 166 for PRST, 160 for PRSN and 159 for PRSV. 

The PRSs calculated at the specific threshold were used in steps for the remaining analysis. 

 
 
3.3.2 DEMENTIA RISK IN RELATION TO PRS 
 
On the training set, the strongest association between clinically diagnosed dementia and 

PRS was observed for PRSN followed by PRSATNV. For the former, a 0.1 unit increase in 

the PRSN increased the odds of dementia by 4.5 times (OR=4.5, P=1.28e-20), whereas for 

the latter, the OR of Dem was 3.38 (P =9.96e-24). The results were validated on the testing 

set including all APOE groups (PRSN: OR=1.29, P =4.8e-04; PRSATNV: OR=1.52, 

P=1.03e-07). To demonstrate the information provided by the SNPs beyond APOE, we 

examined the strength of the association among 𝜀3/𝜀3 carriers and observed a significant 

OR of 4.7 (P =1.45e-08) for PRSN and 2.76 for PRSATNV (P =7.58e-10) on the training set. 

On the 63/63	testing group, neither PRSN nor PRSATNV effects were significant (PRSN: 

OR=1.13, P >0.1; PRSATNV: OR=1.19, P >0.1). 

 

3.3.3 DEMENTIA HAZARD AND AGE TO DEMENTIA DIAGNOSIS IN 

RELATION TO PRS 

On the training set, the strongest association between dementia onset and PRS was 

observed for PRSAT followed by PRSATNV. For the former, the rate of being clinically 

diagnosed with dementia at any time point was increased by 67% for each 0.1 unit increase 

of the PRSAT (P =3.52e-26), whereas for the latter, the hazard ratio (HR) of AD was 1.62 

(P =2.04e-25). Both associations were replicated on the test set (PRSAT: HR=1.24, 
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P=5.97e-07; PRSATNV: HR=1.20, P=2.08e-05). Among 𝜀3/𝜀3 carriers of the training set, 

both PRS effects were significant (PRSAT: HR=1.53, P=4.74e-06; PRSATNV: HR=1.58, 

P=3.49e-08). We additionally obtained a 10-year difference in the median AAO between 

the extreme PRSAT quartiles (PRSAT,Q1 ≤	0.29, PRSAT,Q4 ≥0.60) of the 𝜀3/𝜀3 in the 

training set (Figure 3.2A; AAD: 76 for Q4 and 86 for Q1). 

 
 

 
Figure 3.2: Survival curves among ε3/ε3 individuals in the training set. Dashed lines represent the median 
age to dementia. (A) Results by PRSAT quartiles. (B) Results by PRSATNV quartiles. 
 
 
For PRSATNV the median AAD was 86 in Q1 and 74 in Q4 (PRSATNV, Q1 ≤	 0.33,  

PRSATNV, Q4 ≥	 0.63) (Figure 3.2B). The significance of the AAD prediction was not 

replicated in the test set. For all the results reported here, the proportional hazard (PH) 

assumption was met. Finally, we evaluated the scores’ performance in predicting the AAD 

by observing its association with the actual AAD. The association was observed among 

deciles of the predicted and observed AAD. For the training set, the Pearson correlations 

were rAT = 0.83 (P=2.7e-03) and rATNV = 0.78 (P=7.4e-03). For the testing set, the 

correlations were rAT = 0.76 (P=1.2e-02) and rATNV = 0.64 (P=4.6e-02). 

 

 

 

  

Age to Dem  Age to Dem 
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3.3.4 PRS AND LONGITUDINAL TRAJECTORIES OF COGNITIONAL AND 

BIOMARKER RESPONSES 

We compared the percentage variance explained for the mixed model with and without 

PRS and assessed the change using ANOVA to test between the two models. The results 

on the test set are presented in Table 3.2. 

Table 3.2: Marginal Variance explained (R2) increase due to endophenotype-PRS. Longitudinal analysis 
results using PRS that includes APOE. Results on the ADNI1,GO/2 test set. 
 

Endophenotype Base model PRSA PRST PRSN PRSV PRSAT PRSATNV 

ATNV-related endophenotypes        

Roche_CSF_ABETA 0.93% 9.22% 1.98% 1.12% -- 8.82% 7.96% 
AV45_WC_SUM 0.70% 11.25% 4.08% 2.48% 0.58% 12.38% 12.76% 
Roche_CSF_TAU 2.06% 1.55% 6.37% -- 0.09% 5.47% 4.50% 
Roche_CSF_PTAU 1.23% 2.40% 7.10% -- 0.07% 7.00% 5.41% 
MeanLatTemp_ThxAvg 11.19% 0.26% 0.68% 0.74% 0.09% 0.69% 1.22% 
MeanMedTemp_noLingual_ThxAvg 12.30% 0.77% 1.29% 1.18% 0.11% 1.57% 1.78% 
Hippocampus_Vol 13.72% 1.86% 1.48% 0.52% 0.20% 2.78% 2.17% 
FDG_TempLobe 3.10% 1.65% 2.82% 1.11% -- 3.51% 4.20% 
FDG_AngGyrus 3.62% 1.41% 2.21% 0.82% -- 2.88% 3.58% 
FDG_Cingulate 6.00% 1.41% 1.74% 1.19% 0.54% 2.57% 3.90% 

WMHI 5.84% 0.30% -- 0.13% 0.40% 0.28% 0.40% 
Not ATNV-related endophenotypes Base model PRSA PRST PRSN PRSV PRSAT PRSATNV 

ADNI_MEM 8.14% 1.71% -- 1.08% -- 1.79% 2.29% 
ADNI_EF 8.62% -- 0.65% -- -- 0.40% 0.51% 
FAQ 4.52% 1.12% 1.35% 0.95% -- 2.02% 2.28% 

Base mixed model 𝑌	= β0 + β1t + covar + (1|ID) 

Full mixed model 𝑌= β0 + β1t + β2 PRS + β3 (PRS*t) + covar + (1|ID) 
Overall increase represents the increase caused due to inclusion of PRS and its interaction with time all together 
Dashes indicate that the overall R2 increase compared to the base model (covariates ony) was not significant (ANOVA p-value> 0.05) 

 
For CSF- amyloid, tau, and p-tau, the individual endophenotype-PRSs for amyloid, and tau 

(PRSA, PRST) resulted in the highest improvement of the explained variance for the 

corresponding biomarkers. This improvement was statistically significant after correcting 

for multiple comparisons (Table 3.2). By examining the significance of the PRS terms in 

these models, we noticed significant main effects for the PRS, but the interaction terms 

were insignificant for all three biomarkers (Table 3.3). Significant interaction for both tau 

biomarkers was achieved by PRSATNV, although this was not the optimal score in terms of 

variance explained (Table 3.2, CSF-tau: R345"#$%
6 = 4.50%; CSF-ptau: R345"#$%

6 = 5.41%). 

When studied separately, PRSA and PRSV showed a negative relation to both tau measures 
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(CSF-tau: Time×PRSA: P=6.5e-03; Time×PRSV: P=5.5e-03; CSF-ptau: Time×PRSV: 

P=2.3e-03; Time×PRSATNV: P=5.9e-02). On the other hand, PET-amyloid, MRI and FDG- 

-PET biomarkers, as well as memory and FAQ had stronger associations to combined- PRSs 

(Table 3.2). Exception to that were PET-amyloid and MEM, where levels were strongly 

linked to the combined PRS levels both at the baseline and longitudinally (Table 3.3), even 

after correcting for multiple comparisons (Table 3.3).  

Table 3.3: P-values for endophenotype-PRS and its interaction with time. Longitudinal analysis results 
using PRS that includes APOE. Results on the ADNI1,GO/2 test set. 
 

Endophenotype With APOE 

 
ATNV-related endophenotypes 

 
Best PRS 

Main Effect 
( β2) 

Interaction 
( β3) 

Roche_CSF_ABETA A -0.04** -- 
AV45_WC_SUM ATNV 0.05** -- 
Roche_CSF_TAU T 0.04** -- 
Roche_CSF_PTAU T 0.05** -- 
MeanLatTemp_ThxAvg ATNV -0.01** -1.8e-03** 
MeanMedTemp_noLingual_ThxAvg ATNV -0.02** -3.3e-03** 
Hippocampus_Vol AT -0.01** -1.2e-03** 
FDG_TempLobe ATNV -0.03** -4.1e-03** 
FDG_AngGyrus ATNV -0.02** -2.4e-03** 
FDG_Cingulate ATNV -0.02** -2.7e-03** 

WMHI V 0.01* -- 

 
Not ATNV-related endophenotypes 

 
Best PRS 

Main Effect 
( β2) 

Interaction 
( β3) 

ADNI_MEM ATNV -0.02** -- 
ADNI_EF T -0.01* -- 

FAQ ATNV 0.05** 4.1e-03** 
Mixed model 𝑌= β0 + β1t + β2 PRS + β3 (PRS*t) + covar + (1|ID) Dashes indicate 
insignificant result (p > 0.05) 
** p< 8.3e-03 (Bonferroni correction by biomarker p-value: 0.05/6=8.3e-03) 
* p< 0.05 

 
Overall, most of the associations studied here remained significant within the ε3/ε3 

training set, but none of the neurodegeneration markers reached significance on the ε3/ε3 

testing set. FAQ was the only cognition measure that remained significant, even among 

the ε3/ε3 individuals of the test set. 
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3.4 DISCUSSION 
 
We developed individual and combined endophenotype-PRSs and evaluated their 

association with dementia risk, age at dementia diagnosis and biomarker trajectories. 

Combined endophenotype-PRSs led to significantly higher dementia hazard and 

specifically accelerated the median AAO among ε3/ε3	participants up to 12 years. Finally, 

PRSA and PRST, which were AD-specific, were better predictors of amyloid and tau 

biomarkers, while combined endophenotype-PRSs were better predictors of 

neurodegeneration. 

 
 
We showed that PRSs based on specific AD biomarkers can be used to assess dementia 

risk and prediction of biomarker trajectory [101]. In addition, we found that the progression 

of pathophysiological biomarkers and cognitive decline have a stronger association with 

the combined-PRSs, compared to the more biologically restricted individual 

endophenotype-PRSs. A possible explanation is that the combined-PRSs accounts for the 

effect of SNPs related to multiple endophenotypes and thus, better captures the multiple 

biological mechanisms implicated in these biomarkers. The insignificant interaction effects 

of time with PRSA and PRST, when modeling the CSF amyloid and tau trajectories 

respectively (Table 3.3), may indicate that the observed increase in explained variance was 

likely driven by the strong association of these scores with the corresponding baseline 

biomarker levels. One the other hand, the significant PRSATNV × Time interaction for CSF- 

tau and CSF-ptau may emanate from the amyloid and vascular terms integrated in 

PRSATNV, which seem to have a negative association to both tau trajectories. This could 

support the idea that different PRSs may be preferred, depending on whether we are 
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interested in predicting cross-sectional differences or differences in the rate of change. 

Lastly, we provided significant evidence for genetic risk beyond APOE by replicating the 

previously observed differences in the age of dementia onset among ε3/ε3	 	participants 

[15]. 

 
 
In this study, we found that PRS accounts for biologically relevant information that may 

elucidate the level of genetic complexity of AD endophenotypes and related outcomes. 

Superiority in performance of combined-PRSs compared to individual-PRSs may indicate 

greater complexity in the underlying biological mechanisms of the response of interest, 

which may be indicative of the additional genetic information incorporated in the 

combined-PRS. While the intention in generating endophenotype-PRSs was partially the 

improvement of PRS’s interpretability, other scores with the same goal have been 

developed. Pathway-PRS is one such score, which attempts to increase interpretability by 

inclusion of SNPs that are part of a specific biological pathway [74, 92, 101]. Despite the 

seemingly similar rationale between the proposed individual endophenotype-PRS and 

pathway-PRS [74, 92, 101], there are also major differences. For example, the existing 

pathway-PRSs are developed based on case/control GWAS that may fail to identify SNPs 

related to important biomarkers [102]. This might be especially plausible when the disease 

endophenotypes are closer to the molecular mechanism than the disease status, in which 

case endophenotype-GWASs may have greater utility in identifying biomarker-related 

SNPs [102]. Pathway-PRS also requires apriori knowledge about the disease pathways and 

the SNPs belonging to that pathway, which may restrict the number of informative SNPs 

in the PRS and thereby the results of the analysis [5]. In contrast, the endophenotype-PRS 
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identifies biomarker-related SNPs through endophenotype-GWAS, allowing multiple 

biological pathways associated with that biomarker to enter the score at once. 

 
 
In this work, we provided a comprehensive comparison between individual and combined 

endophenotype-PRSs based on ADNI data. However, our work is not free of limitations. 

First, there was a limited sample size for PRS development, as ADNI is the only publicly 

available study that offers such an extensive collection of AD-related biomarkers. Limited 

sample size is also a barrier because the data had to be further split into training and testing 

conditions. However, as more participants are recruited, the power of the analysis will 

improve. The limited discovery sample may also explain our failure to observe a significant 

AAO difference among the ε3/ε3		participants in the testing set. Second, although part of 

the ADNI1,GO2 was kept separate and used solely for replication, it is still included in the 

same cohort that was used for PRS development. Replication of these results in completely 

independent data sets is necessary and should be pursued when data availability permit. 

Third, ADNI is not ideal for building vascular-PRSs because individuals with more severe 

cerebrovascular disease are typically excluded. A better vascular-PRS should be derived 

using a more appropriate data set enriched for cerebrovascular disease. 

 

To conclude, our study suggests that PRSA and PRST are AD-specific as they have the best 

performance in predicting amyloid and tau biomarkers, whereas the combined PRSs are 

more general and preferred for predicting neurodegeneration. Also, further analysis of the 

endophenotype-PRSs could offer functional insights and promote treatment development. 

Specifically, in the context of precision medicine, endophenotype-PRSs could be used for 
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generating more specific genetic risk profiles for prospective trial enrollees that are 

specifically aligned with measurable biomarkers thought to reflect disease status. In the 

future, individual endophenotype scores could be utilized to study the genetic 

heterogeneity among individuals at risk for dementia, which could potentially provide 

useful information about the observed variability in the disease’s clinical manifestation and 

further support the necessity for individualized treatment. 
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Chapter 4 
 

INVESTIGATING THE LINK BETWEEN CANCER-RELATED COGNITIVE 

OUTCOMES AND ALZHEIMER’S PATHWAY POLYGENIC RISK SCORES 

AMONG OLDER BREAST CANCER SURVIVORS 

 
 
We further extended the concept of biologically informed PRS, by utilizing pathway-level 

information of genome-wide significant AD SNPs to predict cancer-induced cognitive 

changes. An increasing number of studies indicate a potential link between the two diseases 

with cancer survivors developing cognitive changes and with biological pathways and 

genetic markers shared by both diseases. But overall, the findings about this relation are 

contradicting with some studies identifying a positive relation between the risk of the two 

diseases and some a negative relation. To the best of my knowledge, some work has been 

done studying the relation of cancer-related-cognitive impairment and neurodegeneration- 

related genes, but this has only been explored on individual gene level. Here we expand 

this effort by testing the association between breast cancer-related cognitive changes and 

the aggregated genetic effect of AD-related markers. AD related genetic profile could 

further support BC treatment allocation decisions by evaluating a patient’s risk for high 

cognitive deficits. 

 
 
4.1 INTRODUCTION 
 
Cancer-related cognitive impairment is a common phenomenon among BC survivors 

[103]. The advancing cancer treatments and the fact that cancer is a disease which mainly 

affects older populations, will result in an increasing number of survivors whose cognitive 
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aging will be affected by cancer and/or cancer-treatment. Studies have shown that the 

duration and rate of the cognitive decline varies by systemic treatment [103-105] and 

potential models for this decline have been proposed [106]. Another factor that could 

potentially contribute to cancer-related cognitive deficiency is AD. Currently, the potential 

link between cancer and AD is obscure [104, 107] with contradicting findings regarding 

the directionality of this relationship [108-110]. Several shared pathways have been 

identified between cancer and AD with some being inversely regulated in the two diseases, 

which could support the protective relationship that some studies report [109, 111]. 

However, the mechanistic underpinnings remain unclear [109] and causal inference is not 

trivial as several factors may bias the study results [104]. Genetic overlap between AD and 

caner may help disentangle this link [104]. Several genetic polymorphisms have been 

associated both with cognitive decline and cancer, including APOE [106, 112]. APOE is 

the strongest genetic risk factor for AD and seems to affect the cancer-related cognitive 

function as well [105, 113, 114]. Older populations are more vulnerable to cognitive 

declines, since aging is a well-established risk factor of cognitive decline and APOE effect 

seems to be age-dependent [115-117]. Thus, is important to focus on older survivors and 

controls to assess the effect of age [105]. Here we extended a previous work [105] 

regarding the APOE effect on the cancer-related-cognition-impairment among TLC 

participants, by accounting for multiple AD-related genetic factors simultaneously through 

AD-specific pathway polygenic risk scores (PRSs) [5]. For improved interpretability of the 

findings and to promote the understanding of the shared biological mechanisms, we used 

pathway-PRSs [92]. In the past associations between pathway-PRSs and other dementia- 

related outcomes, such as dementia risk, progression, AD neuroimaging biomarkers [92], 
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and AD resilience [118] have been studied, but to the best of our knowledge, the relation 

to specific cognitive domains has never been explored. 

 

 

4.2   METHODS 
 
 

4.2.1   POPULATION 
 
The data used for this analysis are from the TLC study described in [105]. Briefly, TLC is 

a prospective, multisite study designated to collect information regarding the cancer- 

related cognition changes in older nonmetastatic breast cancer (BC) survivors. The 

survivors and their matched controls were individuals 60 years of age or older, without 

stroke history or head injury, and free of psychiatric or neurodegenerative disorders. 

Matching criteria include age, race, education, and site. The participants have undergone 

several neuropsychological tests and biospecimens collection for genotyping. At the time 

of the analysis, cognitive data were available for 1,285 individuals (707 survivors and 578 

controls) whereas 819 individuals had been genotyped (Figure 4.1). White non-Hispanic 

(WNH), genotyped individuals receiving either hormonal therapy, chemotherapy, or a 

combination of the two (n=726), were considered for further analysis. 

 
 
4.2.2 GENOTYPING 
 
APOE APOE genotyping was performed using extracted DNA for all subjects from the 

study with available samples. SNPs rs7412 and rs429358 were assessed either using 

TaqMan assays (Life Technologies, Carlsbad, CA) and/or Fluidigm genotyping using a 
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custom-designed 96-SNP genotype chip (Fluidigm, San Francisco, CA). 

 

 
GWAS Genotyping for TLC subjects was performed in batches on extracted DNA with 

either the Affymetrix Axiom Precision Medicine Research Array (Thermo Fisher 

Scientific, Waltham, MA), or the Illumina Global Screening Array 2.0 (Illumina, San 

Diego, CA). Data processing and quality control was performed using Illumina 

GenomeStudio Software and Plink v1.9 [119, 120]. Quality control included verification 

of female genetic sex, variant call rate >95%, sample call rate >90%, and Hardy-Weinberg 

equilibrium (HWE) P<1x10-6. Samples were assessed for genetic ancestry in Plink and 

individuals with non-white European ancestry were removed. Genotype data was imputed 

with the Michigan Imputation Server [121], with the Haplotype Reference Consortium 

(HRC) reference panel [122]. 815 participants with data passing all quality control 

remained after imputation. Related individuals were identified using identity-by-descent in 

Plink (pi-hat >0.25) and one of each pair was randomly removed prior to analyses. 

 
 

 
Figure 4.1: Data description 
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4.2.3   MEASURES 
 
 

4.2.3.1   Outcomes 
 
The main responses of interest were six composite domains of subjective cognition. These 

domains were: attention-processing speed-and-executive function (APE), learning and 

memory (LM), memory (MEM), executive function (EF), language, and visuospatial. 

Details regarding the neuropsychological test assigned to each of these domains are 

presented in Table 4.1. The development of APE and LM have been described in detail 

elsewhere [105]. The remaining three scores (except from the visuospatial) are composite 

scores harmonized across five different studies (ACT, ADNI, MAP, ROS and BLSA). 

Each of the six scores has been previously standardized according to the mean and standard 

deviation of the control group on the entire TLC data. 

 
Table 4.1: Description of composite cognitive domains 

 
   Cogni tive Domain   

Number of 
Neuropsychological 

Test 

 
 

APE 

 
 

 
EF1 

 
 

 
Language1 

 
 

LM 

 
 
 

MEM1 

 
 

Visuospatial 
 

1 
 

Trail Making A 
 

Trail Making A 
 

Letter A fluency 
 

Logical Memory I 
Logical Memory 

Delayed A 
 

Copy Score 
 

2 
 

Trail Making B 
 

Trail Making B 
 

Letter F fluency 
 

Logical Memory II 
Logical Memory 

Immediate 
Figure Drawing 

Planning 
 

3 
NAB Digits 

Forward 
NAB Digits 

Forward 
 

Letter S fluency 
NAB List A 

Immediate Recall 
NAB List A 

Immediate Recall 
 

 
4 

NAB Digits 
Backward 

NAB Digits 
Backward 

BNT 30 
odd items 

NAB List A 
Short Delay Recall 

NAB List B 
Immediate Recall 

 

 
5 

Digit Symbol  
Test 

Digit Symbol 
Test 

Animal category 
fluency 

 
NAB Long Delay 

 
NAB Long Delay 

 

 
6 

 
COWAT 

NAB Driving 
Scenes 

  List A Short Delay 
Recall 

 

7     List Learning Trial 1  

8     List Learning Trial 2  

9     List Learning Trial 3  

 
 
 

10 

    list learning long delayed 
forced choice recognition 
measure 

 

1 
These scores are co-calibrated/harmonized cognitive domains across the following studies: Adult Changes in Thought (ACT) study, the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), the Rush Memory and Aging Project (MAP) and Religious Orders Study (ROS), and the Baltimore Longitudinal Study of Aging (BLSA) 
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4.2.3.2   Variables 
 
The main predictors of interest were the pathway-specific PRSs and the treatment groups 

(3-levels: controls, hormonal-only, chemotherapy±hormonal). We examined the effect of 

the derived PRSs on the longitudinal and cross-sectional treatment group differences in the 

seven cognitive domains. The effect of PRS was tested with and without APOE in the score. 

To control for potential confounding effects, the results were adjusted for age, Wide Range 

Achievement Test 4 (WRAT4) and site. 

 
 

4.2.4 STATISTICAL ANALYSIS 
 

We investigated the sample characteristics (Table 4.3) such as baseline age, years of 

education, baseline WRAT4 score as well as the AD-related genetic risk, by calculating 

the corresponding mean and standard deviation. The group similarity for these variables 

was assessed by applying two-sample (unpaired) Wilcoxon test, as none of the variables is 

following Gaussian distribution (tested using Shapiro-Wilk test). The association between 

the APOE ε4 positivity (the strongest genetic risk for LOAD) with the different groups in 

the sample, was assessed based on the chi-square test. Linear mixed models with random 

intercept tested the interactions of group-by-time and group-by-time-by-PRS for each of 

the seven cognitive domains, treating time as categorical variable and PRS as continuous 

variable. To study the impact of different PRS quartiles in the cognitive changes, the 

analysis was repeated treating PRS as categorical variable with four levels (Q1-Q4). All 

models controlled for the potential confounding effect of age, WRAT4 and site which were 

treated as fixed variables. 
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4.2.5 CALCULATION OF POLYGENIC RISK SCORE 
 

The Pathway-PRSs and the full-PRS used in this study, have been previously described 

elsewhere [92]. Briefly, the top 20 SNPs that have been linked to LOAD based on multiple 

genome wide association studies [82, 93, 123-127], were considered for construction of 

PRSs (Table 4.2). Among these 20 SNPs, 13 have been mapped into 8 different biological 

pathways with several SNPs participating in more than one pathway [128, 129]. From 

these, rs75932628 in TREM2 was removed due to low minor allele frequency (MAF). The 

remaining 19 SNPs have been used for the calculation of the full-PRS. Because at least two 

SNPs were required for PRS calculation, protein ubiquitination pathway was excluded from 

the analysis, as it was consisted by only one SNP. Since APOE is the strongest risk factor 

for AD, for the pathways containing APOE, we repeated the analysis with and without 

rs429358 in the PRS. Thus, hemostasis and hematopoietic cell lineage pathways which 

compromised by only two SNPs (including rs429358), were considered only for the first 

Table 4.2: Biological pathways used for pathway-PRS calculation 
 
     Genes repo rted in pathway     

 
 

Pathway 

 
 

Gene 

 
 

Assigned SNP 

 
 

Chromosome 

 
IGAP 

3 
SNP effect 

 
 

Jones et al 

 
 

Guerreiro et al 

 
Pathway-PRS 

Including APOE 

 
Pathway-PRS 

Excluding APOE 

Pathway-PRS 
used 

in current analysis 

 
SNP included 

in full-PRS 
 
 
 

Immune Response 

CLU rs9331896 8 0.146 Yes Yes No Yes Yes Yes 
CR1 rs6656401 1 -0.157 Yes Yes    Yes 

INPP5D rs35349669 2 0.066 Yes Yes    Yes 
EPHA1 rs11771145 7 -0.102 - Yes    Yes 

MS4A6A rs983392 11 -0.108 - Yes    Yes 
TREM2 rs75932628 6 0.889 - Yes    2 

  No 
MEF2C rs190982 5 0.08 - Yes    Yes 

 
 

Endocytosis 

CD2AP rs10948363 6 0.098  Yes No Yes Yes Yes 
PICALM rs10792832 11 0.13 Yes Yes    Yes 

BIN1 rs6733839 2 0.188 Yes Yes    Yes 
SORL1 rs11218343 11 -0.27 - Yes    Yes 

 
 
Cholesterol transport 

CLU rs9331896 8 0.146 Yes Yes Yes Yes Yes Yes 
ABCA7 rs4147929   Yes Yes    Yes 
SORL1 rs11218343 11 -0.27 - Yes    Yes 

APOE_e4 rs429358 19 1.3503 Yes Yes    Yes 
Hematopoietic CR1 rs6656401 1 -0.157 Yes - Yes     1 

      No Yes Yes 
cell lineage APOE_e4 rs429358 19 1.3503 Yes -    Yes 

Protein ubiquitination CLU rs9331896 8 0.146 Yes - 1 No       1       No 1   No Yes 

            Hemostasis 

CLU rs9331896 8 0.146 Yes - No             Yes Yes Yes 

INPP5D rs35349669 2 0.066 Yes -    Yes 

Clathrin AP2 
adaptor complex 

CLU rs9331896 8 0.146 Yes - Yes  Yes Yes Yes 
PICALM rs10792832 11 0.13 Yes -    Yes 

APOE_e4 rs429358 19 1.3503 Yes -    Yes 
 Protein folding CLU rs9331896 8 0.146 Yes - Yes       1 

       No Yes Yes 
 APOE_e4 rs429358 11 1.3503 Yes -    Yes 
1 
Pathways with only one SNP were not considered for analysis 

2 
Removed during QC as rare variant 

3 
Effect expressed as log OR 
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Part of the analysis. The PRS calculation was based on the logarithmic transformation of 

the SNPs’ GWAS effects [124]. The aggregated genetic risk associated to each pathway was 

expressed as a weighted sum of the allele count of the corresponding pathway-SNPs. 

 

 
4.3 RESULTS 
 
Among the eligible 692 participants, the average age is 68, with a range of 60-98. Years of 

education varies from 6 years to 18 years with an average education of roughly 15.5 years. 

As shown in Table 4.2, the baseline characteristics including demographics, cognition, 

memory, and genetic risk were very similar (P>0.05) between controls and survivors. 

Statistically significant differences in baseline age were observed between treatment 

groups, with the hormonal-only groups being on average almost 2 years older than the 

combination therapy group (Table 4.3). Survivors in the chemotherapy±hormonal had 

statistically higher EF levels compared to the hormonal-only group (Table 4.3). Except 

from a trend for the PRS(Endocytosis) (P<0.1) no other PRS showed significant group 

differences (Table 4.3). 

 

 
4.3.1 APE 
 
For controls, analysis of 24-month data revealed significant APE increase over time, 

consistent with expected practice effects (Table 4.4). The overall group-by-time interaction 

was not significant (Table 4.4), indicating a similar rate of change for all groups during the 

2-year interval. model, we observed a significant group-by-time-by-PRS(Immune Response) 

interaction (Table 4.4), indicating that the immune-related risk levels affect the rate of 
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cognitive changes of the treatment groups. To further examine the observed relation, we 

repeated the analysis using the PRS(Immune Response) quartiles as predictor, which revealed a 

 

Table 4.3: Baseline characteristics and PRS levels 

24-month follow-up 
  

Controls 
 

Survivors 

 
 

                      (a) 
P -value 

 
 

(c) 
Total 

Hormonal 
Only 

Chemotherapy 
± 

Hormonal 

 
 

                       (b) 
P -value 

 
 

(d) 
Total 

Count (%) 360(52.0%) 332(48.0%)  692(100%) 239(72.0%) 93(28.0%)  332(100%) 
Baseline Age Mean(SD) 68.1(6.9) 68.0(5.8)   68.6(5.9) 66.6(5.1) **4.3e-03  

Education Mean(SD) 15.6(2.3) 15.4(2.1)   15.5(2.1) 15.4(2.2)   

WRAT4 Mean(SD) 113.4(15.3) 112.0(15.2)   111.9(15.7) 112.2(13.6)   

APOE ε4+ Count (%) 87(24.2%) 75(22.6%)  162 58(24.3%) 17(18.3%)  75 
Family history of Dementia 

Count (%) 
 

134(54.9%) 
 

110(45.1%) 
  

244 
 

77(32.2%) 
 

33(35.5%) 
  

110 
EF Mean(SD) 1.65(0.34) 1.61(0.33)   1.59(0.33) 1.67(0.33) **3.5e-02  

Language Domain Mean(SD) 0.86(0.38) 0.84(0.36)   0.84(0.35) 0.85(0.37)   

Memory Domain Mean(SD) 0.78(0.38) 0.77(0.38)   0.77(0.39) 0.79(0.37)   

Visuospatial Mean(SD) 0.09(0.80) 0.13(0.71)   0.13(0.75) 0.13(0.61)   

APE Mean(SD) 0.11(0.60) 0.01(0.62) *3.7e-02  -0.01(0.61) 0.06(0.65)   

LM Mean(SD) 0.04(0.80) 0.06(0.78)   0.05(0.77) 0.09(0.80)   

Pathway-PRS including 
APOE 

Mean(SD) 

 

Cholesterol transport 0.27(0.67) 0.29(0.68)   0.31(0.70) 0.22(0.65)   

Clathrin AP2 
adaptor complex 

 
0.68(0.66) 

 
0.69(0.68) 

   
0.72(0.69) 

 
0.63(0.65) 

  

Endocytosis 0.33(0.19) 0.31(0.18) *8.1e-02  0.31(0.19) 0.33(0.18)   

Hematopoietic 
cell lineage 

 
0.07(0.66) 

 
0.11(0.67) 

   
0.14(0.69) 

 
0.03(0.62) 

  

Hemostasis 0.24(0.11) 0.23(0.11)   0.23(0.11) 0.23(0.11)   

Immune Response  
-0.08(0.18) 

 
-0.09(0.18) 

   
-0.09(0.17) 

 
-0.08(0.20) 

  

Protein Folding 0.52(0.66) 0.54(0.68)   0.55(0.70) 0.48(0.68)   

Full 0.30(0.74) 0.33(0.74)   0.36(0.76) 0.28(0.69)   

36-month follow-up 
  

Controls 
 

Survivors 

 
 
                            (a) 
P -value 

 
 

(c) 
Total 

Hormonal 
Only 

Chemotherapy 
± 

Hormonal 

 
 

                      (b) 
P -value 

 
 

(d) 
Total 

 326(53.5%) 283(46.5%)  609(100%) 202(71.4%) 81(28.6%)  283(100%) 
Baseline Age Mean(SD) 67.8(6.9) 68.0(5.9)   68.7(6.0) 66.4(5.2) **2.2e-03  

Education Mean(SD) 15.6(2.3) 15.3(2.1)   15.4(2.1) 15.3(2.2)   

WRAT4 Mean(SD) 113.1(15.5) 111.8(15.4)   111.8(13.1) 111.7(16.3)   

APOE ε4+ Count (%) 78(23.9%) 66(23.3%)  144 51(25.2%) 15(18.5%)  66 
Family history of Dementia 

Count (%) 
 

121(37.1%) 
 

86(30.4%) 
 

*9.6e-02 
 

207 
 

59(29.2%) 
 

27(33.3%) 
  

86 
EF Mean(SD) 1.65(0.34) 1.60(0.34) *8.0e-02  1.57(0.34) 1.68(0.34) **1.5e-02  

Language Domain Mean(SD) 0.86(0.38) 0.83(0.37)   0.83(0.36) 0.85(0.38)   

Memory Domain Mean(SD) 0.77(0.38) 0.78(0.39)   0.77(0.40) 0.80(0.38)   

Visuospatial Mean(SD) 0.10(0.82) 0.13(0.73)   0.13(0.77) 0.15(0.62)   

APE Mean(SD) 0.10(0.61) -2.5e-03(0.65) *6.1e-02  -0.03(0.63) 0.06(0.68)   

LM Mean(SD) 0.03(0.80) 0.07(0.79)   0.07(0.78) 0.09(0.82)   

Pathway-PRS including 
APOE 

Mean(SD) 

 

Cholesterol transport 0.27(0.68) 0.29(0.69)   0.30(0.70) 0.24(0.68)   

Clathrin AP2  
adaptor complex 

 
0.68(0.67) 

 
0.70(0.69) 

   
0.73(0.70) 

 
0.65(0.68) 

  

Endocytosis 0.34(0.19) 0.31(0.18) *6.1e-02  0.30(0.19) 0.34(0.17)   

Hematopoietic  
cell lineage 

 
0.08(0.66) 

 
0.11(0.68) 

   
0.14(0.69) 

 
0.06(0.64) 

  

               Hemostasis 0.24(0.11) 0.23(0.11)   0.23(0.11) 0.23(0.11)   

Immune Response  
-0.08(0.18) 

 
-0.08(0.17) 

   
-0.09(0.19) 

 
-0.08(0.17) 

  

Protein Folding 0.52(0.66) 0.54(0.68)   0.57(0.69) 0.49(0.67)   

Full 0.30(0.75) 0.35(0.75)   0.36(0.76) 0.33(0.70)   

(a) Test p-value comparing survivors versus controls. 
(b) Test p-value comparing Chemotherapy ± Hormonal versus Hormonal-Only 
(c) Total count of variable in survivors and controls 
(d) Total count Chemotherapy ± Hormonal and Hormonal-Only Continuous variables were tested using either t-test or Wilcoxon test Categorical variables were tested using chi-square 
test 

 

significant group-by- time-by-PRS(Immune Response) interaction (P=2.6e-02). Controls and 

hormonal-only participants with low PRS(Immune Response) risk, exhibited the expected 
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practice effects by achieving a significant improvement in their performance at the end of 

the second year (Table 4.5, Figure 4.2). In contrast, survivors with low genetic risk that 

followed combined therapy did not only fail to achieve practice effect but had a decline 

 

Table 4.4: Significance of cognitive changes by treatment group, APOE and PRS 
 
  24 months dataset (N=692) 36 months dataset (N=609) 

 Overall P -value Overall P -value 

 APE LM EF MEM Language Visuospatial APE LM EF MEM Language Visuospatial 
             

Time (months) 3.2e-05  2.9e-06 2.10e-10 3.8e-03 4.0e-02 6.7e-05 1.1e-15 1.4e-05 1.2e-13 6.2e-03  

Group-by-Time       5.5e-01      

Group-by-Time-by-APOE             

PR
S  

Ty
pe

 W
ith

 A
PO

E 

Group-by-Time-by-PRS 

Overall             

Cholesterol transport      4.2e-02      1.2e-02 

Clathrin AP2 adaptor 
complex 

      
3.3e-02 

      
1.3e-02 

Endocytosis    3.7e-02       5.5e-02  

Hematopoietic cell lineage      3.2e-02       

Hemostasis             

Immune Response 8.9e-03  5.3e-02   3.7e-02 6.6e-03  5.5e-02   1.7e-02 

Protein Folding      3.8e-02      9.9e-03 

PR
S 

Ty
pe

 W
ith

ou
t  A

P
O

E
 

 
Group-by-Time-by-PRS 

Overall             

Cholesterol transport             

Clathrin AP2 adaptor 
complex 

            

Endocytosis    3.7e-02       5.5e-02  

Hematopoietic cell lineage -- -- -- -- -- -- -- -- -- -- -- -- 

Hemostasis             

Immune Response 8.9e-03  5.3e-02   3.7e-02 6.6e-03  5.5e-02   1.7e-02 

Protein Folding -- -- -- -- -- -- -- -- -- -- -- -- 

Time and Treatment groups have been treated as categorical variables, whereas pathway-PRS has been treated as continuous variable. Models adjust for age, WRAT4 and site which were treated as 
fixed effects. 
Models include up to 3-way interactions along with all lower degree interactions Empty cells indicate P >5.5e-02 
Dashes indicate that the pathway contains only one SNP and was not used in the analysis 

 

in their overall performance, although not statistically significant (Table 4.5, Figure 4.2). 

None the remaining pathway-PRSs nor the full-PRS had significant group-by-time 

interaction (Table 4.4). The significance of the group-by-time-by-PRS(Immune Response) 

interaction was also observed on the 36-month dataset (Table 4.4). 
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4.3.2  LM 
 
During the first two years, all groups exhibited practice effects for LM, with final scores 

that were significantly improved compared to the baseline (P<8.9e-03). The overall group- 

by-time interaction as well as the group-by-time-by-APOE were insignificant, indicating 

similar improvement rates for all groups that were not affected by the participants’ APOE 

ε4 status (Table 4.4). The only significant difference we observed at month 12 where ε4+ 

survivors in the hormonal-only group had on average significantly lower LM levels  

 
 
Figure 4.2: Adjusted mean cognitive scores over time for by PRS extreme quartiles Adjusted mean 
cognitive domain scores on the basis of least squares means from linear mixed-effects models show 
scores at baseline, 12 months, and 24 months for three treatment groups. A) Results based on PRS(Immune 

Response) for APE, EF, and visuospatial domain. B) Results based on PRS(Endocytosis) for Language and 
MEM. 
 
 
compared to the ε4- survivors of the same group (P=3.7e-02). This observation replicates 

previous findings on TLC study, which observed decline in the score of ε4+ hormonal-only 
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group in contrast to the corresponding ε4- group that showed an improvement in the same 

time window [105]. The aforementioned interactions remained insignificant on the 36- 

month data. No significant group-by-time-by-PRS interaction was observed for any of the 

pathway-PRSs or full-PRS neither on the 2-year nor on the 3-year data (Table 4.4). 

 
 
4.3.3  EF 

 
With exception the chemotherapy±hormonal group, the participants of the remaining 

groups exhibited the expected practice effects. Specifically, after a temporary, insignificant 

performance decline for all groups during the first year, the performance of the hormonal- 

only and the control groups exhibited significant improvements compared to the baseline 

(P<9.2e-03). Based on the 2-year follow up analysis, no significant group differences were 

observed longitudinally by APOE status (Table 4.4). However, at the third year, ε4+ 

survivors in the hormonal-only group, had significantly lower EF levels compared to the 

ε4- survivors of the same group (P=3.8e-02). When accounting for the different PRS scores 

in the model, the 3-way interaction with the PRS(Immune Response) reached nominal 

significance in both 24-month and 36-month analyses (Table 4.4). A more detailed 

examination of the results was performed by including the PRS(Immune Response) quartile 

interaction with time and group (P=8.6e-03, based on the 24-month data). At the end of the 

two-year period, both the control and hormonal-only groups had improved performance 

compared to the baseline. Although the 2-year change for the low-risk hormonal-only 

group was similar to that of the control group (Figure 4.2) we observed a statistically 

significant result only for the latter group (0.25 units increase for the controls and 0.23 

units increase for the hormonal-only group). In contrast to the other two groups, the 
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combined therapy participants of both PRS quartiles, exhibited a deterioration in their 

performance (Table 4.5, Figure 4.2). Finally, when we repeated the analysis on the 3-year 

data, were the interaction of PRS(Immune Response) quartile with time and group remained 

significant (Table 4.4). 

Table 4.5: Marginal cognition changes by PRS-quartiles and treatment groups. The results are based 
on 2-year data. 

 
  

1,2  
Change in the adjusted marginal mean (P -value) 

Domain Pathway PRS quartile Group Baseline -12 months 12 months - 24 months Baseline - 24 months 

 
Im

m
un

e 
re

sp
on

se
 

 
 

APE 

 
Q1 

Controls -0.12 (0.03)  -0.22 (4.3e-05) 
Hormonal-Only  -0.18 (0.03) -0.22 (2.6e-03) 
Chemo±Hormonal    

 
Q4 

Controls    

Hormonal-Only    

Chemo±Hormonal    

 
 
 

EF 

 
Q1 

Controls  -0.33 (3.5e-04) -0.25 (6.9e-03) 
Hormonal-Only  -0.40 (2.9e-03)  

Chemo±Hormonal    

 
Q4 

Controls    

Hormonal-Only -0.25 (0.05)  -0.52 (1.8e-04) 
Chemo±Hormonal    

 
 

Visuo- 
spatial 

 
Q1 

Controls    

Hormonal-Only 0.59 (1.7e-03)   

Chemo±Hormonal    

 
Q4 

Controls    

Hormonal-Only    

Chemo±Hormonal 0.74 (9.2e-03)   
 

 
E

nd
oc

yt
os

is
 

 
 

Language 

 
Q1 

Controls -0.21(4.8e-02)   

Hormonal-Only    

Chemo±Hormonal -0.43(4.2e-02)  -0.67(3.8e-03) 
 

Q4 
Controls   -0.22(4.3e-02) 
Hormonal-Only   0.51(8.1e-04) 
Chemo±Hormonal    

  

 
 
 

MEM 

 
Q1 

Controls    

Hormonal-Only -0.31 (7.5e-03)  -0.34 (4.1e-03) 
Chemo±Hormonal -0.68 (4.9e-04)  -0.60 (1.2e-02) 

 
Q4 

Controls -0.36 (1.1e-04)   

Hormonal-Only    

Chemo±Hormonal    

1 
Values represent the change in the scores between the two time points (Only significant changes are reported) 

2 
P -values have been corrected for multiple comparisons using the Tukey formula 

Green cells indicate improved scores; Red cells indicate decrease in the score 

 

4.3.4 MEM 
 

On average, all groups showed practice effects with marginal MEM scores at month 24 

that outperformed the baseline levels. Interestingly, we observed a temporary decline 

during the first year in all three groups (P<0.05). The overall group-by-time interaction 

was insignificant, indicating similar rate of improvement among all participants (Table 



55  

4.4). Despite the insignificant three-way interaction with APOE ε4 status, at month 12 we 

observed significantly lower value for the marginal MEM of the hormonal-only ε4+ 

participants, compared to the ε4- participants of the same group (P=1.4e-02). Based on the 

24-month dataset, we observed that PRS(Endocytosis) levels are significantly associated with 

the MEM score (P=3.7e-02, Table 4.4). The improvements observed at the end of the two- 

year period for all groups, were statistically significant for those with low PRS(Endocytosis) 

but not for the high-risk individuals (Table 4.5, Figure 4.2). In the 36-month dataset, the 

group-by-time-by-PRS(Endocytosis) interaction became insignificant. 

 
 
4.3.5 VISUOSPATIAL 

 
There was a deteriorating trajectory for all groups in the Visuospatial domain, especially 

for the hormonal-only group which had a significant reduction during the first year 

(P=1.7e-03). However, the overall rate of change of this domain showed no significant 

discrepancies among the groups (Table 4.4). Inclusion of APOE had no significant effect 

on that relationship either (Table 4.4). When we examined the effects of the pathway-PRSs 

we found a significant group-by-time-by-PRS(Immune Response) interaction (P=3.7e-02, Table 

4.4). The effect of PRS(Immune Response) remained significant in the 36-month data (P=1.7e- 

02; Table 4.4). The visuospatial trajectory of the control and hormonal-only groups had a 

U shape exhibiting a temporary decline at the first year followed by an improvement at the 

second year (Figure 4.2, Table 4.5). The combined therapy group had an overall but 

insignificant decline in their scores, compared to the baseline (Table 4.5). Moreover, those 

in high-risk had a significant decline during the first year (Table 4.5). Any significant 

interaction between group, time, and the remaining of the pathway-PRSs did not survive 
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after removing APOE from the score (Table 4.4). 

 
 
4.3.6 LANGUAGE 
 
Overall, there was an increasing trajectory for all treatment groups without significant rate 

differences (Table 4.4). Pairwise comparisons revealed significantly lower levels for the 

hormonal-only and chemotherapy±hormonal groups, compared to the controls, at 24 and 

36 months respectively (P=2.4e-02 for hormonal-only and P=3.6e-02 for combined 

therapy). APOE did not affect the rate of change between groups, as group-by-time-by- 

APOE was insignificant both in 24-month and 36-month data. After examining the effect 

of all seven pathway-PRSs and one overall-PRS in the score, we observed a marginal 

significance in the 36-month for the group-by-time-by-PRS(Endocytosis) interaction (Table 

4.4, Figure 4.2). That was possible driven by the score difference between the extreme risk 

quartiles in the combined therapy group (Figure 4.2). 

 
 
4.3   DISCUSSION 

 
Our results indicated that, all treatment groups, with very few exceptions, exhibited the 

expected practice effects at the end of the 2-year follow up period, in most cognitive 

domains. Previous findings from the TLC study [105] that identified a decline for the 

combined therapy group in the APE domain were not replicated here. However, we did 

observe a decline for the combined group in the EF domain which is highly correlated with 

APE. Lower LM scores after hormonal therapy initiation for APOE ε4 carriers has also 

been observed previously from the same study [105] and this result was replicated in our 

work. In general, carrying at least one APOE ε4 allele had a temporary, negative effect on 
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the performance of a limited number of domains, for those prescribed hormonal-only 

therapy. The main effect of APOE ε4 was observed on the visuospatial domain but only 

when APOE was part of a pathway-PRS. The significance of this effect was lost after 

removing APOE from these scores. That confirms past findings that linked the presence of 

APOE ε4 with lower visual memory and spatial ability among cancer survivors [113]. 

 
 
Incorporating pathway-PRSs in the analysis, expanded on our prior study by investigating 

dementia-related genetic markers beyond APOE [105]. Accounting for the aggregated 

effect of these variants in the form of pathway-PRSs helped revealing changes in EF, APE 

and visuospatial domains, suggesting inferior performance for survivors that are prescribed 

chemotherapy compared to hormonal therapy. The immune-response and endocytosis 

pathway-PRSs effect on specific cognitive domains, are meaningful in the sense that, in 

cancer there have been observations of disruption of these two pathways [111, 130, 131]. 

Existing literature supports the observed relation between the PRS(Immune Response) with 

executive function and visuospatial ability as several of the genes that compose the 

PRS(Immune Response) have been found to have a significant association with these domains. 

Specifically, CR1, EPHA1 and a number of MEF2C variants have been linked to 

visuospatial ability [132-135], whereas CLU to executive function [136, 137]. Supporting 

literature about the observed relation between language and memory with PRS(Endocytosis) 

has been published in the past, reporting significant links between PRS(Endocytosis) genes with 

recall and memory. Some of these findings include the association of CD2AP with delayed 

recall [138], PICALM and BIN1 with episodic memory [139-141], and several SORL1 

variants with spatial abilities and episodic memory [142]. 
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Several important limitations should be noted. First, as this is the first report associating 

PRS with cognitive outcomes in older women with BC, an independent replication sample 

was not available. Despite this limitation, the PRS employed here were derived from an 

independent large Alzheimer's and aging study. Second, statistical power was limited by 

available TLC cohort sample size. This problem is exacerbated when participants are 

subdivided into genetic risk quartiles, especially for the chemotherapy group which was 

the smallest group. Third, the follow-up of 3 years may not have captured longer term 

changes in cognitive functioning. Third, our results may not be generalizable to other 

populations for two reasons: first, the TLC participants are well educated, and cognitive 

reserve has been linked to post-treatment in the past [106] and second, to avoid the 

confounding effect of population stratification, only WNH individuals with available 

genotype were analyzed. Fourth, our results might be biased due to the impact of the 

practice effect on the cognitive scores. Previous study has shown that failing to adjust for 

the practice effect in a model can result to associations that are misleading and even inverse 

the direction of the relation [143]. Fifth, additional biological insight could have been 

gained, and stronger results may have been observed by incorporating a larger number of 

AD-related genes in the PRSs, based on findings from more recent and much larger 

GWASs. 

 

In summary, genetic risk in relevant biological pathways was associated with post- 

treatment performance of older BC survivors on specific cognitive domains. A negative 

pathway-related genetic risk on cognitive outcome might be more pronounced for those 
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women treated with systemic chemotherapy. Pathway-level PRS may enhance our 

understanding on the biological process underlying cognitive changes in different domains 

and support treatment decisions. Further analysis is required to understand what is the 

common biological link between the cognitive domains that were associated to each of 

these pathway-PRSs. A possible explanation would be that immune-response PRS 

represents the risk for increased microglia activation in brain regions that are responsible 

for the executive function and visuospatial ability [144-149]. Similarly, language and 

memory changes might have a link to endocytosis induced synapse decline in the regions 

responsible for these two domains [150-153]. Overall, dementia-related genetic risk 

beyond APOE may be a useful tool in the clinicians’ hands for assessing the likelihood of 

post-treatment cognitive deficiencies and assist decisions about the treatment type and 

duration. It can as well assist the investigation of the biological link between dementia- 

related pathways and cancer-indued cognitive changes. 
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Chapter 5  

CONCLUSIONS 

 

5.1 DISCUSSION 
 
Since 1906 when the first case of Alzheimer’s disease was observed, important domain 

progress has been made and valuable knowledge has been gained. Rapid technological 

advancements have led to significant genetic discoveries that shed light to many aspects of 

the disease. However, our understanding about the exact biological mechanism that leads 

to AD onset, is still limited. Appraisal of previously published literature revealed an 

explosion in the number of publications focusing on case-control PRS in AD, and an 

underutilization of biologically targeted PRSs. Currently, case-control PRS is mainly 

treated as mean for risk assessment and biomarker prediction. The usefulness of these 

applications is indisputable, but they have limited potential to promote knowledge about 

disease pathogenesis. Whereas in the near past, lack of data resources would possibly 

prevent the use of PRS towards that direction, current data availability provides exciting 

opportunities to unfold the potential of PRS in understanding the process of disease’s 

pathogenesis and progression. These data resources should be utilized to develop 

hypothesis-driven PRSs. This is especially important in order to progress towards precision 

medicine solutions. In that context, exploration and understanding of the disease risk, 

biomarker heterogeneity, and progress should be approached by utilizing polygenic scores 

designated to answer the specific research questions. The genetic information integrated in 

a PRS, and its interpretation is highly linked to the GWAS on which the score was based 

on. Thus, risk-based PRS should not be treated as panacea but rather restrict its use to the 

corresponding task. In the present study, observation of significant associations between 
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endophenotype-PRSs and multiple disease outcomes, including AD risk and biomarker 

trajectories, provide an affirmation of the predictive ability of these scores. An interesting 

point resulting by these findings, is that the genetic complexity of the PRS should be 

analogous to the number of pathways that are involved to each outcome. The stronger the 

link of an outcome with specific pathways, the less complex PRS is required. Any 

additional SNPs probably introduce information from irrelevant to the outcome 

pathways, and thus decrease the prediction accuracy of the score. This is an indication that 

improved clinical utility may be achievable by controlling the genetic information that 

enters the PRS. The observed association between CSF amyloid and tau biomarkers with 

the corresponding endophenotype-PRSs, rather than the combined-PRS, is indicative of 

the potential of these scores to capture the genetic complexity of a response. Consequently, 

the targeted genetic information in the endophenotype-PRSs can mitigate the efforts of 

understanding the pathways related to that response. Further supporting evidence regarding 

the enhanced interpretability and performance of the biological-relevant PRS, emanates 

from the observed significant associations between specific cognitive domains with 

pathway-PRSs, but not with the overall-PRS. This finding does not only confirm the 

previous inference regarding the relevance of the genetic information in the PRS and the 

performance of the score, but also designates biological mechanisms that could be related 

to each of these cognitive domains. Depending on a person’s genetic risk on specific 

dementia-related pathways, cancer therapies may impact different domains of cognitive 

abilities. While seemingly, endophenotype and pathway PRSs are similar, they are serving 

different purposes. The approach the latter are developed constitutes them as great tools for 

gaining biological insights for a disease such as the implication of specific biological 
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pathways in disease risk. Despite their use for assessment of several dementia endpoints, 

pathway-PRSs are still risk-based scores and their utilization for studying relations beyond 

disease-risk might be compromised. Whilst pathway-PRSs can be very useful in revealing 

evidence of the underlying biological disease mechanism, biomarker-based PRSs can 

provide information regarding the progression of hallmark disease biomarkers. That is 

important not only for disentangling the highly variable disease profiles but could also 

provide critical patient information during the recruitment stage of clinical trial that focus on 

target specific biomarker. Whereas there is still work to be done before PRS can be efficiently 

used for treatment development, the road towards precision medicine has opened. By now, 

it should be clear that in addition to the case/control GWAS, biomarker and endophenotype 

GWAS are necessary for development of biologically relevant PRSs. Although, in dementia 

research, risk based GWASs have exhibited significant increase in their sample size, AD-

specific biomarker GWAS are limited in number and in terms of sample size. Since the 

sample size of a GWAS is very critical as it determines the power of the polygenic score, 

there is a necessity for increasing the availability and the size of these studies. Beyond sample 

size this work highlighted several additional factors that can affect the accuracy and power 

of the score. Usually the existing methods have managed to deal with some of these factors 

but not all of them, leaving space for further methodological refinement of the PRS formulas. 

In recent years, several advances on this domain have been achieved such as development of 

sophisticated Bayesian-based PRS methods for handling LD structure including PRS-CS, 

SBayesR, MegaPRS and more. In some cases, the tradeoff of some of these methods could 

be the increased computational requirements, the need of additional data for parameter 

tunning, as well as the introduction of restricting distributional assumptions. Because 
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polygenic methods are not only response specific but also disease specific, the criteria for 

their selection and application should be based in the context of the disease of interest. 

Despite the progress in PRS models, their predictive ability is still limited and thus not 

applicable to clinical practice. In an effort to capture the missing heritability, machine 

learning approaches have been lately integrated in the development of PRSs. By not making 

any distributional assumptions and by being able to handle multi-dimensional data and data 

interactions machine learning models could be a promising alternative to the existing PRSs. 

These approaches, however, can be not only very demanding in terms of computational time 

and memory, but they might also raise another difficulty as well. That of the score’s limited 

interpretability. This is an essential drawback that needs to take into account, as development 

of tailored treatment solutions is based on the understanding of the disease’s mechanisms. 

The importance of PRS’s interpretability is highlighted by the continuous efforts for its 

improvement through the development of methodologies that incorporate functional 

annotation and biological relevant information in the scores. It is obvious that no approach 

is free of limitations and thus one needs to decide which of these aspects matter more in 

addressing their scientific question.  Another issue that has been raised over the years is the 

restriction of the genetic research mainly on White, non-Hispanic populations. As PRS is 

ancestry specific, it is indented to be used on target samples that have the same ancestry as 

the discovery sample. In order to alleviate this barrier, efforts for generating multiethnic 

PRSs have become more intense lately, however this should be only a temporary solution as 

development of diverse study cohorts is required.  
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5.2 LIMITATIONS 
 

First, the endophenotype-PRS findings may not be generalizable to populations other than 

White non-Hispanic. To avoid confounding effect due to population stratification, any 

WNH participants have been excluded from the analysis. The lack of studies with a large 

AD biomarker collection limited this work in using a subset of ADNI for running 

endophenotype GWASs. Harmonization between multiple studies could support this effort. 

Developing endophenotype-PRSs based on larger GWASs will improve the generalizability 

of the scores and the resulting associations. Third, endophenotype-PRS findings need to be 

validated on a totally independent sample, as currently the replication was performed on a 

subset of ADNI. Fourth, development of vascular-PRS needs to be repeated based on a 

study that provides information on multiple cardiovascular biomarkers. ADNI, is not ideal 

for that purpose as people with cardiovascular problems are excluded from the study. Fifth, 

performance comparison to the traditional risk-based PRSs is needed to further validate 

their effectiveness. The third aim also has several limitations that need to be addressed. 

First, the power to detect three-way interaction Time-Group-PRS was limited, especially 

for those who underwent chemotherapy. Second, the pathway-PRSs were based on the 

enrichment results of the 20 most significant genetic markers for AD. Expanding the 

number of SNPs in the pathway-PRSs, may lead to new findings and strengthen the already 

observed associations. Lastly, this was the first work to study the association between 

dementia-related pathway-PRS and post-treatment cognitive changes among women with 

BC and the study results need to be replicated in an independent cohort of women with BC.  
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5.3 FUTURE DIRECTIONS 
 

   This dissertation provides initial evidence of the potential of biological-relevant polygenic 

risk scores in Alzheimer’s research. Novel endophenotype-PRSs were presented for which 

I provided evidence of their role as promising AD-specific markers. It was further shown 

that AD-specific genetic scores can expand the current research on cancer-related cognitive 

impairment, that has been so far studied only in relation to APOE. 

 

The study of Alzheimer-specific pathway-PRSs in relation to cancer-cognition could also 

be further improved. Better predictive performance could be achieved by substituting the 

risk-based pathway-PRS weights by endophenotype-derived weights. Lastly, similar to the 

concept of biomarker-derived PRSs, dementia linked genetic information could be utilized 

to develop cognition- PRSs. It would be interesting to compare their accuracy levels with 

these of the pathway-PRSs, endophenotype- PRSs and risk-based PRSs. 

 
 
Further refinement of the proposed endophenotype genetic scores can provide additional 

evidence of their effectiveness and generate new hypotheses. Because endophenotypes are 

closer to the biomarkers than risk is, genetic scores based on endophenotypes rather than 

risk-based polygenic scores could be more powerful tools for discovering new disease 

biomarkers. They may also assist with the recruitment of patients in clinical trials when the 

recruitment criteria are based on specific endophenotype risk that is considered to reflect 

the disease status. Furthermore, endophenotype-PRSs could be used to identify disease 

biomarker profiles and thus help understanding the heterogeneity of the disease. On 

individual level, classification of patients based on disease profiles could assist with 
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treatment decisions. In addition, as soon as therapies targeting particular pathways become 

available, they could be used as preventative tools by identifying individuals at increased 

genetic risk for AD pathology before the onset of clinical symptoms. Besides, their 

effectiveness in promoting the understanding on the Alzheimer’s underlying mechanism 

should be tested. Specifically, pathway enrichment of endophenotype-PRS SNPs, could 

possibly provide insights on the disease’s biological process. Finally, research efforts 

utilizing the recently developed concept of cell-specific-PRSs, could be complimented by 

the incorporation of endophenotype-PRSs. By investigating how the risk of different 

endophenotypes relates to the risk associated with different cell types (cell-specific-PRS), 

could enhance the knowledge regarding the disease pathogenesis. As an exemplar, disease 

risk or biomarker trajectory profiles derived based on endophenotype-PRSs could be 

studied in relation to the risk attributed to disease relevant cells, and possibly suggest 

candidate mechanisms of the disease pathogenesis. 

 

5.4 SUMMARY 
 

Complex diseases like Alzheimer’s disease and other dementias are characterized by a 

complicated genetic component, increased phenotypic variability, and poorly understood 

pathogenesis mechanism. Polygenic risk scores are combinatorial measures expressing an 

individual’s liability for a disease and they are perceived as promising tools in the precision 

medicine endeavor. According to the current practice they are developed based on case- 

control genome wide association studies and are most frequently used for risk prediction 

and prognosis. However, a rigorous literature review revealed that case-control PRSs have 

low interpretability and limited potential to provide insights in the disease’s underlying 



67  

mechanism. This work investigated the potential of polygenic scores that integrate 

biologically relevant information to leverage disease knowledge beyond risk assessment 

and thus, support personalized solutions. Two types of PRSs were employed in this work, 

the endophenotype-PRS and the pathway-PRS. Both PRSs have a clear biological 

interpretation as their SNPs are either strongly linked to a homogeneous set of biomarkers 

(endophenotype-PRS) or to a dementia pathway (pathway-PRS). When responses of 

interest have a close relation to a biological function then, biologically informed PRS are 

preferred compared to the overall PRS. Data from the ANDI study indicated that 

endophenotype PRSs are preferred for prediction of CSF amyloid and tau biomarkers, 

whereas a combined PRS is preferred for neurodegeneration biomarkers, cognition, and 

disease risk. Implementation of dementia-related pathway-PRSs on the TLC study 

indicated that cancer-induced cognitive performance in specific domains is linked to 

immune and endocytosis related genetic risk, but not to the overall genetic risk. Both 

findings imply superiority of biologically targeted PRSs compared to overall PRS 

confirming previous studies that suggest that additional SNPs can harm the performance 

of the score. They also indicate that the “best” PRS is highly dependent to the research 

question. This work provides some initial, encouraging results about the role of 

biologically targeted PRSs in future research. Endophenotype and pathway PRSs can 

provide valuable information on the biology of the disease and thus, support the efforts for 

drug development. Also paired with case-control PRSs, which can provide an initial risk 

evaluation, endophenotype-PRSs could be used to further brake down disease profile and 

assist with treatment allocation.
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