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ABSTRACT

Jeffrey G. Klann

AN AUTOMATED SYSTEM FOR GENERATING SITUATION-SPECIFIC
DECISION SUPPORT IN CLINICAL ORDER ENTRY FROM LOCAL EMPIRICAL

DATA

Clinical Decision Support is one of the only aspects of health information technology

that has demonstrated decreased costs and increased quality in healthcare delivery, yet it is

extremely expensive and time-consuming to create, maintain, and localize. Consequently,

a majority of health care systems do not utilize it, and even when it is available it is

frequently incorrect. Therefore it is important to look beyond traditional guideline-based

decision support to more readily available resources in order to bring this technology into

widespread use. This study proposes that the wisdom of physicians within a practice is

a rich, untapped knowledge source that can be harnessed for this purpose. I hypothesize

and demonstrate that this wisdom is reflected by order entry data well enough to partially

reconstruct the knowledge behind treatment decisions. Automated reconstruction of such

knowledge is used to produce dynamic, situation-specific treatment suggestions, in a similar

vein to Amazon.com shopping recommendations. This approach is appealing because: it is

local (so it reflects local standards); it fits into workflow more readily than the traditional

local-wisdom approach (viz. the curbside consult); and, it is free (the data are already being

captured).

This work develops several new machine-learning algorithms and novel applications of

existing algorithms, focusing on an approach called Bayesian network structure learning. I

develop: an approach to produce dynamic, rank-ordered situation-specific treatment menus

from treatment data; statistical machinery to evaluate their accuracy using retrospective

simulation; a novel algorithm which is an order of magnitude faster than existing algorithms;

a principled approach to choosing smaller, more optimal, domain-specific subsystems; and

a new method to discover temporal relationships in the data. The result is a comprehen-

sive approach for extracting knowledge from order-entry data to produce situation-specific

treatment menus, which is applied to order-entry data at Wishard Hospital in Indianapolis.

vii



Retrospective simulations find that, in a large variety of clinical situations, a short menu

will contain the clinicians’ desired next actions. A prospective survey additionally finds that

such menus aid physicians in writing order sets (in completeness and speed). This study

demonstrates that clinical knowledge can be successfully extracted from treatment data for

decision support.

Gunther Schadow, MD, PhD, Chair
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Treatment Advice from the Crowd
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CHAPTER 1

Introduction

1. Problem Statement

Despite the consistent steady increase of health information technology (HIT) systems in

hospitals (Ford et al., 2006), health care costs continue to rise (Medicare & Medicaid Ser-

vices, 2006) and currently-implemented HIT systems offer no clear benefit (Himmelstein

et al., 2010) or path to return-on-investment (Ash et al., 2004). However, one component of

HIT, computer decision-support (CDS), has repeatedly been shown to improve the quality

of health care delivery (Kaushal et al., 2003) and reduce costs (Kaushal et al., 2006). CDS

could be a key to making HIT investments worthwhile. Unfortunately, CDS usage lags

in existing HIT systems. A 2005 Massachusetts-wide survey showed that less than 50%

of healthcare institutions have and utilize CDS even some of the time (Zhou et al., 2009;

Simon et al., 2007), with only a 3% increase by 2007 (Simon et al., 2009). A major reason

for this is that CDS content is, with great time and expense, manually created (Waitman,

2004), maintained (Geissbuhler and Miller, 1999), and localized (Garg et al., 2005). Not

infrequently, even when CDS is available, the content is inappropriate (Van der Sijs et al.,

2006) or does not account for complex clinical situations (Sittig et al., 2008). To combat

these roadblocks, it is important to look beyond traditional guideline knowledge to other

sources of decision support.

In particular, CDS systems have overlooked the local wisdom of physicians within a prac-

tice as a valid knowledge source. Long before HIT, physicians had a tradition of informally

sharing expertise, knowledge, and local practice standards through collegial conversations

in lunchrooms and hallways (Perley, 2006). Studies have shown that physicians value col-

leagues’ advice nearly as much as textbooks and sometimes even prefer it (Haug, 1997).

Dr. Cathy Perley suggests the main reason for this is that medicine is locally situated, and

colleagues can provide a local frame of reference through which to decide if and how external

(global) guidelines relate to particular (local) cases (Perley, 2006). Perley hypothesizes that

the overwhelming amount of medical knowledge is often distilled into usable and applica-

ble chunks through these informal conversations (also referred to colloquially as ‘curbside

consults’).
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Because computer physician order entry (CPOE) systems are gaining widespread use,

we believe that much of this collegial knowledge is being implicitly captured in order records.

We believe these order records are rich enough to partially reconstruct the knowledge behind

treatment decisions. If this is true, this local knowledge resource could be utilized for

situational, dynamic treatment recommendations based on the data of the local practice.

This ‘electronic curbside consult’ is similar to shopping recommendations provided by web

sites like Amazon.com. Such recommendations are not vetted by professional review, but

are produced statistically by correlating recent purchases to items that similar customers

have also purchased (Linden et al., 2003). On Amazon.com, the result is a personalized

shopping experience, increased sales, and improved customer loyalty (Schafer et al., 2001).

Applying this approach to medicine has similar revolutionary potential. For one, because the

knowledge is local, Perley suggests it might be more palatable to clinicians than external

guidelines. Secondly, this knowledge is already being captured and is already localized

and automatically updated, reducing cost and time dramatically over traditional decision

support. Thirdly, it might be able to capture recommendations for complex comorbidities

that guidelines have trouble addressing and may be a major detractor to existing CDS

(Sittig et al., 2008; Van der Sijs et al., 2006).

Such recommendations would have several possible direct uses. One, it would provide

physicians a new decision support resource, allowing a quick informal check of their treat-

ment plan against those of similar cases in their community without interrupting workflow

to perform a physical curbside consult. Two, such checks could be performed automati-

cally, generating alerts when an action falls far outside the local standard. Three, in systems

which already have access to mature DSS content, it could provide a localization filter to

reduce workload in adapting guidelines to the local practice. This use will be important

to study once collaborative, coded decision support becomes available through projects like

the Decision Support Consortium (Middleton, 2009).

We therefore propose to discover whether situation-specific local treatment recommen-

dations can be automatically, algorithmically generated from the community wisdom in our

local order entry data. We will develop a method to translate complex CPOE data into

abstracted decision-making models for inpatient medicine. This methodology will utilize
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CPOE data as its input (e.g., primary diagnosis, secondary problems, previous orders).

Then, we will develop an application that applies this model to produce a customized,

ranked list of treatment recommendations. Finally, we will evaluate the resulting lists both

through simulation on a test set of actual hospitalizations and through comparison to expert

opinion.

2. Wisdom of the Crowd?

The idea that the crowd is wiser than the individual is at least as old as Greek democracy,

and it continues to proliferate today. As mentioned, Internet users frequently trust the

‘wisdom of the crowd’ for an impressive variety of tasks. We believe the crowd can provide

comprehensive answers to complex questions (e.g., through collaborative encyclopedias like

Wikipedia); we look to the crowd to recommend books and movies (e.g., Amazon.com and

Netflix); and we understand that the crowd will lead us to the most relevant information

(e.g., through page ranks on search engines like Google).

Consumer healthcare is beginning to embrace a crowd-wisdom approach as well. For

example, PatientsLikeMe is a website which solicits the ill to provide health information

in order to find new cures and treatments. Frost et al. (2011) found that research data

provided by consumers on the site can capture trends not seen in randomized controlled

trials. For example, in a group of 1755 multiple-sclerosis patients using modafinil, 99% of

patients used it for an off-label purpose. Some of these off-label purposes were unexpected

or unusual (e.g., ‘brain fog’). Similarly, CureTogether1 offers patients an opportunity to

collaboratively find new treatments for their diseases. For example, at the time of this

writing, users ranked ‘spending time with animals’ almost as effective as Xanax in the

treatment of anxiety.

However, physicians are, for the most part, reticent to embrace such approaches in

mainline healthcare. Perhaps the only notable manifestation of true ‘crowd wisdom’ in

mainline healthcare is the physician discussion board. Most large-scale knowledge-sharing

has instead focused on more efficiently propagating expert-curated guidelines to the local

practice (e.g., Guidelines.gov or Middleton’s (2009) CDS Consortium). As discussed pre-

viously, however, there is great need for better-maintained CDS content, and the wisdom

1www.curetogether.org
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of the local practice is increasingly being captured implicitly in order data. Therefore, it is

important to review the theory behind crowd wisdom and understand where it should and

should not be used.

There is a widespread assumption that physicians do not naturally ‘do the right thing’,

and so relying on average practice patterns is dangerous. In fact, there is important truth

in this assumption. McGlynn et al. (2003) famously showed that physicians provided only

54.9% of recommended care, when judged against 439 quality indicators. Even in encounter-

oriented quality measures (where physicians do well), physicians nationally provide recom-

mended care only 73.4% of the time. Physicians admit that time-pressure and stress can

cause them to behave inconsistently with their training (Ely et al., 1995).

However, ‘crowd wisdom’ does not require that each individual in a crowd make the

correct decision. Indeed, this is antithetical to the concept. Rather, ‘crowd wisdom’ is

the belief that the group can be wiser than the individual. Condorcet (1785) derived

the jury theorem, upon which all voting theory is grounded. It proves that when each

member in a group of independent decision makers is more than 50% likely to make the

correct decision, then aggregating those decisions ultimately leads to the right answer. The

number of decision-makers required is frequently very small, often as small as three (King

and Cowlishaw, 2007). If we believe that a physician is more likely than chance to make

the correct decision, we can trust their aggregated knowledge. (In fact all functions of

health care delivery - screening, diagnosis, treatment, follow-up - are performed properly

by physicians more than 50% of the time, according to McGlynn et al. (2003).)

A small caveat is that decisions must generally be binary for the original jury theorem

to hold. Thankfully, many of McGlynn’s quality measures are formulated as binary deci-

sions (e.g., initiate antiplatelet therapy after noncardiac stroke). Moreoever, Arrow (1950)

proved that aggregating multimodal decisions frequently still leads to wisdom if irrelevant

alternatives are not independent. Frequently, in medicine, many irrelevant alternatives are

not independent. Medical treatments often happen in groups (e.g., diagnostic radiology

or blood test panels), so whole chunks of medical treatments can be eliminated together.

Therefore, aggregating knowledge often results in good group decisions even in multimodal

situations.

5



The jury theorem makes intuitive sense in thinking about suggesting medical treatments

through aggregated decisions. If physicians make the majority of errors due to tiredness,

distraction, and interruption (as the literature might lead one to believe), then reminders

regarding average behavior will be correct and allow tired physicians to catch their errors.

However, one very important caution remains.

World history has demonstrated ‘crowd madness’ as well as ‘crowd wisdom’. (For ex-

ample, Hitler was an elected official.) The problem is that, for the jury theorem to hold,

decision-makers must be ‘sincere’ (Austen-Smith and Banks, 1996), meaning essentially that

they must be independent decision-makers. It is unlikely that in a large practice each prac-

titioner is making independent decisions. They are influenced by colleagues, formularies,

available equipment, and the like. This explains one type of ‘group madness’ in medicine:

‘local practice variation.’ Fisher et al. (2009) utilized data from Medicare beneficiaries

to show that the quality of care in a region is profoundly influenced by the ‘ecology’ of

healthcare in that region (including resources and capacity, social norms, and the payment

environment). This study, part of the Dartmouth Atlas project, found a twofold difference

in healthcare volume (the per capita number of tests, prescriptions, etc.) between some

neighboring regions. Disturbingly, the study also showed no statistical correlation between

increased volume and increased healthcare quality. Figure 1.1 shows this variation in volume

by region.
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Figure 1.1. Medicare reimbursement by hospital-referral region. From
Fisher et al. (2009). Used with permission.

This demonstrates the important role that evidence-based medicine (EBM) must play in

CDS: only manually-curated reminders can introduce entirely new knowledge or enforce new

behavior. However, I propose this principle: Where there are not strongly negative external

influences, applying majority voting methods to local standards can result in decision-support

content at least on par with guideline-based knowledge. Although crowd wisdom must cer-

tainly not replace expert validation or manually-curated reminders, harnessing local data

is needed to help maintain CDS to a point where it is actually useful in a larger number of

clinical systems.

3. Statement of Contribution

Thus we proceed with caution into harnessing this crowd wisdom for decision support.

This dissertation develops and evaluates methods to ‘reverse-engineer’ CPOE data into CDS

knowledge. The evaluation focuses on how well the local practice is reconstructed, not on

how well this compares with national guidelines. This first task will occupy us for many

chapters, and we leave comparison with national guidelines to future work.

Processing order entry-data to reconstruct local wisdom and generate decision-support

content has not been comprehensively explored in existing literature. As we will see in the

next chapter, there is growing interest in the idea of the secondary use of medical data for

decision support, but it has only been lightly explored. Most work has focused on finding
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pairs of associated variables in the data. A small amount of work has focused on search or

on process discovery.

In this work, I present a new approach to solving this problem by adapting advanced

methods that have been untried for this purpose. In particular, I will leverage the power

of the probabilistic graphical model, or Bayesian network, in order to create a multivariate

model of medical processes that can be reasoned over through probabilistic relations. It

will have the following properties:

(1) Multivariate. It will capture relationships that involve multiple interacting vari-

ables.

(2) Probabilistic. By associating the multivariate relationships with probabilities, it

will support reasoning under uncertainty (e.g., when a clinical situation is not fully

known).

(3) Temporal and associative. The model will capture both associations (non-temporal

relationships) and processes (temporal relationships) in order to provide a clear

picture of treatment suggestions.

(4) Fast. By decomposing a large database into simpler models, this system will be

able to reason about the clinical situation in real time.

Previous work all provide at least one of these characteristics, but none offer them all.

Reasoning with Bayesian networks is well-understood, and such networks are already

widely used in medicine. However, methods to learn the networks from data are not well

explored in this domain, and they have never to our knowledge been used to create decision-

support tools from crowd wisdom. This work incorporates several existing learning algo-

rithms in novel ways, and also introduces several new approaches.

4. Data Source and Preparation

The experiments in this dissertation will use data from Wishard Hospital, the county

hospital in Indianapolis. Indianapolis overall is one of the most average regions of the

country (in terms of healthcare spending and population diversity), so we feel it is a good

testbed for the principle of crowd wisdom.
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The Gopher Clinical Workstation is a CPOE system that has been in operation at the

hospital since 1984 and has expanded to several outpatient clinics. It is ubiquitous in the

hospital and clinics, captures a great deal of high-quality data, and has long been used

as a testbed for decision support functionality (McDonald, 2002). It captures data at an

extremely fine level of granularity, capturing all problems (diagnoses and complaints) and

orders entered during a hospitalization grouped temporally by CPOE session (in which

orders are placed at one time by a healthcare provider). It also includes patient context

such as location within the hospital. Among other useful analyses, the data allow one to

look at diagnoses as they are entered by providers during the hospitalization, and not those

generated by medical coders long after discharge. The quality and depth of these data make

it ideal for a methodological study of CPOE data.

The principal limitation of relying only on CPOE data is that this is not a complete

view of the patient. Other important factors, such as the results of previous orders (test

outcomes, physiologic changes, etc.) contribute to the clinical context as well. We will

explore augmenting our data sources in Chapter 9, but for the most part we find that what

a CPOE dataset lacks in breadth it makes up for in completeness, and so it is still a good

testbed for local-wisdom-extraction methodologies.

Until recently, the only source for Gopher data was through the Regenstrief Medical

Record System (RMRS), which synthesizes data from many different sources (MacDonald

et al., 1994). The RMRS stores all of the orders from for a hospitalization, but only the

billing diagnoses and none of the temporal or contextual information. A recent project

within the Regenstrief Institute has now extracted the raw Gopher data, going back to

2007.

The Gopher development team provided us these data for a three-year period, 2007-2009,

in the form of tab-delimited files. We wrote a script in the Python language to eliminate all

free text and internal codes (e.g., workstation identifiers). Remaining identifiers, according

to 45 CFR A 164.514b, included patient identifiers and dates. We processed these as follows:
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(1) Patient identifiers. Patient identifiers were replaced with a random number (a

pseudo-id). This pseudo-id was remembered throughout the deidentification pro-

cess so that the pseudo-id remained consistent for a patient (for correlation across

hospitalizations).

(2) Dates. Dates were de-identified according to the following algorithm: Each patient

pseudo-id was assigned a random date offset of ±60−120 days. All dates associated

with that patient were adjusted by this offset. This algorithm allows relative

comparison within a patient (e.g. the average frequency of rehospitalizations), but

not actual date comparison across patients.

Our Python script then loaded these data into a PostgreSQL database as two tables:

sessions and orders. A session corresponded to an order session within a hospitalization

and included a patient identifier, an admission number, a date and time, a location, and

in some cases the name of the Gopher form that was being filled out to place orders (e.g.

‘admitting orders’). The table included 2,362,152 sessions in 424,667 admissions. The

orders table included, for each order placed, the Gopher order number, the action taken

(‘new’, ‘continue’, and ’discontinue’), a link to the order session, and an field that provides

some context about the order’s meaning (e.g., is this a chief complaint or a secondary

diagnosis?). This table contained 7,677,432 orders. Gopher order numbers connect to

the Gopher terminology dictionary, which is a comprehensive catalog of 7376 orders and

problems, for which is specified both their broad class (problem, test, radiology, drug,

consult, nursing, diet) and more specific subtype and components (if the order is part of a

set or panel).

Analysis of the data revealed that each hospital admission was actually a visit to one of

three locations: the emergency department (ED), the inpatient hospital, and the women’s

visit clinic (WVC). Within the ED, less complex patients were triaged to an area called the

urgent visit clinic (UVC). We will call these the four modalities of medicine in Wishard.

We therefore created an admissions table which included a unique admission identifier, a

session id within that admission, a link to each order session in the admission, and the

modality of this admission. We then wrote a PostgreSQL stored procedure in PL/Python

to populate this table using the following rules: 1) A hospitalization has the modality
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associated with its initial location; 2) Inpatient hospitalizations also include any sessions

that occur immediately before, up to and including an admission note (because the majority

of inpatient admissions in Wishard start in the ED); 3) Order sessions in the operating room

are excluded (but not the recovery room or the waiting area), because the operating room is

a very different environment not particularly compatible with the four general modalities; 4)

discharge orders do not always occur at the end of hospitalization, so these are reordered to

the end; 5) if no admission id is associated with the session, use the date to determine which

hospitalization it occurred in. The fourth point is due to a bug in Gopher - the date of the

order session is the date the session was begun, and physicians at Wishard frequently open

a discharge session immediately after admission so they will not forget to submit it when

discharge occurs. The fifth point addressed 29000 sessions with no admission id tagged with

them. Our admission table contained 67800 inpatient, 230971 ED, 36771 WVC, and 63445

UVC visits.

In order to reduce noise in the data, we reduced the orders table in the following ways.

Initially the table contained 7376 order types. First, we excluded orders not labeled as prob-

lems (diagnoses and complaints are called ‘problems’ in Gopher and are placed as orders),

diets, tests, treatments, procedures, referrals, or consultations. This removed 221 order

types, including mostly order types used for testing, very rare orders, improperly entered

orders, and call orders. (Call orders, which are physician notification events ordered by the

clinical staff, are extremely frequent and we felt their presence would reduce the ability to

detect more meaningful patterns). Next we excluded order types that had been deactivated

in Gopher, which removed an additional 29 order types. After careful examination, we

eliminated an additional 45 vague order types that provided minimal information, all of

which ended with the words ‘other’ or ‘misc’ or began with the words ‘cannot rule out’

(e.g., nursing orders other). Next, orders placed in the test ward (where training occurs)

were eliminated. Next, if individual orders were made when an entire panel containing that

order were made in the same session, the individual order was eliminated. This removed

only 7 order types but 45,520 actual orders. Finally, we attempted to identify all medica-

tions that included the route of administration, and we combined these into a single order
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type without the route. We chose our route terms manually, because there was no compre-

hensive knowledgebase available regarding what orders were synonymous. Therefore this

was not perfect, but it did remove 170 order types. A final pass was run to remove rare

orders of a few specific types, removing 167 additional order types. In the end, our updated

order table contained 6701 order types and 5,787,422 orders. It is possible to reduce this

further using order sets defined in Gopher (which group categories of orders), but these are

problematic for several reasons: orders which are actually of different classes (e.g., morphine

and ibuprofen) are sometimes grouped together; the order sets are largely unmaintained;

and, the order sets do not distinguish between panels (orders which occur in a group) and

synonyms (orders that are actually equivalent). In Chapter 3, we make some use of these

sets, but for the most part we chose not to rely on them.

Next, we created a summary table used for our experiments. The fields in this table

are shown in Table 1.1. We will refer to subsets of this table by modality through this

work: GopherInpatient, GopherED, GopherUVC, and GopherWVC. Finally we created

an admission-compressed version of this table (where sid is not included) to study whole

hospitalizations. This dataset was approved by the IRB (#EX0811-29).

Field Description Source table
gid A global encounter id admissions
sid A session number within the encounter admissions
o An order number from the Gopher terminology dictionary orders

status Whether the order is active or being discontinued orders
modality The modality associated with this hospitalization admissions
location The specific location within the hospital for this session encounters

Table 1.1. The fields in our Gopher summary table, used for all experiments
in the subsequent chapters.

5. Outline of this work

This dissertation is organized into three parts. In Part 1, we will review existing work

and develop a first version of a system to select orders in dynamic clinical context. In Part

2, we will make three methodological contributions to the algorithms used. In Part 3, we

will synthesize all the pieces into a final system, which we will evaluate both retrospectively

and prospectively.
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Part 1 includes Chapters 1-4. In Chapter 2, we will review existing techniques in

medical data mining and reasoning. In Chapter 3 we will introduce and evaluate a prelimi-

nary approach to generating situation-specific treatments using Bayesian network learning.

Chapter 4 introduces a more comprehensive approach and more robust evaluation measures.

Part 2 includes Chapters 5-8. These develop novel approaches to scalability and temporal

reasoning in a Bayesian network framework. Part 3 includes Chapters 9-11, which involve

the creation of a final system and a final evaluation of our work.
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CHAPTER 2

Data Mining and Reasoning in Medical Informatics

In this chapter, we review two parallel threads of work involving computation in clinical

medicine. This includes clinical data mining and clinical reasoning.

1. Clinical Data Mining: A Brief Review

US Healthcare costs have increased about 5% per capita per year over the last four

decades, which is double the growth of inflation during that time (Orszag, 2008). In response

to this, the federal government has been pushing for increased health information technology

(HIT) for the past two decades.

In 1991, the Institute of Medicine released a seminal booklet explaining how HIT in gen-

eral, and computer-based patient records in particular, are essential for the future of health

care (Institute of Medicine, 1991). The booklet praised the potential quality improvement

and efficiency savings through HIT. Embracing the promise of this potential, President Bush

presented a mandate that healthcare practices switch to fully electronic systems by 2014

(Ford et al., 2006). Although more realistic estimates suggest 86% adpotion by 2024 (Ford

et al., 2006), recently the Obama administration introduced Meaningful Use (Blumenthal

and Tavenner, 2010), which incentivizes providers to use HIT through increased Medicare

reimbursements. Slowly the country is moving to electronic capture and sharing of clinical

data.

However, even with the electronic capture of data, the promises of quality and efficiency

improvement have been slow to occur. In 2007, a survey from the Medical Records Institute

confirmed that HIT was not meeting its goals. 30% of respondents indicated that no HIT

goals were being met in their environment (Conn, 2007).

There are many technological and non-technological reasons for this sluggish adoption,

but one major barrier is methodological. The healthcare community needs data-mining

methods to interact with data repositories which can address the particular complexities

and pitfalls of healthcare. For this reason, the National Library of Medicine has been

funding a great deal of research into medical data collection, sharing, and data mining

(Lindberg and Humphreys, 1995).
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Still, Bellazzi and Zupan (2008) write that the application of data mining in medicine,

“despite high hopes, has until recently been relatively limited.” They suggest that the goal

of predictive data-mining is various forms of decision support, but our literature review

supports that even two years after their article, successes have been mild.

Perhaps for this reason, medical data mining is best known in more specialized tasks,

such as data completeness, search, algorithms for specialized use (e.g., ventilator protocols),

and non-clinical tools such as epidemic detection (Maciejewski et al., 2008) and genomic

association studies. Still, as techniques have improved, there has been a resurgence of

interest in using medical data for more general decision support mining. This work has

predominantly used algorithms from retail and e-commerce (which we will refer to collec-

tively as Collaborative Filtering), though more recent work has utilized process-discovery

approaches.

tid Book Bookmark Coffee Magazine Tea Cards
1 Y Y Y
2 Y Y
3 Y Y Y
4 Y Y Y
5 Y Y Y Y
6 Y Y
7 Y
8 Y Y Y
9 Y Y

Table 2.1. A short transaction set showing purchases among nine customers
at a bookstore. Nearly all of the relevant data-mining algorithms operate by
performing statistics on tables of transactions like these. In this example,
each row represents a transaction (noted by the number in the TID column),
and each column represents an item that may have been purchased in that
transaction.

Medical data mining has for the most part dabbled in many methods developed in other

fields, without engendering development of its own. As previously stated, although there

is growing interest in finding associations in medical data, studies which utilize clinical

data to provide decision support are relatively rare outside of specialized studies. We will

examine methods that have been used for this purpose, turning occasionally to Table 2.1

for reference.
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1.1. Data mining as search. Although the research reviewed here focuses on har-

nessing the collective wisdom of the crowd (e.g. aggregating information) to suggest in-

terventions, one notable alternative use for medical datasets deserves review: search. We

will refer to this search-based approach under the umbrella term ‘case-based reasoning’, in

which the current situation is compared with exemplar cases, the most similar of which are

displayed. This approach has found specialized applications in medicine (Bichindaritz and

Marling, 2006), but it presents two problems.

First, developing exemplar cases is historically done through manually constructed ‘gold

standard’ cases (Althoff et al., 1998), which proffers a similar burden as manually developed

CDS. Abidi and Manickam (2002) described a method to extract a case-base directly from

an electronic record, but the method first requires manual mapping and is not intended

to be automated. Paterson et al. (2005) suggest that the Clinical Document Architecture

(CDA) could automate the extraction, but their work focuses on translating from text into

CDA format, not decision support with CDA.

Other work has bypassed the problem of finding exemplar cases by utilizing an entire

medical database for exemplars, which is a more familiar approach in the modern world of

Internet search engines. However, then the second problem of choosing similar cases becomes

critical, or many irrelevant results will be retrieved. Popescu and Arthur (2006) describe

a system which would allow a physician to search for patients with similar diagnoses, in

order to ascertain how they were treated, but to our knowledge it was never implemented

or evaluated. Both Melton et al. (2006) and Cao et al. (2008) developed methodologies to

find similar patients, and the latter study had greater than 60% correlation to experts.

The search-based approach is certainly needed, but much more work is needed to in-

crease specificity and develop optimized algorithms. Even with perfect specificity, searching

for common situations would produce an overwhelming number of results. This can be seen

in our bookstore example, where a search for tea-purchasers would, upon user examination,

reveal that none of them also purchase coffee, but it would require manually examining four

cases. In a real bookstore transaction log, this process could take hours. However, for the

rarer event of purchasing cards, only one exemplar would appear. Search-based approaches

are an alternative, not a replacement, for automated decision-support content development.
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They do not capture the aggregate wisdom of the crowd, but only the wisdom of individuals

in specific situations, which is best used in rare situations.

1.2. Collaborative Filtering. In order to capture the wisdom of the entire crowd

from data, one needs pattern recognition algorithms, which comprise the remainder of the

methods we will discuss.

The most popular technique is so-called collaborative filtering. This term was coined

by Goldberg et al. (1992), who used it to refer to users cooperatively sharing e-mail filters.

The term now refers to any aggregation of statistical data across transactions to provide

feedback to a decision-maker. It is synonymous with the recommendation algorithm, which

is used most popularly in e-commerce to suggest items to customers by combining their

purchase history and preferences with those of other customers (Schafer et al., 2001). Such

algorithms take many forms, but the best known might be Amazon.com, which personalizes

the entire shopping experience for each user (Linden et al., 2003).

It is no surprise, then, that these methodologies are frequently chosen as a starting point

for medical recommendations. They are popular, simple, and fast (for example, they can

be used in speed-critical environments like Amazon.com).

Warfarin Prothombin Time

Tiotropium COPD

Figure 2.1. An example of two pairwise rules. The first is a corollary order,
the second is a medication that might indicate a missing problem.

1.2.1. Pairwise association. By far the fastest of all these approaches is to examine only

pairs of variables that occur in these transactions. For example, Amazon’s algorithm records

the number of times some purchase B occurred in the same transaction as A, for all A and

B. The number of occurrences is known as the support for that association. Dividing the

support by the number of occurrences of the individual item A is known as the confidence.

If the association’s confidence exceeds some threshold, then it is used as a recommendation.
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For example, Table 2.1 shows that when a book was purchased, a bookmark was also

purchased 5 out of 7 times, which we would write as confidence(book → bookmark) = 5
7 .

Many heuristics exist to determine the strength of an association (e.g. Lallich et al. 2007),

and these are known as interestingness measures.

Several studies have utilized pairwise association in clinical data to support decision-

making. Chen et al. (2008) has proposed an automated system to mine biomedical liter-

ature’s MeSH headings for CDSS content, but its evaluation only compared the method

across different data sources, not the adequacy of the method. A perusal of the results

suggest that her method works well in only very common situations. Carter et al. (2002)

successfully used pairwise association in clinical records to initialize may-treat linkages in

RxNorm, but these were only a starting point for content developers.

Two studies have used an experimental design to examine the quality of pairwise as-

sociations. The first was our own (Klann et al., 2009), in which we measured perceived

clinical utility of the 92 top corollary orders generated by a very fast pairwise association

rule mining algorithm. We found that, although 70 of these rules were clinically meaningful,

only 44 of these were directly relevant and could potentially be useful reminders.

The most comprehensive experimental study is perhaps the one performed by Wright

et al. (2010). They used pairwise association to discover association between drugs and

diseases, in order to find problems missing from the problem list that are indicated by the

patient’s medication profile. They found that the 50 associations with the highest χ2 value

were clinically valid associations. However, many of these were related to HIV/AIDS and

all dealt with very specific situations. The clinical accuracy of the associations dropped off

very rapidly at lower χ2 values.

This highlights the weakness of pairwise algorithms: they cannot detect associations

that depend on multiple variables. In our example above, for example, books and coffee

are frequently purchased together, as are tea and coffee, but books are never purchased

with both coffee and tea, and this cannot be detected by pairwise association. In the same

way, one might imagine that drug X is highly predictive of problem A unless drug Y is

also ordered, which would indicate that drug X is actually treating problem B. To detect

situations like this, we need multivariate associations.
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1.2.2. Multivariate association. Multivariate association techniques find large groups

(or itemsets) of co-occurrences within transactions through a process called candidate gener-

ation. The first efficient candidate generation algorithm, Apriori, was developed by Agrawal

et al. (1994). It performs a breadth-first search of increasingly large item sets in a database

of N elements, which comprise the powerset of N , denoted P(N). Therefore a naive search

would comprise 2N itemsets, which is intractable for large N.

The key insight of Apriori is the downward closure property, which states that any

subset of a frequent itemset must be frequent. This allows the algorithm to conclude a

priori that some paths down the tree are not worth exploring, because they cannot contain

frequent itemsets. This allows significant pruning of the search tree at every level, especially

in sparsely connected data sets.

Much work has improved upon Apriori, including depth-first searches like Eclat (which

often find maximum itemsets more efficiently) and searches within maximal cliques (which

can allow for parallelization) (Zaki, 2000). However, frequent itemset searches are difficult to

perform in real-time due to their computational intensiveness. Therefore in the commercial

world they are typically used for offline data-mining tasks, such as understanding customer

purchasing patterns (Schafer et al., 2001).

Multivariate association has shown some promise in the complex environment of medicine.

Che (2007) suggested an itemset-mining methodology used to generate order set drafts,

though the resulting order sets poorly correlated with existing order sets. Santangelo et al.

(2007) explored itemset mining to discover novel laboratory test batteries, but their limited

study did not evaluate the clinical utility of the discovered itemsets, except to note that the

most common test battery was not included in their results. Wright and Sittig (2006) per-

formed an exploratory study that demonstrated frequent itemset mining on hospital data

might be useful in providing order suggestions. Their system found several useful order

sets, but they manually culled through many useless associations.

Overall, this methodology has suffered from a lack of robust exploration within medical

data, possibly because it is both far more complicated than pairwise association but also

not specific enough to provide significant additional value. In particular, these algorithms

produce a large number of item sets, and it can be difficult to discern what clinical process
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is actually occurring. A more useful approach for treatment recommendations would be to

try to extract the clinical process from the data.

1.3. Mining clinical processes. Several studies have done exactly this. Decision-

tree learners generate a ‘flowchart’ of choices (e.g., treatments) lead to classification of a

decision (e.g., finding or diagnosis). A typical method is Quinlan’s (1993) C4.5 and C5.0

algorithms, which iteratively split a set of transactions into optimal subsets (using a measure

called information entropy, creating a binary tree of decisions. These flowcharts leading

to a classification (e.g., finding or diagnosis). Although the algorithm merely classifies,

several studies explore whether decision trees might approximate the actual process used

in decision-making. However, even if this is true in some situations, Quinlan notes other

limitations in this approach. In particular, the algorithms can only be used to discover

logical classification models, in which actions are taken based on logical statements about

individual variables. He notes that they do not have the flexibility (multivariate interaction,

for example) of network models (such as neural networks), which we will turn to shortly.

However, they are also much less computationally intensive.

Two studies have used Quinlan’s algorithms to discover clinical processes from databases.

Mani et al. (2007) discovered accurate predictors of hypertension from data in a controlled

population using C4.5. Although the controlled population did not reflect the noise and

sparsity of real clinical databases, they simulated this by injecting noise and found that

C4.5 still performed well. Toussi et al. (2009) augmented an existing diabetes guideline

with suggestions in which the guidelines fell silent, using the C5.0 algorithm on clinical

data. They found that their results were similar to a newer version of the guideline, partic-

ularly regarding diabetic tri-therapy. These two applications are rather specialized, as per

the limitations noted above. However, they deserve further research and appear to have

applicability in workload reduction and process monitoring.

An alternate approach is process mining, which uses various algorithms to discover

Petri nets from transaction data. Petri nets are place-transition diagrams that are popular

for modeling processes. They are several steps more complicated than even a graphical

model like the neural network, because they: a) have multiple ‘markings’ which ‘move’

independently around the process graph and can interact to cause transitions, and b) can
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contain loops. In fact, both are central to process graphs, because they are used to discover

congestion in repeating processes such as calls at a call center. Petri nets are successfully

being used in healthcare to model emergency room congestion (Kopach-Konrad et al., 2007).

One popular process mining algorithm, Medeiros et al.’s (2004) α, can discover any

sound structured workflow network (SWF-net) from data with no noise. (An SWF-net is a

restricted type of Petri net.) However, the limitation of requiring noise-free data likely make

this methodology a poor choice for mining (frequently noisy) healthcare data. Nevertheless,

Vojtech and Starren (2009) are studying applicability of process mining algorithms to dis-

cover disease progression in clinical data. Their initial work, using α to discover Petri nets

for patients with chronic kidney disease, did not yield human-interpretable visualizations.

They concluded that the data must be more extensively preprocessed for this application

of Petri nets.

1.4. Summary. A variety of studies indicate that tools used in e-commerce and other

fields can be adapted to specialized applications in medical data mining. However, the only

two experimental designs showed significant limitations. Wright et al. (2010) found that

automated problem list maintenance is difficult in all but very tightly-correlated medication-

diagnosis pairs. Klann et al.’s (2009) algorithm found useful corollary orders only about

half the time. Therefore we conclude that existing, popular methodologies are insufficient

to reverse-engineer decision knowledge from data.

2. Reasoning in Medical Informatics

A parallel thread of computational development in clinical medicine are physician cogni-

tive supports. These transform expert knowledge into computational tools, most popularly

for diagnostic decision support. Such tools fall broadly into two categories: knowledge-based

and reasoning-based (Berner, 2009).

2.1. Knowledge-based Systems. Knowledge-based systems directly encode expert

knowledge into some form of trigger-and-response rule. Many such rules are pairwise, such

as the corollary order (e.g., if ordering warfarin you should also place a standing order for

prothombin time each morning) (Overhage et al., 1997), alerts (e.g., suggestions of antibi-

otics for specific culture results), or reminders (e.g., annual mammograms are indicated

for women over 40). Several languages exist in which to define these rules, many of which

21



were developed by the institution using them (e.g., Regenstrief’s CARE language). Arden

syntax is a general language for such rules (Hripcsak et al., 1994). It has guided some

development but did not succeed in creating a usable national standard. The more com-

prehensive Guideline Interchange Format (GLIF) (Boxwala et al., 2004), which draws upon

Arden syntax and popular data exchange formats (HL7 and RDF), might prove to be a

more popular rule-exchange format. Recent funding activity indicates that there is now

support for national repositories of such rules in a standard format, which will be an aid to

both implementers and researchers (e.g., see Middleton 2009).

McDonald (1976) demonstrated that such a system can successfully change clinician

behavior. He created a simple computer medication reminder system for physicians at a

diabetes clinic. The system, when the physician was seeing a patient, would suggest a refill

or a change in medication if either was appropriate. The study showed a behavioral change:

physicians acted in the recommended way 20% more often after receiving a computerized

reminder than without. This finding launched decades of study into computerized reminders

and other knowledge-based systems. These have become the most popular approach to CDS

and have been quite successful in inducing specific behaviors (Payne, 2000; Garg et al., 2005).

The prevalence of e-commerce approaches in clinical data mining can likely be credited

to the similarity of pairwise associations to these simple knowledge-based rules. However,

many decisions in medicine cannot be captured by simple trigger-and-response pairs. For

example, Figure 2.2 shows a snippet of an Asthma order set from Gopher. It cannot be

captured by simple pairwise rules but is better represented by a network of associations as

shown on the right. This could explain why knowledge-based CDS has mostly been limited

to a small set of finely tuned number reminders and alerts. More complex decision support

requires a more complex approach.

2.2. Reasoning Systems. For complex reasoning, a trigger-and-response rule is often

insufficient. Even in the simple example of Figure 2.2, the combinations of covariates make

a rule-based representation cumbersome. Furthermore, in real clinical situations frequently

not all information is known, and therefore some uncertainty would be associated with the

result of the CDS.
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Asthma
If intermittent, consider albuterol.

If infection suspected, add ampicillin.
If age < 40, consider terbutaline.

(a) Asthma order set.

Asthma

Age

Fever

Albuterol

Terbutaline

Ampicillin

(b) Network representation.

Figure 2.2. (Left) A snippet of Gopher’s asthma order set, which cannot be
represented as pairwise rules. (Right) A network of associations to represent
the decision making defined by this order set.

Complex reasoning systems appropriate for situations with incomplete information have

been developed in medicine since the early 1970s. These have utilized a variety of ap-

proaches to draw conclusions about specific target variables (e.g., diagnoses) given evidence

(e.g., some presenting symptoms). MYCIN, developed to suggest treatments for bactermias

(Shortliffe, 1976), is perhaps the most widely-known system and popularized these methods

in medicine. De Dombal et al.’s (1972) tool for diagnosing abdominal pain was among the

first studied in routine clinical practice. The study found that the computer selected the

correct diagnosis more frequently than the senior physician on the care team, suggesting

that these systems could actually be helpful to busy practitioners.

These early successes spurred a variety of other tools in the subsequent years, each of

which contributed to the theory behind reasoning with uncertainty. The Quick Medical

Reference (Miller et al., 1986) and its subsequent decision-theoretic version (Shwe et al.,

1991), supplied diagnostic decision support in diagnosing 750 diseases internists might en-

counter. Heckerman and Nathwani’s (1992) PathFinder specifically targeted diagnosis of

lymph-node diseases.

By the 1990s, network approaches began to dominate reasoning systems. Such ap-

proaches represent all variables in a directed graph, consisting of vertices (also called nodes)
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Abdominal Pain

Pregnancy Test

Obstetrics Consult

Ab. Pain No Yes
80% 20%

Preg. Test No Yes
Ab Pain=No 90% 10%
Ab Pain=Yes 10% 90%
Ob. Consult No Yes

Preg. Test=No 90% 10%
Preg. Test=Yes 20% 80%

True

90%

73%

Figure 2.3. An example Bayesian Network (left), the conditional probabil-
ity tables associated with it (middle), and the posterior probabilities given
the evidence of ‘Abdominal Pain’ (right).

representing the variables and edges representing the relationships between vertices, as in

Figure 2.2. These allow complex multivariate diagrams of relationships.

Methods for reasoning with these graphs have matured over the years. The basic in-

tuition is that evidence variables can be instantiated in the network, which revises the

likelihood of each target. In early systems, each node was given a score, and the edge

connections were used to compute a final score based on the evidence. The Quick Medical

Reference assigned scores to the edges instead of the nodes, allowing each relationship to

be scored separately. Eventually network reasoning gravitated to a notion of probability, in

which each node has a probability of occurring given the probability of each of its parents.

As evidence is instantiated in the graph, the posterior probability of the targets gets re-

vised. If the graph does not contain cycles, it is possible to compute the revised probabilities

through ‘propagation’ of evidence around the graph. This is known as belief propagation.

These probabilistic networks are known as probabilistic graphical models. Because Bayes’

rule is used to compute the unspecified probabilities, these are also known as Bayesian

Networks (BNs) or Bayesian Belief Network.

2.2.1. The Bayesian Network. As stated, a Bayesian network is a directed graph of

vertices and edges connecting those vertices. Embedded in each node is a conditional

probability table (CPT), specifying the probability of each node state given the state of

each parent. An example of a simple BN, the underlying CPTs, and the revised posterior

probabilities given evidence is shown in Figure 2.3.
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Keeping the CPTs small is a key challenge in Bayesian network specification. It be-

comes quite difficult for an expert to specify the probability of a disease given an exponential

number of combinations of diagnostic results. In some specialized cases, all of these prob-

abilities are not necessary. Heckerman and Nathwani’s (1992) Pathfinder system assumed

that relevant symptoms independently contributed to diagnosis of a disease (e.g., nausea

and a headache both increase the probability of disease independently, even though the

two together might actually indicate something more extreme). With this assumption, the

CPT becomes linear in number of parents, because only the contribution of each individ-

ual symptom to each disease is specified. This is known as a NOISY-OR model, a good

overview of which can be found in Vomlel (2006). There are various models like this (col-

lectively known as ICI - Independence of Causal Influence) which simplify the specification

of CPTs. However, real causes are not independent of each other in most cases, and in fact

one of the strengths of Bayesian networks is that causes can be interrelated. If we were to

imagine a network to suggest treatments for complications of pregnancy, we would note that

both hypertension and pregnancy contribute to preeclampsia, but both must be present for

preeclampsia to occur. It would not be reasonable to model the impact of hypertension on

preeclampsia independent of pregnancy; preeclampsia by definition only occurs in pregnant

women. Therefore, a more common solution in BNs is to limit the maximum number of

direct parents per node (known as the maximum fan-in).

Once the network is specified, the task is to determine the posterior probability of some

set of targets given a set of evidence. This is the conditional probability query, and the

task is known as Bayesian network inference. It is in fact intractable to directly compute

these posterior probabilities in an arbitrary network. Therefore a great deal of work has

gone into developing tractable approaches for inference. Pearl (1988) has been a leader in

this work. He showed that in a network in which there is at most one path to any node,

inference can be performed in polynomial time. This is the polytree algorithm. A natural

extension of this, the junction tree algorithm, first converts the graph into a graph with few

paths (by combining nodes into hybrid super-nodes) and then performs polytree inference

on this hybrid graph. The treewidth of the graph, or the maximum number of paths in the

optimal junction tree network, determines whether inference can be performed tractably.
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Broadly, treewidth is higher when there are more paths between nodes in the original graph,

so limiting the maximum fan-in is a good approach for inference as well (Lucena, 2003).

Junction trees are the primary inference method in many popular Bayesian-network software

tools (e.g., Netica).

It is also possible to pre-compile Bayesian networks into another form for faster inference.

For example, Netica pre-compiles BNs to junction trees. Chavira et al. (2006) further

reduces junction trees into arithmetic circuits. The compiled circuit can be reasoned over in

time linear in treewidth, rather than the polynomial time of a junction tree. However, such

pre-compilation might not be efficient overall, because the complexity of the junction tree

is related to which variables are targets and what evidence is set (Druzdzel and Suermondt,

1994).

All of these inference approaches attempt to find an exact answer to the conditional

probability query. In more complex networks, this can be impractical. Therefore approxi-

mate inference approaches, also known as particle-based inference, have also been developed.

Such algorithms run simulations of ‘particles’ moving through the network and observe how

their probabilities change. Such approaches allow inference on graphs which would other-

wise be too complex.

The unfortunate endpoint of all work in Bayesian network inference is that no clever

optimizations make inference tractable in an arbitrarily complex network. Cooper (1990)

proved that all inference is not only intractable but is also among the least tractable set of

computational problems (known as NP-hard). Therefore it is important when developing

networks to think carefully about the complexity of the learned network.

2.2.2. Uses of Bayesian networks in medicine. Bayesian networks have over the years

gained notoriety as the most powerful approach to medical reasoning. Unfortunately, unlike

knowledge-based reminders, medical probabilistic reasoning tools have seen little use outside

of academic journals. Despite the algorithmic power, limitations in network design have

rendered BNs generally insufficient to model realistic, complex, and generalizable clinical

situations. While it is somewhat straightforward to elicit simple rules from experts (e.g., ‘if

female over forty and no mammogram in the last 12 months, suggest mammogram’), it is

much more difficult to extract the intricacies of complex reasoning processes. Researchers
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have tackled this difficulty in various ways. One well-known example is Heckerman and

Nathwani’s (1992) similarity network, which presented domain experts subsets of the larger

network, in order to simplify their thought-process in determining probabilities. Still, BNs

in medicine have either been restricted to research labs (e.g., Shortliffe 1976), single locations

(e.g. De Dombal et al.’s (1972) knowledge did not generalize), or instructional tools (e.g.,

Barnett et al. 1987).

On the other hand, Bayesian belief network methodologies have been quite successful in

other fields. For example, Heckerman adapted his ideas regarding diagnostic probabilistic

networks into the engine powering various Microsoft Windows help and troubleshooting

systems (Hedberg, 1998). Lumiere, which first manifested in the unsuccessful Microsoft

Office Assistant, still comprises the technology behind Microsoft Office Help (Horvitz, 1998).

3. Conclusion

In this chapter, we reviewed existing HIT data-mining methodologies that have been

used to support decision support and found that current approaches are too weak to handle

the complexity of decision support. We also reviewed reasoning methods in medical infor-

matics, in which we focused on the Bayesian network, which (when careful attention is paid

to their complexity) can rapidly reason in complex multivariate problems, given a specified

model. In the next chapter, we introduce an application involving a synergy of the two

domains, in which Bayesian networks are learned from data.
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CHAPTER 3

A Synergy of Reasoning and Data-mining: Bayesian Network Structure

Learning

We have seen that Bayesian networks are a powerful multivariate, probabilistic reason-

ing paradigm that have been widely studied in medicine. However, the models are often

difficult to design and do not frequently generalize well and have therefore been relegated

predominantly to educational and research settings. We have also seen that there is great

interest in mining the large data sets which are becoming increasingly available in order to

improve clinical care, but the results have thus far been meager.

It is possible to connect the power of Bayesian networks with the masses of information

that data mining promises. If networks could be accurately learned from data, this would

eliminate the difficulty of soliciting expert opinions on a massive number of combinations of

variables. Further, this multivariate approach to data mining might be able to make sense

out of the tangled correlations in clinical data.

The idea of learning Bayesian networks from data is not new. It is known as Bayesian

structure learning. Already by 1997, the field was mature enough that Heckerman (1998)

was able to write a comprehensive tutorial on methodologies. Bayesian structure learning

has been used in medical applications, predominantly in discovering genotype-phenotype

linkage (e.g., Ramoni et al. 2009). In clinical medicine, a few recent studies have used

hand-constructed networks that have learned parameters (ie. CPTs) from data. Examples

include Sanders and Aronsky’s (2006) work on asthma detection and Hoot and Aronsky’s

(2005) work on liver transplant survival. However, in such cases the network structure is

defined by an expert and only the probabilities are learned from data. In cases where the

domain structure is not completely known, it is necessary to learn both the graph structure

and the parameters from data. We are unaware of any previous studies which have done

this in clinical data. Therefore we believe the use of Bayesian structure learning to mine,

encode, and subsequently reason about clinical decisions is novel.
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1. An Introduction to Structure Learning

The most common approach to Bayesian network structure learning (henceforth called

structure learning) is a score-based approach. This begins with a set of nodes in a discon-

nected graph. Edges are added to choose a network that best explains a training dataset.

This is typically done by maximizing a score which approximates the probability of the

graph given the data, or P (G�D). An approximation is used because directly computing

P (G�D) requires information on all possible networks (Wasserman, 2004), which is combi-

natorial in the number of variables in the network (Eaton and Murphy, 2007). Bayes’ rule

allows us to reformulate the desired probability: P (G�D) = P (D�G)P (G)
P (D) . It is permissible to

ignore the prior probability of the data P (D), because it is a constant given a particular

dataset, and it is possible to directly compute P (D�G) from the CPTs of the network.

Various approximations exist for P (G) (mostly designed to reduce graph complexity and

overfitting). Thus, it becomes possible to find an optimal graph by maximizing a Bayesian

scoring function, which is an approximation of P (D�G)P (G). In this work, we use Buntine’s

(1991) BDeu approximation.

With a scoring function, one could theoretically search through all possible graphs to

find the optimal choice. Unfortunately, because there are a combinatorial number of possible

graphs (O(n!2�n2�)) (Eaton and Murphy, 2007), this is not possible on networks of more than

a few nodes. Therefore, some type of greedy search is employed to reach a local maximum.

Typically, this greedy search begins with a random graph and then proceeds by adding,

removing, or (optionally) reversing a single edge and re-scoring the graph. The algorithm

undoes this change, but keeps track of its resulting change in score. Once all possible single

changes are considered, the best local change is made. Local changes are made until the

score stops increasing. In order to get closer to the global maximum (rather than the local

maximum found by the greedy search), an approach from Glover’s (1990) TABU framework

is often utilized to diversify the search. Most commonly, when no edge change increases the

score, the least negative change is made and the previous graph configuration is added to

a cache. A move into one of the cached graphs is not allowed, though entries in the cache

expire after some predetermined amount of time. This is a simple method to force the

search to explore the search space more broadly. Another common addition is to allow a
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restriction graph. Only edges in this graph are considered in the greedy search. This reduces

the search space of edges if we have a priori knowledge about the domain (e.g., test results

do not cause other test results, so edges between them should be disallowed). Some other

strategies to reduce the search space or improve the score include: limiting the maximum

fan-in (described earlier); more complex graph restrictions (e.g., requiring certain edges,

allowing/restricting some edges only when some others are added, or providing a partial

ordering for the nodes); or initializing the graph with an already known approximation of

the correct graph. A simple greedy search implementing TABU and a restriction graph is

described in Program 3.1, which we will implement in Chapter 7. It does not include edge

reversals, because this slows learning and we have not seen very different graphs result from

this feature. The diversification power of TABU can be adjusted by adjusting �. If � is 0,

TABU cannot force exploration far from the local maximum; a value much less than zero

increases this exploration but slows the search. In this work, � is always 0, because we will

primarily rely on the restriction graph to guide the greedy search.

Greedy search, like all structure learning, is rather slow. There are O(n2) possible edges
to consider in each iteration, and each iteration in turn adds or removes one of O(n2) edges.
Therefore, an add-only greedy search will complete in O(n4) time. However, every edge

consideration is expensive. It requires partially rescoring the graph, which requires a pass

through the dataset and some expensive statistical computations. Another problem is that,

because the greedy search only finds a local maximum, it is common to rerun the search

multiple times with random graphs as the starting point (rather than the empty graph),

and to choose the best. This can substantially increase run-time.

Such restarts can be avoided through the Greedy Equivalence Search (GES), a method

hypothesized by Chris Meek but then proven and formally presented by Chickering (2003).

Rather than searching over Bayesian networks, it searches over what are known as ‘equiv-

alence classes’ of Bayesian networks. These are Bayesian networks that all are probabilis-

tically equivalent. If an optimal Bayesian network exists for the given dataset, GES will

always find it. Due to the additional calculations needed to search over equivalence classes,
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Program 3.1 Greedy-Search(D,R)

Input: R is a restriction graph. Only edges in this graph will be considered. The graph is
undirected but is here treated as bidirected to simplify the algorithm.

Input: D is a a training dataset of binary variables.
G is an output graph, which initially is the empty graph.
TABU is a special queue of edges that automatically removes an edge from the queue if
an attempt is made to add more than a predefined maximum.
repeat

Keep adding the highest scoring edge addition or deletion until no change improves the
score.
SCORE is an array of scores for each edge in R, set to an empty array.
for all edges e ∈ R do

if the reversed edge e
′ ∈ G or e ∈ TABU then

Do nothing - either a different edge exists between the two nodes or this edge was
modified too recently.

else if e ∈ G then
SCORE[e]=BDeu(G�e)

else
SCORE[e]=BDeu(G ∪ e)

end if
end for
if max(SCORE) ∈ G then

G = G�argmax
e

SCORE[e]
else

G = G ∪ argmax
e

SCORE[e]
end if
TABU ← e

until max(SCORE)≤ �
Return G

GES is not always faster than a multi-restarting greedy search. However, its optimality

property is appealing, so we will use this algorithm in the next two chapters.

Despite the speed concerns, we have found small datasets (a few thousand rows) of less

than 75 variables run in a reasonable amount of time (< 30 minutes on a modern desktop

computer). Therefore we will restrict our experiments in this section to small networks. In

Part 2, we will extensively explore the problem of scalability.

O0 O1

P0 θO0�P 0 θO1�P 0

P1 θO0�P 1 θO1�P 1

Table 3.1. An example abstract CPT for a node with two parents, O and
P, where each variable is binary. θ is the probability of each situation.
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1.1. Parameter Learning. Once the network structure is learned, the parameters in

the model’s probability tables (CPTs) must also be learned. Maximum Likelihood (ML)

is the fastest approach, and it is appropriate when there are no missing data. In the

discrete multinomial case, ML reduces to a computation for each element in the CPT of

a node. For example, to compute the CPT of a node with two parents, O and P, then

the entry for O = 1, P = 1 would be θO1�P 1 = M[P=1,O=1]∑x M[P=1,O=x] . This is just the count of rows

containing both P=1 and O=1, divided by the count of rows containing P=1 (and O at any

value). Because a dataset will not always have an entry for the particular combination of

parents (and to smooth out empirically sampled distributions), Dirichlet hyperparameters

are often introduced. These amount to adding a pseudocount to each count. Usually these

are a uniform small value, unless some prior knowledge exists about the relationship of

two nodes. Maximum likelihood can be computed in time linear with the number of CPT

entries. CPT size is still exponential in the number of parents, and each entry requires a

pass through the dataset, but with limited maximum fan-in this is still quite fast.

When data is missing, Expectation Maximization is used, which uses inference to ‘boot-

strap’ ML learning. All missing values are initialized to a random value and iterations of

ML (Expectation) and inference (Maximization) are performed to revise the probabilities of

the missing values until they converge. This is far more time-consuming than ML, because

it requires many iterations of both ML and inference. By limiting the number of iterations,

a graph that can be inferred over in polynomial time can also use EM learning in polynomial

time. Fortunately, for our application we can reasonably assume that there is no missing

data.

2. Applying structure learning to treatment advice.

We hypothesized it would be possible to derive a small Bayesian network useful for sug-

gesting treatments in specific situations by applying an existing structure learning algorithm

to our Gopher data. A conditional probability query could then be used to determine the

probability of an order given previous evidence, which could be listed in reverse probability

order to produce a menu of situation-specific treatment suggestions.

We wanted to pilot this method in a complex but constrained clinical environment.

Therefore we chose to examine comorbid diagnoses in hospitalizations involving pregnancy.
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Program 3.2 BuildModel(D)

Input: D is a training dataset, derived from the admission-compressed Gopher table in
Chapter 1.

1: Feature Selection. {We use a frequency-based selection metric to choose a fixed number
of treatments and diagnoses by prevalence.}

2: Learn a Bayesian structural model. {We use Tetrad’s implementation of the Greedy
Equivalence Search (GES) without any graph restrictions.}

3: Estimate posterior probabilities. {We use Tetrad’s Dirichlet Maximum-Likelihood
parameter-estimation algorithm, with the pseudocount α = 1.}

4: Return the learned Bayesian network.

Program 3.3 TreatmentSuggest(G,p)

Input: G is a fully specified Bayesian network of Gopher order-entry variables.
Input: p is a probability threshold. {The choice of p is application-dependent. Higher

settings increase specificity and lower sensitivity. In our evaluation, we used a moderate
p = 40%. This threshold was chosen by experimentation. Choosing an optimal threshold
is discussed in Future Directions.}

1: Manipulate known variables. {Here we set all known variables in the model to true or
false.}

2: Update posterior probabilities. {Determine the likelihood of each treatment in the
presence of the manipulated variables.}

3: Sort probabilities and list all treatments above a threshold p.

Pregnancy is the most prevalent chief complaint at Wishard Hospital other than pain. Also,

treatments for hospitalizations involving pregnancy (delivery, complications, and postpar-

tum care), although highly complex, involve a relatively small subset of medical orders.

We designed and implemented a method to suggest treatments for clinical situations,

by deriving a Bayesian network from clinical data and computing conditional probabili-

ties for treatment variables given known variables, using the GES and ML learning ap-

proaches discussed. We implemented our method as a series of computer programs written

in SQL, Python, and Java. They utilize the free Tetrad IV suite (Ramsey, 2011) to perform

Bayesian network learning and reasoning. The method has two components, the training

phase (BuildModel), and the treatment suggestion tool (TreatmentSuggest). The

two components are described in Programs 3.2 and 3.3.

2.1. Methods. Using the Gopher summary table developed in Chapter 1, we selected

the 20 most frequent comborbid diagnoses, 30 most frequent medication orders, and 20

most frequent test orders in hospitalizations involving pregnancy. Oral analgesics are very
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common, so we considered the six most frequent as a single medication in order to have a

more diverse feature space. We did not filter on modality (i.e. we included both inpatient

and ED visits), but we did limit our dataset to 2009 hospitalizations to restrict the data

size. This resulted in 5044 hospitalizations.

We ran BuildModel on a training set of 2/3 of these data. We linked labor diag-

noses which result in delivery with the diagnosis postpartum, because our granularity was

one hospital stay, and in a successful delivery both would occur in the same stay. This

resulted in 20 treatable conditions from the 20 diagnoses (we considered preeclampsia as

both a labor- and non-labor condition). Using diagnoses as the known variables, we ran

TreatmentSuggest for each condition with a threshold of p = 40%, which produced 15

suggestion lists. Independently we asked an obstetric nurse how she would treat the 15

conditions given the 50 treatments, and we compared the results. Because our algorithm

operates in an environment with existing decision support, we also evaluated which of our

results might have been influenced by existing order sets.

Additionally we evaluated the network’s overall ability to predict treatments in real

clinical cases by calculating ROC curves for a test set of hospitalizations (the remaining 1/3

of the data). ROC curves, or receiver-operator-characteristic curves, specify the predictive

ability of a system by plotting the proportion of true positives vs. false positives. The curve

and the area underneath the curve (AUC) are popular methods for studying the predictive

power of a system in an application-neutral manner.

2.2. Results. TreatmentSuggest did not produce treatment lists for 5 conditions

because all treatment probabilities fell below 40%: false labor, vaginal bleed, vaginal dis-

charge, abdominal pain, and high risk pregnancy. TreatmentSuggest lists for the re-

maining 15 conditions are presented, divided into three categories: labor and delivery (Ta-

ble 3.2), problems in pregnancy (Table 3.3), and general problems (Table 3.4). Correlation

with the obstetric nurse is indicated by typeface, as explained in Table 3.2’s caption. This

computer-nurse correlation is summarized in Table 3.5, in which we computed the preci-

sion and recall of the computer lists as compared with the nurse. Three existing order
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Treatment Score Indication

Common to all lists below∈ Epifoam 99.6% Vaginal healing∈ Docusate 99.5% Constipation∈ Analgesic 99.4% Pain & healing∈ IV Fluids 98.6% Throughout delivery∈ Oxytocin 94.8% Prevent hemorrhage
Induce delivery∈ Simethicone 90.8% Post-surgery gas∈ Lanolin 87.1% Breastfeeding∈ Prenatal Vitamin 66.5% Prenatal

Syphillis Screen 65.3% Prenatal
Blood Typing 64.3% Postpartum bleeding∈ Morphine Injection 61.9% Pain

Preterm Labor & Postpartum∈ Betamethasone 74.7% Steroid for baby’s lungs∈ Strep B Probe 68.5% Could infect child∈ Chlamydia Screen 62.9% Potential cause∈ Ferrous Sulfate 41.4% For anemia∈ Penicillin 41.2% For infection e.g., strep B

Preeclampsia & Postpartum
Mg Sulfate 74.6% Prevent eclampsia
Kidney Tests 58.4% Routine for preeclampsia
Liver Tests 49.1% Routine for preeclampsia

Active Labor & Postpartum
Early Stage Labor & Postpartum

Nothing additional.

Table 3.2. TreatmentSuggest lists for labor-related conditions. The
first list shows treatments that appeared in all lists (with nearly identical
probabilities). Subsequent lists show additional treatments for specific condi-
tions. Typeface corresponds to an independent evaluation of the feature set
by an obstetric nurse. Bold is her opinion of the most important treatment
for the condition, plain text was indicated, and italics were not indicated (but
not necessarily clinically inappropriate – many are routine disease screens).
A symbol to the left of the treatment indicates decision-support order sets
exist and include this treatment.

sets overlapped with the 20 conditions: postpartum, preterm labor, and back pain. A set

membership symbol indicates the order is also found in one of these sets.

2.2.1. Predictive Ability. We calculated ROC curves for all treatment variables on a test

set of pregnancy hospitalizations. Table 3.6 shows the highest, lowest, and average AUC

values. We also show two characteristic ROC curves from among the worst (Figure 3.1) and

best (Figure 3.2). Finally, to visualize the connections in the graph, we display the Markov
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Treatment Score Indication

Abortion Threatened
Pregnancy Test 71.9% Always done prior

Pyelonephritis
Ceftriaxone 76.4% Antibiotic
Nitrofurantoin 45.1% Antibiotic

Yeast infection
Chlamydia Screen 59.4% Potential cause
Fluconazole 49.8% Antifungal

Bacterial Vaginosis
Metronizadole 87.7% Antibiotic
Chlamydia Screen 60.8% Potential true dx

Urinary Tract Infection
Nitrofurantoin 63.3% Antibiotic
Urine culture 40.5% Used to diagnose

Hypertension
Liver tests 52.9% Routine in pregnancy
Kidney Tests 47.1% Routine

Preeclampsia
Liver tests 46.3% Routine
Kidney tests 45.4% Routine

Table 3.3. TreatmentSuggest lists for complications of pregnancy.
Typefaces are as described in Table 3.2 (corresponding to an obstetric nurse’s
evaluation). Kidney and liver tests are both key treatments in two cases, so
both are bold. Note that there was no overlap here with existing order sets.

blanket (a node’s children, parents, and siblings) for two diagnoses. Figure 3.3 produced a

short and Figure 3.4 produced a long treatment list.

2.3. Discussion. TreatmentSuggest captured accurate and non-trivial clinical knowl-

edge in all 15 suggestion lists. The five conditions with no list were all indicated by the

nurse as not directly treatable (i.e. more information was needed). All 15 lists contained

the key treatment for the condition (selected by the obstetric nurse from among our 50).

Examples of key treatments include steroids for preterm labor and magnesium sulfate for

severe preeclampsia. In all but one non-labor condition, the key treatment was the first (3

cases) or only suggestion (7 cases). Nearly all of the treatment suggestions appear to be

indicated, either mentioned specifically by the nurse (71% precision) or still having a specific
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Treatment Score Indication

Nausea With Vomiting
Promethazine 58.9% Nausea

Esophageal Reflux
Ranitidine 89.6% Stomach trouble

Back pain∈ Analgesic 48.8% Pain

Fever
Analgesic 57.5% Fever reduction

Table 3.4. TreatmentSuggest lists for general conditions. Typeface and
symbols are as described in Table 3.2 (corresponding to an obstetric nurse’s
evaluation and existing decision support content, respectively.)

Computer vs. Nurse
Precision 71%
Recall 77%

Table 3.5. Summary statistics of the computer-to-nurse agreement demon-
strated in Tables 3.2, 3.3, and 3.4

Treatment AUC Uses

Best
Kidney & Liver Tests 99.5% Many problems
Bupivicaine 99.8% Epidural
Oxytocin 99.1% Delivery & Postpartum
Naloxone 99.0% Reverse narcotic
Betamethasone 99.0% For baby’s lungs

Worst
Promethazine 68.3% Nausea
Ranitidine 67.1% Stomach
Azithromycin 65.87% Antibiotic
Ondansetron 61.4% Nausea

Average 87.3%
Table 3.6. The pregnancy network’s predictive ability on a test set of hos-
pitalizations, shown as the best and worst AUCs for treatment variables.
Many high AUCs were pregnancy-specific and most low AUCs were not.
Average AUC for all 50 treatments was .873.

use (e.g., a strep B probe could be indicated for a woman about to deliver if she has had no

prenatal care). This lists selected many of the treatments independently suggested by the
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Figure 3.1. The ROC
curve for oxytocin,which
had one of the highest
AUCs (.991). It is used
almost exclusively in labor.

Figure 3.2. The ROC
curve for promethazine,
which had one of the
lowest AUCs (.683). It is a
non-specific nausea drug.

nurse (77% recall). Additionally, the network demonstrated strong ability to predict treat-

ments (average AUC .873), and all treatments that have a specific use in pregnancy-related

conditions had an AUC above .9, with the highest value being the epidural bupivicaine

(.998). The lowest AUC value was .614 for the common anti-nausea drug ondansetron.

Our Bayesian network approach successfully created a model of multivariate relation-

ships in the data, and, using only diagnoses as the basis for prediction, it produced strong

results. This demonstrates Bayesian networks with structure learning are a promising new

approach for harnessing the ‘wisdom of the crowd’ in decision support. Including more

treatment context (e.g. current treatments and combinations of comorbid diagnoses) has

the potential to further improve the accuracy of the treatment lists.

In addition to our primary application of treatment suggestion lists, the results indicate

this method could also be used for compliance monitoring. The suggestion lists for post-

partum care, preterm labor, and back pain parallel existing order sets, which surprised us

because order sets must be called up manually by name and are generally believed to be

infrequently used. This approach could be used to discover the effectiveness and usage of

existing order sets, the nature of divergence from them, and inappropriate treatments.
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Figure 3.3. The Markov
blanket of the network for
postpartum, which corre-
lated with longer sugges-
tion lists.

Figure 3.4. The Markov
blanket of the network for
esophageal reflux, which
correlated with shorter sug-
gestion lists.

2.3.1. Limitations. This study involved a small, constrained subset of medicine and

therefore its performance might not be indicative of the general case. Evaluations in other

areas of medicine are necessary.

The use of a single practitioner for a reference standard is insufficient to reliably vali-

date all clinical knowledge. For example, the nurse did not indicate prenatal vitamins for

postpartum women, even though this is routine and appears in the order set. Additionally,

she has not practiced in our environment, where many patients do not have insurance and

therefore receive more disease screenings during labor than women with a standard course

of prenatal care. This highlights that practitioners themselves do not necessarily reflect the

local standard. Further evaluation should include a larger and preferably local reference

group.

Finally, this method, as is true of this entire work, relies entirely on local data. Therefore

it automatically produces localized treatment suggestions, but it also captures both the best

practices and the bad habits of physicians. Best practices might be better approximated

by selecting a subset of physicians for training the model. However, this approach will

never entirely eliminate the need for expert-developed (or at least expert-validated) decision

support content.
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2.3.2. Conclusions. Here we have demonstrated a computational method that produces

treatment suggestions for conditions using local order-entry data and Bayesian networks.

In a dataset of hospitalizations involving pregnancy and 70 frequent order-entry features

(50 treatments and 20 diagnoses), our method produced treatment suggestion lists for 15

conditions. The lists captured accurate and non-trivial clinical knowledge, and all contained

the key treatment for condition, according to an independent evaluation by an obstetric

nurse. Outside of labor-related situations, that key treatment was the first or only suggestion

90% of the time. On a test set of pregnancy-related hospitalizations, the Bayesian network

generated by our method predicted treatments with an average AUC of .873 and predicted

pregnancy-specific treatments with even higher accuracy (AUC above .9).

Although this pilot study evaluated a method on a small subset of medicine (with

strong clinical correlations between conditions and treatments), this type of method shows

promise in producing general ‘wisdom-of-the-crowd’ decision support content. Bayesian

networks make it possible to produce highly-tailored suggestions for very specific patient

situations.

3. Future Directions in this Dissertation

This study lays a promising groundwork. It also highlights many areas for improving

the basic methodology, which outlines the rest of this dissertation.

● TreatmentSuggest uses only a single comorbid diagnosis as context. As men-

tioned, more treatment context might improve results. (Chapter 4)

● BuildModel uses a simple frequency-based feature-selection heuristic, but the

most frequent are not necessarily the most important features. (Chapter 6)

● Our model is quite small, and including a larger set of treatments and diagnoses

would allow reasoning about a wider variety of situations. (Chapter 7)

● Our method does not incorporate temporal relationships within the hospital stay.

Therefore it is impossible to generate a treatment list for ‘postpartum’ separately

from ‘labor’, because both occur within one stay. This is why we see both lanolin

(for sore nipples after breastfeeding) and betamethasone (a steroid used in preterm

labor) in the same list. Techniques do exist for incorporating temporal reasoning

into Bayesian networks. (Chapter 8)
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● Including some non-treatment variables (such as demographics and key test results)

would provide a fuller picture of patient context. (Chapter 9)

● The standard conditional probability query might not always be optimal. In par-

ticular: a) less critical treatments are sometimes shown higher in the lists than

more critical ones, because the score is a probability of ordering (e.g. epifoam

is listed higher than oxytocin); and d) our algorithm used a manually selected

threshold of 40% which might not be optimal. These weaknesses would be aided

by developing a modified query for ‘expected decisions.’ (Chapter 9)

● The evaluation was small and involved only a single practitioner who did not prac-

tice in our environment. A more comprehensive evaluation is needed. (Chapters 4

and 10).
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CHAPTER 4

A refined system and evaluation measures

In the previous chapter, we developed a computational method that produces treatment

suggestions for conditions using local order-entry data and Bayesian networks. In a dataset

of hospitalizations involving pregnancy and 70 frequent order-entry features (50 treatments

and 20 diagnoses), our method produced treatment suggestion lists for 15 conditions. The

lists captured accurate and non-trivial clinical knowledge, and all contained the key treat-

ment for each condition, according to an independent evaluation by an obstetric nurse.

Outside of labor-related situations, that key treatment was the first or only suggestion 90%

of the time. On a test set of pregnancy-related hospitalizations, the Bayesian network gen-

erated by our method predicted treatments with an average AUC of .873 and predicted

pregnancy-specific treatments with even higher accuracy (AUC above .9).

TreatmentSuggest generates a single list given a clinical situation, but our goal is

to evaluate treatment suggestion lists as a clinical situation evolves. In this chapter, we:

build a revised recommendation system that responds dynamically to suggest the most

common next orders based on what has been ordered previously, develop a novel evaluation

methodology to determine how well our system reproduces reasonable behavior in the cases

under study, and apply this methodology to the system in four domains.

Program 4.1 TreatmentSuggestInteractive(G)

Input: G is a Bayesian Network Model
E is a set of evidence, such that E ⊂ v ∈ G, where initially E = �.
repeat
Update beliefs {Compute the posterior probability of all v ∈ G �∈ E.}
Create a list of all v ∈ G �∈ E in descending order of posterior probability, stopping at
an optional threshold.
Display the list to the user and wait for the user to choose an order from the list.
Add the selected order from to E.

until the user closes the session.

1. A New Methodology

1.1. TreatmentSuggestInteractive. This new methodology, TreatmentSuggestIn-

teractive, is summarized in Program 4.1. We implemented this methodology in Java using

the SMILE toolkit (Druzdzel, 1999), a freely available toolkit for network inference. We
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also wrote a converter in Java to translate the Tetrad network output by BuildModel into

SMILE format. A prototype of this interface can be seen in Figure 4.1. In the interface,

the user can iterate between placing orders or observing diagnoses and then generating a

suggestion list based on that current situation.

Figure 4.1. A prototype implementation of TreatmentSuggestInter-

active. The left pane shows the current evidence and possible treatments,
arranged in descending order of probability, as defined by the network given
the evidence. The right pane shows a summary of those treatment sugges-
tions above a threshold of 40%. The toggle and reset buttons allow the user
to change the evidence.

1.2. Evaluating simulated hospitalizations. In Chapter 3, we used the AUC of an

ROC curve of the network’s predictions to compare our network’s inference to local practice

patterns. However, this is a measure of the BN and not a treatment suggestion methodology.

To measure how frequently lists generated by Program 4.1 suggest the correct next order,

we developed a simulation approach motivated by Program 4.1. We run an automated

version of Program 4.1, generating a suggestion list after every order in each encounter
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and measuring where in the suggestion list the next order appears (if at all). We can then

generate aggregate statistics of the predictive ability of the system by order, to measure to

what degree the situation-specific lists correctly list each order.

One straightforward statistic to measure the value of suggestion lists might be the

positive predictive value (PPV) of the system in predicting each order. However, it is

possible to reach a PPV of 100% by choosing an arbitrarily long list, so we fix our desired

PPV to 80% and report the length of list required to reach that PPV. We call this PPV80

for shorthand. This statistic has a commonsense meaning: How long must our list be in

order to usually contain the next order?. We chose a desired PPV of 80% because our

experiments show generally consistent behavior about 80% of the time followed by a very

long tail of variation. This is a reasonable choice because our system’s goal is to capture

the consensus of the data, not the variation among individual practitioners.

We also can compute the AUC of an ROC curve of our methodology. This is the

area under a plot of the true positive rate vs. false positive rate for each order in the

suggestion list in the session in which it is ordered. This also has a commonsense meaning:

the probability that during the session in which an order is placed, it will be ranked higher

than in previous sessions. We label this the tAUC, to highlight that we are measuring the

AUC of our temporal-simulation methodology.

To compute PPV80, we must record where in the menu each order occurred when it

was selected in each hospitalization. We store this in �Mo, a set of frequency arrays indexed

by suggestion list menu position. These store the number of times each order o appeared

at each menu position, at the time it was first selected in each hospitalization. Computing

PPV80 involves finding the lowest index of �Mo at which 80% of all cases have occurred.

We can directly compute tAUC without first computing the ROC curve via the Wilcoxon

test of ranks (W), which, remarkably, exactly corresponds to the AUC of an ROC curve

(Hanley and McNeil, 1982). A definition of the Wilcoxon statistic is presented in Table

4.1, similar to the presentation by Hanley and McNeil (1982). As shown in the table, it

requires two vectors for each order type o: �To, a list of probabilities of true positives (i.e.
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W ( �T , �F ) = ∑
�T
t ∑ �Ff S(t, f)
� �T � ∗ � �F � S(t, f) =

�����������
1 if t > f
0.5 if t = f
0 if t < f

Table 4.1. The Wilcoxon test of ranks, which can be used to compute the
area under the receiver-operator curve. �T is a list of posterior probabil-
ities for true instances (in a test set) of a particular order, and �F is the
corresponding list for false instances.

the probability when o is the next order chosen); and �Fo, a list of probabilities of false

positives (i.e. before o is chosen).

This simulation and calculation methodology is summarized in Program 4.2, which we

implemented this algorithm in Java using SMILE.

2. Evaluation

We chose to evaluate this methodology on four modalities of medicine in Wishard:

inpatient medicine, the emergency department (ED), ED visits triaged to the urgent visit

clinic (UVC), and the intensive care unit (ICU). Each modality reflects different aspects of

medicine. Inpatient care focuses more on treatment than diagnosis in a longer-term stay,

the ED involves a shorter stay involving both diagnosis and treatment, the UVC involves

a very brief ‘stay’ focused on diagnosis, and the ICU involves tightly-correlated actions for

very specific care.

2.1. Methods. We moved from our four selected modalities to four domain-specific

BNs in the following steps:

(1) We focused our domains on the most frequent diagnosis / complaint for the first

three modalities: visits involving pregnancy in inpatient medicine, back pain in

the ED, and hypertension in the UVC. For the ICU, we chose the Medical ICU

(MICU).

(2) We selected visits from our Gopher summary table corresponding to each domain.

This involved 6192 ED back pain, 1214 UVC hypertension, 3229 inpatient preg-

nancy, and 709 MICU visits.
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Program 4.2 Eval(G,D)

Input: G is a Bayesian Network Model
Input: D is a test dataset of hospitalizations, consisting of orders and co-occurring prob-
lems by session.�To is a set of arrays to contain probabilities of orders when they are the next choice.�Fo is a set of arrays to contain probabilities of orders before they are the next choice.�Mo is a set of frequency arrays to contain counts of menu positions for orders when they
are chosen.
for all hospitalizations in D do
E = � {Clear the evidence in the network }
for all order sessions in the hospitalization do

for all orders o not in E do
Set evidence for all orders and co-occurring problems that have occurred up to
this point in the hospitalization (including this session).
Create an array of posterior probabilities, �L, for all orders that are not already in
E and arrange in descending probability order.
if o did not occur in this session then�Fo ← �L[o] {Record the probability of the order in the list of false instances.}
else if o occurred in this session then�To ← �L[o] {Record the probability of the order in the list of true instances.}

Increment �Mo[index(�L[o])] by 1 {Record the depth in the menu at which this
action occurred.}
E ← o {Add o to the evidence.}

end if
end for

end for
end for

for all orders o do
AUCo =W (To, Fo)
PPV 80o=the first index of the accumulation of Mo that is > 80% of the total accumu-
lation.

end for

(3) For nodes in each network, we selected the 40 most frequent orders in each domain

that occur on average less than twice within a stay (because our system suggests

each order only once)1. We also included up to the 10 most frequent co-occurring

diagnoses and complaints (though sometimes fewer than 10 diagnoses/complaints

co-occurred with the primary problem). These were used in our BN learning

1This actually excluded a minority of orders, because orders that frequently recurred in long stays also
tended to occur in short stays, thus lowering the average.
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and evaluation as evidence, but were not presented in the suggestion menus (be-

cause the goal is to suggest treatments, leaving diagnosis to clinicians). The diag-

noses/complaints used in our networks can be seen in Table 4.2.

(4) We split each data set into a training set (2/3 of admissions) and a test set (1/3).

We used admission-compressed data in the training set (i.e. a single row per

admission), because the GES algorithm does not support temporal data. In the

test set we retained the time-series of order sessions, because this is consistent with

applying simulation of Program 4.1 to hospitalization data.

(5) To generate BNs for each domain, we used the approach of Program 3.2 (i.e. the

Greedy Equivalence Search with Maximum Likelihood estimation and Dirichlet

hyperparameters initialized to α = 1, using the Tetrad toolkit).

(6) We wrote an exporter to convert the three networks from Tetrad into SMILE

format, which is the format required by Eval (Program 4.2).

Pregnancy, Inpatient Back pain, ED Hypertension, UVC Medical ICU
Postpartum 89% Car Accident 4% Med Refill 27% Sepsis 3%
Cesarean Section 4% Neck Pain 3% Diabetes Mellitus 16% Abdominal Pain 3%
Spont Vag Delivery 2% Abdominal Pain 3% Back Pain 6% Hypotension 3%
Tubal Ligation 1% Chest pain 2% Abscess 6% Dysphagia 3%
Pre-Eclampsia 1% UTI 2% CAD 4% Unspecified Surgery 2%
Preterm Labor 1% Headache 1% Toothache 4%
Abdominal Pain 1% Knee Pain 1% Cellulitis 4%
C-Section Repeat <1% Hypertension 1% Headache 3%
Failed Induction <1% Med Refill 1% COPD 3%

Shoulder Pain <1% Hyperlipidemia <1%
Table 4.2. The co-occurring diagnoses and complaints in each domain-
specific network, listed by their prevalence in the test sets. These were
used as evidence as they appeared in the test cases, and were not part of the
predictive evaluation.

2.2. Results. We learned the four domain-specific Bayesian Networks: inpatient preg-

nancy, back pain in the emergency department, hypertension in the urgent visit clinic, and

the medical intensive care unit. Each network contained 40 orders, except the urgent visit

network where only 31 orders co-occurred with hypertension. Also the networks contained

up to 10 additional co-occurring diagnoses/complaints, which are listed in Table 4.2.
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We ran our implementation of Program 4.2 on the four networks with their correspond-

ing test set, the results of which we report here. Summary statistics can be seen in Table

4.3 (average tAUC and average PPV80, weighted by the frequency of each order). Two

histograms, one showing tAUC and the other showing PPV80, can be seen in Figure 4.2.

For each domain, the 10 orders in which the system performed best and worst (by PPV80)

are shown in Table 4.4.

Domain W.Avg. tAUC W.Avg. PPV80
Inpatient Pregnancy .844 3.94
Back pain in the Emergency Department .765 6.98
Hypertension in the Urgent Visit Clinic .741 6.11
Medical Intensive Care Unit .714 13.34

Table 4.3. For each domain, the weighted average tAUC (area under the
receiver-operator curve in time-series data) and PPV80 (minimal menu
length that positively predicts 80% of orders). Weighting is by frequency
of order.
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Order name, tAUC, and PPV80 for each domain

Pregnancy, Inpat. Back pain, ED Hypertension, UVC Medical ICU

Sitz Bath 0.99 0 Pelvis CT 0.99 0 Protime 0.95 0 Mg Level 0.90 0
Cold Pack 0.99 0 Abdomen CT 0.99 0 Clotting Test 0.99 0 Urine Culture 0.92 0
Naloxone 0.99 0 Low Spine X-ray 0.68 0 Blood Profile 0.88 1 Urinalysis 0.86 1
Lung Exercises 0.99 0 Lat. Chest X-ray 0.66 1 Cardiac Mrkrs 0.99 2 Phos. Test 0.86 1
UC Monitor 0.99 0 Blood Cell Profile 0.95 1 Urinalysis 0.81 3 Monitor I&O 0.92 1
Ibuprofen 0.98 0 EKG 0.88 2 Metabolic Panel 0.73 3 SCD 0.85 3
FHT Monitor 0.97 0 Metabolic Panel 0.87 2 Med. Consult 0.69 3 Vitals 0.86 3
Docusate Na 0.96 0 Vag. Infect. Test 0.93 2 Urine Drug Test 0.92 3 Blood Culture 0.81 4
Monitor I&O 0.94 0 Cardiac Markers 0.96 2 Metabolic Panel 0.77 5 P.T. Consult 0.87 5

Promethazine 0.88 10 Hip X-ray 0.79 23 Dental Consult 0.82 18 Lactate 0.52 25
Foley Catheter 0.91 11 Low Spine MRI 0.64 24 Blood Culture 0.93 21 Hang Blood 0.74 26
IV Lock 0.73 11 Chlamydia Test 0.78 28 TSH 0.50 23 Cardiac Echo 0.64 27
Transfusion 0.65 14 Knee X-ray 0.62 30 P.T. Consult 0.57 23 Tylenol 0.69 29
Ice Chips 0.72 15 Sport Consult 0.60 32 Knee X-ray 0.49 25 Speech Therapy 0.63 30
Nalbuphine 0.83 16 EPIC Referral 0.59 33 Neuro. Consult 0.13 25 Albuterol 0.47 31
Pfizerpen 0.76 24 Shoulder X-ray 0.68 34 Uric Acid 0.74 26 Head CT 0.43 33
NPO 0.75 26 Low Spine CT 0.63 36 T4 Test 0.50 27 Blood Gas Test 0.51 34
Oxytocin 0.68 26 Drug Urine Tst 0.67 36 Head CT 0.56 28 Central Cath. 0.45 34
Morphine 0.50 28 Neuro. Consult 0.68 37 Hgb A1C 0.72 30 Aspirin 0.54 34
Urine Drug 0.71 30 Wrist X-ray 0.61 39 Ophth. Consult 0.73 31 Hydralazine 0.50 36

Table 4.4. Order name, tAUC, and PPV80 of the ten best and worst order
predictions in each domain. ‘Best’ and ‘worst’ are chosen by PPV80, a
measure of the minimal menu length that displays 80% of the orders at the
time they actually occurred in the test cases (lower is better). Temporal
AUC (tAUC) is also reported (higher is better).

2.3. Discussion. The evaluation of our treatment suggestion system on four domain-

specific BNs against test cases drawn from the same environments showed fairly strong

overall performance. In particular, our treatment suggestion lists can be short (3.94-6.11

items capture 80% of all orders) in three out of four networks. Also, the system ranks

orders higher in the session they are ordered than prior to ordering, with high probability

(71%-84%).

More insight can be gained from the differences across domains. For example, while the

inpatient pregnancy model performed very well overall (weighted average tAUC .884 and

PPV80 3.94), the MICU network did much worse (weighted average tAUC .714 and PPV80

13.34, respectively). We suspect this reflects the amount of additional context needed to

predict orders in each domain. For example, in the pregnancy network, a diagnosis of

postpartum might be sufficient to lead to the next treatments (e.g., various adjuncts like
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Figure 4.2. Histograms for each order in each network (see legend). (Top)
The temporal area under the receiver-operator curve (tAUC). (Bottom) The
treatment suggestion menu length given a positive predictive value of 80%
(PPV80).

epifoam), but in the MICU, test results and external information are more likely to be

important (e.g, is the patient on a ventilator?). Moreover, in the MICU, the co-occurring

diagnoses/complaints were very rare, making the available context even less substantial.

Finally, our system is designed to suggest treatments, and it does not currently suggest

diagnoses. This might reflect the poorer performance in environments where diagnosis is

the primary goal (e.g., the UVC).

Also interesting are the differences among orders within a domain. Although some

orders are suggested almost exactly when they should be (e.g., a cold pack in pregnancy

visits and a pelvis CT in the ED, for example), others appear at the bottom of long lists and
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are not predicted much better than chance (a neurology consult in the ED, for example).

We again suspect that poorly performing orders are missing the context needed to predict

them. In some cases, the missing context could be other orders or diagnoses that could

serve as proxies (e.g., a head CT might serve as a proxy for suspected neurological injury

leading to a neurology consult, for example). This points to the need for more principled

feature selection.

A final interesting discovery is that tAUC is less strongly correlated with PPV80 than

we expected. Although frequently good predictors (high tAUC) are at the top of our menus

(high PPV80), this is not always the case. Both alternatives can be seen in Table 4.4. A

lumbar (lower) spine X-ray in the emergency department has high PPV80 but low tAUC,

and a nalbuphine order in inpatient pregnancy has low PPV80 but high tAUC. In the first

case, we expect the order stays at the top of the list until it is picked because it has a high

prior probability. In the second case, we suspect that although nalbuphine’s probability

increases when it is actually ordered, it is never high enough to outweigh other orders. This

leads us to believe that choosing order-specific probability thresholds might be appropriate.

2.3.1. Limitations. This new system improves on the one in Chapter 3 with dynamic

menus and evaluation metrics that simulate real clinical situations, but otherwise it has

all of the limitations mentioned in the previous chapter. These include: frequency based

feature selection, small networks, no temporal learning, lack of non-treatment context, and

the potentially non-optimal conditional probability query. All of these will be addressed in

future chapters.

2.4. Conclusion. In this work, we have expanded our Bayesian-network based treat-

ment suggestion system to dynamically recommend the most common next orders based

on what has been ordered previously. Additionally we have developed a novel time-series

evaluation methodology to determine how well our system reproduces reasonable behavior,

which we applied to four domains. These included inpatient pregnancy, abdominal pain in

the emergency department, hypertension in the urgent visit clinic, and the medical intensive

care unit.

We found our system performed fairly well in all domains but had a variance which di-

rectly suggested areas for improvement. It performed best in inpatient pregnancy (weighted
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average tAUC .844, weighted average menu length at PPV 80% 3.94) and worst in the med-

ical intensive care unit (weighted average tAUC .714, weighted average menu length at PPV

80% 13.34). There was also variance within domains, ranging from near-perfect performance

(cold pack in inpatient pregnancy) to very poor performance (hydralazine in the medical

intensive care unit had tAUC .51 and menu length at PPV 80% 36). We hypothesize that

higher performance correlates with a greater number of factors needed to predict the order

than are present in the network.

We have now established a methodology to translate CPOE data into an interactive

treatment suggestion tool and we have developed two novel measures to evaluate its ac-

curacy compared with real hospitalizations (Programs 3.2, 4.1, and 4.2). We have found

performance if fairly strong in small networks. In the following section, we introduce various

novel methodological improvements to structure learning and inference which will further

improve our methodology.
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PART 2

Novel Methods for Bayesian Network Learning in Large Domains
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CHAPTER 5

Bayesian Networks in Large Domains

1. Introduction

In the previous part of this dissertation, we developed a novel approach to augment

decision-support content using local data and Bayesian network learning. We concluded

with a system that performed reasonably well in creating problem-specific treatment sug-

gestions in several domains. However, the networks contained at most 70 variables which

were chosen using a simple frequency heuristic and about 5000 hospitalizations. Inpatient

medicine is much larger. Specifically, Gopher alone includes 7376 order and problem vari-

ables and approximately 100000 hospitalizations per year. The RMRS contains another

3033 test result types, and there are various additional demographic and encounter meta-

data one might like to add. At present, we have no methodology to deal with this much

larger domain.

1.1. One network to rule them all? A compelling idea is to learn a single network

to capture the entire environment of inpatient medicine. Unfortunately, this is not possible,

for at least three reasons.

1.1.1. Large-sample network learning is NP hard. First, Chickering et al. (2004) have

shown that the general problem of large-sample learning of Bayesian network structure is

NP-hard. This conclusion makes intuitive sense when we imagine the number of different

networks that can exist for a given number of variables. In fact, the number of possible

networks is super-exponential in the number of variables: O(n!2�n2�) (Eaton and Murphy,

2007). Therefore, as we discussed in Chapter 3, some type of heuristic search is usually

employed to discover a ‘good’ graph. Unfortunately, heuristic searches are still (in the

general case) NP-hard.

Nevertheless, much work has been done in developing heuristics that perform well in

particular situations. However, they cannot tractably learn a network in a domain as broad

as inpatient medicine. As a practical example, one of the fastest current learning algorithms

(Max-Min Hill Climbing) took 13 days to learn a network for a 5000 variable by 5000 sample

dataset on a 2.4GHz Pentium Xeon (Tsamardinos et al., 2006). We will explore in more

detail the computational limits of structure learning algorithms in Chapter 7, but practically
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network learning is currently limited to networks of less than a few hundred variables when

the sample-size is large, and this is still time-consuming.

1.1.2. Probabilistic inference is NP hard when treewidth is unbounded. Second, as was

discussed previously, the general problem of probabilistic inference is also NP-hard (Cooper,

1990). We also discussed how practical speed of inference is highly correlated to the width of

the optimal junction tree decomposition, or treewidth (Lucena, 2003). More paths between

nodes in the original network can increase the treewidth. Frequently, increasing the number

of variables will increase the number of paths, which will in turn increase the treewidth of

the network. This is not the case if the network naturally separates into subnetworks, but in

our experimentation in Gopher data, most common orders are correlated with many others

(for example, IV fluids is correlated with most everything). These ‘hub’ nodes result in

increased treewidth as the number of nodes in the graph increases. Therefore the number

of variables in the network must remain limited.

Betamethasone
Preterm Labor Epidural Present Absent

Present Present 0.77 0.33
Absent Present 0.10 0.90
Present Absent 0.53 0.47
Absent Absent 0.01 0.99

Table 5.1. The training data must be partitioned into a number of par-
titions exponential in number of parents. Shown here: a CPT of a binary
node with two binary parents, which has 22 CPT entries.

1.1.3. The training data must be partitioned into a number of partitions exponential

in number of parents. Third, recall that each node in a Bayesian network is defined by a

conditional probability table (CPT), which defines the probability of that variable in every

combination of its parents. These tables grow exponentially in number of parents p. For

example, in a network of binary variables, the number of entries in the CPT is 2p. Each

entry in the CPT requires the training data to be partitioned. Therefore we need a dataset

that is large enough to support the number of partitions of the largest CPT in the network.

Commonly, a minimum of ten samples is required for each partition (Tsamardinos et al.,

2006; Spirtes et al., 2000), however empirical data is uneven and noisy, so the number of
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entries per partition must be larger. With binary variables and a minimum partition size

of twenty, then, the maximum number of parents as a function of the number of samples

is: p = log2(s�20). Thus the number of possible edges in the network is proportional to the

square of the number of variables, while the number of possible parents is proportional to

the logarithm of the number of samples. This means that adding variables to a network

requires an exponential increase in the number of samples in the training set to support the

same number of parents.

To contextualize, Beinlich et al.’s (1989) classic ALARM network has 37 nodes and 46

edges. This is 6.9% of possible edges. In contrast, a 5000 variable network could suppport

�50002 � = 12497500 edges, but with 25,000 samples (the approximate number of inpatient

encounters in Wishard per year), p = 10 and the maximum number of edges is 50000. This

is less than .4% of possible edges!

Therefore, full Bayesian networks must involve smaller, domain-specific networks. How-

ever, it is possible to gain some understanding of the domain through other means. Here we

introduce what we will call the Maximal Association Graph (MAG). The MAG will contain

a superset of edges in the actual Bayesian network, and it will become an essential tool for

both choosing and learning domain-specific networks in subsequent chapters. In order to

develop the MAG, we must first understand D-separation.

University Happy

Grant Awarded

Novel Idea Writing Skill

Book Published

Figure 5.1. A network representing the life of a university investigator.
The university is happy only when grants are awarded.
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1.1.4. D-separation. D-separation (dependency separation) is a statement about whether

a pair of nodes A and B are independent given an optional set of evidence E, denoted

D-sep(A;B�E). If two nodes are not D-separated, they are D-connected.

The example in Figure 5.1 shows a simple network that distills the life of a university

investigator. The university is happy only when a grant is awarded. However, University

Happy is also indirectly connected to many other nodes, even those as far distant as Book

Published. This is because getting a book published increases the likelihood that the inves-

tigator has good writing skills, which increases the probability of a grant being awarded,

which in turn makes the university happy. All nodes in this network are D-connected to

University Happy. It is in fact true that two nodes can influence one another if and only if

they are D-connected given some evidence.

Moreover, with no evidence, the only two nodes which are D-separated in this network

are Writing Skill and Novel Idea. This seems intuitively strange because Writing Skill and

Novel Idea both influence the grant being awarded. However, knowing nothing about a

grant being awarded, knowing an investigator has an awful idea says nothing about their

writing skill. If the investigator did have a novel idea and did not get a grant awarded,

then we might believe that their writing skills are poor. Therefore, D-sep(W ;N) is true,

but not D-sep(W ;N �G). This is an example of a common cause, which is the only situation

in which adding evidence D-connects nodes. Two nodes related because they are common

causes are called colliders.

In all other situations, adding evidence will D-separate nodes. For example, if we know

that a grant has been awarded, then we know the university will be happy whether or

not the investigator has good writing skills, had a novel idea, or had a connection in the

granting agency whom they blackmailed into getting a grant. Therefore, D-sep(U ;∗�G)
(where ∗ refers to all other nodes).

This leads to several important conclusions.

Theorem 1. If ∃{S} ∈ V ∶ D-sep(A;B�S), then there is no edge between A and B.

Theorem 2. If D-sep(A;B), then either there is no path between A and B or they are

only on a path involving colliders (e.g., the only path involves a common effect).
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By Theorem 1, D-separation relationships completely define what is called the graph

skeleton, which is the undirected version of the Bayesian network. Constraint-based learning

algorithms take advantage of this, which we will explore in two chapters. By Theorem 2, a

graph defined by first-order D-separation (the case with no conditioning set) directly links

all nodes that have a path between them not involving colliders. This is both a superset

of the edges in the final network and a good measure of the positive correlations between

nodes (as in this example, common causes often have a negative correlation). One final

theorem is necessary to define the MAG:

Theorem 3. D-sep(A;B�E) ≡ A ⊥ B�E (D-separation in a graph is the same as statis-

tical independence in a data set.)

This useful property means that, we can perform a statistically sound independence

test on the training set to determine D-separation. Throughout this work, then, we will use

D-sep(A;B) interchangably with A ⊥ B.

1.1.5. The Maximal Association Graph. We define the MAG as the first-order D-separation

graph discussed above. Specifically, the set of edges in the MAG is defined as:

∀(A,B) ∈ {V } ∶ (A,B) �∈ E ≡ D-sep(A;B)

In the subsequent two chapters, we will use these properties for feature selection and

to speed learning. Here we will develop a very rapid technique using SQL to learn this

superstructure on sets of binary variables. We will focus on binary variables because our

order-entry data from Chapter 1 is binary (either an order/diagnosis is active or it is not),

but it is possible to generalize this methodology to discrete multinomials as well.

2. Maximal Association Graphs in Relational Databases

It is straightforward for a computer to learn a Maximal Association Graph (MAG) in

memory. By Theorem 3, it requires �n2� conditional independence tests, one for every pair

of variables. Unfortunately, because each conditional independence test requires a pass

through all the data, this can become extremely slow in large datasets. Therefore, we lever-

age the power of relational databases, which are highly optimized for finding overlap and
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performing aggregate operations on massive datasets. If an algorithm can be reformulated

as joins and intersections of sets, relational databases are frequently much faster than an

iterative approach.

This explains the growing number of association algorithms that are implemented di-

rectly in SQL (e.g., Klann et al. 2009; Sidl and Lukcs 2006). However, we are not aware

of any tools which use relational databases to support Bayesian structure learning. There

is work to modify relational databases to support probabilistic queries (Wang et al., 2010),

as well as packages to perform simple statistics on databases1. None of these can be used

directly to learn the structure of Bayesian networks.

Determining Bayesian network structure requires exponentially more statistical compu-

tations than association rules. This can be understood through a contingency table. For

a binary variable, the four cells in Table 5.2 must be known in order to check for sta-

tistical independence (and therefore D-separation, by Theorem 3). An association rule is

only concerned with the top left cell (shown in bold). This difference is again shown in

Figure 5.2, which defines a relationship between A and B as both an association rule and

a D-separation relationship. However, set algebra will allow us to reduce this additional

computation dramatically, so that we can compute D-separation nearly as quickly as an

association rule directly in SQL.

B=1 B=0
A=1 M(A ∩B) M(A�B)
A=0 M(B�A) M(A ∪B)

Table 5.2. A contingency table for two binary variables, where M() is a
function that counts the members of the sets. Shown in bold is the only cell
considered in association rules.

2.1. Methods: Computing the Maximal Association Graph. Here we develop

a rapid method for computing the Maximal Association Graph in SQL. SQL’s strengths

are counting occurrences and finding the overlap of sets, so we reformulate the contingency

table in Table 5.2 into overlaps and counts using set algebra. If two variables A and B

overlap, their contingency table can be visualized as the Venn diagrams in the top half of

1http://poststat.projects.postgresql.org/
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A B

(a) Relationship of A and B.

Context Definition
Association rule confidence(A,B) > t =

O11
E11

Bayesian Network D-sep(A;B) =
A ⊥ B ≈

2∑ij Oij ln(Oij�Eij)
(b) Meaning, in terms of observed (O) and ex-
pected values (E).

Figure 5.2. A comparison of the meaning of a simple network (left) as
defined by association rules and Bayesian networks. The indices of O and E

relate to the column and row numbers of the contingency table (see Figure
5.2).

B=1 B=0

A=1
A B

M(A ∩B)
A B

M(A −B)

A=0
BA

M(B −A) M(B ∪A)
A B

B=1 B=0
A=1 M(A ∩B) M(A) −M(A ∩B)
A=0 M(B) −M(B ∩A) M(T ) −M(A) −M(B) +M(A ∩B)

Figure 5.3. Transforming a two-variable contingency table for binary vari-
ables into the magnitudes of overlaps, using axioms of probability.

Figure 5.3. The quantities in the Venn diagrams lead to the modified contingency table in

the bottom half of Figure 5.3 through probability axioms 2. This new contingency table

requires three counts and one set overlap computation (the totals of A, B, the universe, and

the overlap of A and B), all of which a relational database can calculate very quickly. If

A and B do not overlap, our modified set algebra simply does not include the M(A ∪B)
terms. Once the contingency table is calculated, a statistical independence test (such as

the one shown in Figure 5.2) determines whether an edge exists between nodes.

A SQL program that uses this modified contingency table to compute the MAG is

illustrated in Program 5.1. In step one, the counts and overlap are computed for all cases

2The axioms can be found at http://mathworld.wolfram.com/ComplementSet.html
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Program 5.1 MAG(T). T is a SQL table of transaction ids (tid) and orders (o). Shown
here is the relational algebra corresponding to the SQL code for computing the MAG. Step
1 calculates the counts of each variables and the overlap of their pairs. It then inserts all
pairs with a G

2 value above 3.54 into the edgelist. Step 2 tests the G2 value of edges without
overlap through an antijoin.

Step 1: A ∪B ≠ �
TOT ←Πcount(Gcount(∗)(T ))

A←Πo,count( Go count(tid)(T ))
AB ←Πo1,o2,count(σo1<o2

( G
o1,o2 count(tid1)(ρT1(tid1,o1)(T )) � (ρT2(tid2,o2)(T ))))

E ←Πo1,o2(σG(a,bt,abt,count)>3.54(TOT × ρo1,o2,abt(AB) � ρo1,at(A) � ρB(o2,bt)(A)))
Step 2: A ∩B = �

E ←Πo1,o2(σG(a,bt,0,count)>3.54(TOT × �ρo1,at(A) � ρB(o2,bt)(A)� AB)))

in which A and B overlap, considering only edges in the ordering A < B (because the edges

are undirected, this actually considers all edge combinations). Edges are then added to the

edge list E if a statistical independence test rejects independence. In this case, the G
2 test

is used (see next paragraph). In particular, an edge is added if the G
2 value exceeds 3.54,

which is the critical value for one degree of freedom. Step two calculates the G
2 value of

the remaining edges where A ∪B = � using an antijoin. In sparsely connected spaces, this

step is much slower. Note that both steps could have been combined through an outer join,

but we separate them for clarity.

Program 5.1 uses the G
2 test. Although any statistically valid independence test can

be used, we choose the G
2 test because, although it is asymptotically equivalent to X

2, it

errs on false positives rather than false negatives on small samples (Larntz, 1978). It is

generally preferable to retain a false edge when finding network skeletons, because once the

edge is eliminated it cannot be added again. Therefore G
2 has become the test of choice

for Bayesian structure learning (Spirtes et al., 2000).

61



G
2 is related to the likelihood-ratio of variables and is defined as follows (Fienberg,

2007):

G
2 = 2 ∗ �

s∈{S}
Observed ∗ ln(Observed

Expected
)

where degrees of freedom are, as in X
2, computed as:

df = (Cols − 1) ∗ (Rows − 1)

3. Evaluation

In the following two chapters, we will explore the utility of the MAG in choosing and

learning Bayesian networks. Here we compare the speed of our SQL approach to a standard

iterative in-memory approach.

3.1. Methods. We implemented Program 5.1 in PostgreSQL 8.4 (MAG) directly in

SQL, and we implemented G
2 as a SQL stored procedure. The output is a table of pairs

of ids representing edges. For our reference in-memory implementation, we used Tetrad’s

Fast Adjacency Searcher version 4 (FAS4), which also checks for independencies using the

G
2 test. We configured FAS4 to perform exactly the same independence tests as MAG (by

default, it finds further independencies through conditional G2 tests).

We used the admission-compressed inpatient database table from Chapter 1. We kept

2/3 of this data as a training set, which we used in this analysis. This set contained

5,358 variables (problems and orders) and 44,860 admissions. We will refer to this as the

GopherInpatient set.

As a secondary evaluation, we used GEnie (part of a network inference toolkit created

by Druzdzel (1999)) to generate 10,000 data instances from Conati et al.’s (1997) Andes

network, a well-known Bayesian network involving only binary variables, used for physics

tutoring. We will refer to this as the Andes set.
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To perform speed tests, we wrote a Java program to randomly permute the variables

in each set and select subsets of increasing size. In each iteration, the program generates a

data subset containing all samples but only the variables in the current iteration. It feeds

this to MAG and FAS4 and compares the speed. The speed test begins after the data subset

is created and all data structures are set up, so only the runtime of FAS4 and the MAG

script are compared.

We ran this Java program on the dataset using an increment of 250 variables, with a

maximum time limit of 6 hours.

3.2. Results. Figure 5.4 compares the speed of FAS4 versus MAG (up to 3000 vari-

ables) on the Andes and GopherInpatient datasets. The full MAG for GopherInpatient

contained 664,029 edges. The 100,000 edges with the highest G2 value are shown in Figure

5.5. The MAG for Andes contained 274 edges.

3.3. Discussion. SQL shows a massive speed improvement over Tetrad in GopherIn-

patient, including a nearly-logarithmic growth pattern (compared to the nearly-exponential

growth pattern of FAS4). However, SQL is somewhat slower than Tetrad on Andes. We

suspect this has to do with the density of the domain.

Tetrad uses an efficient algorithm to compute G
2 that requires v ∗ r in-memory reads

of the input dataset, where v is the number of variables (e.g. two plus any conditional

restrictions) and r is the number of records in the database. Therefore the number of reads

is not dependent on the number of positives.

In relational databases, the set-theoretic notion creates very large intermediate tables

when joining sets with large amounts of overlap, but it can detect non-overlapping sets

very quickly. The Andes dataset had 980,362 positive instances and GopherInpatient had

1,423,634. In terms of positive instances, the entire Andes datset was about half of the size

of the entire GopherInpatient set, even though it has 25 times fewer variables.

Therefore, we conclude that in-memory implementations tend to scale as a function of

v ∗ r, whereas database implementations tend to scale as a function of positive instances.

Therefore, the sparser the dataset, the greater win SQL will provide. Therefore the set-

theoretic optimizations of relational database make it optimal for learning a superset of
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(a) Andes dataset. (linear scale)

(b) GopherInpatient dataset (log scale).

Figure 5.4. The performance of MAG vs FAS4 for two test datasets.

Bayesian network structure in sparse domains. In two chapters, we will show that this

translates quite directly into speed increases in learning full Bayesian network structure.

First, however, we will demonstrate how to use the MAG for principled feature selection.
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Figure 5.5. The 100,000 edges in the Maximal Association Graph for the
GopherInpatient dataset with the highest G2 value. The full graph contains
664,029 edges. Problems are colored red, tests are purple, nursing orders are
cyan, and all other orders are blue.
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CHAPTER 6

Principled Feature Selection for Networks of Association

1. Background

In the previous chapter, we examined three reasons it is not possible to have one net-

work for all of medicine. Therefore we must rely on feature selection for choosing the most

important variables in smaller domain-specific networks. In Chapters 3 and 4, we used a

simple frequency heuristic, but frequency is not highly correlated in general with impor-

tance. For example, IV flushing is very frequent but might not be important, and uterine

hemorrhage is uncommon but has a great deal of importance in some clinical situations.

1.1. The all relevant problem. Finding the most-relevant variables in a dataset is

not a common problem in machine learning. Rather, much of machine learning focuses

feature selection on finding the minimal optimal set of variables to predict a target, e.g.

‘What is needed to predict whether the patient has diabetes?’ There are well-established

methods of finding the minimal optimal feature set. For example, Tsamardinos and Aliferis

(2003) have shown that a set of variables known as theMarkov Blanket are the most relevant

variables in classifying a variable.

However, the alternative question, ‘What does one do with a diabetic patient?’, is less

explored. It involves many more variables, because it asks for associations, not predictors.

Nilsson et al. (2007) call this the all-relevant problem. They develop recursive Markov

Blanket variable selection algorithms to choose this. However, recursively selecting the

Markov Blankets of even a single target variable eventually selects nearly all possible vari-

ables. This has the same problem as the association rule studies we explored in Chapter 2,

in which nearly everything has some association with everything else. Furthermore, recur-

sively discovering Markov blankets on large datasets is computationally intractable. This

has approximately the same complexity as discovering the network skeleton, which in turn

is a loose upper bound for complexity of discovering the entire Bayesian network, which

Chickering et al. (2004) have shown is NP-hard. (We will discuss network skeletons in more

detail in the next chapter.) Because feature selection deals with truly large sets of variables

(such as the 7376 Gopher order entry variables), recursive Markov blankets are not a viable

solution.
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One might think that limiting the recursion depth in Nilsson et al.’s (2007) recursive

Markov Blanket algorithm would choose the most associated variables. After all, such

variables would be ‘closer together’ in the final network. However, Koller and Sahami (1996)

demonstrate that ‘closeness’ in a Bayesian network is not a strong measure of association.

Therefore, we turn to heuristics.

The simplest heuristic is frequency of co-occurrence, used in Part 1. As mentioned,

frequency does not correlate strongly with relevance, and so it leaves something to be

desired.

Perhaps the next level of complexity is association rule mining and collaborative filtering,

discussed in Chapter 2. This actually solves a feature selection problem. For example,

Amazon.com’s recommendations (Linden et al., 2003) show the most-relevant shopping

recommendations. Although, as discussed, in complex situations association rules are still

not a good choice for choosing features, we will show they provably eliminate irrelevant

features.

Much closer in robustness to Bayesian network reasoning (but without the computa-

tional complexity) is network analysis, which applies various graph-theoretic measures to

analyze the relative importance of nodes in a given graph. In this motif, associations (such

as protein-protein interactions) are arranged into a network. Each edge is given a single

weight (and so these networks are much less complex than the CPTs of Bayesian networks).

We can apply network analysis to the MAG (Chapter 5) to produce a relevant set of features.

In this chapter, we develop a two-pass feature selection algorithm that eliminates vari-

ables with association rule mining and then applies network analysis to refine the feature

set, using a MAG generated with the remaining variables.

2. An Algorithm for Principled Feature Selection.

2.1. Association rule mining. In Chapter 2, we noted that association rule mining

did not do well in capturing the most important interactions in medicine, unless those

associations were very strong and specific. However, it is mathematically certain to remove

features that have no interaction with the target.

Confidence, a common and frequently-used measure of association, is defined as: P (A∩B)
P (A) ,

or the probability that seeing A means also seeing B in the same sample. If A and B never
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co-occur, its confidence is zero. The bidirectional version, all-confidence, measures the

probability that both A implies B or B implies A, or max(P (A∩B)
P (A) ,

P (A∩B)
P (B) ).

This of course only measures positive interactions, whereas Bayesian networks measure

all forms of variable interaction (see Chapter 5). However, to choose an initial set of features

this is exactly what we want. For example, in medicine prostate cancer might interact with

pregnant, in that it is slightly more likely to be true when pregnant is false. However,

adding prostate cancer to a network focused on pregnancy would clutter our network with

uninteresting associations.

Therefore we use association rule mining not to recommend features, but only to elim-

inate features with a very low all-confidence. Specifically, we choose one or more target

variables to define our domain (for example, ‘pregnancy’) and find all variables that have

an all-confidence with any of the targets greater than some very small number �. This

algorithm is illustrated in Algorithm 6.1.

Program 6.1 Feature-Assoc(D,T)

Input: D is a data set of transactions, consisting of items in a transaction
Input: T is a set of target variables that define our domain
O is an output set of selected features, which is initially empty.
for all v ∈D �∈ T do
for all t ∈ T do

if all-confidence(t, v) > � then
O ← v {Choose the feature}

end if
end for

end for
return O

Note that this is different than eliminating features by a frequency heuristic. For ex-

ample, a tension headache is only recorded once in all Gopher inpatient hospitalizations,

in a pregnancy hospitalization. Therefore, even though it occurs less than .01% of hospi-

talizations (and co-ocurrs with pregnancy only .02% of the time), it has a confidence that

‘tension headache implies pregnancy’ of 100%. Therefore at this stage it is retained. Con-

versely, even though a hepatic function panel occurs in 10% of inpatient hospitalizations,

its all-confidence with pregnancy is 0.6%.
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2.2. Markov Importance. The second phase in our feature selection utilizes the

Maximal Association Graph (MAG) developed in the previous chapter to refine the feature

set chosen by Program 6.1. As discussed, the MAG contains an edge for all active paths

between variables that do not involve a collider. If we weight the MAG by the edge’s G
2

values, we have an association network appropriate for network analysis. Unlike in a full

Bayesian network, all variables relevant to a target are within a short number of links to the

target. Specifically, the maximum distance of a relevant variable is the number of colliders

k that might separate the target from a relevant variable, when the only paths between the

variables involve a collider. In practice, we have found that k can be very small. As an

example, a good guess for k might be the average path length between two nodes in the

network. In a MAG generated for pregnancy from GopherInpatient the average path length

is just 2.2. (We will discuss actually choosing k at the end of this section.)

We will take advantage of these properties of the MAG to develop a method of choosing

a set of relevant variables through analysis of ‘walks’ through the graph. The same idea lies

behind Google’s search engine.

2.2.1. PageRank and its variants. Google’s PageRank algorithm ranks search results

with a score defined as follows (Page et al., 1999): for a random surfer on the internet, how

likely is it that they will spend time at a given page? To compute this, PageRank views the

entire Internet as a directed graph, where nodes are webpages and links are edges. Starting

with some initialization of ranks, it defines a recursive algorithm that propagates ranks

around the graph. Each webpage has a ranking proportional to the sum of the ranks that

point to it, adjusted for the number of links on the source page.

The PageRank of a page p can also be viewed as a ‘random walk’ in the web graph.

A random walk in a graph is a Markov Chain, which is a state-transition process which

specifies a starting state for all nodes (in the case of PageRank, an arbitrary vector of

postive numbers) and transition probabilities to all outbound nodes. In PageRank, the

transition probabilities are uniform across all links on a page, so each link on page i has

probability 1�Ni, where Ni is the number of links on page i. This state-transition process

can be represented compactly as a vector ρ0 of starting states and a matrix of transition
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probabilities A. Figure 6.1 shows a sample network with the associated matrix of transition

probabilities A.

It is then a matter of matrix multiplication to find ρ at time 1: ρ1 = Aρ0. This can

be performed iteratively to find the probability that the surfer is at any page at any given

time. Therefore PageRank can be computed as the sum of such multiplications over all

time, as shown in Equation 1. Figure 6.2 shows the propagation of PageRank through the

network in Figure 6.1.

Theorem 4. Given a vector of starting states ρo and a matrix of transition probabilities

A, then the likelihood of being in any state at time n is specified by ρn = Atρ0.

Definition 1. PageRank = ∑∞t=0Atρ0, where the summation halts when R reaches con-

vergence1. ρ0 can be almost any vector; the same relative PageRank will be produced.

A =
���������

0. 0.5 0.5 0.
0. 0. 0.5 0.5
0. 0. 0. 1.
0. 0. 0. 0.

���������

Figure 6.1. A sample network structure and the PageRank transition prob-
ability matrix associated with it, defined by Theorem 4.

PageRank has since been applied to various feature selection problems, but one of its

weaknesses is that it estimates a global importance, e.g. the steady-state rank given that

the ‘surfer’ is equally likely to start anywhere. White and Smyth (2003) have developed

new algorithms that extend the concept of PageRank to determine relative importance, e.g.

the rank given that the surfer will start from one among a set of root nodes.

Their k-step Markov importance algorithm limits the sum in Definition 1 to k steps and

uses ρ0 to define the root nodes (whose rank is evenly distributed among the root nodes

1This slightly simplifies the algorithm. The actual algorithm also accounts for random jumps and sinks.
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Figure 6.2. A sample propagation of PageRank, as described in Definition
1. Left is the (arbitrary) starting state, middle is after one iteration, right
is after convergence (which is five iterations in this case). Nodes are labeled
by their rank.

and 0 otherwise). Therefore, k-step Markov importance is defined as Markov Importance =
∑k

t=0Atρ0. This biases PageRank to walks of a fixed length from the root nodes, so as k →∞,

K-step Markov importance → PageRank. Further, rather than using uniform probabilities

in the transition matrix, arbitrary weights can be specified, so weighted graphs (which are

common in much practical graph analysis) are directly supported. A sample run of k-step

Markov Importance on the same network in Figure 6.1 can be seen in Figure 6.3.
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t=0 t=1 t=2

Figure 6.3. A sample k-step Markov Importance with k = 2. Normalized
edge weights are shown on the graph. Left is the starting state, middle is
after one iteration, right is after two iterations. Nodes are labeled by their
rank.

2.2.2. Principled feature selection. Therefore we use K-step Markov Importance on the

MAG (represented as a bidirected graph), weighted by normalized G
2 values, to refine the
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feature set chosen with Program 6.1. This selects features by an importance measure that

is related both to strength of association (and not only positive association) as well as

movement through the graph of relationships. Therefore it will choose the most interesting

nodes on paths up to k distance. Viewing feature selection as a network analysis problem

allows strength of association, distances, and node degree to all be taken into account.

Our feature selection algorithm is as follows. The association rule mining phase will first

choose the broad domain, such as pregnancy. Then the network analysis phase will refine the

feature set, by choosing all features that follow specific situations, such as complications of

pregnancy. We refer to such nodes as non-actions, which include diagnoses and complaints.

Likewise, actions are all other CPOE orders. We desire the most important actions for the

most important non-actions in the network. Therefore we run k-step Markov Importance

twice, once each to select non-actions and actions. First, we set the root nodes to all

the actions in a MAG generated on a dataset from Program 6.1. We run k-step Markov

Importance and select the top n1 non-actions. We then remove all non-selected non-actions

from the MAG and rerun k-step Markov Importance on the modified MAG, this time with

non-actions as the root nodes. We then choose the top n0 actions. Selecting the size of n0

and n1 is fairly arbitrary and is best chosen by considering restrictions on computational

performance in learning a Bayesian network on the selected feature set size. The program

is described in Program 6.2, and a visual example is shown in Figure 6.4.

Program 6.2 runs in less than 30 seconds on all networks we have explored, including a

MAG for the entire GopherInpatient dataset. It does fist require generation of the MAG,

but we demonstrated in Chapter 5 that our SQL approach can learn a MAG in a sparse

dataset very rapidly as well. Better, time spent learning the MAG is not lost. We will see in

Chapter 7 that we can use the MAG to significantly speed up Bayesian structure learning.

Even though a subset of features in the MAG will be chosen for the final graph, the MAG

for a subset of features is the subset of the MAG for those features, because the original

MAG contains all possible edges between variables. Therefore the same MAG can be used

for learning after feature selection.
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Program 6.2 Feature-Importance(D,V,n0,n1,k)

Input: D is a data set of transactions, consisting of items in a transaction
Input: V is the maximal set of possible variables, such as those output by Program 6.1
Input: n0 is the maximum number of actions to choose
Input: n1 is the maximum number of non-actions to choose
Input: k is the number of steps in k-step Markov Importance
G = the MAG using D,V (Output of Program 5.1)
for i = 0→ 1 do
if i = 0 then

Root nodes are actions
else

Root nodes are non-actions
end if
ρ0 is a vector of starting states with a uniform distribution among the root nodes
A is a state-transition matrix representing the MAG weighted by normalized G

2 values
ρk = ∑k

t=0Atρ0 {Perform k-step Markov importance.}
Si = the ni features with the highest value in ρk which are not root nodes.
G = G ∩ (Si ∪ rootnodes) {Remove non-selected, non-root nodes from the graph.}

end for
return ∑i(Si) {Return both selected actions and non-actions}

3. Evaluation

3.1. Implementation. We sought to compare our graph-theoretic algorithm to the

frequency heuristic used in Chapters 3 and 4. Therefore we defined the following two

programs:

● FS-Important(D,T,n0,n1,n1p): The full algorithm developed in this chapter,

which runs an initial association-rule-mining pass (Program 6.1), generates the

MAG (Program 5.1), and concludes with Feature-Importance (Program 6.2).

D is an initial dataset, T is a set of initial targets on which to perform association

rule mining, and n0 and n1 are the number of actions and non-actions to select for

the refined set, respectively. n1p is an optional parameter that specifies the number

of non-actions to pursue in the action-selection run of Markov importance. Only

the top n1p non-actions are set as targets in the second pass. This allows feature

selection to focus on a subset of nonactions if the main targets for action selection

are a subset of non-actions. (This is the case in our CHF evaluation below, where

we are most interested in treating CHF, not complications thereof.) If n1p is not

specified, then n1p = n1.
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3 4

Figure 6.4. A visual example of Program 6.2, with colors as in Figure 5.5.
(1) The MAG generated on the GopherInpatient dataset after performing
feature selection (Program 6.1) with T={Pregnancy}. (2) The nodes in the
MAG are sized by their rank with actions as targets. (3) Non-selected non-
actions are removed and the nodes in the MAG are sized by their rank with
remaining non-actions as targets. (4) The final graph after all non-selected
nodes are removed.

● FS-Frequent(D,T,n): The frequency heuristic from Part 1, which counts the co-

occurrences of a set of targets (T) on a dataset (D). The most frequent n features

will be selected.
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Our implementation of FS-Important was as follows. First, we implemented Program

6.1 as a SQL script. (This is actually ChoosePairs and FilterPairs from Klann et al. (2009),

but modified to compute only confidence.) We then wrote a SQL script to generate tempo-

rary data tables using the subset of variables selected by Program 6.1, on which we generate

the MAG using Program 5.1. Next, we developed a converter to load the edgelist output by

the MAG generator into a JUNG graph, which is OMadadhain et al.’s (2005) Java graph

framework. Because JUNG already provides an implementation of k-step Markov Impor-

tance, we were able to implement the two-step importance filtering in Program 6.2 directly

using JUNG’s application programming interface (API). Finally, we wrote a Java program

to execute these various pieces (assocation rule mining, MAG generation, JUNG conversion,

and importance sampling) automatically given a source dataset and a set of initial targets.

We chose our parameters t and k as follows. After experimentation with the Gopher-

Inpatient dataset and T = {Pregnancy}, we found t = .01 reduced the feature set by 80%

without eliminating relevant features. White and Smyth (2003) suggest a k ≤ 10. We rea-

soned that too large a k would focus selection too heavily on orders which are co-associated

rather than associated with target diagnoses. Therefore we chose an approximation of

treewidth as our k, up to a maximum of 5 for non-action selection and 3 for action selec-

tion. Recall that treewidth is the width of the optimal junction tree decomposition of a

graph and is related to the number of paths between nodes (and therefore the number of

colliding paths). Determining treewidth exactly is NP-hard (Lucena, 2003), but good ap-

proximations exist. We defer discussion of these approximations to Chapter 7, and for the

moment simply assume we can approximate treewidth through a program TW(G). Then

k =max(5, TW (G)).
Our implementation of FS-Frequent simply runs Program 6.1 to compute co-occurring

variables and then selects the first n without computing confidence. FS-Frequent ran

somewhat faster than FS-Important but the differential was always under 5 minutes.

3.2. Methods. We hypothesized that the features chosen by FS-Important are su-

perior to FS-Frequent. To test this hypothesis, we developed the following two measures:

● Length for key features. We measured the length of a list that must be chosen

to select the essential basic features for a domain using both programs.
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● Feature promotion and demotion. We call the features selected earlier by

by FS-Important than by FS-Frequent promoted, and those selected later

demoted. This is a measure of how important FS-Important considers the feature

compared to what frequency would suggest. We examined the nature of promoted

and demoted features.

We applied our measures to two domains in the GopherInpatient dataset, one involv-

ing Congestive Heart Failure (CHF) and one involving pregnancy. The former is a fairly

small domain and straightforward hospitalization, whereas the latter (as we have seen), is

frequently wrought with complications.

For the CHF evaluation, we chose to compare the most important treatments for just

that single target (CHF), so we ran the metrics on GopherInpatient with T = {CHF} (and
n1 = 5,n1p = 1 for FS-Important). To compare list length for key features, we selected the

four basic treatments considered in CHF hospitalizations according to a Gopher order set:

an ACE inhibitor, cardiac glycoside, diuretic, and nitrate. To study feature promotion and

demotion, we compared the first 200 actions chosen by both programs.

For the pregnancy evaluation, we ran the metrics on GopherInpatient with T = {Pregnancy}
and n1 = 5 for FS-Important. To compare list length, we selected features chosen as

the key treatment by the obstetric nurse in Chapter 3 for the non-actions chosen by FS-

Important. To study promotion and demotion, we compared both the first 200 and top 5

non-actions chosen by both programs.

3.3. Results. We report the list length required to choose key features for both do-

mains in Table 6.1. As mentioned, in the CHF domain the key features were the four

essential treatments in a Gopher order set. In the pregnancy domain, they were the key

treatment indicated by the obstetric nurse (see Chapter 3) for the three comorbid conditions

selected by FS-Important also evaluated in Chapter 3 (two of the non-actions chosen by

FS-Important were not evaluated in Chapter 3, so we only consider three features here).

We report feature promotion and demotion for pregnancy complications in Table 6.2.

The different choices for non-actions is shown, as well as a representative sample of treat-

ments with high promotion and demotion. We report feature promotion and demotion
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for CHF in Figure 6.5. A representative sample of treatments with high promotion and

demotion is shown alongside a histogram.

Evaluation Treatment FS-Important FS-Frequent

Pregnancy Oxytocin 17 12
Magnesium Sulfate 18 65
Betamethasone 7 80
Total length 18 80

CHF ACE Inhibitor 84 11
Cardiac Glycoside 23 158

Diuretic 1 30
Nitrate 14 19

Total length 84 158
Table 6.1. Comparison of the list length at which key features are selected.
The list length to capture all common relevant features is shown at the
bottom of each section.

FS-Important FS-Frequent

Postpartum Postpartum
Cesarean Section Cesarean Section
Preterm Labor Spontaneous Vaginal Delivery
Preeclampsia Early Stage Labor

Premature Rupture of Membrane Tubal Ligation
(a) Top pregnancy problems by program.

Treatment Promotion
Transvaginal Ultrasound 94

Fetal Ultrasound 75
Nitrofurantoin 59

Vitals -54
Regular Diet -55

Tylenol w/ Codeine -66
(b) Representative examples.

Table 6.2. FS-Important compared to FS-Frequent for inpatient preg-
nancy. (Left) The top five cormorbid problems in inpatient pregnancy, FS-
Important compared to FS-Frequent. (Right) A representative sample
of treatments with high differential in ranking. Features with high promo-
tion are highly relevant in specific situations. High demotion features are
extremely general.

3.4. Discussion. FS-Important consistently outperformed FS-Frequent.
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In the pregnancy domain, Table 6.1 shows the three key features were chosen with a

set of size 18, rather than 80 with FS-Frequent. Table 6.2 shows FS-Important’s top

five comorbid diagnoses promoted complications, displacing a routine procedure and two

diagnoses that merely provided more information (e.g., early stage labor). Finally, the most

promoted features were frequently quite important among the top five comorbid diagnoses

and were frequently found in the nurse’s lists in Chapter 3, whereas general treatments

(e.g., strong painkillers) were heavily demoted.

In the CHF domain, FS-Important chose essential basic features in half the number of

features as FS-Frequent (Table 6.1). It performed best with the rarest essential feature

(cardiac glycoside) and worst with the most common (ACE inhibitor). FS-Important

demoted nearly all non-specific features significantly (e.g., multivitamin and ranitidine),

and filled in the list with less frequent treatments that could become essential in some

cases. (See Figure 6.5.) Most strikingly, a cluster of four ventilator protocol orders were

(a) Promotion histogram.

Order Promotion
CHF Education 325

Ventilator Protocol 229
Restrain 211

Resp. Therapy Consult 166
Anticoagulation Clinic 122

Vancomycin 107
Spironolactone 95
Oxygen Therapy 28
Cardiac Markers -26
Multivitamins -117
Ranitidine -308
Sudafed -311

Promethazine -333
Acetaminophen -392

Percocet -472
Ambien -744

(b) Representative examples.

Figure 6.5. (Left.) A histogram of the difference in feature selection or-
der in FS-Important compared to FS-Frequent, for the top 200 features
chosen by FS-Important. (Right) A representative sample of orders with
high differential among the top 200 feature chosen by each program. Fea-
tures with high promotion are highly relevant in specific situations. High
demotion features are extremely general. The middle tier of both promotion
and demotion are relevant in many situations.
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added, which are more ‘important’ than a multivitamin in that they are more specialized,

even though less than 10% of CHF hospitalizations involve a ventilator at Wishard.

The only situation in which FS-Important performed poorly was in choosing an

ACE inhibitor for CHF. This is related to how the algorithm views the domain. In FS-

Important, feature choice is related to the strength of paths from roots to treatment.

Because our CHF evaluation involved only one root, overall frequency in the domain can

occasionally be a stronger predictor of relevance than importance. FS-Important excels

at capturing complexity in a domain of multiple problems and evolving treatments.

Overall, FS-Important selects a more relevant list of features in a smaller set size, for

both complex and simple domains. Also, within that list length, FS-Important chooses

much better remaining features, selecting less common but highly relevant features over

non-specific common ones.

3.4.1. Limitations. As discussed, FS-Important is a heuristic that does not always

select the optimal feature set. The algorithm’s primary weakness is that the edge weight,

pairwise G
2, is only an approximation of maximal association strength. In particular, the

G
2 value can vary as the conditioning set changes, so the only way to know the maximum

G
2 value is to test the node conditioned on subsets of all neighbors of both nodes. This, like

other algorithms mentioned at the beginning of this chapter, has the same time complexity

as learning the Bayesian network and is therefore NP-hard.

We argue that in most cases, an unconditioned G
2 value is ‘good enough’, for two

reasons. First, the more paths between nodes, the more likely some G
2-weighted path

will reflect the true importance of the feature. Because our feature selection graphs have

thousands of features and we have seen in most domains that certain ‘hub’ nodes are highly

connected, multiple paths will frequently exist between nodes. Further, we expect dramatic

differences by conditioning G
2 will not occur in the real world. Although it is possible

to construct endless theoretical examples in which two nodes that are almost uncorrelated

become very strongly associated by a third (see Figure 6.6), it is difficult to find a such

a dramatic example in the domain of medical treatment. Even our motivational example

for considering multivariate networks, the asthma order set example from Chapter 2, a

snippet of which is again shown in Figure 6.6, is not impacted by this. Although terbutaline
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should only be considered for those under 40, the unconditioned association between asthma

and terbutaline will still be relatively high, because many patients are under 40 (and so

conditioning on age does not dramatically shift the association). That is not to say that

variables do not become more correlated in the presence of other factors - in fact the ability

to model such changes is a key strength of Bayesian networks - but only that the shift is

not so dramatic that feature selection will frequently fail.

An inaccurate path of G2 values only matters when it is the only path between a target

and a node. Because we are selecting among thousands of features (meaning the graph has

many paths) and because we have found orders in medical subdomains are frequently highly

connected, we expect multiple paths to lead to most nodes. Therefore only extremely rare

and specific orders could suffer this fate.

In England

Flight to England Drinking Tea

Terbutaline

Asthma Age

Figure 6.6. Hypothetical examples of conditioning variables’ impact on
posterior probability. (Left) Correlation varies dramatically when a condi-
tioning variable is introduced (tea becomes highly correlated with being in
England only after a recent flight there). (Right) A more realistic exam-
ple in which the conditioning variable has a moderate impact on correlation
(terbutaline should only be prescribed to asthma patients under 40).

Nonetheless, developing an association network that more closely approximates maximal

G
2 values is an important open research problem.

3.4.2. Conclusion. FS-Important chooses an overall set of much more relevant features

in all domains, where the differential as compared to a frequency heuristic is more significant

in more complex domains. It does as well as a frequency heuristic at choosing the essential

basic features of simple domains.
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CHAPTER 7

Scalable learning in sparse domains

Although feature selection will allow us to select domain-specific networks, the com-

plexity of medicine would still suggest we need a Bayesian structure learning algorithm

that scales well. For example, even if we only choose the 200 most relevant features in our

order-entry data for a domain, once we include some metadata (such as demographics and

relevant test results) and involve temporal reasoning (many methods for which, as we shall

see, minimally double the number of time-varying features), we have a network of several

hundred features. Further, if we consider the by-session Gopher dataset from Chapter 1

(rather than the admission-compressed dataset), we will likely have tens of thousands of

samples.

The GES algorithm used in Part 1, along with all other score-based network learning

algorithms, perform poorly in such large networks. There are other classes of algorithms

designed for sparse domains, in which the number of edges is a relatively small percentage

of possible edges. Nevertheless, even these algorithms do not perform as well as we might

like. As mentioned in Chapter 5, the Max-Min Hill Climbing (MMHC) algorithm (which

is optimized for sparse domains) took 13 days to learn a network for a 5000 variable by

5000 sample dataset on a 2.4GHz Pentium Xeon (Tsamardinos et al., 2006). Our networks

will have many fewer variables but potentially many more samples. It is not unlikely that

MMHC would take a day to learn such a network, and we would like to learn many such

networks. This is not conducive to experimentation and exploration, or even a system

running in a rapidly changing environment.

Therefore in this chapter, we will develop a Bayesian structure learning algorithm op-

timized for our application: a sparse domain of predominantly binary variables with a

moderate amount of data. We will then demonstrate that its speed outperforms any exist-

ing algorithm yet yields comparable predictive performance. First, we will review Bayesian

structure learning algorithms designed for sparse domains.

1. Review of Approaches

1.1. Terminology. It is helpful to establish a few definitions related to network learn-

ing.
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Definition 2. A graph G is faithful to a dataset D if and only if every conditional

independence assumption present in the graph is also present in the data (Tsamardinos

et al., 2003). Moreover, an algorithm is sound if it always finds a graph faithful to a

dataset, if one exists.

In inconsistent or noisy data, a graph faithful to the data cannot always be found,

but nevertheless in practice many algorithms can find a ‘good enough’ graph. How the

algorithm reacts to noisy data is called the stability of the algorithm.

Definition 3. An algorithm is stable if it is able to discover the predominant patterns

in a noisy or inconsistent dataset.

Multiple graphs exist that are faithful to the data. These are called independence

maps (I-maps). I-maps can have useless edges that do not reflect dependencies in the data

(one such I-map is the fully-connected graph). Therefore a minimal I-map is preferred; this

is a graph in which removing any edge violates the faithfulness condition. There might be

multiple minimal I-maps, the smallest possible of which is known as the perfect map (or

P-map) of the distribution. Therefore one view of the goal of Bayesian network structure

learning is to find a minimal I-map that is as small as possible (Koller and Friedman, 2009).

We use I-map and P-map loosely, using them to refer to both directed graphs and

graph skeletons. This is done to simplify the discussion, but I-maps are actually partially

directed graphs that have all undirected edges except for colliders. Such graphs determine an

equivalence class of graphs in which all orientations are probabilistically equivalent as long

as no additional colliders are introduced. (This is the search space of the GES algorithm.)

Definition 4. A minimal I-map is a graph G faithful to a dataset D in which removing

any edge violates the faithfulness condition. A P-map is the smallest minimal I-map.

In Chapter 2, we discussed greedy searches, and we said the greedy equivalence search

(GES) algorithm is provably the best-performing score-based searcher. Now we can be

more precise. All greedy search algorithms are both sound and find a minimal I-map, but

they are not in general guaranteed to find the P-map, which is why random restarts are

employed. GES is, in contrast, guaranteed to find the P-map (if one exists). A strong
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feature of score-based searches are that they are reasonably stable. However, they do not

perform well in sparse domains.

1.2. Bayesian Network Learning in Sparse Domains. The predominant alter-

native to score-based learning is constraint based learning. Such algorithms, extensively

described in Spirtes et al. (2000), utilize a series of conditional independence tests to deter-

mine D-separation and discover the graph skeleton. (Then further tests are performed to

orient the graph.) Because they eliminate potentially edges through tests for local structure

(rather than global searches through an unconstrained edge-space), they are faster in sparse

domains.

As alluded to in Chapter 5, the simplest constraint-based learning algorithm would

reconstruct a graph skeleton by performing a D-separation test on every pair of variables,

conditional on every subset of every other variable in the dataset. Then, if no conditional

set D-separates the pair, there is an edge between them. This sequence of steps is used in

the SGS algorithm. SGS is a sound algorithm and it is quite stable up to the point of finding

the skeleton. Orienting the graph, done using information on D-separation subsets, is less

stable. However, given consistent data, SGS (and most other constraint-based algorithms)

will find the P-map.

It is important to note that SGS’ guarantees break down when the statistical test

produces incorrect results. Practically, this can be a problem because the algorithm suffers

from the multiple hypotheses problem. In particular, if each conditional independence test

has a confidence level of 95%, there is a 5% chance for every test that the null hypothesis is

rejected when it should not be. This leads to false positive associations between variables,

which in large graphs can accumulate to many errors. Likewise, because tests are performed

on the same variables conditioned on multiple subsets, false negatives can accumulate as

well. In statistics, an adjustment of the confidence level is usually performed in the case of

the multiple test problem, such as the Bonferroni correction. However, there is no proven

method to choose an optimal correction value for complex algorithms like SGS. This concern

is mitigated somewht by hybrid algorithms that combine constaint-based and score-based

learning. We will come to these algorithms shortly, but in many cases, SGS-style algorithms

find graphs that are at least as good as many score-based algorithms.
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This section is about algorithms for sparse domains, but SGS does not perform well on

sparse domains. In fact, it does not perform well in any domain, as it requires O(nn+2)
conditional independence tests. However, the insight of SGS is that one can use D-separation

checks to determine edges. Therefore only local tests need to be performed (between pairs

of variables) rather than global scoring checks (on all possible edges).

Spirtes and Glymour (1991) developed SGS primarily for its theoretical properties.

They apply these properties in an tractable algorithm called PC. Beginning with the fully-

connected graph, it progressively ‘thins out the edges’ through D-separation tests on in-

creasingly large subsets of variables. In this way, many erroneous edges are eliminated in

the first several passes, and each pass takes only O(n1+p) operations, where p is the pass

number. In the worst case, PC is as poor as SGS, but PC takes advantage of domain

sparseness, so often only a half-dozen passes are needed.

The fastest sound constraint-based algorithm is most likely Pellet and Elisseeff’s (2008)

Collider Sets (CS), which on average performs an order of magnitude fewer calculations

than PC and takes on average O(n4) operations, though it still has exponential running

time in the worst case.

Friedman et al. (1999) arrived at much the same conclusion about sparse domains - that

potential edges can be limited through local tests - with a different approach. They intro-

duced a class of algorithms known as Sparse Candidate, which perform a score-based search

but first remove edges from consideration that are not likely to be connected. Friedman

did this by, for each node, choosing the nodes with the top ten or fifteen largest mutual

information as possible parents. Friedman found that beginning each restart of a greedy

search with a mutual-information-based edge-reduction algorithm (based on the results of

the previous pass), the resultant searches converged much faster than greedy search alone.

He found that learning a network of 100 variables took about half the time and half the

number of statistical calculations as a standard greedy search to reach convergence. With

200 variables, the speedup was more than three. His expectation is that this approach will

continue to show similar gains as the network size grows, so long as the network is sparsely

connected.
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A newer approach, inspired by both Sparse Candidate and constraint-based algorithms,

are hybrid algorithms. These use a constraint-based algorithm to find the graph skeleton

(or some superset of it) and then invoke a greedy search to orient the graph. This borrows

from the best of both worlds. In sparse domains, the speed of D-separation to find the

skeleton is unparalleled. However, orienting the graph through D-separation is, as discussed,

unstable, whereas score-based algorithms orient based on a global view rather than local

tests. Moreover, Tsamardinos et al. (2006) found that hybrid algorithms which generate a

faithful undirected skeleton produce very accurate networks (when compared with a graph

used to generate the data) with only a one-pass greedy search (no restarts). There is a time

tradeoff for learning the true undirected skeleton rather than a simpler heuristic, but overall

the authors found their Max-Min Hill-Climbing Algorithm (MMHC) was 15 times faster

than Friedman’s 15-candidate mutual-information algorithm with a sample size of 5000.

(Incidentally, it was also 167 times faster than an unoptimized version of GES.) Its average

case complexity is better than PC: O(n2�PC �J+1), where n is the number of nodes, �PC � is
maximum number of neighbors of a node in the skeleton, and J is a user-specified constant

related to the maximum treewidth expected in the graph, which is typically small.

1.3. Efficient Skeleton Discovery. All of the foremost approaches to learning in

sparse domains begin with discovering the undirected skeleton. We discussed the approach

of PC, and now we will explore a family of faster approaches used by algorithms like MMHC.

These involve Markov blankets, which, as discussed in chapter 6, is the set of variables most

relevant in prediction. In Bayesian networks, it also has a graphical meaning: it is the set

of parents, children, and siblings (other parents of children) of a node 1. In cases where

the data is faithful to some network, the Markov blanket is unique (Margaritis and Thrun,

1999). Thus to discover the Markov blanket is to discover the P-map surrounding any

particular node of interest.

This set of all Markov blankets can be ‘stitched together’ to form what is almost the

skeleton of the graph. The missing piece is that Markov blankets include siblings, so stitch-

ing all of the blankets results in what is called the moral graph. Several Markov Blanket

1Actually this is the Markov Boundary, which is the minimal Markov blanket. Here we will refer to this as
the Markov blanket.
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discovery algorithms (e.g., Max-Min Markov Blanket) lose the siblings during their search

for parents and children and have to explicitly find them again. In this case, the sibling-less

blankets can be stitched together directly.

Another way to strip siblings from a Markov blanket is through a triangle rule. This is

alluded to by Pellet and Elisseeff (2008), which we formalize here. Siblings in the Markov

blanket are always part of triangles, as illustrated in Figure 7.1. We make an observation

about such triangles.

Definition 5. Say there is (triangle A-B-C) in the moral graph. Then if any two nodes

in the triangle are D-separated by the third node, the two nodes are siblings with a common

child.

Definition 5 arises from our discussion on D-separation and intuition developed in Figure

7.1. We can therefore find all siblings in the moral graph by checking for D-separation on

every pair of nodes conditioned on common neighbors. This involves a D-separation test

for every node in each Markov blanket conditioned on every disjoint subset of size 1 in that

Markov blanket. This takes O(�MB�2) operations, where �MB� is the size of the Markov

Blanket. To our knowledge, this triangle rule is only used by Pellet and Elisseeff’s (2008)

CS, to find potential common parents. Other Markov-blanket skeleton discovery methods

utilize algorithms that generate sibling-less Markov blankets.

Having established a method to reconstruct a network skeleton from any Markov blanket

discovery algorithm, we review Markov blanket discovery algorithms.

Margaritis and Thrun’s (1999) grow-shrink (GS) algorithm is the fastest, operating

in time linear to the number of samples. It uses conditional independence tests and the

principle that the Markov blanket uniquely D-separates a target variable from all other

variables. It steps through the variables in the data, adding variables to the blanket through

successive conditional independence tests on the current blanket. Then a shrink phase

follows, which removes variables erroneously added to the blanket, via a series of loops over

the discovered Markov Blanket. GS is sketched out in Program 7.1. The disadvantage is

that it requires on average a sample size exponential to the size of the Markov blanket. In

the worst case, the available samples must be exponential in the number of variables in the
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Node Markov Blanket
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B A,C
C A,B

(a) Markov Blankets
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(b) Moral
Graph
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(c) Orientations After Sibling Edge Detection

Figure 7.1. The structure of a sibling relationship discovered through con-
necting Markov Blankets. (a) shows the Markov Blankets of several nodes
and (b) shows their corresponding triangle structure in the moral graph. (c)
shows possible orientations of the triangle with the sibling edge removed.
These sibling edges can be discovered by checking for D-separation on each
pair in the triangle, conditioned on the third variable.

data, because erroneous variables might be admitted to the blanket and are only removed at

the end, which can make the intermediate blanket size much larger than the actual blanket

(Tsamardinos et al., 2003). GS is provably correct given a sample size exponential in the

number of variables in the data. All other work on Markov blanket discovery has been to

reduce the sample limit.

Program 7.1 Grow-Shrink(T,D)

Input: T is a target variable for which to find the Markov Blanket
Input: D is a a training dataset
MB is an array of variables in the Markov Blanket, initially empty
for all Variables v ∈D ≠ T do
if not v ⊥ T �MB then

MB ← v {Add v to the blanket.}
end if

end for
repeat
for all Variables v ∈MB do

if �v⊥ T �MB then
MB � v {Remove v from the blanket.}

end if
end for

until the shrink loop does not change the blanket.
Return the MB
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Tsamardinos et al.’s (2003) iterative-associative Markov blanket (IAMB) algorithm

chooses variables in a better ordering when admitting them to the Markov blanket. Rather

than checking variables in arbitrary order, it finds the most-associated variable with the

current Markov blanket. In other words, it finds a variable v that maximizes G2(T ; v�MB),
where �MB� is the current draft of the Markov blanket and T is the target variable2. This

involves checking all remaining variables in every pass through the grow loop, so IAMB

takes on average O(�MB�n) statistical tests (worst case O(n2)). The advantage is this

method reduces the false positives that enter the blanket, so it requires a sample size closer

to exponential in the size of the largest Markov blanket. It also is quite stable, whereas GS

is not, making it a good choice for noisy datasets.

Aliferis et al.’s (2003) HITON algorithm (and its cousin, Max-Min Markov Blanket)

reduces the required sample size further by testing every candidate variable on all subsets of

the current blanket (up to some fixed size) before admitting it to the blanket. (As discussed,

this severs siblings, which must be re-discovered later if the Markov blanket and not the

skeleton is desired.) It does this by augmenting the method in IAMB, adding a loop after a

candidate is chosen to perform subset checking. The result is that D-separation between the

target and a candidate is found early, well before the entire blanket is discovered, thereby

eliminating many false positives. Thus HITON requires a sample size exponential only in the

size of some small constant k — the maximum size of the conditioning set. Of course, it is

also much slower than either of the preceding two algorithms, because it requires up to �(k)
tests on every candidate variable. In the average case, HITON runs in O(�MB�2n) time,

but the worst case running time is now exponential in k. In actual time, one experiment

involving 139,000 possible variables found the Markov blanket in approximately 8 hours

using an Intel Xeon 2.4 GHz computer with 2 GB RAM. Tsamardinos et al.’s (2006) Max-

Min Hill-Climbing algorithm, uses a method similar to HITON to find the parents and

children of each node, which it then arranges into the undirected skeleton.

Finally, we note there are heuristic algorithms that have no guarantee of soundness

(most famously Koller and Sahami’s (1996) KS algorithm), but they are slower and have

frequently poor results, though they do not require exponential sample size.

2G2 can be replaced by any similar statistical test, such as χ2.
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1.4. Skeleton Orientation. Once a network skeleton is discovered, the final step is

orientation. Constraint-based learning algorithms, such as Pellet and Elisseeff’s (2008)

Collider Sets (CS) uses additional local statistical tests to orient the graph, but in the

limit these can be quite slow and they are also inherently unstable. As discussed, other

sparse-domain algorithms conclude with a score-based greedy search, which is much more

stable. Tsamardinos et al. (2006) found that restarts are not necessary on a faithful skeleton,

making this orientation process quite fast.

2. Fast hybrid learning algorithms

There is significant room for speed improvements over MMHC if we are willing to make

some sacrifices.

2.1. Maximal Association Graphs in hybrid learning: MAG-GS. If we sacrifice

the guarantee that the algorithm will find the P-map, we could orient an approximate

skeleton. As long as the approximate skeleton is not missing any true edges, the algorithm

will still find a minimal I-map. The closer the approximate skeleton is to the correct one,

the better minimal I-map that will be found. Perrier et al. (2008) call such an approximate

skeleton a super-structure.

Definition 6. A super-structure is any undirected graph that contains the actual graph

skeleton (Perrier et al., 2008).

One approximate skeleton is the Maximal Association Graph (MAG), developed in

chapter 5. Recall that the MAG uses D-separation to find a set of all edges that might

exist in the final graph. This requires O(n2) operations in an iterative implementation, but

in Chapter 5 we created a version for binary variables that runs on relational databases

extremely rapidly in sparse domains. It also does not have any notable sample size require-

ments. Contingency tables in the MAG always have four entries (see 5.2), requiring only

four partitions and therefore a sample size of < 100. Therefore the sample size requirement

is bounded by the greedy search and not the skeleton finding.

Therefore we introduce a hybrid algorithm consisting of the MAG oriented by a greedy

search, which we call MAG-GS. The more complex the graph, the less likely it is to find

the P-map, but its stability and speed make it an appealing hybrid algorithm. This method

89



is shown in Program 7.2, which relies on the greedy search in Program 3.1. We also make

one innovative addition to greedy search that requires more discussion.

Program 7.2 MAG-GS(D)

Input: D is a a training dataset of binary variables
MAG ← Run Program 5.1 on D. {Learn the MAG.}
Run Reduce-TW(Greedy-Search(D,R),D), where R is the MAG.

2.1.1. Bounding Tree-Width. As discussed in chapter 5, complexity of inference is highly

related to the tree-width of the graph. Unfortunately, finding the tree-width of graphs is

NP-hard, but there are many upper- and lower- bounds that can be computed rapidly. We

would like to use tree-width to aid our greedy search. Although scoring functions already

penalize graph complexity, a graph of the same complexity with a higher tree-width is, for

the purpose of inference, a ‘worse’ graph. Limiting tree-width is especially important in an

algorithm that does not guarantee a P-map, because minimal I-maps differ in complexity

and thus might have different tree-widths.

Work has been done by Elidan and Gould (2008) in monitoring the tree-width of a graph

as it is being learned, which can guide the search toward I-maps with smaller treewidth.

There is a significant speed loss for making these changes, however, because additional

calculations must be performed for every edge addition to judge its potential contribution

to tree-width. Such methods are likely very important on large graphs when a greedy

search is unconstrained, but are less necessary when beginning from a sound skeleton. This

is because such algorithms get close to the P-map already, so online guidance toward better

I-maps is not necessary.

Therefore we use this heuristic: once the graph is learned, if the (approximate) treewidth

is above a threshold max-treewidth, we delete edges that reduce the score the least until

the (approximate) treewidth is max-treewidth. Of course, if edges are deleted and the

output graph was in fact a minimal I-map, then the graph after treewidth reduction is

no longer faithful to the dataset. Therefore we must use this optimization cautiously. In

practice, however, score-based learners tend to add a few extra edges, and the sensitivity

in inference to minor problems in BN specification is frequently quite low (Pradhan et al.,

1996). Only when many edges are deleted is this practically problematic (e.g., running
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after an unconstrained greedy search). In general, the more optimal the network skeleton,

the fewer edges will be deleted by this heuristic. We will introduce the BS and MAG-BS

algorithms in the upcoming sections to find better skeletons.

To compute approximate tree-width, we use the Greedy Degree metric, which van Dijk

et al. (2006) found to be an upper bound which was frequently very close to exact tree-width.

It can be computed in time linear to the number of nodes, and because it only requires graph

manipulation (rather than expensive statistical tests), it is extremely fast (< 1s on graphs

we have tested). It works by finding the node of lowest degree and recursively removing

this node (and its edges) until the graph is empty. The maximum degree among the lowest-

degree nodes approximates the tree-width. This program is described in Program 7.3, and

an example run can be found in Figure 7.2. Program 7.4 is a simple application of TW to

remove low-scoring edges until a particular maximum tree-width is reached.

Program 7.3 TW(G)

Input: G is a graph for which an upper bound of tree-width will be calculated.
TW is the tree-width of the graph, initially 0.
while G is not empty do
n = the node in the graph of lowest degree
if degree(n)>TW then

TW=degree(n)
end if
G = G�n {Remove n and its edges from the graph}

end while
return TW

Program 7.4 Reduce-TW(G,D)

Input: G is a learned graph.
Input: D is a a training dataset.
while TW (G) >max-treewidth do
Score all edge removals in G, and remove the edge that decreases the score the least.

end while
Return G

2.2. Faster skeleton discovery: Blanket-Stitch. If, like MMHC, we would like to

find the P-map, but we are willing to sacrifice the small bounds on sample size, we could

replace the undirected skeleton phase of MMHC with IAMB (augmented by our triangle
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rule). This would reduce the number of conditional independence tests for skeleton finding

from O(n2�PC �J+1) to O(n2�PC �2) in the average case.

When available sample size is extremely limited, MMHC’s very small sample size re-

quirements are important (such as structure discovery in protein interaction networks).

However, when a Bayesian network is being learned, a larger sample size must be available

regardless. Recall from Chapter 5 that Bayesian networks require a sample size exponential

in the maximum number of parents.

For learning network structure for Bayesian networks, we introduce a new algorithm:

Blanket-Stitch (BS). BS’ Markov-blanket learning is as follows. While the candidate

Markov Blanket (CMB) is smaller than log2(S�20) (where S is the sample size), we perform

an IAMB-style search (because it is fast and more stable than Grow-Shrink) with one

modification. We use the triangle rule presented earlier to check each candidate to verify

it is not a sibling of any node in the CMB. When the CMB reaches the sample limit (or

all potential neighbors have been considered), a Shrink phase is invoked which is similar

to IAMB’s except it also checks the CMB for siblings which might have been erroneously

added. If the CMB is now below the sample limit, the algorithm continues. If it is still

at the limit, we use a heuristic. Because (in most cases) the most-associated variables are

added first, the most recently added variable is least likely to remove another variable from

the CMB. Therefore we remove it from the CMB, add it to an overflow list (OMB), and

continue the search. When the search completes, OMB∪CMB is returned as the Markov

blanket. This will learn a Markov blanket in O(n2�CMB�) tests, where �CMB� is the

maximum blanket size allowed by the available samples. Although the OMB heuristic will

occasionally admit false positives into the blanket, it is actually quite rare for the final

skeleton to have many false positives. First, in graphs with moderate sample size and not

many ‘hubs,’ the frequency of use of OMB is low. More importantly, false positives added

(a) MinDegree=1 (b) MinDegree=2 (c) MinDegree=1

Figure 7.2. An example run of Program 7.3. The treewidth upper bound
is max(MinDegree)=2.
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by the OMB are likely to be later removed by the skeleton generation process, because we

allow each Markov blanket learned by BS to remove edges erroneously added to the graph

by learning a previous Markov blanket.

BS stitches together blankets as follows. Starting with empty graph, each variable’s

sibling-less Markov blanket is iteratively added to the graph. Each variable’s blanket is

initialized with its preexisting neighbors in the graph, but those edges are later removed

from the graph if the shrink phase removes them. For computational speed, we borrow an

optimization from MMHC - only variables that have not been learned are considered for

adding to the blanket (because if they were learned and are potential neighbors, they would

already be in the graph).

Finally BS orients the graph using the greedy search already presented in Program 3.1

and limits the treewidth of the resulting graph through Program 7.4. This is described in

Program 7.5. To keep the treewidth small (so Program 7.4 deletes at most a few edges),

we limit the maximum fan-in for the greedy search to one-third of the maximum number

of parents allowed by dataset size (see Chapter 5).

2.3. Combining Blanket Stitch and the Maximal Association Graph. We in-

troduce our final hybrid algorithm. By limiting BS to search only among edges in the MAG,

we increase its speed dramatically without sacrificing its ability to find the P-map. We call

this algorithm MAG-BS. The skeleton-finding runtime of MAG-BS is O(n2
e�CMB�), where

e is the maximum number of edges in the MAG. In chapter 5, we saw that the MAG for

GopherInpatient contained less than 1% of all possible edges. We expect that at some num-

ber of edges the skeleton finding runtime will be the upper bound for learning the network,

as the greedy orientation phase takes less time the more the edges are constrained.

3. Implementation and Evaluation

3.1. Methods. We implementedMAG-GS,BS,MAG-BS, and an unconstrained greedy

search GREEDY (see Programs 7.5, 7.2, and 3.1) in Java, utilizing components in the

Tetrad IV suite (Ramsey, 2011) including: the conditional G2 test (in Program 7.5), a BDeu

scorer (in Program 3.1), and various graph manipulation utilities (such as cycle checking).
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Program 7.5 Blanket-Stitch(D,R)

Input: D is a a training dataset
Input: R is a restriction graph. Only edges in this graph will be considered. The graph is
undirected.
G is an output graph, which initially is the empty graph.
L is a list of variables that have been learned, initially empty.
for all Variables v ∈D do
CPC = {∀c ∈ G ∶ c ∼ v} (We will refer to this as CPC0 later.)
CONSIDER = {∀c ∼ v ∈ R ∶ c �∈ L ∧ c �∈ CPC}
OPC = �
while �CONSIDER� > 0 do

CONSIDER
−= ∀c ∈ CONSIDER ∶ c ⊥ v�CPC

CONSIDER
−= ∀c ∈ CONSIDER∀pc ∈ CPC ∶ c ⊥ v�pc

Find the variable cbest ∈ CONSIDER that maximizes G2(c; v�CPC)
{Find the most associated variable given the current CPC that is not a sibling
according to the current CPC.}
CPC ← cbest {Admit the best candidate into the CPC.}
CONSIDER

−= cbest {Remove the best candidate from the consideration set.}
if �CPC� = log2(20 ∗ ss) then
for all c ∈ CPC do

if ∃c ∈ CPC ∶ c ⊥ v�CPC ∨ ∃pc ∈ CPC ∶ c ⊥ v�pc then

CPC
−= c {Remove any element in CPC that has become independent given

the rest of CPC or now has a sibling relationship given another variable in
CPC.}

end if
end for
if �CPC� = log2(20 ∗ ss) then

Move the last element of CPC into OPC {If our current Markov blanket is at
the sample limit, move the most recently learned element to the overflow list.}

end if
end if

end while∀c ∈ CPC ∪OPC set v ∼ c ∈ G {Store the discovered Markov blanket in the graph.}∀c ∈ CPC0�CPC set v �∼ c ∈ G {Remove any edges from the graph which were erro-
neously in the initial CPC.}
L← v

end for
Return Reduce-TW(Greedy-Search(D,G),G)

We also used Tetrad’s implementation of Grow-Shrink as a starting point for developing

the Markov-blanket discovery portion of Program 7.5.

Tetrad internally stores its datasets as a dense in-memory matrix of 64-bit double values,

which would take over two gigabytes of RAM for just the GopherInpatient dataset (without

any intermediate calculations). In order to handle large datasets effectively, we wrote an
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adapter for Tetrad to use sparse matrices of 32-bit floating-point values, from Wendykier

and Nagy’s (2010) Parallel Colt library. These were slightly slower than dense matrices,

but because the entire Tetrad suite was modified to use them, our speed tests are consistent

across algorithms.

In order to restrict searches to the MAG in MAG-GS and MAG-BS, we wrote a tool

to convert a JUNG graph to a Tetrad graph, so the MAG (and subsets of it selected by FS-

Importance) can be loaded into Java using the methods developed in Chapter 6. Programs

7.5 and 3.1 both require a restriction graph, so we implemented BS and GREEDY by first

generating the fully connected graph as the restriction graph. (The time taken to build the

fully-connected graph was subtracted from the speed tests below.)

We performed two types of evaluation. First, we compared our flagship algorithm,

MAG-BS, with existing algorithms. These included: GES, which we have used up to this

point; unconstrained greedy search, GREEDY; MMHC, which is the best existing hybrid

algorithm3; and CPC, which is a popular constraint-based algorithm. Second, we compared

the three variations of our algorithm among themselves: MAG-GS,BS, and MAG-BS.

The primary dataset used for evaluation was a dataset of pregnancy-related hospital-

izations chosen by the FS-Important program (Chapter 6) from GopherInpatient (which

we will refer to as GopherInpatPreg). Additionally, we compared our algorithm to the

others using the Andes dataset used in Chapter 5 (to compare the algorithms in a less-

sparse domain), and we performed a larger-variable evaluation of our algorithms on the full

GopherInpatient dataset (the other algorithms did not scale well above 200 variables).

We wrote a Java program to select subsets of each dataset with increasing numbers

of variables. As with the program in Chapter 5, in each iteration the program generates

a data subset containing all samples but only the variables in the current iteration. The

ordering of the variables for subset selection was as follows: GopherInpatPreg was ordered

by importance, as chosen by FS-Important (so the most highly correlated variables would

be chosen in the smaller subsets), and GopherInpatient and Andes were randomly but

consistently ordered.

3The version of MMHC in Tetrad does not contain all of the speed optimizations in Tsamardinos et al.’s
(2006) paper.
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We evaluated on three axes.

The first axis was speed, measured in seconds to learn the graph. To measure this, we

timed the learning algorithm on every subset of the dataset. As in Chapter 5, the speed

test begins after the data subset is created and all data structures are set up, so only the

runtime of the learning algorithm are compared. Although the full MAG need only be

learned once, for the speed evaluation we relearn the MAG on each subset of variables.

The second axis was accuracy in inference. For each subset, we used the average area

under the receiver-operator curve (AUC) on a test set (1/3 of the data). To compute AUC,

we converted our graph to SMILE format using our previously written converter and ran

Eval (Program 4.2) using the admission-compressed test set.

The third axis was graph complexity. A typical measure of graph complexity (e.g., in

Tsamardinos et al. (2006)) is a comparison of the final graph structure to the generative

graph. However, there is no generative graph for Gopher data and the original Andes

graph could not be learned by any existing structure learning tool (because it involves

connected subgraphs). Moreover, our complexity concern is not about similarity, but speed

in inference. Therefore we compared the number of edges learned by each algorithm (which

is loosely related to speed in inference).

To choose max-tree-width for GREEDY, we experimented with SMILE and found that

it always performed very quickly in inference on graphs up to tree-width of 5. Moreover, we

found the graphs learned on GopherInpatientPreg with other algorithms almost universally

had tree-width of 3 or 4 (regardless of subset size). Finally, we verified during evaluation

that bounding MAG-BS with a tree-width of 4 removed at most a few edges. Therefore

we set max-tree-width to 4.

We performed the evaluation across algorithms on GopherInpatPreg and Andes on

subsets of 25-200 variables with an increment of 25. We performed the evaluation among

our algorithms on GopherInpatPreg and GopherInpatient on subsets of 200-500 variables

with an increment of 50. We report the speed, AUC, and number of edges for each dataset

subset with each algorithm.

3.2. Results. We found that all algorithms on all datasets performed similarly in

AUC, so we report only the average ± standard deviation for each algorithm compared
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to an unconstrained greedy search on each dataset, and only in cases where the average

difference exceeded .01. This can be seen in Table 7.2. Network complexity did vary by

algorithm. The complexity differences between MAG-BS and preexisting algorithms on the

GopherInpatPreg and Andes datasets can be seen in Figure 7.3. The complexity differences

among variations of our algorithm were smaller than any differences between algorithms,

so they are not reported here. MAG-BS consistently produced the smallest networks of

the three variations. Speed differences were large and are reported in 7.1. Note that PC

frequently found graphs with cycles, and only when a DAG was found is it reported here.

(a) GopherInpatPreg (b) Andes

(c) GopherInpatPreg (d) GopherInpat

Table 7.1. Learning speed in seconds across algorithms and datasets. Top
row: MAG-BS vs. pre-existing algorithms, on the GopherInpatPreg and
Andes datasets, respectively. Bottom row: variations of our algorithm, on
the GopherInpatPreg and GopherInpat datasets, respectively.

3.3. Discussion. MAG-BS was at least twice as fast as any existing algorithm for

subsets of at least 100 variables on GopherInpatPreg and 75 variables on Andes. At 200

variables, MAG-BS was seven times faster than the next fastest algorithm (MMHC) on
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GopherInpatPreg and four times faster on Andes. On both datasets, MAG-BS did find the

second largest graphs after greedy search, but it tended to follow the next smallest graph by

a constant percentage, indicating that the complexity penalty is linear in number of nodes.

MMHC PC MAG-BS MAG-GS GES BS

InpatPreg −.023 ± .01 −.052 ± .019 −.011 ± .007
Inpatient n/a n/a n/a
Andes .01 ± .026 X n/a .017 ± .032 n/a

Table 7.2. The average difference and standard deviation of average AUC
from GREEDY among all algorithms on all datasets. Only differences that
exceed .01 are reported. PC is not reported for the Andes dataset because
it was unable to generate a graph without a cycle. Inpatient and InpatPreg
correspond to the two Gopher datasets, GopherInpatient and GopherInpa-
tientPreg, respectively.

(a) GopherInpatPreg (b) Andes

Table 7.3. Network complexity of discovered networks on the GopherIn-
patPreg and Andes datasets, measured as a percentage of the edge count
found by an unconstrained greedy search.

Perhaps more importantly, the computational performance (in terms of AUC) was not

affected. We were surprised to find that average AUC across all algorithms was so similar on

both datasets. On the GopherInpatPreg dataset, an unconstrained greedy search slightly

outperformed all other algorithms. This indicated to us that this domain is more sensitive

to missing edges than finding a non-optimal I-map. In Andes, GREEDY performed worst,

as expected. MAG-BS came in second, also as expected, because it is the only other

algorithm not guaranteed to find the P-map. Again, however, differences in AUC were very

small (largest difference .017 ± .032).
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Among our algorithms, MAG-BS ran by far the fastest on the GopherInpatPreg dataset

on all subsets of at least 75 variables. On the GopherInpatient set, MAG-GS was very

similar (and occasionally superior) in speed. This highlights the less correlated nature

of the domain. Because the variable ordering was random on GopherInpatient, the time

spent learning the skeleton in MAG-BS did not translate into a significantly reduced edge

space during the GREEDY phase. All of our algorithms performed similarly in terms of

computational performance and graph complexity on both datasets.

Because GopherInpatPreg is most like the datasets we will actually be using in the rest

of this work (e.g., an order-entry dataset with feature selection performed), we believe that

the conclusions drawn about that domain are most relevant to the rest of this work. In

particular, at 200 variables MAG-BS is seven times faster than any existing algorithm,

twice as fast as our other algorithms, and less than .01 different in average AUC. The

tradeoff is slightly more complex graphs, but they are still more than 10% smaller than a

greedy search.

3.4. Limitations and Future Directions. We cannot say definitively how much

faster MAG-BS is than all existing algorithms, because we only evaluated against what

was available in Tetrad. The implementation of MMHC in Tetrad is somewhat different

than the original description. In particular, it does not have all the skeleton-generation

computational optimizations, and it orients via a GES-based orienter rather than a greedy-

search orienter. We have found that the GES-based orienter does not scale particularly

well (though it does much better than pure GES). Therefore the comparison of MMHC’s

speed to MAG-BS is somewhat disingenuous. It could be better to compare MMHC’s

implementation in Causal Explorer to MAG-BS, although this introduces the confounding

factor of an entirely different computing platform (MATLAB vs. Java). Also, the fastest

constraint-based learner, Collider-Sets, is not available in any known implementation, so we

used the best available to us, Conservative PC (CPC).

Another issue is that the speed and accuracy of a learner is, as we have seen, highly

dependent on the characteristics on the dataset, and it would be wise to perform an eval-

uation on a wider variety of datasets. In particular, datasets of very complex relationships
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in which greedy search performs much worse than algorithms which find a P-map should

be tested, to measure more closely the impact of approximate skeletons on learning.

Third, allowing each blanket learned in BS to remove edges which already exist in the

skeleton slightly decreases the stability of the algorithm. This is because in a dataset not

faithful to some graph, the Markov blanket is not unique. Then the final skeleton discovered

is dependent on the ordering in which the variables are added to the skeleton. This order is

currently random and stability could be improved by adding them in some principled way

(e.g., by choosing them in reverse order of degree in the MAG). This instability could be

removed entirely by iteratively revising the Markov blankets of nodes impacted by this edge

removal process. However, in the worst case this would greatly increase the time complexity

of BS.

Finally, the choice of a maximum treewidth in our greedy search is currently chosen

through experimentation rather than through a reliable statistical process.

100



CHAPTER 8

Probabilistic Temporal Models

In this section, we have been developing methodologies for a robust and rapid Bayesian-

network-based experimentation platform to extract local wisdom from decision support

data. In the previous chapters, we designed and evaluated a principled and efficient method

to select and learn domain-specific Bayesian networks. One troubling problem remains:

networks encode variable associations that are time-agnostic. Probability flows in both

directions in the graph.

The bidirectional flow of probability is essential to inference, as discussed with regard

to Figure 5.1. However, it does not always result in appropriate inferential conclusions. For

example, in the abdominal pain network in Figure 2.3, not only can a pregnancy test lead

to an obstetrics consult, but an obstetrics consult can lead to a pregnancy test. This is

illustrated in Figure 8.1. This is likely not our meaning in this situation.

The trouble has to do with time. We do not mean for an obstetrics consult to trigger

a pregnancy test, because one always must occur before the other. Therefore we need a

method for dealing with temporality in our networks. Fortunately, several such approaches

exist. Unfortunately, none of them are particularly mature, most greatly increase the com-

putational burden on both inference and learning, and almost none are available in existing

software toolkits.

Therefore in this chapter we first review existing methods and existing tools for imple-

menting time in Bayesian networks. Then, we design an innovative method which is both

computationally simpler than existing methods and very powerful for our task. Finally, we

implement and evaluate this method on the domain of inpatient pregnancy.

Abdominal Pain

Pregnancy Test

Obstetrics Consult

True

90%

73%

52%

74%

True

Figure 8.1. An example of bidirectional probability flow in a BN.
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1. Review of Temporal Methods

Reasoning about time is critical in many domains. In a monitoring network, it may

be important to predict how long after sensors enter a configuration a given event occurs.

In a diagnostic network, one might want to reason about what might have caused a car to

stop running given the current lights on the dashboard. The first task (looking forward in

time) is known as prediction, whereas the second (looking backward in time) is known as

smoothing. Murphy (2002) gives a good overview of these temporal queries.

In this section, we limit our review to one very specific prediction task: what happens

next? That is, given a patient in a set of given past states (P{t...(t+n)}), we would like to know

what actions are performed within the CPOE at time t + n + 1 (Pt+n+1). This is not to say

this is the only relevant prediction task. For example, we might in some circumstances have

interest in what happens later in the hospitalization, for example, how likely is pneumonia

to lead to intubation? It might also be interesting to ask longer-term questions, such as

how likely a patient with CHF is to be rehospitalized within a month. Looking backwards

in time could also be beneficial for data quality queries, e.g., if we ordered a pregnancy test,

what is the likelihood we should have added abdominal pain to the problem list? However,

each of these tasks have different goals and require distinct temporal-reasoning capabilities.

Therefore here we review the available options with an eye to the goal of this research.

Because the algorithms can be very complex, it is important to consider available tools.

Therefore we also review available software tools to perform inference and learning in these

motifs.

1.1. Causal Bayesian Networks. In general, the edges and directionality in a net-

work have a statistical meaning that does not strongly correlate with common sense. For

example, in score-based learning, edges only contribute to the likelihood that the graph

represents the underlying statistical distribution of the data. However, if we could some-

how learn a network where the edges had a commonsense meaning, where a node’s children

were its direct effects, then we would have one of Pearl’s (2000) Causal Bayesian Networks

(CBNs).

It now becomes possible to reason about causes. In particular, in the abdominal pain

network above, we recognize that ordering an obstetrics consult is an intervention and not
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Abdominal Pain

Pregnancy Test

Obstetrics Consult

52%

74%

True

20%

26%

do(True)

Figure 8.2. An example of inference in a Causal Bayesian network.

a mere observation. Pearl introduced a do() operator for this situation. If a physician

orders an obstetric consult, this is do(Obstetric Consult=1). We are now no longer inclined

to change our beliefs about why the obstetric consult happened. Perhaps the physician

performed a pregnancy test or perhaps she wanted to increase the revenue of the obstetrics

team. Either way, we temporarily delete the incoming edges of a node that has had a do()

performed, because we no longer are concerned about its cause. This is called mangling the

graph, and is shown in Figure 8.2.

In fact it is possible to learn such a graph from data. The constraint-based learning

algorithms discussed in Chapter 6 frequently do a good job of orienting the graph with regard

to its actual causes (Spirtes et al., 2000), so when causality is more important than stability

these can be a good choice. Better, if interventional data are available, Cooper and Yoo

(1999) developed a methodology to learn CBNs directly with any learning algorithm. The

solution is to introduce a asymmetry in the parameter counts, so that M(A,B) ≠M(B,A)
when interventions are involved.

The free Pebl toolkit supports this interventional learning, and it offers a scalable

Python-based learning engine which can perform structure learning through a best-first

greedy search or simulated annealing learner. Implementing the do() operator is fairly

straightforward and can be done on any package that offers an application programming

interface (API) to manipulate the network. We review such packages in Appendix A.

Because CPOE data is interventional, CBNs might seem like a good option for time

representation. The patient’s state at time t + 1 is the result of interventions made at time

t. To learn such a network, we might create a dataset with one row per order session, where
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Active Labor

Oxytocin

Postpartum

Active Labor

Oxytocin

do(Postpartum)

Figure 8.3. An example pregnancy network before and after
do(Postpartum). In this case, we would like Oxytocin to remain re-
lated to Postpartum after the intervention, as it is also a postpartum
treatment.

each event from a previous time is an intervention and each event in the current time is an

observation.

The problem with this approach is that only interventional relationships are supported in

CBNs. Two nodes cannot have both an interventional and non-interventional relationship.

However, nodes frequently have both relationships. In the pregnancy domain, oxytocin

both induces labor and reduces postpartum hemorrhaging. After do(Postpartum), the

relationship with oxytocin will be severed, but we would like it to still exist as a postpartum

treatment option. This issue is is illustrated in Figure 8.3. We would like to instead have

both a causal and non-causal edge between postpartum and oxytocin. This type of structure

is supported in Dynamic Bayesian Networks (DBNs).

1.2. Dynamic Bayesian Networks. The Dynamic Bayesian Network (DBN), intro-

duced by introduced by Dean and Kanazawa (1989), defines two edge types, temporal and

non-temporal. Such networks are often represented by two copies of the network for a given

time, connected by temporal edges. This is called a 2-TBN (two-slice temporal Bayesian

network). The temporal edges exist from t to t+1 and define an inter-slice topology. Then,

non-temporal edges within each slice define regular BN relationships, an intra-slice topology.

Both copies of the intra-slice topology are the same. DBNs are reasoned over by ‘unrolling’

the time slices into a large network containing many copies of the basic network. The cost

is doubling the number of nodes in the network.
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Abdominal Pain0 Pregnancy Test0 Obstetrics Consult0

Abdominal Pain1 Pregnancy Test1 Obstetrics Consult1

Abdominal Pain0 Pregnancy Test0 Obstetrics Consult0

Abdominal Pain1 Pregnancy Test1 Obstetrics Consult1

Abdominal Pain2 Pregnancy Test2 Obstetrics Consult2

Abdominal Pain3 Pregnancy Test3 Obstetrics Consult3

Figure 8.4. An example of Figure 2.3 as one possible Dynamic Bayesian
network (top), unrolled into three time slices (bottom).

Figure 8.4 shows Figure 2.3 as one possible DBN, both in 2-TBN and unrolled format.

It separates the temporal from non-temporal edges in the network, placing the transition

from pregnancy test to obstetrics consult in the temporal tier. Here the notion of present

and past are separated, so e.g., an obstetrics consult will not trigger a pregnancy test

(though it would indicate that one ought to have occurred). By unrolling the network, we

can reason about future events based on an arbitrary number of steps in the past. In this

example, there are also temporal edges from each variable to itself. This is common in

DBNs and means that the likelihood of a node at one time has impact on the probability

of the node at the next time. Therefore a diagnosis of abdominal pain at t0 impacts the

probability of abdominal pain at time t3. This allows temporal decay of evidence at any

rate that fits an exponential curve. It does not allow explicit relationships of variables to

time (e.g., no obstetrics consults happen after midnight), but this is frequently unnecessary

if the appropriate choice of proxy variables are chosen.
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DBNs offer a compact way of modeling any system that has a consistent, indirect rela-

tionship with time and in which the future is independent of the past given the present (e.g.,

once inference has completed, it is permissible to ‘roll up’ the 2-TBN again.) Unfortunately,

DBNs also have significant limitations.

One limitation is complexity in inference. Notice that in Figure 8.4, every variable

is correlated with every other variable across time slices. This is called entanglement and

frequently occurs even when d-separation relationships are present in the rolled up network.

It renders DBNs intractable for inference after only a few time slices. At present, the most

common solution in existing software is to limit the unrolling depth of the DBN. Other

(complex) options exist in research. Boyen and Koller (1998) introduce an algorithm (BK)

which causes old inference information to ‘vanish’ exponentially, rolling up the network

periodically into the most likely evidence. Therefore the inference problem is never more

than a few time-slices. This appears to be a good solution, although only Murphy et al.’s

(2001) Bayes Net Toolbox (BNT) implements it (that we are aware of).

A second limitation is complexity in learning, which is an ongoing research problem

(Friedman et al., 1998). Because all parameters are frequently not fully observed in each

time slice, expectation maximization is used to guess the missing values, which is far slower

than the maximum-likelihood approach (see Chapter 2). Structure learning of DBNs is

also a difficult problem. The only tool we are aware of that offers an approach is, again,

BNT. For the case of a fully-observed time series of binary variables, BNT implements

Liang et al.’s (1998) REVEAL algorithm to learn the inter-slice topology. This considers

all possible combinations of temporal parents, rather than a greedy search heuristic, and

therefore requires O(nk+1) time, where k is the maximum fan-in.

A third limitation is the discrete nature of time. It is often not reasonable to observe

a system at consistent time intervals, and even if such an undertaking is possible, many

variables evolve at different rates. For example, blood pressure might be observed hourly,

but a patient’s level of pain might only be assessed daily. It is not possible to support two

granularities of time in a single DBN.

1.3. Continuous Time Bayesian Networks. Primarily in response to the third

limitation above, Nodelman et al. (2002) introduced the Continuous Time Bayesian Network
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(CTBN). This model reduces the transitions from t → (t + 1) to t → (t + �), so every edge

is an instantaneous temporal edge. Again, CTBNs do not allow variables to be explicitly

dependent on time (each variable is a function of other variables, not directly time). Like

DBNs, the network evolves over time. In a CTBN, each variable is modeled as a Markov

process that depends on its parents.

Although it is appealing that the CTBN does not have both inter- and intra- slice

edges (because all edges are instantaneous temporal edges), inference and learning is more

complex than even a DBN. Rather than unrolling the network for k discrete time slices,

the reasoning engine simulates the evolution of each variable from time 0 to k. Exact

inference is intractable, but Nodelman et al. (2005) have developed an approximate inference

algorithm which runs in bounded exponential time. It has the appealing characteristic that

it automatically chooses the correct time granularity to reason about. Structure learning

of CTBNs, according to Nodelman et al. (2003), could be somewhat faster than DBN

learning, because the graph can contain cycles (and so time-consuming cycle checks can be

eliminated). The authors have developed a Bayesian score for CTBNs that can be used by

score-based searches.

CTBNs are an appealing methodology, and the principal limitation currently is lack of

support and integration with other Bayesian network methods. They are more reminiscent

of Markov processes than Bayesian networks and therefore cannot directly take advantage

of the many advances in Bayesian learning and inference (e.g., hybrid algorithms in struc-

ture learning). Also, only one tool, Shelton et al.’s (2010) CTBN-RLE, supports CTBNs

currently.

1.4. Modeling Time Explicitly. Both DBNs and CTBNs make the assumption that

variables are functions not of time but of the previous state of those variables. Therefore

they cannot model situations where variables depend directly on time.

Tawfik and Neufeld (1994) model time explicitly. The probability of each node state

is a convolution of the time functions of each of its parents. This allows reasoning over

a network of discrete variables, but now probabilities propagate according to associated

temporal functions. Because the number of time functions is exponential in the number

of parents, Tawfik suggests defining a single function φ on each variable that captures the
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impact of all its parents as time evolves. Although Tawfik describes important properties φ

must hold, he does not explore methods to learn the function (nor how to learn the structure

of the network). He proposes this as future work, but to our knowledge it has not been

pursued.

1.5. Summary. We have reviewed methodologies for handling time in Bayesian net-

works, for which there exist a dearth of available tools. CBNs involve relatively modest

extensions to existing methods and can learn and reason about networks in which every

edge is causal - i.e. the parents of one node are its direct causes. DBNs are a more flexible

temporal approach that can model discrete time and exponential decay, but they are sub-

ject to complexities not found in typical Bayesian networks - especially entanglement (the

super-correlation of all variables in the network) and the open problem of efficient structure

learning (especially when every time slice is not observed). CTBNs are a newer approach

that model continuous time as a network of Markov processes. These are not quite Bayesian

networks but share some of their properties. Inference is quite complex and can be slow

(because it requires simulation of a continuous process), but structure learning might be

efficient due to the cyclic nature of the networks. Alternatives which model time explicitly

(rather than as functions of variables in earlier times) have only been tersely researched.

All of these models are complicated to implement, so it is important to consider available

software (which can be used as building blocks) when developing a temporal approach. The

capability for learning and inference on these three models using available software is shown

in Table 8.1. Note that inference in CBNs is straightforward to implement in packages with

APIs, though their structure is not (at least not without source code). Also, several packages

support limited inference in DBNs by unrolling a fixed number of time-slices. BNT alone

has full support for DBNs, and it is limited by an implementation which is not scalable,

relying on inefficient Matlab cell arrays.

2. A Tractable Temporal Model for our Application

In this section, we develop a scalable temporal model that is geared toward the prediction

of actions and can be implemented relatively easily using existing tools. In our CPOE

data, observations (orders) occur in sessions. This discrete-time system is most closely
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Netica BayesiaLab BNT Pebl SMILE CTBN-RLE
CBN - I,S I,S S - -
DBN I* I* I,S - I* -
CTBN - - - - - I,S

Table 8.1. Software tools for learning and inference on temporal models:
a summary of features available in popular packages. I = inference, S =
structure learning. * = limited capability

approximated by DBNs, so our model builds from that base. First we develop a type

of DBN more appropriate to predicting actions (the temporal-causal DBN), and then we

simplify the model to allow inference without unrolling (the time-forward temporal-causal

DBN). We develop both approaches using binary variables to simplify the discussion, but

it is straightforward to support multinomials.

2.1. Temporal-Causal DBNs. DBNs separate temporal edges from intra-time-slice

edges, and this allows DBNs to support both temporal and associative relationships between

variables. However, the temporal edges still conflate two meanings. Temporal edges can be

causal (e.g., an event at time t − 1 precipitates an event at time t) or fluent propagation.

Hayes and McCarthy (1969) call a fluent the tendency of variables to remain in the same

state over time, until a new observation contradicts this belief. These fluent edges are the

self-edges in Figure 8.4. They not only clutter and complicate the DBN, but they result in

incorrect conclusions. A network with both fluent and causal edges will predict actions at

time t either if they are caused by the state at t−1 or if the state remains unchanged at time

t. For example, in Figure 8.4, the probability of a pregnancy test is positively associated

with both the probability of abdominal pain (causal edges), and on the probability of a

previous pregnancy test (a fluent edge). We desire a network that predicts actions at time

t, not the truth state of variables.

A structure learning example is illustrative of this problem. We designed Figure 8.4 by

hand, but a statistically learned network might favor the fluent edges over the causal ones.

Although of course such a network will still predict what the data indicate, it illustrates

how the data are not what we intend. An example of this problem can be seen in Figure 8.5.

First, a source dataset is shown. It contains two time-series of variables with three states:

observed true (1), observed false (0), and unobserved (?). In the first time-series, abdominal
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Abdominal Pain Pregnancy Test OB Consult
1 ? ?
? ? ?
? 1 ?
? ? 1
1 1 ?
? ? 1

(a) Source dataset.

Abdominal Paint Preg. Testt OB Consultt Abdominal Paint−1 Preg. Testt−1 OB Consultt−1
1 0 0 0 0 0
1 0 0 1 0 0
1 1 0 1 0 0
1 1 1 1 1 0
1 1 0 0 0 0
0 0 1 1 1 0

(b) Temporal dataset.

Abdominal Pain0 Pregnancy Test0 Obstetrics Consult0

Abdominal Pain1 Pregnancy Test1 Obstetrics Consult1

(c) Resulting graph.

Figure 8.5. A typical DBN conflates fluents and causes in the temporal
tier, resulting in structures that predict truth-states rather than actions.
Top: two time-series of a source data set. Middle: a conversion of the data
into a representation suitable for a traditional DBN. Bottom: the resulting
network, as learned by GES or BS.

pain leads directly to a pregnancy test and therefore to an OB consult in the next session.

In the other, one event occurs per session and a session exists with no events. Next, a

version of this dataset with two time-slices (t and t − 1) is shown. By the fluent property,

we assume that all observations remain true once they become true. (Observations could

expire after some time, but the idea is the same.) Therefore a variable in t is true in the

target dataset if it was last observed true in the source dataset, and a variable in t−1 is true

if its equivalent in t was true in the previous row. The resulting graph is shown (learned

using BS). Notice that Abdominal Paint−1 influences only Abdominal Paint and our causal

edge to Pregnancy Test is lost. The ‘meaning’ of this network (and therefore the underlying

data) is that Abdominal Pain in the past has a stronger influence on Abdominal Pain in
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the future than it does a Pregnancy Test. This does not make sense in an action-oriented

predictive network.

Therefore we introduce a class of networks that allow only causal edges in the temporal

tier: the temporal-causal dynamic Bayesian network (TCDBN). Fluent edges are replaced

by a deterministic function embedded in each t − 1 node which determines how likely it

remains true into the next time slice.

Definition 7. A temporal-causal dynamic Bayesian network (TCDBN) is a DBN in

which only causal edges are allowed in the inter-slice topology, and fluency is handled through

a deterministic function embedded in each t − 1 node, called a decay function.

Abdominal Pain Pregnancy Test OB Consult
1 ? ?
? ? ?
? 1 ?
? ? 1
1 1 ?
? ? 1

(a) Source dataset.

Abdominal Paint Preg. Testt OB Consultt Abdominal Paint−1 Preg. Testt−1 OB Consultt−1
1 0 0 0 0 0
0 0 0 .8 0 0
0 1 0 .64 0 0
0 0 1 .512 .8 0
1 1 0 0 0 0
0 0 1 .8 .8 0

(b) Temporal dataset.

Abdominal Pain0 Pregnancy Test0 Obstetrics Consult0

Abdominal Pain1 Pregnancy Test1 Obstetrics Consult1

(c) Network.

Figure 8.6. A TCDBN, which does not conflate fluents and actions. This is
learned from the same source dataset in Figure 8.5, converted to a temporal
dataset using Program 8.1, and then fed to a version of MAG-BS modified
for fractional counts in order to learn graph structure.
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The first step in converting our source dataset in Figure 8.5 to TCDBN data is to put

the fluents in the t − 1 slice but not in the t slice. Then the t slice represents only the

probability that a node becomes true during that time slice.

Next, the truth values in t − 1 are replaced by a deterministic function. This solution

is reminiscent of Tawfik’s (1997) work, which embedded functions of time in the CPT of

each node (discussed previously). By replacing observations with a deterministic function,

we are able to model an important piece of metadata. Not only are past observations less

likely to remain true as more time passes, they are also likely to decay in relevance. This

allows us to model explicitly the fact that the strongest predictors of an order should be the

most recent ones. Jensen and Nielsen (2007) apply this concept to inference by dynamically

adjusting the conditional probability tables. They apply an exponential decay function to

the counts in CPTs as time passes to adjust the influence of a variable during inference.

They call this fading, which they use to adjust the influence of a variable during inference.

We borrow this concept and apply it to every observation during the learning process.

Our method is illustrated in Figure 8.6. With the source dataset from Figure 8.5, we

create a target dataset with two time-slices. We set all columns in t to 0 unless it was

observed to be true in the source dataset. In each variable in t − 1, we set the value to

a decayed value as follows. If the variable was observed in this row, unobserved in this

time-series, or most recently observed false, the value is zero. Otherwise, the decayed value

is ρt∆ , where ρ is a decay rate and t∆ is the difference between the current time and the

most recent observation in which it was true in this time-series. This method is outlined in

Program 8.1. In Figure 8.6, ρ = .8.
Choosing ρ is an example of the frame problem: how long does something, once observed,

remain true? (Hayes and McCarthy, 1969) The formulation here limits ρ to a single value.

It is of course possible to specify a ρ for each node. However, choosing feature-specific ρ

empirically is unfortunately difficult on Gopher data. Although it is possible to discontinue

orders and diagnoses, this is infrequently done in practice, so discontinuation by itself is not

a good cue for determining decay rate. We have done work on learning survival functions for

diagnoses using multiple cues in the Gopher data (Klann and Schadow, 2010), and though

we found distinguishable differences between long- and short-term diagnoses, we could not
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extract a meaningful length-of-diagnosis. For this work, then, we choose a single ρ through

experimentation.

Program 8.1 Temporalize-dataset(Ds,Is,ρ)

Input: Ds is a source dataset of columns of observations. Valid values are 0 (observed
false), 1 (observed true), and ? (unobserved).

Input: Is is a list of start, stop indices for each time-series in DS .
Input: ρ is a decay rate between 0-1
Dt is a temporal dataset initalized to all zeros, with the same number of rows as Ds and
twice the columns.
nc is the number of columns in Ds

for all time-series in Is do
for all rows r in this time-series (with indices starting at i = 0) do

for all columns c in Dt do
if c ≤ nc then
Dt[r, c] = (Ds[r, c] == 1)?1 ∶ 0 {Copy Ds into the first half of Dt column-wise}

else
t∆ = tidx(Ds, c − nc, Is) − i where tidx(D, c, Is) is a function that returns the
index of the last time column c in dataset D was true within this time series Is,
or 0 if it was more recently observed to be false than true.
if t∆ > 0 then
Dt[r, c] = ρt∆ {Compute time decays for for the second half of Dt}

end if
end if

end for
end for

end for
Return Dt

This temporal dataset now has fractional values for observations, so we need a learning

algorithm that can learn discrete CPTs with fractional (i.e. uncertain) observations. We

will show in a later section that is methodologically fairly straightforward and only requires

modification of the BDeu statistic and G
2 test. With such fractional modifications, all that

is left to do is force the orientation of edges from time t − 1 to point toward time t. Then

any traditional structure learning algorithm can be used, including the suite of algorithms

developed in the last chapter. The graph at the bottom of Figure 8.6 was learned from

the dataset at the top of the figure using the BS algorithm after adjusting it for fractional

counts and edge restrictions. It captures the expected temporal-causal relationships.

2.2. Time-forward TCDBNs. TCDBNs allow us to more accurately predict actions

by separately specifying the truth state of variables. However, they still require unrolling in
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inference. Therefore in this section we make two simplifying assumptions that greatly reduce

complexity: one, we are only interested in predicting future treatments; two, we assume

that all relevant past variables were observed at some point. Therefore it is sufficient for

temporal arrows to only propagate evidence forward. We call this a time-forward TCDBN

(or TF-TCDBN).

Definition 8. A time-forward TCDBN, or TF-TCDBN, is a TCDBN in which tem-

poral arrows only propagate forward in time.

TF-TCDBNs have the interesting property that this temporal asymmetry prevents en-

tanglement, because although t is D-connected to all t − n, all t − n are D-separated from

every t − n + k.
Theorem 5. TF-TCDBNs are not subject to entanglement.

Moreover, the probability of a node at time t having a particular value is dependent

on only the probability distribution of the nodes at t − 1. All previous time slices can be

discarded. Therefore if we could maintain a probabilistic state of variables at time t−1, then
inference could be rolled up (as in the BK algorithm) after every time slice, and only two

time slices would ever be necessary. Furthermore, because we assume that all relevant past

variables have been observed, the probability distribution of time t−1 is entirely determined

by the network, observations made prior up to time t, and the length of time since those

observations. This is because in a TCDBN the state of each observed node in the t−1 slice

is a deterministic decay function applied to the last observation.

Theorem 6. In a TF-TCDBN, probabilities at time t are only dependent on the most

recent observation for all nodes and the time since each observation.

All this leads to a simple inference algorithm for TF-TCDBNs, in which we iteratively

infer and then observe. We represent our TF-TCDBN without an intra-slice topology in

the t−1 tier, and we perform inference by propagating observations made at every step into

the past. This works as follows. We initialize the t − 1 layer of the network to all zeros.

Then we perform inference, record observations (i.e. evidence is set, either by a user or

114



Program 8.2 Infer-TFTCDBN(G)

Input: G is a TF-TCDBN
St is a probability distribution of the states of variables at time t.
St−1 is a probability distribution of the states of variables at time t − 1, initialized to all
zeros.
for t = 0→ n do
St=Inference(G�St−1)
Make observations
for all variables v with observations made at time t do

St−1[v]=St[v]
Clear the evidence v

end for
for all nodes n in time t − 1 not observed at time t do

if an observation exists for n then
the probability of that observation is reduced by a factor ρ

end if
end for

end for

some heuristic). Finally, we propagate the probability distribution found in the t layer to

t − 1. This propagation follows our general idea for converting data in Program 8.1. If a

node in the t layer has evidence set, we move that evidence to the equivalent node in the

t − 1 layer. For all other nodes observed positive most recently, we reduce the probability

in the t − 1 layer by a factor of ρ. The inference algorithm is shown in Program 8.2. It

requires an inference algorithm that supports uncertain observations. This can be achieved

through virtual evidence, which introduces observations in hidden nodes to make the given

probability distribution work out properly (Pearl, 1988, sect 2.2.2). We gain some insight

into how probability propagates in Figure 8.7. This shows an example of inference in the

graph in Figure 8.6 viewed as a TF-TCDBN, with parameters learned from the temporal

dataset shown there.

Figure 8.7 shows that inference suggests correct actions in t, properly suggesting a

pregnancy test when a current or past abdominal pain diagnosis is present, and suggesting

OB consult only if a pregnancy test has occurred in the past. Fluents are not propagated

via the network. One remaining issue is that actions continue to have high probability even

if they occurred in the past and no new evidence calls for them. We will present a simple

method to bypass this problem in the implementation below.
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AP0 No Yes PT0 No Yes OC0 No Yes
89% 11% 94% 5% 99% 1%

AP1 No Yes PT1 No Yes OC1 No Yes
93% 6% AP0=No,AP1=No 99% 1% PT0=No 99% 1%

AP0=No,AP1=Yes 74% 26% PT0=Yes 5% 95%
AP0=Yes,AP1=No 50% 50%
AP0=Yes,AP1=Yes 50% 50%

Abdominal Pain0 Pregnancy Test0 Obstetrics Consult0

Abdominal Pain1 Pregnancy Test1 Obstetrics Consult1

0 0 0

1 50% 0.2%

1 0 0

5.7% 28.2% 0.3

1 1 0

7.1% 28% 94.5%

Figure 8.7. An example of inference in a TF-TCDBN. CPTs are specified
for the graph in Figure 8.6 shown as a TF-TCDBN. An iterative inference
example is shown with ρ = 1.

3. Implementing and Evaluating the Time-Forward Temporal-Causal Dynamic

Bayesian Network

3.1. Implementation. In order to modify the BDeu and G
2 scorers to use fractional

counts on binary variables, we required a Bayesian learning package with source code. We

reviewed the features of structure learning packages with source code and show them in

Table 8.2. Pebl did not support constraint-based learning. Also, it implemented a version
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BNT Tetrad Pebl bnlearn
Constraint learning Y Y N Y
Score learning Y Y Y Y
Restricted edges Y Y Y Y
Source code Matlab Java Python R

Table 8.2. A summary of the features of open-source structure learning
packages.

of BDeu known as K2 that could not be modified for fractional counts because it relies on

factorials. Therefore Pebl was not considered. BNT was not considered for the scalability

reasons discussed earlier. bnlearn and Tetrad were fairly equivalent in terms of features we

needed, though neither directly supported DBNs. We chose Tetrad due to our familiarity

with the Java language.

We modified the implementation of Tetrad by altering the code to compute counts of

cells in a table to sum fractional counts, by treating fractional values in the datset as partial

counts toward an observation of true. This was changed in the G2 test and the BDeu scorer.

We also modified MAG-BS to disallow directed edges from time t − 1 to t and within time

t − 1, using Tetrad’s edge restriction API.

Even though the network now supports multiple occurrences of the same action, the

probability does not generally take past actions into account, so we adopt the same tactic

as TreatmentSuggest. If an action has been performed, it does not reappear on the

suggestion list. Therefore only actions with an average repetition of < 2 are considered in

our evaluation.

We integrated the iterative inference loop from Infer-TFTCDBN (Program 8.2) into

TreatmentSuggestInteractive. The modified program, TreatmentSuggestInter-

activeTemporal, is shown in Program 8.3.

We implemented Program 8.1 as a SQL script and Program 8.3 using SMILE in Java.

Because the Java API for SMILE does not support virtual evidence, only ρ = 1 is supported

for inference.

The new treatment suggestion algorithm, which operates on order sessions rather than

whole hospitalizations, necessitated a slightly modified GUI, which contains a ‘Next Session’
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Program 8.3 TreatmentSuggestInteractiveTemporal(G)

Input: G is a TF-TCDBN Bayesian Network Model
E is a set of evidence, where initially E includes all nodes in the t − 1 layer set to 0.
O is a set of possible orders, which initially includes all orders in the t layer.
repeat
repeat

Update beliefs {Compute the posterior probability of all O �∈ E.}
Create a list of all O �∈ E in descending order of posterior probability, stopping at an
optional threshold.
Remove orders from O if its t − 1 pair ∈ E.
Display the list to the user and wait for the user to choose an order from the list.
Move the order from O to E.

until the user finishes the session.
Move all evidence in E from the t layer to the t − 1 layer.
for all nodes n in time t − 1 not observed at time t do

if an observation exists for n then
the probability of that observation is reduced by a factor ρ
if ρ = 0, remove n from E

end if
end for

until the user quits the program.

button to propagate the probabilities to the t−1 layer. The new GUI running Program 8.3

can be seen in Figure 8.8.

Finally, we modified Program 4.2 (Eval) to also incorporate these changes. At the start

of each hospitalization, we initialize the t− 1 layer and all problems to 0. Then we perform

evidence propagation at the end of each session. We again do not consider actions previously

performed.

3.2. Evaluation Methods. We selected two domains of medicine from Chapter 4:

the one that performed best (inpatient pregnancy) and the one which performed worst (the

medical ICU). We performed a comparison of the performance of networks in these domains

on temporal and non-temporal networks. This was achieved with following steps for each

domain:

● We chose features by applying FS-Important to the GopherInpatient dataset to

select the top 40 orders and top 10 co-occurring diagnoses in each domain. We

extracted all hospitalizations involving these 50 features.

● We split these data into a training set (2/3 of hospitalizations) and test set (1/3).
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Figure 8.8. A GUI for TreatmentSuggestInteractiveTemporal.
This is like Figure 4.1, except it includes the state of the previous session
and a ‘next session’ button to propagate probabilities to the next session.
Shown: before (left) and after (right) ‘next session’ is clicked.

● From the training data, we generated a baseline set DB and an experimental set

DE . DB was an admission-compressed table (as in Chapter 3). DE was generated

by Program 8.1 (Temporalize-dataset) with ρ = .8.
● To generate BNs for these datasets, we used our modified MAG-BS algorithm

described above. Perhaps because the t-1 layer is never uncertain, we found larger

max-treewidths to be efficient on DE . We set max-treewidth=5 on both baseline

and experimental sets (so as not to unfairly favor the temporal graphs).
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● We used our (previously written) converter to produce a SMILE network, and we

applied our updated version of Eval to compute PPV80 and tAUC on DB and

DE .

3.3. Results. We report the differences in PPV80 and tAUC between the temporal

and baseline networks, for the domains of inpatient pregnancy and the medical intensive

care unit (MICU). Figure 8.3 shows summary statistics (unweighted average tAUC and

PPV80). We use an unweighted average (unlike in Chapter 4) because, although it is a less

accurate measure of the average use-case of the system, it is more affected by wide variance

in performance. Histograms showing the differences in PPV80 in each domain are shown

in Figure 8.9. The orders with the best and worst change in tAUC and PPV80 for each

domain are shown in 8.4.

Domain DB avg(tAUC) DB avg(PPV80) DE avg(tAUC) DE avg(PPV80)
Pregnancy .907 5.88 .921 4.02
MICU .700 17.35 .733 15.47
Table 8.3. The (unweighted) average tAUC and PPV80 on baseline (DB)
and temporal (DE) networks in two domains.

Figure 8.9. Histograms of the difference in treatment suggestion menu
length given a positive predictive value of 80% (PPV80), for each order
for each network.

3.4. Discussion. On average, the temporal networks performed only moderately bet-

ter than the non-temporal baseline. On average, there was an increase of .02 in average

tAUC, and a shortening of list length by 2 (by PPV80). However an inspection of individual
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orders tells a different story. Many orders appeared in shorter PPV80 lists (20 in pregnancy

and 26 in the MICU), while few appeared later (5 in the pregnancy, 7 in the MICU). The

average shortening of the lists was greater than the average lengthening (12.5 vs 3.05).

The temporal network made more of an improvement in the MICU domain than in

pregnancy. This is probably because the MICU has more frequent explicitly temporal

relationships. For example, the order with the largest decrease in PPV80 in the MICU,

Hang Blood, has a haptoglobin serum test as a parent in the t − 1 layer in the learned

network. This order, like our example of pregnancy tests leading to obstetrics consults, is

not bidirectional. In pregnancy, bidirectional relationships are more typical (such as the

variety of postpartum adjuncts).

Figure 8.9 reveals two general trends. PPV80 decreases are more common in the less

frequent orders, whereas tAUC increases are more common in the most frequent orders.

The former is likely because temporal relationship is important in uncommon orders. The

latter could be true because temporal relationship distinguishes when the common orders

are placed, but PPV80 still does not correlate well with tAUC in these cases for the reasons

discussed in Chapter 4.

Overall, although the temporal networks increase average performance moderately, they

successfully unmask temporal relationships in the data and improve performance where rela-

tionships are not bidirectional. The greatest benefit is seen where the temporal relationships

Pregnancy tAUC ∆ Pregnancy PPV80 ∆ MICU tAUC ∆ MICU PPV80 ∆
NPO 0.190 Uric Acid 20 Esomeprazole .224 Hang Blood 14

Blood Cell Profile .164 Prenatal Vitamin 13 Weight Metric .188 Prednisone 11
Syphilis Screen .135 LDH 7 Glucose Beside .169 Albuterol 7

Vicodin .105 Fetal Ultrasound 7 Sputum Culture .133 Na Phosphate 7
Prenatal Vitamin -.036 IV Flush -2 LDH -.089 Wean Ventilator -5
Clear Liquid Diet -.066 Morphine Pump -2 C. Diff -0.122 Urinalysis -5

Ketorolac -.079 Epifoam -2 Norephinephrine -.127 Etomidate -7
Epifoam -.106 Ketorolac -3 Vasopressin -.175 Sputum Culture-10

Table 8.4. Order name and differential (between temporal network and
baseline network) for tAUC and PPV80 of the four best and worst predictions
in each domain.
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are the strongest. The least benefit is seen when adding temporal relationships does not sig-

nificantly add to the information about choosing the order (for example, choosing to order

a ventilator weaning protocol is much more complex than just ‘what was ordered last?’).

3.4.1. Limitations. This TF-TCDBNmethodology unmasks temporal relationships with

only a moderate increase in complexity. The principal limitation is that time is captured

only approximately and only within the hospitalization. For one, the time intervals are not

constant (order sessions might be separated by minutes or hours), so the level of immedi-

acy in the temporal relationship is discarded. This could result in temporal relationships

that remain hidden in the data. Second, we use a single decay factor for all variables and

consider only what happens within the current hospitalization. Some test results (e.g., a

blood pressure reading) may not remain relevant even beyond the current order session,

whereas some diagnoses last many years. Longitudinal feature-specific decay factors is an

area of future research. Third, our implementation allows only ρ = 1 in inference, which

likely impacted performance in testing long hospitalizations.

4. Conclusions

In this chapter, we have developed a method to learn and reason about time in Bayesian

networks that only moderately increases complexity and can have great benefits when a

temporal relationship exists in the data.
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PART 3

The System and Evaluation
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CHAPTER 9

Toward a Final System

Data Learning Inference,
Evaluation

Figure 9.1. High-level system components.

The three high-level components of our overall methodology are shown in Figure 9.1.

In Part 1 of this dissertation, we primarily engaged the two boxes on the left and right.

We generated deidentified data sets of three years of Gopher data in the ED, inpatient,

and urgent visit clinics (the data box). Then we established methodologies for developing

situation-specific treatment suggestion lists in an evolving clinical context (the inference

box). We also introduced evaluation measures of those suggestion lists based on a test set

of clinical data. (Programs 4.1 and 4.2). For the middle box, we utilized the existing GES

and ML algorithms in the Tetrad toolkit.

In Part 2 of this dissertation, we tackled the middle box by developing novel method-

ologies for learning Bayesian networks in large domains involving time. We developed a

principled approach for feature selection and a very fast algorithm for learning Bayesian

networks. Both were based on a relational database tool we called the Maximal Association

graph. We developed the Time-Forward Temporal-Causal Dynamic Bayesian Network (TF-

TCDBN), a temporal Bayesian network designed to suggest actions in an observed system

without major increase in complexity. We also revised our evaluation methods from Part

1 to support TF-TCDBNs (Programs 8.3 and 8.2.) With these three tools, we have the

machinery to rapidly explore and evaluate domain-specific networks.

In this final part, we put the pieces together: our treatment suggestion methods from

Part 1, supplemented by the new learning methodologies we developed in Part 2. In this

chapter, we revisit and revise the outer two boxes in Figure 9.1. In the next chapter, we

review the system we have developed and perform a larger scale evaluation, involving both

retrospective data analyses and a small prospective analysis (via a survey).
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1. Additional Data

The focus of this work is to suggest treatments only from data in the order-entry system:

previous orders and diagnoses. Our results have shown this works rather well in some

domains. However, it is also one of our principal limitations. For one, it is not the way

clinicians think. For example, a clinician would want the result of a pregnancy test before

ordering an obstetrics consult for abdominal pain, even though statistically the consult is

worth suggesting if pregnancy is suspected (demonstrated by ordering the test). Also, order-

entry data alone provides a limited view into the patient visit. Many data sources interact

in a clinical encounter - order entry, the admission system, laboratory results, billing data,

and information on previous encounters, among others.

1.1. Adding test results and demographics. As a preliminary exploration of our

system in an environment of more data sources, we chose to add two additional data streams

from the Indiana Network for Patient Care (INPC), which connects many healthcare-

providing entities (e.g., hospital, clinics, and laboratories) across central Indiana (McDonald

et al., 2005). We extracted laboratory test results and demographics, which we linked to

our Gopher data sets.

Because both of these types of data are purely observations, we utilize a Markov blanket

approach to choose which features to include, as opposed to our importance-based feature

selection. (Recall from Chapter 6 that a target’s Markov Blanket is often the best set of

predictive features.) Therefore we made the following three changes to our methodologies.

● We add all of these observational features to all datasets after feature selection is

completed, if they occur in our selected hospitalizations.

● We modified Temporalize-datset (Program 8.1) to include such features in only

the t−1 layer. (Recall from Chapter 8 that the t−1 layer in a TF-TCDBN reflects

past observations and not predictive targets.)

● MAG-BS is used without modification to ‘choose’ which of these to include by

learning the graph. (Recall from Chapter 7 that MAG-BS uses a hybrid learning

approach involving Markov Blanket learning to construct the graph skeleton.)

Our specific methods for each dataset is described below.
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1.1.1. Result Data. All test results performed in participating labs (not at the bedside)

with numerical results were extracted from the INPC. We encoded these as binary variables,

set to true only if the result falls outside the ‘critical threshold’ defined by Gopher (this is

meant to be far enough outside the normal range that the result is ‘important’).

Any results which fell between the admission and discharge date for a hospitalization

were associated with that hospitalization. Some test results were associated with multiple

hospitalizations, when two hospitalizations (e.g. an ED visit and an inpatient stay) appeared

on the same day. We assigned the test result to the session that followed its posting to the

INPC. We were only able to extract test dates (not the time), so occasionally results were

associated to the session in which the test was placed. To render this somewhat innocuous,

we disallowed test results from predicting other tests (via the Tetrad edge restriction API).

This amounted 39,381 abnormal (critical) test results and 1,806,419 normal test results,

of 112 different types. We created a separate database of these data, which we merged

on-demand with our domain-specific datasets to learn the final graph, as above.

1.1.2. Demographic data. We extracted gender (Male or Female), race (Caucasian,

African-American, Hispanic, or Other), and age (in ten year blocks, where the final block

is 90+) from the hospital admission system. These are not considered identifiers according

to 45 CFR A 164.514b, so our data remained deidentified.

Two demographic features (age and race) were categorical rather than binary variables.

Therefore MAG-BS could not be used, because MAG supports only binary variables. There-

fore we modified MAG to fully connect all non-binary features to all others, allowing us to

use MAG-BS.

Also, because demographic information is essentially eternal and does not decay in rele-

vance, we also modified Temporalize-dataset (Program 8.1) to use ρ = 1 for demographic

data, regardless of the user-specified ρ.

1.1.3. GUI changes. To accommodate results and demographics, we added these cate-

gories to our GUI. Our evaluation tools did not require modification. This version of our

GUI is shown in Figure 9.2.
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Figure 9.2. A GUI incorporating results and demographics. Shown dis-
playing a list of available results and demographics, and a suggestion list for
postpartum.

1.2. Evaluation. To study the effect of these additional data elements on our treat-

ment suggestion menus, we learned networks of 40 orders and 10 co-occurring diagnoses

using the four domains in Chapter 4 (back pain in the emergency department, hyperten-

sion in the urgent visit clinic, the medical ICU, and inpatient pregnancy). We learned four

versions of each network, each using the same dataset of order-entry data and the same

features. One version of the network was not augmented with additional data. In the

remaining three versions, the dataset was augmented with demographic data, result data,

or both, respectively. We ran Eval on these 16 networks and computed the (unweighted)

average tAUC and average PPV80. These results are summarized in Figure 9.3. As a

representative example of observational features selected by MAG-BS, we show results and

demographics added to the emergency department network in Table 9.1.

1.2.1. Discussion. Although common sense would suggest that more predictors result

in better predictions, the literature has shown this is not generally the case (e.g. (Kohavi

and John, 1997)). Figure 9.3 plays this out. Adding either results or both results and
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Figure 9.3. The effect of additional data on four networks of 40 orders and
10 co-occurring problems. CPOE is only these 50 features, results adds 112
types of test results, demographics adds 3 pieces of demographic inormation,
and both adds all 115 features.

demographics has a negative impact on performance more often than it has a positive one.

Adding only demographic features, however, has a generally positive impact. In the ED and

UVC, tAUC increases noticeably (by .06 and .07, respectively). Only in pregnancy does

tAUC get worse, and then only by .01. PPV80 changes were very small (much less than 1)

across all sixteen networks, except in two cases. In these two cases, our earlier conclusion

holds (demographics slightly improve performance, but other combinations worsen it).

Because our system learns networks which approximate the statistical relationships in

the training data, the reasons for inconsistent changes in performance could be related to

inconsistent statistical relationships. Figure 9.1 illustrates that this is likely the case. In
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Result → Child Node Explanation
Blood Urea Nitrogen→ Abdomen CT nonspecific

A1 Antitrypsin → Pneumonia Low A1AC causes pulmonary problems
Phosphate Level → Chest X-ray nonspecific
Phosphate Level → Lactic Acidosis Test checks for disease

White Blood Count → Morphine uncorrelated
Demographic → Child Node Explanation

Sex → Pregnancy Test Only called for in females
Sex → Vaginal Infection Test Only called for in females
Race → Cardiac Markers Ethnicity can impact heart disease risk
Race → Chest X-ray Ethnicity can impact heart disease risk
Age → Lipase Both are correlated with pancreatic disease
Age → Chest XRay Age can impact heart disease risk
Age → Cardiac Markers Age can impact heart disease risk
Age → Metabolic Panel nonspecific

Table 9.1. Observational nodes that appear in the augmented back-pain-
emergency-department network. The nodes and their direct children are
shown, along with medical explanations for the correlation. Italics indicates
no direct explanation.

three out of five result edges, there is no strong medically-relevant correlation between the

nodes. This suggests that the result data is capturing data artifacts and not consistent

knowledge. On the other hand, demographic edges have a medically-relevant correlation

in seven of eight cases. The higher performance of adding only demographics is therefore

likely related to the consistent knowledge the data encodes.

1.2.2. Limitations and Future Directions. Such data-artifact problems might be solved

in two ways. One is to improve the learning algorithms. A possibility in BN learning might

be to favor more consistent data when choosing edges. The other approach is to improve

the data. For this study, we used a simple binary encoding of result data. Decision-

making regarding results sometimes requires more contextual knowledge than the normal

or abnormal status of a result. For example, sometimes the actual value might be less

important than whether the result is trending upward or downward. Another issue is that

many result dates did not fall within a recorded hospitalization and so were not included

in our final data, even if they were relevant to the next hospitalization. Furthermore, only

having dates of lab results (and not the time the hospital received the result) certainly

resulted in erroneous temporal relationships that could have impacted performance.

1.2.3. Conclusion. This section highlights the difficulty of integrating disparate data

sources while also showing glimpses of the benefits. In this experiment, including a small
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set of fairly complete observations (i.e. demographics) improves prediction, whereas a less

complete set hurts prediction, even though the information it provides seems intuitively

quite relevant to the task at hand (i.e. results). This suggests that data completeness could

be an important consideration when choosing what data sources to integrate.

2. Decision Thresholds

We noted in Chapter 4 that tAUC (the probability that a false classification has lower

probability than a true classification) is not completely correlated with PPV80 (the length of

a suggestion list that contains the next action). The problem is that TreatmentSuggest

lists treatments in reverse order of posterior probability, but the posterior probability does

not always predict the next action. The posterior probability might shift upward in sessions

where it is selected (this is the measured by the tAUC) while still always being quite low

or high due to its prior probability. This was the case with a lumbar spine X-ray in the

emergency department (which always had high probability) and nalbuphine (which always

had low probability).

Therefore in decision-making networks we are less interested in the probability distri-

bution than we are in capturing these ‘shifts’ in probability. It is possible to monitor these

shifts rather than the actual probability. One method is through decision thresholds, which

are the critical probabilities for each variable, below which the action is not taken and

above which it is. There is infrequently one such number, but it is possible to choose a good

approximation.

2.1. Design. Because no decision threshold is perfect, we must choose a trade-off

between capturing more positives (greater sensitivity) and avoiding false negatives (greater

specificity). Intuitively, we want to choose the threshold that maximizes the separation

between percent of correct predictions (true positives) from percent of incorrect predictions

(false positives). These quantities are known as the true positive rate (tpr) and false positive

rate (fpr).

A plot of the tpr vs. the fpr is a curve known as the receiver-operator characteristic

(ROC curve), which we showed examples of in chapter 3. tAUC is a measure of the area
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underneath this curve. Each point on the curve represents a tradeoff of accepting a per-

centage of false positives in exchange for capturing more true positives. An example of an

ROC curve can be found in Figure 9.4.
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Figure 9.4. An example of finding the distance from the no-discrimination
line to a point on the ROC curve, using Definition 9. Maximizing this
distance is equivalent to finding an optimal point when the costs of false
negatives and false positives are equal.

An optimal point can be found in the following manner. A diagonal line across the

plot (from lower-left to upper-right) is the ‘no-discrimination’ line. The closer points are to

this line, the less able the system is to distinguish true values from false values. The point

furthest above the no-discrimination is the optimal point. (Note that this is only true if the

cost of false positives is equal to the cost of false negatives. In other cases, we would choose

the point furthest from a line of different slope, known as an isocost line.) (Buhmann et al.,

2011) We can find such a point through simple geometry.

Definition 9. The point-line distance to a point (m,n) from a line Ax +By + C = 0
is1: d = �(Am+Bn+C)��(A2+B2) .

Because the no-discrimination line is −x + y = 0, distance from a point (m,n) on the

ROC curve reduces to d = �n −m�. We remove the �� because we want the greatest distance

1http://www.intmath.com/plane-analytic-geometry/perpendicular-distance-point-line.php
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above the line. Therefore, if the cost of mistakes are uniform, the decision threshold is the

probability that maximizes (tpr-fpr). This is shown in Definition 10.

Definition 10. The optimal decision threshold, if the cost of mistakes is uniform, is

the probability associated with the point on the ROC curve that maximizes tpr − fpr, the
separation between the percent of correct predictions from the percent of incorrect predictions.

Decision thresholds suggest a more powerful type of TreatmentSuggestmenu. Rather

than choosing an arbitrary probability cutoff (as our GUI does) or finding a list length that

captures most orders (which PPV80 measures), we can list a variable-length menu of all

orders that occur above the decision threshold. This would list all orders that are likely

to be considered in the current session. This naturally leads to a new evaluation metric:

how frequently does a decision-threshold-based menu include orders in the session they are

selected? To measure situation-specific performance, we can break down the metric by

active diagnoses: how frequently does a decision-threshold-based menu include orders in

the session they are selected, for each possible active diagnosis in each session? We will

implement a new statistic to measure this, the situation-specific positive predictive value

with thresholds (ssPPVt) below.

2.2. Implementation. Learning decision thresholds can be done by modifying Eval

(Program 4.2). Eval generates vectors of probabilities for each order in each session,

grouped into true instances and false instances ( �To and �Fo). Eval uses these to compute

the tAUC on test data, but they can be utilized to find decision thresholds on training

data. For each variable, for each possible probability threshold, we count the number in

each vector with at least that probability. This is the number of true positives and false

positives. Dividing by the size of each vector gives us the tpr and fpr. The threshold with

the largest difference is the optimal threshold according to Definition 10. This is outlined

in Program 9.1.

We modified our SMILE exporter to optionally run Program 9.1 (using the training

dataset) before the final export, embedding the threshold value into the exported network.

We also modified both TreatmentSuggest and Eval to sort the probability lists by the
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difference between probability and threshold, if a threshold is present. We further modified

our GUI to list all treatments in the suggestion pane that are above the decision threshold

(rather than a probability cutoff). The GUI changes are shown in Figure 9.5.

Finally, we modified Eval to compute the ssPPVt (situation-specific positive predictive

value using thresholds, described in the prior section). This involves computing a vector

�Do for each diagnosis in the network. Each vector contains the counts of each order that

appears above the decision threshold in the session where it was made, for all sessions in

which that diagnosis was active. Dividing these by the total number of each order where

the diagnosis is active gives the positive predictive value.

2.3. Evaluation. We sought to test whether decision thresholds result in relevant or-

ders appearing earlier in suggestion lists. To test this, we computed PPV80 values in the

temporal MICU and pregnancy networks from Chapter 8 both before and after running

Program 9.1 Find-thresholds(G,D)

Input: G is a Bayesian Network Model
Input: D is a training dataset of hospitalizations, consisting of orders and co-occurring
problems by session.
thresholds[] is an array of optimal thresholds for each order
Run Eval(G,D) and get �To, �Fo.
for all o ∈ G do
score[] is an array of scores for each possible probability threshold
for i = 0→ 100 do

tp = 0
fp = 0
for all p ∈ �To do
if p ≥ i then
tp = tp + 1

end if
end for
for all p ∈ �Fo do
if f ≥ i then
fp = fp + 1

end if
end for
score[i] = tp� �To� − fp� �fo�

end for
thresholds[o] = argmax

i

score[i]
end for
Return the array of thresholds
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Figure 9.5. A modified GUI incorporating decision thresholds. Shown dis-
playing a network for pregnancy with preterm labor selected as evidence.
The left pane demonstrates that sorting by difference from the decision
threshold produces a remarkably different ordering than the posterior prob-
ability distribution. The right panel shows a treatment suggestion list of all
orders above the decision threshold.

Program 9.1 on the training set. (tAUC is unchanged by decision thresholds and ssPPVt

is only computable in networks with thresholds, so these were not included in our compari-

son.) Average PPV80 and a histogram of the two sets of PPV80 values are shown in Figure

9.6. The orders with the largest shifts (for better and worse) are shown in Table 9.2.

2.3.1. Discussion. This change showed only moderate overall improvements to the av-

erage length of our list in pregnancy and MICU networks (average ∆ PPV80 .85 and 1.84

respectively).

In the pregnancy network, however, the maximum list length was quite reduced. The

largest PPV80 without thresholds was 25 (for Fetal Ultrasound) but only 10 with thresholds

(for IV Fluids). The histogram also demonstrates that the items previously in the tail are
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Network Pregnancy avg/max PPV80 MICU avg/max PPV80
No thresholds 4.025 25 15.47 36
Thresholds 3.175 10 13.63 34

(a) Average PPV80.

Pregnancy PPV80 ∆ MICU PPV80 ∆
Fetal Ultrasound 18 Phys. Therapy Consult 18

Urinalysis 15 Urinalysis 16
Betamethasone Inj 13 Pharmacokinetics Consult 12

Uric Acid -4 Vasopressin 16
Oxytocin Inj -5 Nutrition Consult 22
SGPT (ALT) -5 BNP 24

(b) PPV80 with greatest ∆.

Table 9.2. (Top) Average PPV80 using Chapter 8’s pregnancy and MICU
networks, with and without thresholds. (Bottom) In the same networks,
the orders with largest difference in PPV80 (the amount smaller using a
threshold compared to no threshold).

now closer to the center. The orders most affected tended to be rarer and not general-

purpose. Two of the top three improved PPV80s are used primarily with preterm labor

(betamethasone and a fetal ultrasound).

Although the average PPV80 difference was larger in the MICU network, specific im-

provements were harder to discern. The largest PPV80 without thresholds was 36 (for

Succinylcholine) but still 34 with thresholds (for liver tests). The histogram shows a reduc-

tion in orders in the tail, but not as dramatic as in pregnancy. The most improved PPV80s

were, while not extremely general, also not extremely specific (e.g., physical therapy con-

sult).

From a statistical standpoint, adding decision thresholds resulted in moderate overall

positive impact on PPV80 length. On closer inspection, decision thresholds might hold

significant clinical value in the pregnancy domain, because they allow correct prediction

of rarer orders with specialized use. This was not the case in the MICU, where the types

of affected orders was not as discernible. However, this could be because all orders in the

MICU are rare, as our test set only involves a few hundred hospitalizations.

Overall, we believe that decision thresholds make moderate statistical improvements

and can have significant clinical impact (in that correct rarer orders are suggested more

accurately) when there is a distribution of rarity and sufficient data.
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Figure 9.6. Histogram of PPV80 distribution with and without thresholds.
Top is the pregnancy network, bottom is MICU.
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CHAPTER 10

Evaluations on Inpatient Medicine

In the previous chapters, we developed: Gopher datasets, optionally augmented with

demographic and result data; a tool to provide situation-specific treatment suggestions, with

and without decision thresholds; three evaluation measures of those suggestions (tAUC,

PPV80, and PPVt); a SQL tool to compute the Maximal Association Graph (MAG); a

feature selection program based on association rule mining and graph-theoretic importance

in the MAG (FS-Important); a fast Bayesian network structure learner based on the MAG,

Markov Blankets, and a greedy hill-climbing search (MAG-BS); and a methodology for

learning and performing inference using temporal relationships in the graph.

In this chapter we evaluate our final suite of methodologies on inpatient medicine, our

primary target. First, we review our final methodology. Second, we perform an evaluation

using networks for 13 common chief complaints at Wishard hospital, evaluated against our

data-analytic metrics. Finally we perform a prospective evaluation of the system’s accuracy

and completeness in generating admission order sets, using a survey instrument.

1. Final Methodology

Throughout this work, our primary objective has been to develop a methodology to

produce situation-specific treatment advice from order-entry data. In Part 1, we developed

a preliminary system to do this. From hospitalization order-entry data, we induce domain-

specific BNs that represent the probabilistic relationships among orders. Then, as specific

orders are placed in a specific case, we instantiate the variables corresponding to those

orders in the network (known as evidence), which revises the probabilities for other orders

in the BN to the posterior probability that they would be placed conditioned on the previous

orders, and thus allows us to rank remaining orders by their probability of occurring. In our

interface, we present these to the user as orders are placed, in descending order of probability.

To limit the length of such suggested order lists, we optionally also impose a cutoff to present

only the most likely orders. In Part 2, we develop new methodologies that can build a BN

from data at high-speed using principled feature selection and temporal reasoning. We adapt

our retrospective data analysis and GUI accordingly. In the previous chapter, we augment

our networks with demographic data and decision thresholds, and we list suggestions that
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fall above the decision thresholds rather than those above an arbitrary probability. Here

we review the interaction of our methodologies and present it as a comprehensive system.

In Chapter 1, we extracted datasets from Gopher for four modalities of medicine: Go-

pherInpatient, GopherED, GopherUVC, and GopherWVC. These feed into a program that

selects all but the irrelevant features, Feature-Assoc (Program 6.1) given a set of T initial

targets that define the domain. Then a dataset containing only the relevant hospitaliza-

tions and features is created, the MAG is generated (Program 5.1), and Markov Importance

is used to select the most important t0 actions and t1 non-actions in the resulting graph

(Program 6.2). Next, a per-session dataset is created using the selected features. This is

optionally augmented with demographics and test results (see Chapter 9) and is converted

into a TF-TCDBN dataset via Temporalize-dataset (Program 8.1), for which a MAG is

again generated and Blanket-Stitch (Program 7.5, augmented to learn about time and

categorical variables) is used to learn the graph. Decision thresholds are then learned via

Find-thresholds (Program 9.1). The final graph is converted to SMILE format.

Feature-
Assoc

MAG
Feature-

Importance

Temporalize-
dataset

MAG-BS
Find-

thresholds

Gopher Data Admission-Compressed
Data Subset

Uncompressed
Data Subset

Augmented w/
demographics
and tests

EvalSMILE BNGUI

1
2

3

4

5

6

7

8

9

10

11

12

12

Figure 10.1. A flowchart of the components in our final system. The flow
through the components is indicated by the numbered edges, which also
correspond to the line numbers in Program 10.1.
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These graphs can then be explored through our TreatmentSuggest GUI or evaluated

on retrospective data with Eval (Program 4.2, augmented for temporal reasoning and

decision thresholds). Eval computes three metrics for each order in the network:

● tAUC: The probability that the network can distinguish a true instance from a

false instance, as measured by P (P (T ) > P (F )).
● PPVt: The probability that the network can distinguish a true instance by a

specific decision threshold, as measured by P (P (T ) ≥ dv), where dv is a threshold

value for each feature. The ssPPVt is a variant that evaluates the PPVt only when

specific diagnoses are active.

● PPV80: The length of the suggestion list that is needed to capture 80% of decisions.

These measures are all interrelated. The tAUC is an application-neutral measure of the

predictive ability of the network. PPVt measures the ability of a single decision threshold

to separate true and false positives, and is used in our final system to produce suggestion

lists. PPV80 measures how deep in the list a selected order will be found 80% of the time,

which can be used to find the maximum length needed for a fixed-size suggestion list.

We compute averages for each measure. In Chapter 4, we computed average tAUC and

PPV80 weighted by order prevalence, to emphasize the performance of our system in the

average case. Since then, we have reported unweighted tAUC and PPV80, to show perfor-

mance across all orders. With the methodological improvements in the preceding chapters,

we have found unweighted averages now correlate quite well with the weighted averages. In

this chapter, we compute averages for ssPPVt (situation-specific PPVt). We include orders

with at least 20% prevalence in the presence of each specific diagnosis. This measures aver-

age performance but in specific situations, ignoring outliers in a manner similar to PPV80,

without weighting by overall prevalence as in Chapter 4. To compute a whole-network av-

erage ssPPVt, we average the averages for individual diagnoses, weighted by prevalence of

the diagnosis.

Various parameters must be specified to these programs. Some are chosen through

experimentation: the decay factor in Temporalize-dataset, which we set to ρ = .8; the
confidence threshold in Find-thresholds, which we set to � = .01; the max-treewidth in
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Greedy-Search (Program 3.1), which we set to 5; and the number of steps in Markov

Importance, which we set to max(5,TW(G)).
All programs in this work were developed in SQL and Java, using Tetrad’s Bayesian-

learning tools and SMILE’s Bayesian-inference API. We discussed our reasons for choosing

these tools for temporal reasoning in Chapter 8. Some further justification for Tetrad and

SMILE over other Bayesian network reasoning tools can be found in Appendix A.

Together, these components form a comprehensive system for quickly generating and

evaluating domain-specific networks in inpatient medicine. A diagram of the components

involved can be seen in Figure 10.1. We wrote a program in Java to connect all of these

components, Program 10.1, the line numbers of which correspond to the edges in the dia-

gram.

Program 10.1 Learn(D,T,n0,n1,n1p)

Input: D is a a training dataset
Input: T, n0, n1 are a set of targets and number of actions and non-actions as defined in

Program 6.2.
1: V=Feature-Assoc(T,D,n0,n1). {V is an output set of features from a source dataset

D and T is a list of domain-defining targets.}
2: Dv ⊂V D {Df is a subset of D containing all the features in V, with one row per

admission.}
3: Mv=MAG(Dv)

4: F=Feature-Importance(D,V,n0,n1,max(5,TW(Mv)) {Chooses n0 actions and n1

using the previously generated MAG.}
5: D0 and D1 become training/testing subsets of D containing features from F ∩ V , with

one row per session, split into 2/3 training data and 1/3 test data.
6: D0 and D1 are optionally augmented with demographic and/or test result information

(using up to 115 features). By default, demographics are included and test results are
not.

7: DT=Temporalize-dataset(D0,I0,.8) {DT becomes a temporal dataset appropriate
for learning a TF-TCDBN.}

8: M=MAG(DT ). {Learn the MAG on the temporal dataset, fully connecting any non-
binary variables.}

9: G=Blanket-Stitch(DT ,M) {Learn the network using the temporal dataset with the
MAG as a restriction graph.}

10: Gt=Find-thresholds(G,D0) {Find decision thresholds in the graph using the training
data.}

11: Save Gt to a SMILE-format Bayesian network using our converter.
12: Evaluate either with Eval(Gt,D1) or withTreatmentSuggestInteractiveTemporal(Gt)
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1.1. Comparison to Chapter 4. To compare the final system to the overall results in

Chapter 4, we ran Learn(D,T,40,10) four times, where D and T were the four modalities

and targets defined in Chapter 4. Table 10.1 reports the unweighted average tAUC and

PPV80 alongside those computed by the methodology in Chapter 4.

Inpatient ED MICU UVC
Pregnancy Back Pain Hypertension

Ch4 Ch10 Ch4 Ch10 Ch4 Ch10 Ch4 Ch10
tAUC 0.791 0.935 0.779 0.868 0.689 0.808 0.741 0.798
PPV80 6.47 4.40 14.05 12.32 16.23 13.08 13.19 8.38

Table 10.1. Unweighted average tAUC and PPV80 for the four domains
defined in Chapter 4, using that methodology (‘Ch4’) compared to Program
10.1 (‘Ch10’).

1.1.1. Discussion. Table 10.1 shows significant average improvement in both measures

across all networks. The average tAUC improved .10, and the average PPV80 shrunk by

2.94. This analysis does not show the greatly-decreased learning time, the more relevant

set of features selected, the temporal relationships captured by the new networks, or the

improved performance for particular orders. Those improvements have been evaluated in

the preceding chapters. This table does, however, provide a snapshot of the improvements

made.

2. Partitioned Networks in Inpatient Medicine

As discussed in Chapter 5, it is not possible to learn a single Bayesian network for

all of medicine. However, it is possible to create a large set of domain-specific networks

that can be heuristically chosen on demand. Heckerman and Nathwani’s (1992) Pathfinder

utilized this approach, calling these subnetworks partitioned networks, where each partition

consisted of a subnetwork which had very few interdependencies with the other subnetworks.

In this way, they could reason on these subnetworks rather than the full network. We will

adopt this approach in inpatient hospitalization.

Each inpatient hospitalization has exactly one chief complaint. We reasoned that by

learning domain-specific networks for chief complaints, we could effectively develop a set of

networks to provide treatment suggestions given any chief complaint. Using this intuition,
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we created 12 subnetworks using chief complaints from GopherInpatient. Each subnetwork

included one primary chief complaint and all highly-related secondary chief complaints. By

‘highly related,’ we mean any chief complaint which also frequently appears as a secondary

problem alongside the primary complaint. We chose the three primary complaints that were

the most frequent in our data, and then asked an independent physician rater to choose nine

more. The physician was given a list of the top 100 chief complaints in GopherInpatient

and asked to chose those he considered most important and most directly treatable. The

chief complaints for each of the twelve networks are listed in Table 10.2.

2.1. Methods. We ran Learn(GopherInpat,T,80,20) 12 times, with T equal to

each list of complaints in Table 10.2. A conglomerate view of these networks can be seen

in Figure 10.2. We then used Eval to calculate tAUC, PPV80, and ssPPVt and averages,

as described in Section 10.1.

We do not explicitly measure performance at different times within a hospitalization, but

the ssPPVt implicitly captures temporal performance when a diagnosis sequence implies a

temporal ordering. For example, one can intuit the temporal sequence pregnant→labor→postpartum,

and therefore one could examine the ssPPVt value for these three diagnoses to gain some

insight about how the system performs at these three stages of the hospitalization.

Primary Complaint Secondary Complaint(s)
Pregnancy Labor, Postpartum

Normal Term Infant Normal Newborn
Chronic Renal Failure Acute Renal Failure, Chronic Renal Insufficiency

Syncope Dizziness
GI Bleed Rectal Bleed, Hematemesis
CHF Chest Pain
Stroke TIA

Cellulitis Abscess
Unstable Angina Angina Pectoris, Recurrent Angina
Abdominal Pain Small Bowel Obstruction, Cholecystitis, Acute Pancreatitis

Altered Mental State Drug Overdose
Pneumonia Cough

Table 10.2. The chief complaints targeted by each of the twelve partitioned
networks of inpatient medicine. These include: a primary complaint – the
three most frequent (in italics) and nine additional complaints judged by a
physician to be the most important and directly treatable among top 100;
and secondary complaints – any chief complaints which frequently occurred
as secondary problems amidst the primary complaints.
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2.2. Results. Program 10.1 (Learn) ran in an average of 50 minutes per network, not

including time to compute evaluation statistics. The maximum runtime was 105 minutes

for syncope, in which the slowest step was performing inference on the training data to

compute thresholds. Find-thresholds was the most widely varying factor in learning

time; each network took from 10ms to 1s per hospitalization for inference.

Summary statistics for all 12 networks are shown in Figure 10.3, which are shown

graphically in Figure 10.3. The ssPPVt for each diagnosis in each of the 12 networks are

shown in Table 10.5. Figure 10.4 summarizes this through a bar chart of average ssPPVt

with variance (error bars). A red dash denotes the average ssPPVt for the network-defining

diagnoses, from Table 10.2. The individual orders in all situation-specific PPVt calculations

in all networks are too vast to show, but a small representative sample are shown in Table

10.4. Note that these are not the suggestion menu themselves, but the frequency with which

each highly-correlated order appears in the suggestion menu when the listed diagnosis is

active.

2.3. Discussion. The system has strong overall predictive performance, as shown in

Table 10.3. Average tAUC is ≥ 0.8 for all networks except syncope and GI bleed. The

Figure 10.2. A conglomerate view of the 12 partitioned networks. Yellow
nodes are demographics, red are diagnoses and complaints, light blue are
nursing and diet orders, dark blue are all other orders.
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PPV80 shows the resulting treatment suggestion menus contain the desired next order at

menu lengths between 12%-32% of the total number of orders in the network (average 25%).

Pneumonia Pregnancy Syncope GI Bleed Unstable Chronic
Angina Renal Failure

ssPPVt 0.831 0.934 0.863 0.796 0.882 0.882
tAUC 0.852 0.907 0.720 0.762 0.805 0.851
PPV80 18.63 10.00 17.81 21.09 21.91 22.46

Cellulitis Altered Abdominal CHF Normal Stroke
Mental State Pain Term Infant

ssPPVt 0.798 0.819 0.788 0.839 0.988 0.864
tAUC 0.808 0.839 0.858 0.844 0.905 0.820
PPV80 23.36 21.29 19.13 19.80 10.63 24.23

Table 10.3. Summary statistics for each of the 12 networks. ssPPVt is
the average situation-specific positive predictive value for all orders with
at least 20% prevalence in each situation, weighted by prevalence of the
situation (higher is better). tAUC is the average time-specific predictive
power (higher is better). PPV80 is the average menu length to capture 80%
of orders (lower is better).

Figure 10.3. Average tAUC and ssPPVt for each of the 12 inpatient net-
works, from Table 10.3.
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Pregnant Normal Infant CHF Abdominal Pain
Postpartum Hyperbilirubinemia Pneumonia Small Bowel Obstruct.

Ob Consult 97.1% Bili. Lights 93.5% Metabolic Panel 85.0% IV Fluids 94.6%
Regular Diet 89.1% Bili. Blanket 96.0% Cardiac Markers 73.3% Metabolic Panel 84.4%
Ibuprofen 98.9% Bili. Total 88.2% Blood Culture 78.6% NPO 95.2%

Docusate Na 97.9% Ped. Consult 83.3% Glucose Bedside 92.3% Seq. Compression 82.6%
Net IO Shift 97.9% Oxygen Therapy 58.3% NG Tube 81.8%
Epifoam 91.4% Ceftriaxone Inj 83.3% Magnesium Level 96.9%
Vicodin 84.5% Heart Healthy 83.3% Foley Catheter 71.9%

Simethicone 90.1% Net IO Shift 100.0% Phosphate 100.0%
Lanolin 94.6% Urinalysis 83.3% Urinalysis 82.1%

Cold Pack 99.2% Simvastatin 100.0% Metabolic Panel 81.5%
Sitz Bath 98.0% Protime 72.7% Surgery Consult 96.3%
Tylenol 93.8% Occ. Therapy 90.0% Naloxone Inj 100.0%
Oxytocin 97.9% Magnesium Level100.0% Urine Culture 96.0%

Vancomycin 80.0% PCA Nursing 100.0%
Glucose Bedside 73.9%

Average 94.7% Average 93.2% Average 87.1% Average 88.2%

Table 10.4. The PPVt for several of the most-frequent orders in four spe-
cific situations. The first row specifies the network used; the second row is a
comorbid condition within the network. The average reflects the entire set
of treatments, not just those shown.

This reflects that the TreatmentSuggest methodology is on average 75% more specific

than feature selection alone.

Better still is the situation-specific PPVt, also shown in Table 10.3. Given a specific

comorbid diagnosis, the desired next treatment is listed on a decision-threshold-based treat-

ment menu on average 85% of the time. ssPPVt for diagnoses in two networks (pregnancy

and normal term infant) always average above 95%, and the average is at least 95% for at

least one diagnosis in each network (see Figure 10.4). Table 10.5 breaks this out in more

detail. Examples of ssPPVt above 95% include abdominal pain with liver cirrhosis, syncope

with chest pain, and chronic renal failure with coronary artery disease. Less than 10% of

comorbid diagnoses had ssPPVt below 80%.

Figure 10.3 shows that average ssPPVt parallels average tAUC but frequently exceeds it.

This is somewhat remarkable; tAUC is an application-neutral comparison of probabilities

of potential predictive power, but ssPPVt is an application-specific comparison of posterior

probability to a predetermined decision threshold. What this graph demonstrates is that

the application-specific methodology exceeds general predictive power by focusing on specific
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Figure 10.4. The variance of situation-specific PPVt. The bar is the aver-
age situation-specific PPVt, and the error bars represent the minimum and
maximum ssPPVt for all diagnoses in the network. The red horizontal line
shows the average ssPPVt for the network-defining diagnoses (Table 10.2)

.

situations. Average ssPPVt always involves at least one diagnosis as evidence and compares

only orders consistently used when that diagnosis is present.

All this leads us to conclude we have developed a fast, comprehensive system that will

suggest the most relevant treatments with high accuracy in reasonably short menus. Our

system takes advantage of the ability to instantiate evidence in networks of inference and

performs better as evidence increases. It outperforms its own overall predictive power when

at least one diagnosis is present. The result is a system to generate partitioned networks and

suggest treatments in medicine using only CPOE data. This evaluation shows the system’s

strong performance on inpatient medicine, which is the primary target of this work.
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PPVt of specific diagnoses in each partitioned network
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PPVt of specific diagnoses in each partitioned network

Table 10.5. Situation-specific PPVt in each network. PPVt is calculated
using all orders used at least 20% of the time when these diagnoses are active.
The red, circular points are the domain-defining diagnoses from Table 10.2.
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3. Prospective evaluation: a survey

Retrospective simulation allows measurement of treatment suggestion list accuracy and

completeness in arbitrarily complex situations. However, to understand whether the sug-

gestion lists actually improve the speed and quality of healthcare delivery requires the

prospective input of healthcare professionals.

We posed the hypothesis that our treatment suggestion system could generate a draft

admission order set which could approximate an admission order set designed by a physician.

We further hypothesized that physicians given this draft would more quickly create more

complete order sets than those without the draft. To test this hypothesis, we designed a

survey to study the content and speed of physicians generating order sets with and without

the drafts, as well as physicians’ perceptions of the drafts.

3.1. Methods. We first chose four inpatient chief complaints to survey. To choose

these, we asked a physician (not included in the survey) to select four chief complaints

for which he felt he could design an admission order set without assistance from external

resources. The physician was asked to select from a list of the 100 most frequent chief

complaints in the GopherInpatient data.

3.2. Preparation of draft order sets. We optimized decision thresholds for order set

generation. Eval (and therefore decision thresholds) record the predicted probability that

each order was placed at some point in the order session. Because the probability frequently

increases as other orders in the session are placed, such a threshold is not designed to show

treatments that might be considered when nothing has been ordered. In admission order

sets, however, we want a threshold that reflects whether the session might include the order

when no other orders have been placed. Therefore we modified Eval to optionally compute

this threshold. This required a simple change. In Eval, when evidence is set for all orders

and co-occurring problems that have occurred up to this point in the hospitalization, the

current session is included. The modified Eval does not include other orders in the current

session as evidence. This is used to compute decision thresholds that better reflect the

beginning of an encounter.

Next, we ran Learn(GopherInpat,T,95,10) four times with these optimizations, with

T set to each of the target chief complaints. In order to focus the system on the chief
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complaint, we set n1p = 1 (the number of pursued actions among the selected actions), as in

the implementation of FS-Important in Chapter 6. This allows more actions to be chosen

for the single chief complaint without increasing the number of features in the network.

Finally, we used our GUI to generate a threshold-based suggestion list with only the

target complaint set to true. We organized these by Gopher order type (test, radiology,

drug, consult, and nursing). These four order sets can be seen in Table 10.6.

3.3. Survey recruitment and design. We recruited seven Wishard hospitalists to

complete an anonymous survey. Five were full-time internal medicine physicians. One was

a half-time internal medicine physician and one was a clinical nurse specialist. Among the

physicians, three had more than five years of post-residency experience.

Each was asked to sit with us and write generic admission order sets for each of the

four complaints. The order in which the chief complaints were presented was randomized.

For two of the order sets (chosen randomly), the physician was given an order set draft

generated using the method described above. We timed the physicians as they wrote each

draft. They were instructed not to rush, but that they would not be allowed to revisit an

earlier order set once they completed it. Throughout, we asked for qualitative comments.

Most raters did not use the order set drafts directly, writing their final order sets on

separate paper and only marking notes on the draft. They frequently organized their order

sets using some variant on the acronym ADCVANDALISM1 (admit, diagnosis, condition,

vitals, activity, nursing, diet, allergies, labs, intravenous fluids, special, and medications).

We mapped their hand-written order sets to our draft lists in order to compute agreement

with our drafts. Many sections were directly mappable (nursing, diet, allergies, labs, intra-

venous fluids, special, and medications). The admission section we mapped to any orders

which are automatically added in that admission location (though most raters also included

these explicitly). These included: bedside telemetry in all ICUs and a standing order for

oxygen therapy in the PICU. Condition, vitals, and activity were ignored as they were out

of scope of our order sets.

This survey was approved by the IRB (#EX1105-03).

1http://www.md2b.net/resources/survivalguide/surgery/postop.html
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CHF Syncope
DIAGNOSTIC DIAGNOSTIC
3.10% Cardiac Markers 7.40% Cardiac Echo
3.10% Blood Cell Profile + Plts 1.60% Lipid Profile
2.90% Basic Metabolic 0.80% Urinalysis
2.30% Lipid Profile 0.70% EEG
1.50% Magnesium Level 0.70% Cardiac Markers
1.30% Phos 0.70% Hepatic Function Panel
1.00% Urine Culture 0.60% Folate Level
0.70% Cardiac Echo 0.60% Urine Culture
0.60% Urinalysis 0.40% Phos
0.10% Blood Culture 0.30% Holter Monitor
0.00% Iron/TIBC 0.30% Iron/TIBC

0.10% Magnesium Level
DRUG 0.10% Basic Metabolic
3.10% Lisinopril 0.00% Ferritin
1.60% Nitroglycerin Oint
1.40% Furosemide RADIOLOGY
1.40% Humulin NPH Insulin 1.20% Carotid Artery Doppler Study
1.10% Supplemental Hum Reg Insulin 0.90% Head CT without Contrast
0.80% Albuterol Nebulizer 0.20% Brain MRI with/without Contrast
0.30% HydrALAZINE
0.30% Intravenous Fluid Orders DRUG
0.10% Morphine 3.00% Folic Acid
0.00% Metoprolol Succinate XL 1.80% Thiamine
0.00% Clopidogrel 1.70% Fluoxetine

0.60% Albuterol Nebulizer
CONSULTS 0.30% Ipratropium Nebulizer
0.60% ACE Team Consult 0.20% Ipratropium/Albuterol Inhaler
0.20% Renal Consult/Appt 0.20% HYDROcodone 5/Acetaminophen 500
0.10% Occupational Therapy Consult 0.20% Aspirin
0.00% Physical Therapy Consult 0.10% Docusate Na

0.10% Inhaler Spacer Device
NURSING 0.10% Morphine
2.60% Bedside Telemetry
1.90% Net I&O Shift NURSING
1.20% Glucose Bedside 0.70% Bedside Telemetry
1.00% TED hose 0.10% Oxygen Therapy
0.30% Oxygen Therapy

DIET
DIET 2.70% Carbohydrate Counting Diet
7.70% Low Sodium Diet 0.50% Regular Diet
6.80% Fluid Restriction 0.30% Restrict Diet for Procedure

TIA/Stroke GI Bleed
DIAGNOSTIC DIAGNOSTIC
3.50% Cardiac Echo 8.50% Blood Cell Profile + Plts
2.40% Lipid Profile 1.60% Type and Cross
1.10% Blood Cell Profile + Plts 1.10% Diff (peripheral smear)
0.20% Diff (peripheral smear) 0.80% Phos
0.10% Lytes: Random Urine 0.70% Protime

0.50% APTT
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RADIOLOGY 0.40% Magnesium Level
2.30% Brain MRI with/without Contrast 0.10% EKG
1.30% Head MRA without Contrast 0.00% Creatinine: Random Urine
1.10% Neck CT Angio with/without Contrast
1.00% Carotid Artery Doppler Study DRUG
0.90% Chest Frontal XR 1.30% Albuterol Nebulizer
0.90% Head CT Angio with/without Contrast 1.10% Ipratropium Nebulizer
0.70% Chest PA-Lat XR 1.10% Esomeprazole
0.30% Neck MRA without Contrast 0.90% Golytely

0.70% Morphine
DRUG 0.60% Ondansetron
1.60% Aspirin 0.30% Simvastatin
0.80% Intravenous Fluid Orders 0.30% Octreotide
0.60% Morphine 0.10% Ipratropium/Albuterol Inhaler
0.60% Enoxaparin 0.10% Promethazine
0.60% Labetalol
0.50% Esomeprazole CONSULTS
0.30% PrednisoLONE 1% Op 0.20% Physical Therapy Consult
0.30% Furosemide
0.10% NiCARdipine NURSING
0.00% Ipratropium Nebulizer 2.60% Hang Blood

0.40% Oxygen Therapy
CONSULTS
19.90% Neurology Consult/Appt DIET
1.50% Physical Therapy Consult 3.50% Heart Healthy
1.20% Occupational Therapy Consult
0.60% Speech Pathology
0.00% ACE Team Consult

NURSING
2.20% Bedside Telemetry
0.50% Neurological Checks
0.40% Foley Catheter
0.20% Sequential Compression Device
0.10% TED hose
0.10% Oxygen Therapy
0.00% Net I&O Shift

DIET
30.40% Heart Healthy
0.00% NPO Except Meds

Table 10.6. The four admission order set ‘drafts’ generated by our system
for the survey: Congestive Heart Failure, Syncope, TIA/Stroke, and GI
Bleed. The sections of each order set is sorted by the probability above the
decision threshold. This is shown in the left-hand column of the draft, but
this number is not explained to the survey respondents.
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3.4. Results. Table 10.7 presents a collation of qualitative responses, which fell into

three broad categories comprising six general statements. A summary of how the drafts

affected the resulting order set is shown in Table 10.8. This includes, for raters with and

without a draft, the average length of their order set, the average time to complete their

order set, the average precision and recall of the draft, and the average inter-rater agreement

by Fleiss’ kappa.

Table 10.9 lists orders which contributed to errors in precision and recall: orders which

were included in the draft but universally unwanted and orders not included in the draft

wanted by at least two raters. Table 10.10 lists the most helpful orders on the drafts - those

that clinicians added at least 20% more frequently when the draft was given.

3.5. Discussion. The order set drafts positively impacted order set generation. Table

10.8 shows the drafts helped participants remember on average 4 items and that they wrote

the drafts on average 23 seconds faster. The improvement in precision and recall when

the draft was given (average +16% and +25%, respectively) demonstrate the drafts helped

participants attentuate to the domain.

Table 10.10 lists orders the drafts helped participants remember. The majority of these

are routine but important (IV Fluids, TED hose), but some were surprising mistakes the

participants left off (cardiac echo in CHF and EEG in syncope). The reason for this is likely

due to the task difficulty (Table 10.7). The majority of these participants were not used to

Statement Frequency
Drafts are helpful 100%
. These are helpful reminders that help me pick things more quickly. 100%
Drafts are imperfect 100%
. The layout isn’t how I think about ordering; I’m used to ADCVANDALISM. 71%
. Some of these are incorrect or are relevant in very specific comorbid situations. 57%
. I can’t write an order set without a little more detail on the condition,

like upper or lower GI bleed. 43%
Task is difficult 71%
. I don’t usually do this by hand; it’s strange to not have a computer prompt me. 71%
. I’m not used to doing this without a clinical scenario. 43%

Table 10.7. Summary of qualitative feedback from survey respondents,
which fell into three major and six minor categories.

153



writing generic order sets, even though they were all very experienced with the conditions

presented. This likely also explains the relatively low inter-rater agreement (average 0.48).

Although the draft surveys were imperfect (average 48% precision and 64% recall) and

cannot be safely used without editing, Table 10.9 demostrates that they would be passable

with only a few changes. Many mistakes on the draft are unnecessary but not dangerous

(e.g., additional consults), though a few are (e.g., IV fluids in CHF). Many orders not

included but used in the final order sets are not critical to diagnosis and treatment (e.g.,

I/O and heart healthy diet), though again a few are (e.g., aspirin and chest x-ray in CHF).

It is interesting that the physicians were not surprised chest x-ray was not included, because

it usually is done in the emergency department before admission. Several did not think to

include it. This highlights the importance of understanding the environment in which data

is being collected.

The worst performance of the drafts was for syncope. Physicians commented both

that they know the standard workup for syncope by heart (explaining the lack of speed

improvement), and that they hate treating syncope because there are so many possible

reasons for it (explaining the low precision). This perhaps highlights that the system works

best in situations that are not quite routine but also not so complicated that it becomes

impossible to tease apart standard treatments from unusual comorbidities.

Perhaps the most important result is that qualitatively all the raters said they found the

drafts helpful (Table 10.7). Many also commented on problems with the drafts, but these

were predominantly suggestions to make them more helpful. Many comments on the errors

CHF GI Bleed Stroke Syncope
draft given? N Y N Y N Y N Y

Length 14.3 18.3 10.3 19.0 18.7 20.5 11.7 12.3
Speed 5:34 4:21 4:38 4:18 4:15 3:50 2:52 3:21

Precision 32.3% 48.4% 20.2% 57.1% 43.1% 53.7% 26.7% 31.7%
Recall 71.8% 82.1% 45.7% 66.3% 80.0% 88.6% 30.5% 22.1%

κ 0.415 0.564 0.538 0.519 0.481 0.432 0.404 0.468
Table 10.8. Comparison of physician choices with our draft order sets.
Results are split into the cases where a draft was given and where it was not.
For each order set, the average number of orders, speed to write the order
set, precision and recall compared to the draft, and interr-rater agreement
are shown.
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indicated that they did not realize the drafts were automatically generated by a computer

from treatment data (e.g., “The extraneous stuff was a little distracting. They’re used a

lot but only in certain situations. Presenting it all at once makes me feel scatterbrained.”).

Perhaps this system, if nothing else, has passed the Turing test.
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CHF GI Bleed Stroke Syncope
Included but unwanted

Urine Culture Creatinine Urine Morphine Ferritin
Blood Culture Albuterol Prednisolone Docusate Na
Iron Level Ipratropium Ipratropium Inhaler Spacer
Insulin Morphine ACE Consult Morphine

Albuterol Neb Simvastatin Neck CT Angio Salbutamol
IV Fluids Salbutamol Neck MRA Vicodin
Morphine Heart Healthy Holter Monitor

ACE Consult Iron/TIBC
Renal Consult Folate Level
OT Consult Albuterol Neb
PT Consult Fluoxetine
TED hose Thiamine

Low-carb Diet
Folic Acid

Not included but wanted
EKG 85.7% NPO 100.0% Metabolic Panel 71.4% Metabolic Panel 85.7%
Aspirin 71.4% Metabolic Panel 85.7% Protime 57.1% EKG 71.4%

Chest X-Ray 57.1% IV Fluids 71.4% EKG 57.1% Heart Healthy 42.9%
Heparin 42.9% Telemetry 71.4% Statin 42.9%

Foley Cath. 28.6% NG Tube 57.1% LFTs 28.6%
Heart Healthy28.6% Net IO 42.9%

Table 10.9. Order set draft items which lowered the precision and recall.
Top: orders which were included in the draft but universally unwanted.
Bottom: orders not in the draft which were wanted by more than one rater.

CHF GI Bleed Stroke Syncope
Net IO +50.0% Type and Cross+75.0% Net IO +66.7% Lipid Profile+50.0%

O2 Therapy +50.0% EKG +75.0% Enoxaparin +50.0% Head CT +33.3%
Low Sodium Diet+50.0% Blood smear +66.7% Foley Catheter+50.0% O2 Therapy+25.0%

Mg Level +41.7% Mg Level +66.7% Lipid Profile +33.3% EEG +25.0%
Hydralazine +33.3% Promethazine +66.7% OT Consult +33.3%
Clopidogrel +33.3% Octreotide +50.0% Blood Smear +25.0%

Glucose Bedside +33.3% Phos Level +41.7% Electrolytes +25.0%
Cardiac Markers +25.0% O2 Therapy +41.7% IV Fluids +25.0%
Cardiac Echo +25.0% Golytely +33.3% Esomeprazole +25.0%

PT Consult +33.3% TED hose +25.0%
Protime +25.0% Chest XRay +25.0%

Table 10.10. Order set draft items which most frequently improved the
final order sets. Shown here: orders on the draft included on the final
order set at least 20% more frequently when the draft was given. The exact
percentage improvement is given next to the order.
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CHAPTER 11

Closing Remarks

There is incredible burden in creating and maintaining localized CDS content - so much

so that it is frequently not done, at all but a few pioneering institutions. Yet, CDS systems

are one of the few aspects of HIT which have demonstrated increased quality of healthcare

delivery and reduced costs.

Therefore, in the preceding pages, we have developed an approach to ease the burden

of CDS content maintenance, by extracting treatment decisions from local data in the

form of situation-specific treatment suggestion lists. Our approach uses Bayesian network

learning with several innovative algorithmic advances. Overall, we found that our system

can reproduce the local standard of care well. When a chief complaint is known, our system

can produce a short menu (on average < 20 items, and in some cases < 5) that will correctly
list the most relevant next treatments and tests. When more context is known (previous

treatments, comorbid conditions, and demographics) the accuracy of the lists grows and

the length shrinks substantially. In such situations, the lists are frequently more than 90%

sensitive. Although clinicians were subjectively undecided as to whether the system helped

them generate admission order sets, the data show that lists generated with the help of our

system were more complete and constructed faster than without.

Domain-specific networks learned with our system produced networks of 80-90 treat-

ments 10-20 comorbid diagnoses, and demographic information in, on average, 50 minutes.

This process is automatic and can therefore be scheduled to happen during nights and

evenings. Additionally, as long as the structure of the network stays fixed, updating the

probabilities in the network is extremely quick (< 2 minutes per network). Once the network

is generated, it can be reasoned over (i.e. the context of the hospitalization can be dynam-

ically updated) almost instantaneously. Overall, this approach allows dozens of partitioned

networks, triggered by chief complaint, to be dynamically loaded to assist with a patient

encounter or order set development.

1. Summary of Contributions

We have made the following novel contributions in this work:
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● Chapter 3. The idea of using Bayesian structure learning algorithms to generate

situation-specific order sets using local data, to promote and simplify the develop-

ment of CDS. This resulted in complex networks of association able to generate

order sets from data with much greater accuracy than better-studied methods.

● Chapter 4. A methodology to generate dynamic situation-specific order sets as

the clinical situation evolves, and two statistics that measure the accuracy of such

order sets (PPV80 and tAUC). This allows rapid retrospective, data-based analysis

of domain-specific networks.

● Chapter 5. A SQL-based approach to rapidly find statistical relationships among

the data, which is used in the following two chapters.

● Chapter 6. A method to use these relationships for principled feature selection

using network reasoning, which selects more relevant treatments for conditions in

domain-specific networks than a frequency-based measure.

● Chapter 7. A method to use the statistical relationships from chapter 5, as well

as other advances in Bayesian learning theory, to learn networks with comparable

predictive power at much higher speed than previous algorithms, on average by an

order of magnitude.

● Chapter 8. A temporal Bayesian network approach for fully-observed systems in

which the task is predicting the next event. This approach can be implemented

on existing structure learning and inference tools with only a moderate increase in

complexity, and applies a concept called ‘fading’ to learning, which allows learning

about past events without unrolling the network (and the associated increased

computational complexity).

● Chapters 9 and 10. An exploration of additional data, decision thresholds, and

partitioned networks to devise a complete system for situation-specific treatment

advice in inpatient medicine.

In addition to these novel contributions, we also thoroughly reviewed the state-of-the-

art in clinical data mining and reasoning, theories of crowd wisdom, and Bayesian network

learning and reasoning (including existing software tools). We expect that this research will

be the beginning of a long line of future improvements.
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2. Limitations and Future Directions

2.1. Limitations. This research is predicated on the assumption that average patterns

in the data represent reasonably good care for future patients. In many decision-making

problems, average patterns do in fact represent ‘crowd wisdom,’ (Surowiecki, 2005) but

‘crowd madness’ (the domination of bad decisions in a group) can occur as well. In medicine

this is reflected by such phenomena as the widely varying Medicare spending by region

(Fisher et al., 2009). Discriminating wisdom from madness is important future work. (See

Chapter 1.)

Also, this system relies primarily on order-entry data (previous orders and diagnoses) in

the current encounter to drive its treatment advice. A greater patient context is desirable.

Many data-sources exist that generate patient data in an encounter. Some of these are

frequently recorded (e.g., laboratory results, telemetry results, and active diagnoses from

previous hospitalizations), and some are not (e.g., many nursing assessments like vitals and

patient condition). Our exploration in Chapter 9 demonstrated that incorporating addi-

tional data sources is fraught with complexity, and in earlier work we explored determining

which diagnoses remain active across hospitalizations and found this also quite challenging

(Klann and Schadow, 2010). Nonetheless this is important future research.

2.2. Future Directions. We feel this work is an early step in utilizing local practice

data for crowd-wisdom methodologies. Therefore, the future directions for this work are

legion. They can be divided into incremental changes and paradigm shifts. Two non-

exhaustive lists follow.

Incremental:

● Develop methods to incorporate longitudinal data into the temporal model.

● Develop new methods to integrate disparate data sources.

● Develop methods to detect synonymous orders by their usage patterns in the sys-

tem (e.g., various equivalent painkillers).

● Favor relationships in network learning where more consistent data is available.

● Explore a dynamic decision threshold that is not tied to a single, fixed number.

● Choose decision thresholds that assign less importance to common comfort mea-

sures.
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● Incorporate outcomes so as to filter negative behavior.

● Incorporate information on the physician so as to filter out inexperienced practi-

tioners.

● Investigate applications of other Bayesian-network probability queries (e.g., MAP

- maximal a posteriori - queries find a most likely configurations of evidence, which

might be useful in suggesting groups of treatments).

● Support multiple orders of the same item within a hospitalization.

Paradigm:

● Implement and evaluate a live decision-support design tool for content maintainers.

● Implement and evaluate a live dynamic-decision support system using our method-

ology, and dynamically modify it to adapt to the feedback of users.

● Develop quality-monitoring applications using this approach, to detect behavior

outside the norm.

● Develop an approach to take snapshots of local standards using this methodology,

to compare across regions.

3. Conclusions

We have successfully developed methods to reverse-engineer treatment decisions from

local order-entry data, by applying and advancing a technique called Bayesian structure

learning. These methods were used to successfully generate accurate situation-specific treat-

ment menus, primarily on inpatient hospitalizations. Moreover, they generated admission

order set drafts which aided clinicians in developing a final order set. We feel that methods

for using local data to assist the development of decision support and monitoring of practice

patterns will become an important area of research in the coming years.
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APPENDIX A

Additional Information

1. Why Tetrad and SMILE?

In this work, we provide at best meager evidence that Tetrad and SMILE are the optimal

tools for Bayesian network learning and inference. Here we offer a more comprehensive

review of available software.

A variety of free and commercial software packages perform Bayesian network structure

learning and inference. For the most part, these two tasks are performed by separate appli-

cations, and the latter task is better supported. Because this work does not propose new

inference methods, we sought an efficient inference tool with an Application Programmer’s

Interface (API). For structure learning, however, we expected to develop our own algo-

rithms, and so we required either a very fine-grained API (to perform e.g., BDeu scoring)

or full source code. Open-source structure-learning tools are quite rare, and such a fine-

grained API is unavailable. Additionally, we knew structure learning with edge restrictions

would be a useful feature. Also, various tools support a variety of advanced features: causal

or temporal inference, inference with uncertain (soft) evidence, varieties of temporal struc-

ture learning, etc. Finally, we required tools that could handle large datasets and networks

of several hundred nodes.

Kevin Murphy maintains a list of many Bayesian software packages1, but it is silent on

some of these points, so we undertook an evaluation of many current packages. The results

of this evaluation can be seen in Table A.1 and Table A.2.

We can immediately eliminate the structure-learning tools that are not open-source,

leaving us with four packages. Of these, we must eliminate BNT, because our experiments

have shown it cannot handle large networks. (BNT is an excellent package for prelimi-

nary experimentation, however, because it touches on nearly every feature that has been

researched on Bayesian Networks.) Its architecture relies heavily on objected-oriented Mat-

lab, which cannot be parallelized with the Matlab Distributed Computing Server (MDCS),

and one machine cannot handle large networks due to the program’s reliance on cell arrays,

1http://www.cs.ubc.ca/ murphyk/Bayes/bnsoft.html
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which are not efficient in the way Matlab matrices are. Of the remaining three tools, CTBN-

RLE only supports continuous time Bayesian networks. In Chapter 8, we elect not to use

this model, so this too is out of the running. Remaining are Pebl, bnlearn, and Tetrad.

All have slightly different features. Pebl alone supports causal Bayesian networks, another

model for handling time. It also provides well documented source code. Unfortunately, it

implements the least complex array of learning algorithms. Although it provides a BDeu

scorer, it offers no statistical independence tests and only provides a simple best-first greedy

search and simplified simulated annealing search. bnlearn provides the best support (among

the remaining packages) for hybrid algorithms, implementing a very fast optimized MMHC

learner. However, we found Tetrad to be better documented and supported, and it offered

the widest variety of building blocks in its source code for developing our own methods.

Therefore this was our choice for structure learning, not because it offered everything but

because it was the best available.

Selecting an inference tool was simpler. Table A.2 is not an exhaustive list - many fly-

by-night tools attempt Bayesian inference. The tools listed here are fairly well supported.

We slightly preferred a Java API and a free tool, leaving four options. ACE only supports

a particular compiled network approach (decomposing a junction tree into an arithmetic

circuit), which did not allow dynamic changes to the network during inference. We did not

end up using such functionality, but it seemed unnecessary to limit our options. Logically,

Tetrad seemed like a logical choice because we chose to use it for structure learning. How-

ever, SMILE was more full-featured, supporting more file formats and inference algorithms.

Therefore we chose SMILE. It is worth noting that GEnie is a popular graphical tool for

Bayesian inference (in Windows) and it is actually a front-end for SMILE.

2. Table of Synonymous Medications

When cleaning the order data in Chapter 1, we combined orders for medications that

only differed in route of administration. Here we list the terms used for this process. These

terms were removed from the end of medication names to combine multiple medications
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Netica BayesiaLab BNT LibB Tetrad Pebl
Structure N Y Y F, P F, (P) F, P
Scalable N (Y) (Y) Y Y N
Parameters ML, EM ML, EM ML, EM ML, EM ML, EM ML
Uncertain values Y N N N N N
CBN N Y Y N N Y
DBN N (Y) Y N N N
CTBN N N N N N N
Open-source N N Matlab N Java Python
Free N N Y Y Y Y

SamIAM CTBN-RLE Causal Explorer SMILE bnlearn
Structure N Y N F, (P) F, (P)
Scalable N N Y N Y
Parameters EM Y N ML, EM ML
Uncertain values N N N N N
CBN N N N N N
DBN N Y N N N
CTBN N Y N N N
Open-source N C++ N N R
Free Y Y Y Y Y

Table A.1. Software for Bayesian network learning. P stands for the spec-
ification of possible parents, and F stands for the specification of forced or
forbidden edges. (P) indicates a limitation in the specification, usually in
the form of a limited number of ‘temporal tiers.’ Note that only Pebl also
supports soft structural constraints in the form of energy matrices. Scalable
indicates the type of algorithms implemented: N indicates only score-based,
(Y) indicates constraint-based, and Y indicates hybrid. In parameter learn-
ing, ML is the Maximum Likelihood algorithm and EM is expectation maxi-
mization, used on incomplete data. CBN, DBN, and CTBN are methods for
handling time (Causal Bayesian Network, Dynamic Bayesian Network, and
Continuous Time Bayesian Network, respectively).

into single items. These terms were chosen manually by skimming a list of all medications

used in Gopher and can be seen in Table A.3.
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Netica BayesiaLab BNT Tetrad SMILE
Exact Y Y Y Y Y
Approximate Y Y Y Y Y
Compiled Y N N N Y
Soft evidence Y Y Y N Y
API Java N Matlab Java Java/C/.NET
Free N N Y Y Y

SamIAM CTBN-RLE ACE BUGS
Exact Y Y N N
Approximate N Y N Y
Compiled N N Y+ N
Soft evidence N N Y (N)
API N C++ Java Java, R
Free Y Y Y Y

Table A.2. Software packages for Bayesian network inference.

Search terms used to eliminate redundant medications
‘iv’ ‘suppository’ ‘suspension’ ‘solution’
‘inj’ ‘sr’ ‘concentrate’ ‘susp’ ‘syrup’ ‘powder’
‘liquid’ ‘drops’ ‘drip’ ‘enema’ ‘patch’ ‘ointment’
‘infusion’ ‘cap’ ‘tab’ ‘xr’ ‘chewable’ ‘ir’ ‘elixir’
‘cream’ ‘pwd’ ‘syr’ ‘topical’ ‘lotion’ ‘lot’ ‘tabs’
‘drip’ ‘oint’ ‘gel’ ‘liquid’ ‘sl’ ‘chew’ ‘nasal’
‘patch’ ‘immun’ ‘vaccine’ ‘inhaler’ ‘shampoo’
‘irrigation’ ‘chewable’ ‘suppository’
‘buffered’ ‘(enteric-coated)’

Table A.3. Medication words used in Gopher to indicate a route of admin-
istration.
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