
Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Nathaniel William Bruce

AUTOMATIC MODELING AND SIMULATION OF NETWORKED COMPONENTS

Master of Science in Electrical and Computer Engineering

Sarah Koskie

Yaobin Chen

Lingxi Li

Sarah Koskie

Yaobin Chen 04/13/2011

Graduate School Form 20
(Revised 9/10)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of Choose your degree

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the
United States’ copyright law and that I have received written permission from the copyright owners for
my use of their work, which is beyond the scope of the law. I agree to indemnify and save harmless
Purdue University from any and all claims that may be asserted or that may arise from any copyright
violation.

Printed Name and Signature of Candidate

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

AUTOMATIC MODELING AND SIMULATION OF NETWORKED COMPONENTS

Master of Science in Electrical and Computer Engineering

Nathaniel William Bruce

04/13/2011

AUTOMATIC MODELING AND SIMULATION

OF NETWORKED COMPONENTS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Nathaniel William Bruce

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

May 2011

Purdue University

Indianapolis, Indiana

ii

ACKNOWLEDGMENTS

I would like to acknowledge all of the many people who helped make this work

possible. In particular, special recognition is given to my advisor, Dr. Sarah Koskie,

who has helped greatly in project work and thesis preparation.

Acknowledgment should also be given to my committee members, Dr. Lingxi Li

and Dr. Yaobin Chen who provided advice and suggestions throughout the develop-

ment of this thesis.

Thank you to my co-workers Dr. Robert DuFour, Ray Prieto, Heather Wisdom,

Hari Krishna, and Kreg Sweeney for their support and thank you to my family and

friends.

Thanks, also, to the graduate coordinator, Valerie Lim Diemer, department sec-

retary, Sherrie Tucker, and other administrative staff who helped along the way.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

ABBREVIATIONS . viii

ABSTRACT . ix

1 INTRODUCTION . 1
1.1 Problem and Motivation . 1
1.2 Previous Work . 3
1.3 Innovations . 5
1.4 Thesis Layout . 6

2 BACKGROUND . 7
2.1 Communications with the Controller Area Network 7
2.2 Discrete Event Systems . 8
2.3 Recovery of Communication Protocol 11

3 IMPLEMENTATION . 18
3.1 Overview . 18
3.2 Step 1: Record Communications Trace 21
3.3 Step 2: Identify Relevant Signals 23
3.4 Step 3: Synthesize FSM . 26
3.5 Step 4: Manually Modify FSM . 37
3.6 Step 5: Simulate FSM In Real-Time 39

4 RESULTS . 48
4.1 Practical Evaluation of Finite State Machines 48
4.2 Synthesis Results . 52

4.2.1 A Controller And Its Supervisor 52
4.2.2 Controller with Increased Complexity 57
4.2.3 Cruise Control . 63
4.2.4 Other Applications . 68

4.3 Simulation Results . 70
4.4 Modeling Time . 72
4.5 Discussion . 74

4.5.1 Synthesis Variations . 76
4.5.2 Simulation Variations . 76

iv

Page

5 CONCLUSION . 78

LIST OF REFERENCES . 79

APPENDIX: SOURCE CODE (in supplemental file)

v

LIST OF TABLES

Table Page

3.1 Recorded Messages . 23

3.2 Recorded Messages with Signal Values 25

4.1 Event Sets for Example Automata . 50

4.2 Minimal Event Sets for Example Automata 51

4.3 Deviation Quantification Steps for Afew Compared with Aideal 56

4.4 Comparison of Modeling Times . 73

4.5 Evaluation Results . 74

vi

LIST OF FIGURES

Figure Page

3.1 Vehicle’s CAN network structure and modules 19

3.2 Interface used to identify relevant signals 24

3.3 Class diagram showing relations between data structures used in the al-
gorithms . 28

3.4 Steps 1-6 for construction of the FSM example 35

3.5 Step 7 for construction of the FSM example 36

3.6 Final result of the FSM synthesis (before reduction) 37

3.7 FSM after equivalency reduction . 38

3.8 Completely synthesized finite state machine 39

3.9 FSM after manual modifications . 40

3.10 Flowchart showing the modes of simulator operation 41

4.1 Two example state diagrams for automata G1 and G2 49

4.2 Controller synthesis by hand (Aideal) 53

4.3 Controller synthesis from data with few events (Afew) 53

4.4 Controller synthesis from data with many events (Amany) 54

4.5 Scores for Aideal compared with Amany and Afew 58

4.6 Controller synthesis by hand (Bideal) 59

4.7 Controller synthesis from data with few events (Bfew) 59

4.8 Controller synthesis from data with many events (Bmany) 60

4.9 Scores for Bideal compared with Bmany and Bfew 63

4.10 Cruise control synthesis by hand (Cideal) 65

4.11 Cruise control synthesis from first data set (C1) 65

4.12 Cruise control synthesis from second data set (C2) 66

4.13 Scores for Cideal compared with C1 and C2 68

vii

Figure Page

4.14 Synthesis results for vehicle speed (excerpt) 69

4.15 Synthesis results for a repeater . 71

4.16 Comparison of all evaluated results (scaled by language size) 75

viii

ABBREVIATIONS

CAN Controller Area Network

CFSM Communicating Finite State Machine

CRC Cyclic Redundancy Check

DES Discrete Event System

FSM Finite State Machine

HIL Hardware-in-the-Loop

SIL Software-in-the-Loop

USAP Upper Service Access Point

ix

ABSTRACT

Bruce, Nathaniel William. M.S.E.C.E., Purdue University, May 2011. Automatic
Modeling and Simulation of Networked Components. Major Professor: Sarah
Koskie.

Testing and verification are essential to safe and consistent products. Simulation is

a widely accepted method used for verification and testing of distributed components.

Generally, one of the major hurdles in using simulation is the development of detailed

and accurate models. Since there are time constraints on projects, fast and effective

methods of simulation model creation emerge as essential for testing.

This thesis proposes to solve these issues by presenting a method to automatically

generate a simulation model and run a random walk simulation using that model.

The method is automated so that a modeler spends as little time as possible creating

a simulation model and the errors normally associated with manual modeling are

eliminated. The simulation is automated to allow a human to focus attention on the

device that should be tested.

The communications transactions between two nodes on a network are recorded

as a trace file. This trace file is used to automatically generate a finite state machine

model. The model can be adjusted by a designer to add missing information and

then simulated in real-time using a software-in-the-loop approach.

The innovations in this thesis include adaptation of a synthesis method for use

in simulation, introduction of a random simulation method, and introduction of a

practical evaluation method for two finite state machines.

Test results indicate that nodes can be adequately replaced by models generated

automatically by these methods. In addition, model construction time is reduced

when comparing to the from scratch model creation method.

1

1. INTRODUCTION

This chapter introduces the problem that this thesis addresses and the motivating

reasons why this work is needed. Previous work in the field of automatic model

generation and software- and hardware-in-the-loop simulation is reviewed. The con-

tributions and innovations introduced in this thesis are described and the layout of

the thesis is outlined.

1.1 Problem and Motivation

Often in the development of complex systems, testing and validation are left out

of a project plan. A working product is usually the final deliverable of a large project,

so fewer resources are devoted to the verification stages. With little time spent on

testing, the quality of the final product is often compromised. In all cases this is

unacceptable because it can pose a risk to human safety.

Even with adequate time allocated to testing, there may arise the need for obscure

equipment or a different working environment. Most products must be tested in the

target environment that they will eventually be deployed in. This requires all inter-

facing devices to be present so that full testing can be completed. The availability of

these external devices can be limited by geographical constraints and cost constraints.

Despite these factors, products still need to be tested in order to verify that they are

safe, reliable, and meet their design requirements.

Simulation is often a way of coping with these concerns. It is a means of replacing

some of the interfacing devices in a system so that the other devices can perform

without modification. By using a simulation, many of the previous concerns can be

completely eliminated. The real-time hardware-in-the-loop style of simulation has the

added benefit of finding flaws due to factors that may arise only in the implementation

2

of a design. Simulation is a popular approach to verifying a design or product by

attempting to find flaws in large state spaces either with random or directed test

patterns. Simulation is intuitive, easy to use, and adequate to detect early-stage

errors [1]. Simulation can also be used in real-time in the target environment.

Although simulation does solve many problems associated with testing and ver-

ification, there are also disadvantages that can hinder the process. The first is that

a simulation is only as good as the model. The more detailed the model, the more

successfully it can replicate a device in a simulation setting. Of course, in order to

add as much detail as possible to the model, more development time is required.

An accurate model is key to successful simulation, but since few resources may be

allocated to the testing phase of development, this severely restricts the viability of

simulation for use in testing.

This thesis proposes to solve these issues by presenting a method to automati-

cally generate a simulation model and run a simulation using that model. In order

to generate a model, the presented method will use recorded data in order to inform

the construction process so that an operator (i.e. human user of the system) can

spend as little time as possible constructing a simulation model by hand. This min-

imization reduces the resources required for the testing phase and can also improve

the simulation model by eliminating the error associated with manual construction

of a model. This method is also generic and flexible enough that it can be applied in

many different architectures and environments.

Some of the reasons automatic model generation methods are preferred to manual

generation methods include [2]:

1. A simulation model typically must be continuously adapted to the current state

of the project and will need to be recreated several times

2. Manual modeling can result in errors and cause misleading simulation results;

the quality of a simulation model should not be in question

3. Engineering resources are often not available

3

4. Domain specialists for simulation and modeling are sometimes necessary for

development of suitable models

The method in this thesis will use a recovery approach to model generation. In

the recovery approach, the transactions between modules on a network are recorded

as a communications trace, and using this trace the communications protocol can

be recreated. Once this protocol is known, the information about what is received

and sent by an individual node on the network can be used to construct a simulation

model of that node. This model can then be improved manually and simulated in

real-time using a software-in-the-loop (SIL) approach. The SIL approach is preferred

to traditional simulation methods because of the trade-offs between fidelity and speed,

model validation, and code reusability [3].

Some of the desirable features of a model development environment include [4]:

1. Modeling flexibility

2. Ease of model development

3. Fast model execution speed

4. Animation

5. Automatic model replications (multiple runs)

These features were addressed when the proposed methods were created. The

synthesis methods make model development easier. The simulation methods execute

models quickly. Automatic model replications can be done easily. The other two

features, modeling flexibility, and animation are considered as well.

1.2 Previous Work

The idea of automatic model generation is not new. Previously, artificial intelli-

gence techniques such as automatic programming have been used to help modelers

generate the code needed for simulation models, such as in [5] and [6]. Automatic

4

programming was used in [7] as well to help modelers write programs in higher levels

of abstraction and to create a model library. The automatic programming techniques

are among the most promising methods of automatic model generation, but require

complete source code in order to generate models. On older projects, this is often not

available.

In [8], air conditioning systems were used as a case study in automatic model

generation. Models were created manually first, and then were modified and updated

automatically based on behaviors of the modeled system as they were measured. This

method saves some time since the models are updated automatically, but the initial

time spent in creating the model is still significant.

Stochastic simulation model generation has also been suggested. In [9], the au-

thors argue that by using stochastic generation, large quantities of models, each with

slight variations, can aid in automatic model abstraction and simulation verification.

Constraints are provided by a user to inform the process and several random models

are generated. The drawback is that all of the models must be simulated or cho-

sen between by a human, and despite these improvements, it is still accepted that

modeling and simulation take too much time.

In [10], the authors state that creating models manually, rather than automati-

cally, has the most benefit, but suggest that using hardware-in-the-loop (HIL) simu-

lation will speed up the process. Adding a manual modeling step has also been used

in [2], where a human provides some information in an object-oriented file which is

later used to automatically generate a simulation model. A similar approach has been

taken in [11] where a Petri net data structure is formed and a simulation model is

created by populating the data structure.

The idea of using both hardware and software components as in HIL or SIL simu-

lation has been widely used to accelerate the testing process. For example, real-time

HIL simulation is used in [12] in order to rapidly develop digital controllers for power

electronics. Maximum code reuse and minimal cost are some of the improvements

that SIL methods have been shown to produce. The work in [3] proposes that the

5

main benefit of SIL is the combination of flexibility and low cost of a simulator with

the fidelity of a hardware emulator.

Similar to the method presented in this thesis, automatic unit test generation has

been done in [13]. In this method the user’s operating steps are recorded, and data

from the system test script is used in conjunction to generate a unit test script. This

requires a system test script, something that is not necessarily readily available when

the testing phase begins.

Simulation has also been done without first generating models. Given the design

to test and the desired simulation coverage, the method in [1] generates a few key

constraints to achieve high simulation coverage. A small number of executions are

run to collect coverage holes, then analysis of control-data flow graphs is conducted to

automatically extract constraints. Another approach is seen in [14] where an adaptive

Markov Model is used to guide the design under test into a state where further testing

can be performed. This method is a semi-formal approach, but is efficient in covering

corner cases with hard-to-reach states.

Another approach has been used for automatic test generation. In [15], the state

space of the design is explored by automatically generating test vectors using a divide

and conquer approach. Typically state exploration is not possible because of the state

explosion problem, but divide and conquer is a viable option. However, it does not

reach corner cases easily and will spend valuable time unsuccessfully attempting to

navigate to unreachable states.

1.3 Innovations

Although there has been some significant work in the field of automatic model

development and simulation, none met the criteria that this thesis addresses. The

major contributions and innovations in this thesis include:

6

• Adaptation of the synthesis method proposed in [19], including addition of

simulation data such as weighted transitions and timings, removal of a cyclical

protocol requirement, and removal of potential simulation deadlock

• Introduction of a random walk simulation method

• Introduction of a practical evaluation of finite state machines to compare results

1.4 Thesis Layout

Following this introduction, the rest of the chapters explain the methods of this

thesis and are organized as follows.

Chapter 2 provides background on topics necessary to the implemented methods.

An overview of digital communications and the controller area network are given,

discrete event systems and regular expressions are introduced, and the work that the

synthesis method of this thesis is based on is summarized.

Chapter 3 proposes the innovative methods of this thesis and how they are imple-

mented. The process is outlined, then each step is discussed in the general case and

specific examples are given.

Chapter 4 describes the results from applying the methods in Chapter 3. An

evaluation method is given in order to evaluate two similar finite state machines.

Then, five examples are shown and analyzed using the proposed methods. Qualitative

results are explained for the real-time simulation method. Finally, the results and

possible method variations are discussed.

Finally, Chapter 5 contains the conclusion of the thesis and describes future di-

rections.

7

2. BACKGROUND

This chapter serves as a primer on topics that are necessary to the proposed methods

of this thesis. First, an introduction to digital communications with the Controller

Area Network is presented. Then, background on discrete event systems is given,

including formal languages and regular expressions for automata. Finally, work on the

recovery of a communications protocol using a dynamic reverse engineering approach

is discussed.

2.1 Communications with the Controller Area Network

Digital communications provide a foundation for the implementation of the meth-

ods in this thesis. Although application to other platforms is possible, a communica-

tion network is the intended environment. The methods in this thesis were realized

using a Controller Area Network (CAN). The following information is summarized

from [16].

The CAN network is a multi-master serial bus using broadcast to transmit to all

nodes. The CAN protocol allows up to 1 Mbit/s speeds and can be used in real-time

systems. The data is reliable and error detection is robust. CAN is also very flexible

because nodes can be added and taken away without reconfiguration.

CAN was originally developed for the automotive industry, but is now popular in

many industries including marine, medical, manufacturing, and aerospace. The CAN

protocol describes how information is passed between nodes or devices on a network

and how the software and hardware layers are defined.

CAN is a carrier-sense multiple-access protocol meaning that each node on the bus

must wait a specified period of time before attempting to send a message. CAN also

supports collision detection and message priority arbitration, meaning that collisions

8

are resolved through bitwise arbitration based on a predetermined identifier field

of each message. A higher priority identifier always wins bus access. Associating

message priority with the identifier is a feature that makes CAN useful in a real-time

environment.

In the protocol, there are four message types that can be transmitted. The data

frame is the most common. It contains an 11-bit identifier, 8 bytes of data, a cyclic

redundancy check (CRC) field with checksum for error detection, and an acknowl-

edgment field.

It is often inefficient to use all 8 bytes of data for a single piece of information

from a source. Instead, the bytes are packed with several pieces of information in

groupings of bits called signals. These signals are predefined with bit numbers and

lengths, numeric types, and resolutions in order to compactly represent the contained

information. In the implementation of this thesis, a database file containing these

definitions is used to standardize the signals between executions.

Also in the implementation, error frames and communication failures are assumed

to be nonexistent and the communications network is treated as a working “black

box” model. Naturally, if failures and errors are present in the data or at simulation

time, the resulting quality of the simulation and modeling process will deteriorate

accordingly.

2.2 Discrete Event Systems

A discrete event system (DES) is a discrete-state, event-driven system. In other

words, a DES’s state evolution depends only on the occurrence of asynchronous dis-

crete events over time. A DES is a formal language structure that will aid in the

understanding of finite state machine comparison and evaluation later. The concepts

in this section are summarized from [17].

In a DES, the state space is a discrete set X, as opposed to a continuous time

or discrete time systems. A DES behaves in a way described in terms of event

9

sequences specifying the order in which various events occur over time. The actual

times associated with the occurrence of these events are not part of the structure,

however.

An event set E of a DES is used as an alphabet. Sequences of events from the

alphabet can be formed into strings. A string can contain no events and is then called

the empty string, denoted ε. The length of a string s (denoted as |s|) is the number

of events contained in it, including duplicates.

A language can be defined over the event set E, and represents a set of finite-

length strings formed from events in E. Language is a formal structure and by itself

is not easy to work with, so the automata modeling formalism is used to represent

and manipulate DES languages.

A deterministic automaton, denoted G, is a six-tuple

G = (X,E, f,Γ, x0, Xm)

where:

• X is the set of states

• E is the finite set of events associated with G

• f : X × E → X is the transition function: f(x, e) = y means that there is a

transition labeled by event e from state x to state y

• Γ : X → 2E is the active event function (or feasible event function). Γ(x) is

called the active (or feasible) event set and contains all events e for which f(x, e)

is defined

• x0 is the initial state

• Xm ⊆ X is a set of marked states.

An automaton G begins operation in an initial state x0. When an event e ∈

Γ(x0) ⊆ E occurs, the automaton will make a transition to the state f(x0, e) ∈ X.

10

Here, it will wait until another event occurs that takes the automaton to a new state.

This process continues indefinitely until a deadlock state is reached where f(x, e) is

not defined for any event e.

For convenience, f is usually extended from the domain X × E to the domain

X × E∗ in the following way:

f(x, ε) := x

f(x, se) := f(f(x, s), e) for s ∈ E∗ and e ∈ E

Languages and automata are, of course, connected. This connection can be seen

by inspecting the state transition diagram of an automaton. Starting in the initial

state, consider all directed paths that can be followed in the state transition diagram.

This leads to the notion of the language generated by an automaton. The language

generated by G = (X,E, f,Γ, x0, Xm) is

L(G) := {s ∈ E∗ : f(x0, s) is defined} (2.1)

Starting at the initial state, the language L(G) is used to represent all directed

paths that can be followed in the state transition diagram, where a path is a string

concatenating the event labels of transitions that make up the path. Thus, a string

s is in L(G) only if it corresponds directly to a possible path in the state transition

diagram. This also means s is in L(G) only if f is defined at (x0, x). Any event in E

that appears in a string in L(G) is called an active event. Not all events that are in

E are necessarily active.

If a language can be marked by a finite-state automaton, it is said to be regular.

Using the automaton structure, regular languages can be manipulated in a practical

manner for use in analysis or control synthesis problems.

Since languages tend to be infinite (or at least quite large), it is necessary to

describe them in a compact form. Regular expressions are typically used to compactly

represent a regular language. A regular expression is defined as follows:

1. ∅ is a regular expression denoting the empty set; ε is a regular expression de-

noting the set {ε}; e is a regular expression denoting the set {e}, for all e ∈ E.

11

2. If r and s are regular expressions, then rs, (r+s), r∗, s∗ are regular expressions.

3. There are no regular expressions other than those constructed by applying rules

1 and 2 above a finite number of times.

The symbol “+” is used as a logical OR meaning that either event will be ac-

cepted. The ∗ indicates Kleene-closure of an event. The Kleene-closure of u is

{u}∗ = {ε, u, uu, uuu, ...} and is usually written simply as u∗. When the sets {u}

and {v} are concatenated into {uv}, it is written as uv. Expressions like (u+ v)∗ are

used to represent sets that are too complex to write through individual element enu-

meration. Regular expressions provide a compact finite representation for potentially

cumbersome languages with an infinite number of strings.

2.3 Recovery of Communication Protocol

Previously, Saleh, Probert and Manonmani presented work on how communica-

tions protocol could be recovered through reverse engineering [19]. It is upon this

foundation that the work of this thesis is built. The following section summarizes

that work.

A protocol is a set of rules designed to govern how messages are exchanged in order

to provide a desired service. Designing and developing communications protocols can

be complex because of the varied nature of the communicating elements. Because

of this, correctly recovering protocol designs is necessary to the maintenance and

improvement of communication systems.

A communication system can be viewed as a “black box” providing services to a

number of users. The users can access the system through distributed upper service

access points (USAPs). To create the service, the communication system is separated

into protocol entities which can exchange private messages that are not observable to

users at the USAPs. A communication protocol describes the behavior of the entities

which each service a particular access point.

12

In the past, formal methods have not always been used when designing proto-

cols, and there is a significant amount of existing software that has been developed

using informal approaches to protocol engineering. Typically this software does not

have formally documented service definitions and its design documents are lacking

information or are not updated to match the latest implementation.

Using reverse engineering is a suitable approach to the problem of recovering a

communication protocol. Reverse protocol engineering can be used to analyze an

existing implementation, identify its basic components and their relationships, and

create system models.

A design recovery approach is typically either static or dynamic. In the static

method, protocol designs are taken from software code and require a thorough un-

derstanding of the details of the code. Full automation of this method is usually not

possible since a lot of information is needed from the user or designer. In the dynamic

method, recovery data is collected during actual system execution, ensuring that no

false information is used. The information is taken as a trace recording of observable

events which are analyzed to recover the design. In this work, the dynamic approach

is used because of the benefits described above.

A recovered design is described using the communicating finite state machine

(CFSM) model. Communications traces are collected at run-time at various obser-

vation points of the system. The traces are then merged and rearranged so that the

events’ recorded times are in increasing order. The traces then consist of a sequence

of zero or more trace records, where each record corresponds to an event observed

and recorded at an observation point. Using the ordered traces, a synthesis algorithm

is applied that produces the protocol design.

Each element of the trace TR has a record structure with the components:

• TR.op

This field enumerates the observation point where events are observed and

recorded.

13

• TR.type

The type indicates whether the event was received or transmitted.

• TR.ev

This field contains the name of the event.

• TR.V

The vector clock value yields the order of the event relative to the whole system.

Operations on the traces are necessary when describing the procedure of this

method. Two traces a and b can be concatenated:

a.b = a1...anb1...bm (2.2)

where a = a1...an and b = b1...bm.

Two or more traces t1, ..., tn collected at various observation points can also be

serialized:

T = t1 ⊗ t2 ⊗ ...⊗ tn (2.3)

so that T includes the the events in t1, ..., tn which are sorted and concatenated. This

merging process is similar to merging two sorted lists of integers.

A trace t can be projected over a set of observation points, denoted Πsops(t). This

projection is a subtrace of t, which contains only the events that were observed at

the specific observation point and preserves the order of occurrence.

The traces collected at different observation points of the system are used to

construct the CFSM. The communication protocol is assumed to have only one initial

state. Most protocols are cyclic, where the initial and final states are the same. Trace

collections start with the occurrence of an initial event. The collected traces will

contain random occurrences of initial events, and thus are collected over a long time

period in order to capture as many different representative sequences as possible.

The recording is stopped when a final event is received, and the partial state machine

is synthesized. The resulting CFSM is partial because the collected traces may not

cover all possible transitions and behaviors.

14

To construct a CFSM from a collected trace, let ti1, ti2..., tik be the traces collected

at the different observation points of a protocol entity PEi, and perform the following:

1. Serialize the traces ti1...tik to form STi = ti1 ⊗ ti2 ⊗ ...⊗ tik.

2. Extract the event names TR.en in order from STi to form the trace T . TR.en

is preceded by “-” (“+”) sign if it is a transmission (reception) event. Then

T contains the events corresponding to the protocol messages recorded at the

observation points of PEi in order of occurrence. Let T = (te1, te2,...ten) where

each event tek is made up of the pair (TR.type, TR.en) of the kth trace record

in STi and the function TR.en(tei) will return the value of TR.en of the ith

event of T.

3. Produce the CFSM using Algorithm 3.

Algorithm 1 Create-State
Input: nStates

Output: nStates

1: nStates← nStates+ 1

2: return nStates

The Create-State procedure in Algorithm 1 is used to create a new state. It is

called by the Main procedure when a transition does not already exist in the set.

15

Algorithm 2 Equivalence-Reduction
Input: Q, E, nextState

Output: Q, nextState

1: repeat

2: if ∃event ∈ E,∀x, y ∈ Q : nextState[x, event] = nextState[y, event] then

3: for all z ∈ Q do

4: for all event ∈ E : nextState[z, event] = y do

5: nextState[z, event] ← x

6: Q← Q− {y}

7: until no state y was removed from Q

8: return Q, nextState

The Equivalence-Reduction procedure in Algorithm 2 is used by Main after

one communication’s full start to finish cycle has been processed from the trace. It

then removes the redundant states.

16

Algorithm 3 Main

Input: Initial event list, Trace T

Output: CFSM G = {Q, q0, E, TF}

1: INITIALSTATE ← 1; EMPTY ← 0

2: Declare int array nextState[*,*] indexed by state number and event enumeration

3: nStates← 0; Q = {1}; E = ∅

4: currentState← INITIALSTATE

5: Read(event);

6: while event != EOF do

7: Read(nextEvent)

8: if ∃x, y ∈ Q : nextState[x,event]= y then

9: currentState← nextState[currentState, event] ← y

10: if nextEvent ∈ initalEvents then

11: Equivalence-Reduction()

12: else

13: if nextEvent ∈ initialEvents then

14: currentState← nextState[currentState, event] ← INITIALSTATE

15: Equivalence-Reduction()

16: if TR.en(event) /∈ E then

17: E ← E ∪ {TR.en(event)}

18: else

19: nextState[currentState, event] ← newState← Create-State()

20: Q← Q ∪ {newState}

21: if TR.en(event) /∈ E then

22: E ← E ∪ {TR.en(event)}

23: currentState← newState

24: event← nextEvent

17

Algorithm 3 shows the Main procedure. Starting in initial state 1, the events are

processed sequentially and the next state is determined. This determination is done

by checking if a similar transition already exists in the partially constructed CFSM.

If one does exist, then the next state becomes the state corresponding to that event

transition. If a similar transition does not exist, a new state is created and added to

the CFSM, with a new transition pointing to it. If the next event in the trace is one of

the initial events, the cycle is over and equivalence reduction is performed. Following

this procedure, the protocol can be recovered as a finite state machine model showing

which message events were seen to occur after each other. The intended purpose of

this is for design recovery in the form of documentation, but this method will be

adapted for model generation.

18

3. IMPLEMENTATION

This chapter describes the methods that this thesis proposes for automatic model

generation and random simulation. First, an overview is given describing the pro-

cess. Following this, the five main steps of the synthesis and simulation methods are

discussed in detail.

3.1 Overview

As previously stated, the method proposed by this thesis generates and runs a

simulation model automatically. It uses information from a recorded communications

trace to inform the construction process. The method requires at least two networked

modules. Each of these modules on the network can be a controller or some type

of data processor. The modules should communicate at regular intervals without

errors in the communication protocol. Additionally, at least one of these modules (or

another in the network) should be able to record every communication transaction

that occurs on the network. Given this setup, a module can be removed for servicing

or use in another location and the method is used to automatically generate a model

simulating its communication transactions. This method will look to replace only

the communications of a device will be replaced and not the function of the device,

such as controlling a plant. Often, this is quite acceptable, since testing a device on a

network does not require the other devices to perform their functions; it only requires

that they communicate.

The proposed method could be realized on various setups. Here, it was accom-

plished using a Windows PC, but could be adapted for use in an embedded envi-

ronment as well. It was set up in an automobile with multiple modules on a CAN

communication network. A PC was introduced into the vehicle’s network in order to

19

record transactions and later to simulate a removed module. Focus was placed on

simulating the transactions of a controller in the vehicle. This controller would per-

form some digital control of a plant, communicate its status, and receive commands

from a supervisory controller. See Figure 3.1 for a diagram of the vehicle’s network

structure.

Figure 3.1. Vehicle’s CAN network structure and modules

When designing this method of automatic simulation, it was important to consider

what outcome was desirable. The following are goals of the method, stated with most

desired first:

1. Provide an accurate model

The accuracy of the model is the most important consideration. If a model is

inaccurate, simulation will not provide a good test environment since it will be

difficult to tell what piece of the system is malfunctioning. An accurate model

that is generated automatically will also reduce the workload of the operator

since there will be less to correct.

2. Reduce the time necessary to create a simulation model

Currently, creating a simulation model from scratch requires an operator to

spend time designing a separate test bench or constructing a simulation model

from nothing. Often, doing this by hand can take more time than it took to

design the product that needs to be tested.

3. Require minimal operator interaction

This goal of minimal operation interaction follows from the previous one. By

20

minimizing operator interaction, the operator’s time can be spent doing other

tasks.

4. Produce repeatable and predictable results

Repeatable and predictable results provide more structure so that test plans

can be repeated exactly each time without variation, reducing or eliminating

operator error.

5. Require minimal change to the environment’s current architecture

This is also a goal that will save time. It is desirable that no change should

happen to the environment that the simulator will be run on. Reconfigurations

can introduce new errors and will take time that possibly was not allocated

initially.

6. Offer adaptability to other architectures

This goal offers versatility so that the methods proposed here can be used in

other environments not envisioned by the original specifications. The goal is

that the methods here could be used on other networks.

These goals led to the development of a five step procedure for generating a sim-

ulation model. In the first step, a communications trace is recorded which describes

the transactions in and out of the module that will be simulated. In the second step,

an operator specifies which signals within the messages are relevant to the logical

operation and behavior of the module. In the third step, the information from the

previous two steps is used to automatically synthesize a finite state machine (FSM).

In the fourth step, the operator is given the option to adjust the FSM model to correct

inconsistencies. In the final step, the FSM is simulated in real-time over the network,

effectively replacing the communications transactions of the module.

By using the information found in a communications trace, the operator is saved

the tedious process of entering each detail into the simulation model, effectively

achieving Goal 2. Two of the five steps in the procedure require operator inter-

action. Thus, three of the five steps are automated, reducing operator interaction

21

and achieving Goal 3. Also, Step 4 is optional, which can further reduce operator

interaction in some cases. The synthesis step is deterministic, and the results are

repeatable and predictable, but because of the nature of the simulation model, the

simulation step is stochastic and therefore not predictable, so Goal 4 is achieved in

some cases. The implementation of these steps was accomplished in a vehicle’s CAN

network with no modifications, achieving Goal 5. This procedure is adaptable to

other architectures as well, achieving Goal 6. The accurate outcome of the model in

Goal 1 will be discussed later.

3.2 Step 1: Record Communications Trace

The first step in the procedure is the successful recording of a communications

trace. In this implementation, the recording was accomplished by listening to all

transactions on the CAN network and logging them sequentially into a file. Each

transaction is considered a Message (id, data, time), where id is the identifier of the

message, data is the group of data bits of the message, and time is the received time

of the message. These messages are recorded sequentially and placed in a file for use

in Step 2.

As stated, the result of this step is a file containing sequentially recorded messages.

Ideally, the recording should be of as much data as possible to cover all permutations

of possible transactions and module behaviors. It is also important that modules being

recorded are functioning properly so that the recorded information is as accurate as

possible. This will save the operator from making a lot of corrections by hand later.

This approach to trace recording works well because it is simple. In fact, it is

common for existing data loggers to already perform this function. This means data

could exist already and this step, then, is unnecessary. The recording approach also

allows for an operator to record data in a geographically separate location and transfer

the file to another location for simulation use. The other benefit is that one recorded

22

trace file can be used to synthesize several completely separate finite state machines,

each with different target modules.

In the setup of Figure 3.1, the CAN protocol is used. The id field is an 11-bit

identifier number which identifies the transmitter, receiver, and data format of the

message. The data is 8 bytes of data, formatted according to the id. The id can be

used to look up how the data chunk is formatted and separated into bit groupings,

called signals. The time field is the number of milliseconds since the trace began until

the transaction occurred.

For example, the trace might have data similar to that shown in Table 3.1. In this

example, a controller and its supervisor communicate over a CAN network. The first

column of the table shows the id of the recorded message. The id 849 is sent by the

controller and the id 914 is sent by the supervisory controller. These messages are

the primary means of communication between the two modules. The second column

in the table shows the 64 bits of data in hexadecimal. The meaning of this data will

be clarified later. The third column contains the time. For illustration, this table

shows only part of the full recording.

This data was recorded by a computer listening to the network and saving the

transactions in real-time as they occurred. Although this was implemented using a

CAN network, this type of logging format is general enough that it could be used

with other types of networks.

There are few constraints limiting how this could be applied to other networks. As

long as a node can record all of the transactions to and from that node, a model can

be synthesized to replace the node. Some adaptation would be necessary to apply the

methods to a network with multiple channels. Redundant information received over

multiple channels would need to be eliminated or merged and separating transmissions

by channel would have to be considered.

As discussed in Section 4.4, the results indicate that the most improvement in

model quality comes from a data set with the right number events in the correct

order. In this initial step, it is important for the operator to force (if possible) the

23

Table 3.1 Recorded Messages

ID Data (hex) Time

914 00 00 00 00 00 00 03 00 185685

849 00 00 00 00 80 00 F8 00 185930

849 00 00 00 00 40 00 00 20 189171

849 00 00 00 00 80 00 F8 00 198739

849 00 00 00 00 40 00 00 20 203719

914 00 00 00 00 00 00 13 00 205177

849 00 00 00 00 40 00 00 30 205413

914 00 00 00 00 00 00 03 00 213990

849 00 00 00 00 80 00 F8 00 214325

modeled device to demonstrate all transactions that are necessary to a successful

model, and to do so in the correct order. This may seem obvious, but should be

mentioned due to its importance.

3.3 Step 2: Identify Relevant Signals

The second step of this procedure is for the operator to specify which signals are

relevant to the the logic of the model to be created. Signals are (name, value) pairs

that are used as criteria for a transition (defined later). Informed by a database file

that specifies the signals’ formats and bit numbers, the operator is presented with a

list of all signals that were detected in the execution trace. Based on what signals are

key to the logical operation and behavior of the created model, the operator specifies

whether each signal should be received by the model, sent by the model, or ignored.

In the implementation, the controller will be simulated and the supervisory con-

troller will operate as normal. Based on knowledge of the controller’s operation, the

24

operator would identify that the controller model should send two signals saying when

it is ready and when it is engaged. The controller will also receive the signal from

the supervisory controller commanding it to engage or disengage. The interface for

sorting signals is shown in Figure 3.2, showing the ready, engaged, and engage signals

with their identifications as received and transmitted.

Figure 3.2. Interface used to identify relevant signals

Continuing the example from Section 3.2, the operator must now identify which

groups of bits correspond to relevant data. In the implementation, the organization

of the data chunk was well defined in the database file. The 8 bytes of data for

each message are separated into groups of at least one bit in size, or signals. This is a

25

common practice in digital networks. In the example of Table 3.1, the most significant

bit is on the left (numbered as bit 63) and the least significant bit is on the right

(numbered as bit 0). In the definition for message 849, bit four corresponds to the

controller indicating engaged (1 is engaged, 0 is disengaged), and bit five corresponds

to the controller indicating ready (1 is ready, 0 is not ready). In the definition

for message 914, bit 12 corresponds to the supervisory controller commanding the

controller to engage (a value of 1) or disengage (a value of 0). So, the controller

indicates when it is ready to be engaged, then the supervisory controller can engage

it, and the controller will indicate engaged. Since the operator wishes to simulate the

communications behavior of the controller, ready and engaged should be identified as

transmitted signals, and engage should be identified as a received signal.

Table 3.2 below extends Table 3.1 by showing the values of the relevant signals

for each message that were identified in this step.

Table 3.2 Recorded Messages with Signal Values

ID Data (hex) Time Relevant Signal Values

914 00 00 00 00 00 00 03 00 185685 CtrlAtv = 0

849 00 00 00 00 80 00 F8 00 185930 CtrlRta = 0, CtrlEngaged = 0

849 00 00 00 00 40 00 00 20 189171 CtrlRta = 1, CtrlEngaged = 0

849 00 00 00 00 80 00 F8 00 198739 CtrlRta = 0, CtrlEngaged = 0

849 00 00 00 00 40 00 00 20 203719 CtrlRta = 1, CtrlEngaged = 0

914 00 00 00 00 00 00 13 00 205177 CtrlAtv = 1

849 00 00 00 00 40 00 00 30 205413 CtrlRta = 1, CtrlEngaged = 1

914 00 00 00 00 00 00 03 00 213990 CtrlAtv = 0

849 00 00 00 00 80 00 F8 00 214325 CtrlRta = 0, CtrlEngaged = 0

26

3.4 Step 3: Synthesize FSM

Once information has been gathered in the previous two steps, a finite state ma-

chine can be synthesized. This step is completely automated. In fact, the first step

could be skipped if the synthesis is done in real-time, as discussed later.

The recorded communications trace will be processed one message at a time. As

the messages are processed, they are formed into a finite state machine. This step is

based largely on the work of [19]. That work recovered the protocol for documentation

purposes, but the method will be adapted for model generation. The improvements

and changes include:

1. Adding simulation data such as count and average time to transitions

This added information will be useful in the simulation stage described in Sec-

tion 3.6.

2. Moving equivalency reduction to the end

This is due to the non-cyclical nature of some of the communication traces

that the proposed methods were executed on. The original method called for

a starting event after reception of which equivalent states would be merged.

Since it is anticipated that no cyclical pattern will exist, this part is removed

and equivalency reduction is performed at the end. Also, equivalency reduction

is a computationally intensive procedure. The cyclical protocol requirement is

effectively removed.

3. Addition of end state recycling

This is another addition to help with simulation. This further automates the

FSM simulation by removing the requirement for the operator to reset the

simulation when it reaches a deadlock state. The final state is the only possible

state where deadlock could occur, and this addition removes the possibility of

deadlock.

27

With these modifications, the algorithm generates a simulation FSM model based

on the recorded communications trace and identified signals.

Algorithm 4 Synthesize

Input: Set of Messages T

Output: FSM f

1: f ← new FSM

2: f.states← {1}

3: f.currentState← 1

4: for each m ∈ T do

5: Process-Message(f , m)

6: Reduce-Equivalency(f)

7: Recycle-End-State(f)

8: return f

In Algorithm 4, the FSM f is created. Input T is the ordered set of messages that

were recorded in the communications trace. The initial state, 1, is added to f ’s set

of states and the currentState is set to 1 as well. Then, each message is processed

using the Process-Message routine in Algorithm 5. Once all of the messages have

been processed, equivalency reduction (Algorithm 6) is performed on f to merge any

states that are equivalent. Then, the final state is recycled (Algorithm 8) if it has no

outgoing transitions, completing the synthesis step.

Algorithm 4 introduces several data structures. The first is T which is a set of mes-

sages. The structure of each message is a tuple as described in Section 3.2. The next

data structure presented is f which is of type FSM, a tuple (states, currentState),

where states is a set of all the reachable states and currentState is the state the FSM

is currently operating in. The State data structure is a tuple (transitions, number)

where transitions is a set of Transitions and number is the state’s identifying number.

A Transition is a tuple (signals, id, direction, time, count, nextState), where signals

is a set of the (signal, value) pairs that are the criteria for the transition to occur, id is

28

the message identifier number that the criteria signals arrive in, direction represents

the directional flow of the transition (as a transmission or reception), time is the

average time spent in the state before the transition occurs, count is the number of

times the transition occurred in the recorded communications trace, and nextState is

the state that the FSM will operate in if the transition occurs. These data structures

are summarized in the class relation diagram shown in Figure 3.3.

Figure 3.3. Class diagram showing relations between data structures used in the

algorithms

29

Algorithm 5 Process-Message

Input: FSM f , Message m

1: t← new Transition

2: Add all relevant signals that changed with the new message to t.signals

3: if size(t.signals) > 0 then

4: t.count← 1

5: t.time← m.time− f.lastEventT ime

6: f.lastEventT ime← m.time

7: t.id← m.id

8: if ∃t1 ∈ f.transitions | t1.signals = t.signals then

9: t.nextState = t1.nextState

10: else

11: s← new State

12: t.nextState← s

13: f.states← f.states ∪ s

14: f.currentState.transitions← f.currentState.transitions ∪ t

15: f.currentState← t.nextState

Algorithm 5 describes the routine to process an individual message found in a

communications trace. The input is the partially constructed FSM f and a Message

m to be processed. It takes the information found in m and adds a transition to the

finite state machine from the current state. If a transition in the FSM with the same

criteria signal and value pairs exists, then the new transition directed to its nextState

is added. If no transition with the same criteria exists, then a new state is created

and the transition is directed to the new state.

First, a new transition is created. Then m is analyzed to determine which signals’

values have changed since the last time a message with this identifier was seen in

the trace. The changed signals are added to the new transition’s set of signals along

with their new values. If no signals changed since the last time this message was

30

seen, the routine is complete. Otherwise, the new transition’s count is set to 1 and

the difference in time is calculated from the last event. Then, if a transition exists

with the same signals set as the new transition, the new transition’s nextState is set

to the matched transition’s nextState. Otherwise, a new state is created and the

new transition is directed to it. The transition is added to the current state and the

current state is updated.

Algorithm 6 Reduce-Equivalency

Input: FSM f

1: for each s1 ∈ f.states do

2: for each s2 ∈ f.states do

3: if s2.number > s1.number and s1.transitions = s2.transitions then

4: Merge-States(f , s1, s2)

Reduce-Equivalency (Algorithm 6) works on the simple principal that two

states are equivalent if all of their outgoing transitions and next states are equivalent.

So, the procedure takes f and iterates over all permutations of states to see if they

are equivalent. If the transition sets for two states are equivalent, then the states

are considered equivalent and are merged together using the Merge-States routine

(Algorithm 7).

31

Algorithm 7 Merge-States

Input: f , s1, s2

1: for each t ∈ s2.transitions do

2: Find a transition {tf ∈ s1.transitions : tf .transitions = t.transitions}

3: tf .time← tf .time·tf .count+t.time·t.count
tf .count+t.count

4: tf .count← tf .count+ t.count

5: for each s ∈ f.states do

6: for each t ∈ s.transitions do

7: if t.nextState = s2.number then

8: t.nextState← s1.number

9: f.states← f.states− {s2}

Algorithm 7 shows the Merge-States procedure. It takes as input FSM f

and two states that are identified as equivalent, s1 and s2. In the merger, it is

desired that transition properties such as count and average time be combined so

that the information is not lost. Since the states are known to be equivalent, their

transition sets are the same. So, the algorithm can iterate through the transition

set of one state and match each transition in the other set in order to merge their

properties. The algorithm finds a transition tf in s1.transitions that is equivalent to

t in s2.transitions. Then, tf ’s time average is updated using the time average of t,

and the two counts are summed. The algorithm then iterates through all transitions

in all states and redirects any transitions directed at s2 to s1 instead. Finally, s2 is

removed from the state set.

32

Algorithm 8 Recycle-End-State

Input: FSM f

1: q ← last state ∈ f.states

2: if size(q.transitions) > 0 then

3: for each s ∈ f.states do

4: for each t ∈ s.transitions do

5: if t.nextState = q then

6: t.nextState← 1

7: f.states← f.states− {q}

The Recycle-End-State procedure is shown in Algorithm 8. This procedure

checks the final state in the FSM f . If the final state has no outgoing transitions,

then all transitions directed to the final state are redirected to the initial state. This

serves the purpose of eliminating the only possible deadlock state. When simulating,

it is likely that upon reaching this final state the operator will desire to restart the

simulation. This recycling procedure eliminates that need.

This procedural step is accomplished using Synthesize in Algorithm 4. The in-

formation gathered in Steps 1 and 2 is used to inform this step. A finite state machine

can be generated that is modeled from data found in the recorded communications

trace. The larger the data set is, the more detailed the finite state machine will

become.

The example from the previous sections will be used to walk through the algo-

rithms shown in this section. The recorded communications trace shown in Table 3.1

is formed into a set T . Then Synthesize is used to generate the corresponding FSM.

Per Algorithm 4, each message in the set is added to the FSM through Process-

Message. The FSM is set up so that the current state is set to the newly created

state 1. The FSM is shown in Figure 3.4(a).

From the first entry in Table 3.2, the relevant signal is CtrlAtv. Since this is

the first message of id 914, the value of CtrlAtv will be compared with 0 to deter-

33

mine change. This means that CtrlAtv has not changed with the arrival of this new

message. Thus, t.signals is empty and the routine completes.

From the next entry in the table, the message is (849, 00 00 00 00 80 00 F8 00,

185930). Since this is the first message of id 849, its signals will be compared with

0 to determine which relevant signals changed. From the new message, the value of

the relevant signals CtrlRta and CtrlEngaged is 0. Therefore no relevant signals were

changed with the new message, t.signals is empty, and the routine completes.

The next message entry in the table is (849, 00 00 00 00 40 00 00 20, 189171). Since

a message of id 849 has already been processed, the new values are compared to the

previous signal values. The old values of CtrlEngaged and CtrlRta were both 0, and

the new value of CtrlRta is 1, while CtrlEngaged remains 0. Since CtrlRta changed,

it is added to t.signals as a signal (CtrlRta, 1). The new transition’s properties are

updated, setting count to 1, time to 189171− 0 = 189171, and id to 849. Then, the

FSM’s transitions are checked to see if the new transition is the same as any transition

already part of the FSM. In this case none match, so a new state s is created and

the new transition’s nextState is pointed to s. The new transition is added to the

current state, and the current state is set to the new transition’s nextState. This

step is shown in Figure 3.4(b).

The fourth message in Table 3.2 shows CtrlRta and CtrlEngaged both 0. CtrlRta’s

previous value was 1, so a change occurred. This signal is added to t.signals. The new

transition’s properties are updated as before, with time = 198739 − 189171 = 9568.

The FSM’s transitions are checked to see if a transition matches the new one. None

match, so the transition is pointed to a new state, and currentState is updated to

match. Figure 3.4(c) shows the update.

The fifth message in the table shows that CtrlRta has changed from its previous

value of 0 to a new value of 1. This is added to t.signals, the transition’s proper-

ties are updated with time = 203719 − 198739 = 4980. Now, the FSM’s transitions

are checked to see if a match exists. In this case, the transition from state 1 to 2

has the same criteria as this new transition. Following Algorithm 5 the new tran-

34

sition is pointed to that transition’s state, which is 2. The transition is added and

currentState is updated. The change is shown is Figure 3.4(d).

The next table entry shows that CtrlAtv has changed from its previous value of

0 and is now 1. This transition is not matched in the FSM, so it is pointed to a new

state. The result is shown in Figure 3.4(e).

The next entry in the table shows that CtrlEngaged has changed to 1. This

transition does not already exist, so it is pointed to a new state. Figure 3.4(f) shows

the update.

The eighth entry in the table shows CtrlAtv has changed to 0. This transition

does not exist in the FSM already, so it is added and pointed to a new state. The

addition is shown in Figure 3.5.

The final entry in the table shows that both CtrlRta and CtrlEngaged have

changed to a new value of 0. A transition with this criteria does not exist, so it

is added and pointed to a new state. The resulting FSM is shown in Figure 3.6.

Once all of the messages have been processed, Algorithm 4 calls the procedure

Reduce-Equivalency (Algorithm 6). This serves to reduce the number of states

by merging those that are equivalent. Two states are equivalent if their exit transition

sets are equivalent (same number and equivalent transition criteria). Pairs of states

are tested to see if their transition sets are equal. In the example, it can be seen

immediately that state 3 is equivalent to state 1. Both have the exit transition

CtrlRta = 1 which point to state 2. The Reduce-Equivalency will check each

pair of states sequentially as (1, 1), (1, 2), (1, 3), and find that (1, 3) is an equivalent

pair. Merge-States is called on the pair (1, 3). In this routine, the exit transition

from state 3 is matched to the exit transition of state 1. State 1’s transition’s time

is updated with the average of the two times: 189171·1+4980·1
1+1

= 97075, and it’s count

is updated as well: 1 + 1 = 2. Then, every transition in the FSM is checked. If

a transition is pointed to state 3 (which will be removed), it is instead pointed to

state 1. This applies to the transition from state 2 to 3 with CtrlRta = 0. State 3 is

removed from the set. The resulting FSM is shown in Figure 3.7.

35

(a) (b)

(c)

(d)

(e)

(f)

Figure 3.4. Steps 1-6 for construction of the FSM example

36

Figure 3.5. Step 7 for construction of the FSM example

Once equivalency reduction has completed, Algorithm 4 then calls Recycle-

End-State (Algorithm 8). The algorithm checks the last state to see if any exit

transitions exist. In the example, state 7 has no exit transitions, so it will be recycled.

All transitions in the FSM are inspected to see if they point to the final state. If so,

they are redirected to state 1, and then the final state is removed. During inspection,

it is found that the transition between states 6 and 7 is the only transition pointing

to 7, and it will be redirected to state 1. The result is shown in Figure 3.8.

37

Figure 3.6. Final result of the FSM synthesis (before reduction)

3.5 Step 4: Manually Modify FSM

At this point, the FSM created by Steps 1-3 is completely ready for simulation.

However, a human operator may desire to change or add to the model that is created

automatically. Since this method does not produce perfect results (e.g. in the case

where too few events have been captured in the communications trace) it is likely

that the operator will want to make some changes. In this implementation, the

operator can adjust the transitions between states and can also add or remove states

38

Figure 3.7. FSM after equivalency reduction

by changing the file saved in the previous step. Several versions of this file could

also be saved in order to compare run-time properties of each model. In future work,

a user interface could be added to reduce the workload and potential error of the

operator.

In the same example from the previous sections, an operator may desire to change

the operation of the FSM to more closely model the behavior of the controller. Seeing

39

Figure 3.8. Completely synthesized finite state machine

the diagram, an operator would know that the controller can go from state 6 to state

2 setting CtrlEngaged to 0.

This change is implemented by modifying the source file of the generated state

machine to match more closely with how the controller really operates. The result is

shown in Figure 3.9.

3.6 Step 5: Simulate FSM In Real-Time

Upon reaching this step, the finite state machine has been completely constructed.

In this step, the FSM will be simulated in real-time so that it can simulate the com-

munications behavior of the module it is replacing. Given the FSM model generated

40

Figure 3.9. FSM after manual modifications

previously, the simulation is stochastic and performs a random walk of the state ma-

chine using additional logic. Since some transitions are reception events and some are

transmission events, each state requires different logic with how the exit transitions

are handled. An overview of the simulation process is shown in Figure 3.10.

The details of each mode are explained here.

• Start

This mode initializes the simulation and sets currentState to 1.

• Load State

This mode sets up the simulation for the current state. It finds currentState in

the FSM’s state set and the current time is saved as stateStartT ime. Then, it

41

Figure 3.10. Flowchart showing the modes of simulator operation

is identified whether the current state has any sendable transitions and/or any

receivable transitions. If the state has both sendable and receivable transitions,

mode is set to Pick Random. If the state has only sendable exit transitions,

mode is set to Pick Random Send. Otherwise, the state has only receivable

exit transitions and mode is set to Wait For Receive.

• Wait For Receive

In this mode, the simulator waits for any transition’s signal criteria to be met by

received information from the network using the procedure shown in Algorithm

11. If a transition’s criteria is met, currentState is set to the transition’s

nextState and mode is set to Load State.

• Pick Random Send

This mode picks a random transition to send using the procedure of Algorithm

9. Then, mode is set to Wait For Send Time.

• Wait For Send Time

In this mode, the simulator waits for the average time of the chosen sendable

42

transition. Once the difference between the current time and stateStartT ime

is greater than or equal to the chosen transition’s average time, mode is set to

Send.

• Send

In this mode, the chosen sendable transition is sent over the network. Then,

currentState is set to the chosen transition’s nextState and mode is set to

Load.

• Pick Random

This mode picks a random transition using the procedure of Algorithm 9. Then,

mode is set to Wait For Chosen.

• Wait For Chosen

In this mode, the simulator waits for the average time of the chosen transition.

Before this timeout occurs, the received network buffer is checked for any of

the currentState’s receivable transitions’ criteria. During this check, if any

receivable transition’s criteria are met, currentState is set to the transition’s

nextState and mode is set to Load. When the timeout occurs, if the chosen

transition was receivable, then mode is set to Send so that another transition

can be chosen. If the chosen transition was sendable, then mode is set to Send

so that the chosen transition can be sent over the network.

43

Algorithm 9 Get-Random-Transition
Input: State state

Output: Transition t

1: if size(state.transitions) = 1 then

2: return state.transitions

3: for each ti ∈ state.transitions do

4: add← true

5: for each si ∈ ti.signals do

6: if si.value is already set then

7: add← false

8: if add = true then

9: candidates← candidates ∪ si
10: if size(candidates) > 0 then

11: return Choose-Weighted-Random(candidates)

12: else

13: return Choose-Weighted-Random(s.transitions)

The routine Get-Random-Transition shown in Algorithm 9 takes a state as

input (usually the FSM’s currentState) and chooses a weighted random exit transi-

tion. First, the size of the transition set for the state is checked as a shortcut. If there

is only one exit transition from the state, then it is chosen. Then, the algorithm at-

tempts to choose from the transitions whose criteria are not already met. To achieve

this, a set of candidate transitions is found whose elements are those transitions that

do not have any criteria met. If there is at least 1 candidate transition, then the

random transition is chosen from the candidate set. Otherwise, all transitions have

some or all criteria met and the random transition is chosen from all possible exit

transitions. The random transition is chosen from a set using Choose-Weighted-

Random (Algorithm 10).

44

Algorithm 10 Choose-Weighted-Random
Input: Transition Set transitions

Output: Transition t

1: if size(transitions) = 1 then

2: return transitions

3: sum← 0

4: for each t ∈ transitions do

5: sum← sum+ t.count

6: r ← random integer ∈ [1, sum]

7: for each t ∈ transitions do

8: r ← r − t.count

9: if r ≤ 0 then

10: return t

The routine shown in Algorithm 10 takes a set of transitions, transitions, as

input and chooses one at random using a weighted distribution. The weights are the

transition count values. Those with a higher weight (or count) should be chosen more

frequently. This is accomplished by summing the counts of elements in the transitions

set. Then, a pseudo-random number is generated in the interval [1, sum], seeded by

the current time in milliseconds. This random number is used to determine which

transition has been chosen by finding where it falls in the list of weighted counts. The

randomly chosen transition, then, is returned.

45

Algorithm 11 Check-Received-For-Transition
Input: State state

Output: Transition t

1: r ← null

2: for each t ∈ state.transitions do

3: if (r = null or size(t.signals) > size(result.signals)) and (t.direction = re-

ceive) then

4: m← true

5: for each s ∈ t.signals do

6: if s.value is not in the received data then

7: m← false

8: if m = true then

9: r ← t

10: return r

Algorithm 11 shows the Check-Received-For-Transition routine. This rou-

tine is used to check the current values of the received buffer for a transition. If there

is more than one transition that has all of its criteria met, then the first transition

with the largest number of criteria signals is chosen. This is so that if two transitions

exist that are not mutually exclusive, the first transition with the more complex logic

is chosen. The algorithm accomplishes this by checking each transition against the

result until the one with all signal criteria met and the highest number of signals is

found and returned.

For illustration, the example from the previous sections will be continued. The

steps below indicate one possible random walk of the FSM shown in Figure 3.9. There

are other possible paths.

1. Mode is set to Start where currentState is set to 1. Mode is set to Load State.

The currentState corresponding to 1 is found in the state set. The value of

stateStartT ime is updated to the current time in milliseconds. For illustration,

46

9781554 is used. It is found that state 1 has only a sendable transition, so mode

is set to Pick Random Send. Algorithm 9 is used to pick a transition to

send. Since there is only one transition in the set, it is chosen and mode is set

to Wait For Send Time. When the current time reaches stateStartT ime +

chosenTransition.time = 9781554 + 97075 = 9878629 ms, then mode is set to

Send. The signal value CtrlRta=1 is updated and its message is sent over the

network. The currentState is set to 2 and mode is set to Load State. The

result is that after waiting 97075 ms in state 1, CtrlRta = 1 is transmitted over

the network.

2. The currentState corresponding to 2 is found in the state set. The value of

stateStartT ime is updated to the current time in milliseconds, now around

9878629 ms. State 2 has only a receivable event, so mode is set to Wait For

Receive. The simulator will wait indefinitely for the arrival of a message with

CtrlAtv = 1 since it is the only receivable transition. Say it arrives after 2451

ms. Then currentState is set to 4 and mode is set to Load State. The result

is that the simulator waited for 2451 ms in state 2 then received the criteria for

the transition to state 4.

3. Transactions occur similar to the steps above until state 7 is reached.

4. The currentState corresponding to 7 is found in the state set. The value of

stateStartT ime is updated to the current time in milliseconds, say 9984750

ms. State 7 has a sendable transition and a receivable transition, so mode is

set to Pick Random. Algorithm 9 is used to choose which one to wait for.

Both of the exit transitions are checked to see if their values are already set,

and since neither are set, they are added to the set of candidate transitions

and Choose-Weighted-Random is called on candidates. It finds the sum

of counts to be 2. Now, say that r is randomly chosen to be 1. Then the

first transition (CtrlAtv = 1) has its count subtracted from sum, resulting in

a sum of 1. Since r is still greater than 0, the next transition (CtrlRta = 0)

47

has its count subtracted from sum, with the result of 0. Now r is 0, and the

transition CtrlRta = 0 is chosen. The simulator’s mode is set to Wait For

Chosen, where it will wait for the chosen transition’s time of 9568 ms before

sending CtrlRta = 0 and transitioning to state 1. During this wait, if the other

transition’s criterion is received (CtrlAtv = 1) then the simulator will accept

the transition and go to state 4 instead. After 9568 ms no transition is received,

so the simulator sends the message with CtrlRta = 0 and transitions to state

1, where a similar path to these steps can start again.

Using these methods, the FSM model can be simulated using a random walk in

real-time. Paths are chosen at random as the simulation runs, providing a variable

environment useful in testing. Much of the complexity stems from the cases where

receivable and sendable transitions both exist in a state.

48

4. RESULTS

This chapter reviews the results from executing the synthesis algorithms on several

example data sets. A comparison and evaluation method is proposed, then various

devices are modeled and compared. Qualitative results from simulating the models

are described, and then the results are discussed overall and future directions are

indicated.

4.1 Practical Evaluation of Finite State Machines

In previous literature, the graph and subgraph isomorphism problems have been

studied with great detail, as has the finite state machine equivalence [18]. However,

few practical comparison methods exist in the literature that allow for quantification

of the variations between similar automata. In previous work, edit distance has

been introduced to determine similarity. In [20], a cost is determined by how many

changes are necessary to make a graph isomorphic to another. However, this method

defines a formal cost function but does not provide a method to compute the costs

in practicality. Instead, the following scoring system is introduced quantifying the

deviations between automata using regular expressions.

Given a regular expression r, consider Ui which is the set of possible events in

each term of the regular expression indexed from 1 to k. For example, the terms of

the regular expression ab(c + d)ef ∗ are: U1 = {a}, U2 = {b}, U3 = {c, d}, U4 = {e},

U5 = {f}, ... Uk = {f}.

Now, given two regular expressions r1 and r2, and their event term sets Ui and Vi,

the score of each term i is assigned as:

S(i) = |Ui ∪ Vi − Ui ∩ Vi| (4.1)

49

This score is a count of how many events are different at each term in regular

expressions r1 and r2. Then, the total deviation score is defined:

D(n) =
n∑

i=1

S(i) (4.2)

where n ∈ I, n ≥ 1 is the number of steps to score. A total score D(n) equal to zero

means that the two automata are identical. A high score means that the two have

weak or no resemblance. When comparing one automaton to an ideal automaton,

D(n) is indirectly a measure of the number of corrections an operator would have to

make in order to have a strong resemblance to the ideal model.

(a) (b)

Figure 4.1. Two example state diagrams for automata G1 and G2

For example, consider the state diagrams in Figure 4.1. The accepted event strings

starting in the initial state for automaton G1 in Figure 4.1(a) are represented by the

regular expression:

L(G1) = ab(c+ d)(a+ b)(b+ c+ d)(a+ b+ c+ d)∗ (4.3)

and the likewise for automaton G2 in Figure 4.1(b):

L(G2) = a((b+ d)(a+ c))∗ (4.4)

Table 4.1 shows the event sets for G1 as Ui and G2 as Vi.

Given the individual scores S(i), an expression for the total deviation can be

found:

D(∞) =
∞∑
i=1

S(i) = 0 + 1 + 2 + 2 + 3 + 2 + 2 + 2 + ... (4.5)

50

Table 4.1 Event Sets for Example Automata

i Ui Vi Ui ∪ Vi − Ui ∩ Vi S(i)

1 {a} {a} ∅ 0

2 {b} {b, d} {d} 1

3 {c, d} {a, c} {a, d} 2

4 {a, b} {b, d} {a, d} 2

5 {b, c, d} {a, c} {a, b, d} 3

6 {a, b, c, d} {b, d} {a, c} 2

7 {a, b, c, d} {a, c} {b, d} 2

... 2

Or, more precisely, D(n) is the piecewise function:

D(n) =

undefined : n ≤ 0

0 : n = 1

1 : n = 2

3 : n = 3

5 : n = 4

8 : n = 5

8 + 2(n− 5) : n ≥ 6

(4.6)

Often it is interesting to look at D(n) for large n (i.e. n→∞) in order to compare to

other automata. As the number of steps gets large, a model with weak resemblance

to ideal will have a large score, while a model with strong resemblance to ideal will

have a small score.

Using this scoring system, the case where two regular expressions are equivalent

except for a prefixed event term on one will actually score very high. Of course, this

means that two automata that are very similar will not show a low score. Thus,

flexibility is introduced. The empty string ε can be inserted anywhere in a regular

expression so that the expression D(n) is minimized by re-aligning the terms.

51

For the example involving G1 and G2, D(n) can be minimized by adding ε to the

regular expression in 4.4 like this:

L(G2) = aε((b+ d)(a+ c))∗ (4.7)

The new scores are shown in Table 4.2. The new minimum deviation becomes:

Dmin(∞) =
∞∑
i=1

S(i) = 0 + 1 + 2 + 2 + 1 + 2 + 2 + 2 + ...+ 2 (4.8)

Or, more precisely:

Dmin(n) =

undefined : n ≤ 0

0 : n = 1

1 : n = 2

3 : n = 3

5 : n = 4

6 : n = 5

6 + 2(n− 5) : n ≥ 6

(4.9)

Table 4.2 Minimal Event Sets for Example Automata

i Ui Vi Ui ∪ Vi − Ui ∩ Vi S(i)

1 {a} {a} ∅ 0

2 {b} ∅ {b} 1

3 {c, d} {b, d} {b, c} 2

4 {a, b} {a, c} {b, c} 2

5 {b, c, d} {b, d} {c} 1

6 {a, b, c, d} {a, c} {b, d} 2

7 {a, b, c, d} {b, d} {a, c} 2

... 2

52

This new expression Dmin(n) has a lower constant term for n ≥ 6 than D(n)

without flexibility. So, the flexibility allows for the calculation of minimum total

deviation, a measure of difference between two automata.

It is not always immediately clear where the ε terms should be inserted in order

to minimize D(n). Trial and error worked best here, informed by looking at the

state diagrams as well as the regular expressions. The calculations were performed

by hand, but this method could be automated in order to compare more easily. Using

trial and error, one of the best methods was to use a spreadsheet with the regular

expressions aligned. The spreadsheet was set up to calculate the score values, then

the cells were shifted around in order to minimize the resulting D(n).

4.2 Synthesis Results

This section presents results from several different executions of the synthesis step

with varied input data and different target devices. There are no similar methods

in the literature to which results of this method could be compared directly, so re-

sults from applying this method to various devices will be compared with each other

instead.

4.2.1 A Controller And Its Supervisor

Extending the example in Chapter 3, the full results of simulating the device

are presented here. Recall that it was attempted to simulate a controller receiving

commands and sending status to its supervisory controller. Here, the same controller

is synthesized using different input data. The controller receives one signal CtrlAtv

from the supervisory controller telling it to engage (value of 1) or disengage (value of

0). The controller sends two signals CtrlRta and CtrlEngaged which indicate whether

the controller is ready to be engaged and whether it is engaged, respectively. For this

controller, the events are abbreviated as follows:

53

a ←→ CtrlRta = 1

b ←→ CtrlAtv = 1

c ←→ CtrlEngaged = 1

d ←→ CtrlAtv = 0

e ←→ CtrlEngaged = 0

f ←→ CtrlRta = 0

g ←→ CtrlRta = 0, CtrlEngaged = 0

Figure 4.2. Controller synthesis by hand (Aideal)

Figure 4.2 shows the results of generating a finite state machine model by hand,

Aideal. This represents an ideal case of how the controller actually responds to events.

The controller tells the supervisor that it is ready; the supervisor engages it; and the

controller reports itself engaged. Once the controller is engaged, the supervisor can

disengage it and the controller reports itself disengaged. When disengaged, the con-

troller can report that it is ready or not ready, based on external conditions unknown

and irrelevant to the supervisor.

Figure 4.3. Controller synthesis from data with few events (Afew)

54

Figure 4.3 shows the results of synthesizing the controller using a communications

trace with only a few events, the automaton Afew. The state space is small and

each relevant signal is found to take on both of its values. This is a mostly accurate

representation, however, an operator would likely want to adjust the initial time,

since 20 seconds is a longer wait than desired. Also, it is possible to follow a path

like abcdf , which would leave CtrlEngaged = 1 even though CtrlRta = 0, a case that

is not possible with the actual device. States 5 and 6 would need to be rearranged to

better model the ideal system. The reason this does not reflect the actual model is

because there must exist another signal that is relevant to the logic of the system. In

other words, there must be a signal to which the controller responds by disengaging

other than CtrlAtv = 0, and this signal must be sent by a device other than the

supervisory controller.

Figure 4.4. Controller synthesis from data with many events (Amany)

55

Figure 4.4 shows the automatic synthesis results of Amany. The data was recorded

in the same environment as Afew, but contains more events (i.e. the controller was

engaged and disengaged several times) over the length of the trace. Naturally, with

more recorded events the state machine becomes more complex. In this automaton,

it is likely that the operator will desire to fix the same error that is present in Afew

where it is possible to travel a path that leaves CtrlEngaged = 1 while CtrlRta =

0. This model does provide more possibilities than the previous model in terms of

transitions between states and correct possible paths. It also adds a new complex

event involving both CtrlRta and CtrlEngaged.

By hand, the regular expressions of accepted events (starting in initial state 1) for

the three automata were found to be:

L(Aideal) = a(b+ f)(a+ c)((b+ d+ f)(a+ c+ e))∗ (4.10)

L(Afew) = abc(d+ e)(b+ d+ e+ f)(a+ b+ c+ d+ e+ f)∗ (4.11)

L(Amany) = a(b+ f)(a+ c)(b+ d+ e+ f + g)(a+ b+ c+ d+ e+ f + g)∗ (4.12)

Comparing (4.10) to (4.11), the differences between the ideal case Aideal and the

synthesized controller Afew from data with few events can be seen. Both accept

the same start event a. Then, Aideal accepts either b or f , while Afew accepts only

b. Afew does not contain the case where CtrlRta can change back to 0 before the

supervisor requests the controller to engage. Afew then accepts c, but Aideal accepts

either a or c. Since Afew missed CtrlRta = 0 and the change to state 1, it is now

also missing acceptance of a (CtrlRta = 1). Then, Aideal accepts either b, d or f ,

while Afew accepts d or e. The event d is accepted by both at this point, but Aideal

accepts two events that Afew does not, and Afew accepts one event that Aideal does

not. Next, Afew accepts b, d, e or f , while Aideal accepts a, c or e. Then, Afew

accepts any event forever, while Aideal accepts events b, d or f then a, c or e forever.

Some similarities are present. At each step, both automaton had at least one event

in common. At points, Afew had extraneous events, while at others it had too few.

56

Naturally, manual adjustments would allow for these corrections in order to model

the target more closely.

The differences between the ideal case and the controller synthesized from data

with many events can be seen by comparing (4.10) to (4.11). It is clear that the first

three events are accepted the same in both automata. After this, Aideal accepts b, d

or f , and Amany accepts those events and additionally e or g. Then, Amany accepts

any event, while Aideal accepts only a, c or e. It appears that Amany more closely

resembles the ideal case considering that it has the first three steps in common.

Table 4.3 Deviation Quantification Steps for Afew Compared with Aideal

Aideal Afew Score

a a 0

b+ f b 1

a+ c c 1

b+ d+ f d+ e 3

a+ c+ e b+ d+ e+ f 5

b+ d+ f a+ b+ c+ d+ e+ f 3

a+ c+ e a+ b+ c+ d+ e+ f 3

...

Using the evaluation method of Section 4.1, Aideal is compared with Afew at each

event step and is shown in Table 4.3. When flexibility is added to find the minimum

total deviation, then 4.10 becomes:

L(Aideal) = a(b+ f)(a+ c)ε((b+ d+ f)(a+ c+ e))∗ (4.13)

57

and Afew’s minimum total deviation is:

Dmin(n) =

undefined : n ≤ 0

0 : n = 1

1 : n = 2

2 : n = 3

4 : n = 4

5 : n = 5

5 + 3(n− 5) : n ≥ 6

(4.14)

where n > 0 is the number of event steps. Using the same system, Amany is scored

comparing to Aideal. No flexibility is needed in this case, since the deviation is mini-

mum. The resulting minimum total deviation for Amany is:

Dmin(n) =

undefined : n ≤ 0

0 : n = 1, 2, 3

2 : n = 4

2 + 4(n− 4) : n ≥ 5

(4.15)

These are plotted in Figure 4.5. Notice that left of n = 5, Amany has a stronger

resemblance to the ideal case than Afew. After n = 5, Afew has a lower score and

a stronger resemblance to the ideal case. This shows that as the number of steps

approaches infinity, the automaton synthesized from the data set with fewer events

deviates less from the ideal case than the automaton from the data set with more

events. If the automaton were to be restarted after five events, Amany would actually

be a better model. However, in most cases the automaton would be simulated for

many event steps.

4.2.2 Controller with Increased Complexity

The same controller and supervisor setup is used again, but this time with addi-

tional signals identified as relevant. The same data that was used above was reused

to generate the new automata. The new signals are CtrlInhibit, indicating when the

58

Figure 4.5. Scores for Aideal compared with Amany and Afew

controller is inhibited from performing as normal, and CtrlTempOvrAtv, indicating

when the controller is overridden by an external source.

The events are the same as in the previous section, with the addition of the

following abbreviations:

h ←→ CtrlInhibit = 1

i ←→ CtrlRta = 1, CtrlInhibit = 0

j ←→ CtrlTempOvrAtv = 1

k ←→ CtrlTempOvrAtv = 0

l ←→ CtrlRta = 0, CtrlInhibit = 1

m ←→ CtrlRta = 0, CtrlEngaged = 0, CtrlInhibit = 0, CtrlTempOvrAtv = 0

n ←→ CtrlRta = 0, CtrlEngaged = 0, CtrlInhibit = 1

Figure 4.6 shows the ideal behavior of the controller with the added signals. It is

apparent that CtrlInhibit acts as the complement of CtrlRta and changes values only

between states 1 and 2. The rest of the structure is similar to the ideal controller

in the previous section, with the addition of the CtrlTempOvrAtv that appears to

branch off from state 4. After the controller is engaged, an external source can cause

it to override at that point.

59

Figure 4.6. Controller synthesis by hand (Bideal)

Figure 4.7. Controller synthesis from data with few events (Bfew)

Figure 4.7 shows a synthesized controller from the same data set as Afew in the

previous section. It has only a few recorded events, but the automaton is becoming

more complex. Here, CtrlInhibit is not directly tied to the complement of CtrlRta,

and the first event from state 1 seems to be extraneous. This model suffers from the

same problem that occurred in the previous section, where a path can be followed

that allows CtrlEngaged to remain 1 while CtrlRta becomes 0. This issue is solved

when the operator makes adjustments manually.

The automaton in Figure 4.8 shows the synthesized controller from the same data

set as Amany in the previous section. Clearly, having more events in the data set adds

to the complexity of the model. Again, this model has the problem of CtrlEngaged

staying 1 while CtrlRta becomes 0. This model does take into account several cases

that are not found in the Bfew, however. The structure is generally the same as the

previous example, where CtrlRta becomes 1, then CtrlAtv becomes 1, activating the

controller.

60

Figure 4.8. Controller synthesis from data with many events (Bmany)

By hand, regular expressions were found for the strings of accepted events.

L(Bideal) = i(b+ l)(c+ i)(b+ d+ j + l)((c+ d+ e+ i+ k)(b+ d+ j + l))∗ (4.16)

L(Bfew) = hibcjk(d+ e+ j)(b+ d+ e+ k + l)(b+ c+ d+ e+ h+ j + l)(b+

c+ d+ e+ h+ i+ j + k + l)(a+ b+ c+ d+ e+ f + g + h+ i+

j + k + l +m+ n)∗ (4.17)

L(Bmany) = hi(b+ l)(c+ i)(b+ d+ e+ j + l)(b+ c+ d+ e+ i+ k + l +m+

n)(b+ c+ d+ e+ i+ j + l + n)(b+ c+ d+ e+ i+ j + k + l+

m+ n)∗ (4.18)

Both synthesized models Bfew and Bmany appear to have an extra event h before

Bideal’s initial event i. If it is eliminated, equations 4.17 and 4.18 seem to match 4.16

61

fairly well. The same scoring technique used in the previous section results in the

following deviation score for Bfew:

D(n) =

undefined : n ≤ 0

2 : n = 1

5 : n = 2

8 : n = 3

13 : n = 4

19 : n = 5

24 : n = 6

28 : n = 7

31 : n = 8

37 : n = 9

42 : n = 10

42 + 9
⌈
n−10

2

⌉
+ 10

⌊
n−10

2

⌋
: n ≥ 11

(4.19)

If flexibility is allowed, then ε is inserted into the regular expressions of Bideal and

Bfew and the regular expressions change to the following:

L(Bideal) = εi(b+ l)(c+ i)(b+ d+ j + l)((c+ d+ e+ i+ k)(b+ d+ j + l))∗ (4.20)

L(Bfew) = hibcjkε(d+ e+ j)(b+ d+ e+ k + l)(b+ c+ d+ e+ h+ j + l)(b+

c+ d+ e+ h+ i+ j + k + l)(a+ b+ c+ d+ e+ f + g + h+ i+

j + k + l +m+ n)∗ (4.21)

62

This realignment results in the minimum total deviation for Bfew:

Dmin(n) =

undefined : n ≤ 0

1 : n = 1

1 : n = 2

2 : n = 3

3 : n = 4

6 : n = 5

10 : n = 6

14 : n = 7

18 : n = 8

21 : n = 9

27 : n = 10

32 : n = 11

32 + 9
⌈
n−11

2

⌉
+ 10

⌊
n−11

2

⌋
: n ≥ 12

(4.22)

The evaluation of Bmany results in a deviation score of:

D(n) =

undefined : n ≤ 0

2 : n = 1

5 : n = 2

9 : n = 3

15 : n = 4

21 : n = 5

28 : n = 6

28 + 5
⌈
n−6
2

⌉
+ 6

⌊
n−6
2

⌋
: n ≥ 7

(4.23)

Allowing for flexibility, the minimum total deviation can be found for Bmany by

inserting ε into the regular expression for Bideal:

L(Bideal) = εi(b+ l)(c+ i)(b+ d+ j + l)((c+ d+ e+ i+ k)(b+ d+ j + l))∗ (4.24)

63

which is the same as 4.20. Then, the minimum total deviation for Bmany becomes:

Dmin(n) =

undefined : n ≤ 0

1 : n = 1, 2, 3, 4

2 : n = 5

6 : n = 6

10 : n = 7

10 + 5
⌈
n−7
2

⌉
+ 6

⌊
n−7
2

⌋
: n ≥ 8

(4.25)

In Figure 4.9, the minimum deviation scores are plotted for Bmany and Bfew. From

the plot, it is clear that Bmany is a better model than Bfew since its score is lower

for all n. So, in this case, using a data set with many events provides a better model

than one that uses only a few events. As the number of event steps gets large, Bmany

deviates less from the ideal model.

Figure 4.9. Scores for Bideal compared with Bmany and Bfew

4.2.3 Cruise Control

This section shows the automatic synthesis of models for the communications of a

cruise control device. The cruise responds to an On/Off switch, Set button, Resume

64

button, and Cancel button. It responds with its status (engaged or not) and also

accepts cancellation from the brake. The button presses and brake activation values

are sent over the network by other modules. The cruise recognizes a press and release

of the Set, Cancel, and Resume buttons in order to change it’s status, so a 1 then a

0 must be received by each. Operation of the cruise begins when the On/Off switch

is flipped to on mode (CruiseOnBtn = 1). Then, the cruise is engaged by either the

Set or Resume button (CruiseSetBtn or CruiseResumeBtn), when the cruise reports

its status as engaged (CruiseAtv = 1). When engaged, the cruise can be disengaged

by the brake (BrakeApplied = 1) or the cancel button (CruiseCancelBtn).

For the models in this section, the event abbreviations are redefined as follows:

a ←→ CruiseOnBtn = 1

b ←→ CruiseOnBtn = 0

c ←→ CruiseSetBtn = 1

d ←→ CruiseSetBtn = 0

e ←→ CruiseResumeBtn = 1

f ←→ CruiseResumeBtn = 0

g ←→ CruiseAtv = 1

h ←→ CruiseAtv = 0

i ←→ CruiseCancelBtn = 1

j ←→ CruiseCancelBtn = 0

k ←→ BrakeApplied = 1

l ←→ BrakeApplied = 0

Figure 4.10 shows the cruise control model developed by hand, Cideal. It repre-

sents the ideal operation of the device. Once CruiseOnBtn is 1, it can be engaged

through CruiseSetBtn or CruiseResumeBtn changing to 1 then 0. Then, it responds

with CruiseAtv = 1. It can be disengaged by CruiseCancelBtn, BrakeApplied, or

CruiseOnBtn = 0.

The first of two similarly-sized data sets was used to synthesize C1 automatically

and can be seen in Figure 4.11. The On switch is used first to turn on the device.

65

Figure 4.10. Cruise control synthesis by hand (Cideal)

Then, the Set button is the only option to engage the cruise. From the engaged state,

the brake can be applied, but there is a path that may keep the cruise engaged. Also

from engaged, the resume button can be pressed and the cruise will disengage. These

are errors resulting from delays in message arrival times. During the recording, the

brake was pressed before the cruise disengaged, but the brake status and the cruise

status come from different sources broadcasting at different intervals. The recording

captured the brake after the cruise change.

Figure 4.11. Cruise control synthesis from first data set (C1)

Figure 4.12 shows a second data set used to automatically synthesize C2. This

model is simpler than C1, but it also suffers from the same brake message delay issue

where the cruise sends a disengaged indicator and then the brake is applied. Also,

66

after the On switch is activated, only the set button can be used to engage the cruise

control.

Figure 4.12. Cruise control synthesis from second data set (C2)

By hand, regular expressions were found describing the accepted event strings for

each of the automata:

L(Cideal) = a(b+ c+ e)(a+ d+ f)(b+ c+ e+ g)(a+ b+ d+ f + i+ k)(b+ c+

e+ g + h+ j + l)(a+ b+ d+ f + h+ i+ k)(a+ b+ c+ d+ e+ f+

g + h+ j + l)(a+ b+ c+ d+ e+ f + g + h+ i+ k)(a+ b+ c+ d+

e+ f + g + h+ i+ j + k + l)∗ (4.26)

L(C1) = acdg(c+ e+ k)(d+ f + g + l)(c+ g + h+ k + l)(c+ d+ e+ g + k+

l)(c+ d+ f + g + k + l)(c+ d+ e+ g + h+ k + l)(c+ d+ e+ f+

g + k + l)(c+ d+ e+ f + g + h+ k + l)∗ (4.27)

L(C2) = (acdghklb)∗ (4.28)

From evaluation, Cideal was shifted when comparing with C1, changing 4.26 to:

L(Cideal) = a(b+ c+ e)(a+ d+ f)ε(b+ c+ e+ g)(a+ b+ d+ f + i+ k)(b+

c+ e+ g + h+ j + l)(a+ b+ d+ f + h+ i+ k)(a+ b+ c+ d+ e+

f + g + h+ j + l)(a+ b+ c+ d+ e+ f + g + h+ i+ k)(a+ b+ c+

d+ e+ f + g + h+ i+ j + k + l)∗ (4.29)

67

making the minimum total deviation for C1:

Dmin(n) =

undefined : n ≤ 0

0 : n = 1

2 : n = 2

4 : n = 3

5 : n = 4

8 : n = 5

14 : n = 6

18 : n = 7

27 : n = 8

33 : n = 9

38 : n = 10

43 : n = 11

43 + 4(n− 11) : n ≥ 12

(4.30)

The total deviation for C2 is already minimal:

Dmin(n) =

undefined : n ≤ 0

0 : n = 1

2 : n = 2

4 : n = 3

7 : n = 4

14 : n = 5

22 : n = 6

30 : n = 7

39 : n = 8

48 : n = 9

48 + 11(n− 9) : n ≥ 10

(4.31)

Figure 4.13 shows the minimum total deviation scores for C1 and C2. In this

example, C1 has a stronger resemblance to the ideal model than C2 does. As the step

68

count gets large, C2 deviates more. The data set used to generate C2 had slightly

fewer events, and so the resulting model was less accurate.

Figure 4.13. Scores for Cideal compared with C1 and C2

4.2.4 Other Applications

There are other module types besides controllers that can be synthesized and

simulated using the methods in this thesis. The first application is simulating a

numeric value that changes from external stimulus. In this example, the speed of a

vehicle is used. A device on the CAN network captures the speed of a vehicle and

transmits it over the network. The automaton was synthesized with only the one

signal VehSpeed, indicating that it does not depend on receiving a value in order to

operate. The results are shown in Figure 4.14.

69

F
ig

u
re

4.
14

.
S
y
n
th

es
is

re
su

lt
s

fo
r

ve
h
ic

le
sp

ee
d

(e
x
ce

rp
t)

70

The diagram shows the speed varying between 64 and 80 kph. The benefit of

using the methods in this thesis for this application is that the speed can be randomly

varied by acceptable step sizes and within acceptable bounds (nonnegative and less

than 200 kph, for example). It is a very tedious process to construct a state diagram

with speeds like this, where the speed is allowed to vary by expected amounts so that

it does not jump from 30 kph to 80 kph, for example.

A second example is shown in Figure 4.15. Here, the module acts as a repeater. It

has other functions that perform some actions, but over the network it simply repeats

the values that it receives. From the diagram it is evident that not all possible requests

and confirmations occur. However, this does show the correctness of the synthesis,

since every signal that changes value is immediately repeated in the reply.

The diagram shows that LedConfirmNumFlashes sends a value before the request

is received. This is the only option. Then, a request for a cycle pattern change is

made and the model confirms it. Next, a request for green intensity can be made,

followed by its confirmation. This is the only available path for the first few events,

showing how this model does not represent the true behavior of the target device

since any request should be allowed at any time.

4.3 Simulation Results

The four automata discussed in the previous section were also simulated in real-

time using the methods in Chapter 3.

First, Aideal was simulated. The supervisor was connected to the network with

the computer running the simulation for Aideal. The simulation started, and CtrlRta

toggled between 1 and 0 every second until the supervisor changed CtrlAtv from 0

to 1. Then, the simulated controller sent CtrlEngaged and waited for the supervisor

to change CtrlAtv back to 0. After some time, the supervisor changed it to 0, and

the simulation responded with CtrlEngaged = 0. The simulation model was able to

71

Figure 4.15. Synthesis results for a repeater

replace the actual controller with no change to the supervisor. In fact, the simulation

worked well enough that an error was able to be detected in the supervisor.

Next, Bideal was simulated. The supervisor remained connected to the network in

the same manner as before. The simulation started, and the supervisor set CtrlRta

to 1 once CtrlRta was 1 and CtrlInhibit was 0. The simulated controller then set

CtrlEngaged to 1. In state 4, the simulator randomly chose to wait for CtrlAtv to be

changed to 0. The supervisor did not send this value within the 60 seconds, so the sim-

72

ulation chose to set CtrlTempOvrAtv to 1. At this point, the supervisor set CtrlAtv

to 0, and the simulation followed the only path available setting CtrlTempOvrAtv to

0 and CtrlEngaged to 0. This simulation adequately replaced the communications

for the actual controller. One of the shortfalls was that due to the nature of random

simulation, the simulation chose to wait for CtrlAtv to be 0 rather than setting Ctrl-

TempOvrAtv to 1. This indicates that some modifications should have been made to

the ideal model, such as increasing the weight or count for the CtrlTempOvrAtv = 1

transition between states 4 and 6, or giving CtrlAtv = 0 transition a time less than

the 60 seconds.

The vehicle speed model was simulated next. The model served to generate ran-

dom speeds that varied by acceptable amounts. The simulation model was set up on

a computer connected to the network and a display was connected as well showing the

speed value. One modification was made to the initial waiting time of the first event

by setting it to 1000 ms. Then the simulation was started and the speed randomly

varied at different time intervals with the result of a random but constrained speed

simulation.

Finally, the repeater model was simulated. The simulation model was connected to

the network with another device that the model would repeat. In this case the model

did not adequately replace the original device. Not enough possible transitions were

available in the model. In reality, any of the signals changed would be immediately

repeated, but in the model only specific signals could be repeated in order. The model

would be improved by using a very large data set that includes all possible changes

of the signals many times. However, the model could be created more easily and in

less time by hand.

4.4 Modeling Time

In order to verify that the methods in this thesis were successful in reducing the

model creation time, the amount of time taken to generate models was recorded.

73

This measure was on a small scale but implies how the methods would perform on a

larger scale. Table 4.4 shows the time comparisons. The first column indicates the

automaton. The second column shows the amount of time that was taken to first set

up the methods to process, and once processed, to correct the models to the ideal

case. This column is the combination of times needed to perform steps 2 and 4 of the

method. The third column shows the amount of time needed to process the recording

and synthesize the FSM, which is step 3. The fourth column shows the comparison

time, which is the amount of time it took to start from scratch and create the FSM

model completely by hand. The trace recordings from step 1 were completed earlier

and are not included in these times.

Table 4.4 Comparison of Modeling Times

Human Machine Comparison Human Total

Automaton Time Time Time Reduction Reduction

Afew 2.5 min 3.5 min 9 min 72% 33%

Amany 4 min 0.5 min 9 min 56% 50%

Bfew 2 min 4 min 13.5 min 85% 56%

Bmany 3 min 0.5 min 13.5 min 78% 74%

C1 2 min 3 min 18 min 89% 72%

C2 2.5 min 2 min 18 min 86% 75%

Average 78% 60%

The fifth column shows the reduction in the operator’s time that is necessary for

model creation. The operator’s time was reduced from the case when the model was

created from scratch (9 min) to the setup and correction time of 2.5 min, which is a

reduction of 72%. If the machine time is included, then the time is reduced from 9

min to 2.5 + 3.5 = 6 min, which is a reduction of 33%.

74

The table shows that human time was reduced by 78% on average, while total time

was reduced by 60% on average. These high reductions indicate that the method is

successful at reducing the amount of time necessary for model creation.

4.5 Discussion

In general, the methods presented in this thesis improved the model generation

and simulation process. Three of the four models presented in the previous sections

adequately replaced the communications of the original module.

Table 4.5 summarizes the evaluations of three devices: the controller (A), complex

controller (B), and cruise control (C). It shows Dmin(n) for large n and also the size

of the language of accepted events, or the number of events that are recognized by

the device.

Table 4.5 Evaluation Results

Comparison Dmin(n), large n Language Size

Afew to Aideal 5 + 3(n− 5) 7

Amany to Aideal 2 + 4(n− 4) 7

Bfew to Bideal 32 + 9
⌈
n−11

2

⌉
+ 10

⌊
n−11

2

⌋
14

Bmany to Bideal 10 + 5
⌈
n−7
2

⌉
+ 6

⌊
n−7
2

⌋
14

C1 to Cideal 43 + 4(n− 11) 12

C2 to Cideal 48 + 11(n− 9) 12

In order to more accurately compare these evaluations with each other, Dmin(n)

is scaled according to the language size. Larger language sizes will naturally result

in higher deviations, so Dmin(n) is divided by the language size in each case. The

results are shown in Figure 4.16.

From this plot, it is evident that C2 posed the worst resemblance to its ideal

model, while C1 had the best resemblance to its ideal model. In the plot, the devices

75

Figure 4.16. Comparison of all evaluated results (scaled by language size)

are in a mixed order, showing that individual devices do not synthesize better than

others based on function. There appears to be no correlation between the number

of events in the data set and the quality of the model, since Afew was better than

Amany, but Bmany was better than Bfew. This lack of correlation indicates that the

quality of the data set is more important than the size. The data set for C1 had all

of the necessary events recorded in the correct order, while C2 did not.

The automatic synthesis and simulation worked better for signals that were di-

rectly correlated with each other. For example, in automaton C, the brake was used

to indicate that the the cruise control should be disengaged, however, in the normal

operation of a vehicle, the brake could be used without the cruise control being en-

gaged or even on. Because of this, the signal provided extraneous information that

was not useful to the model. In the case of A, the signal CtrlEngaged was a function

of CtrlAtv and the models had strong resemblance to the ideal case.

Random signal processes (like a vehicle’s speed) synthesize and simulate well. A

model can be synthesized from a communications trace that realistically follows a

random path and will be useful in simulating since it is based on accurate data.

Constructing a model like this by hand would be very tedious.

76

4.5.1 Synthesis Variations

The synthesis could possibly be modified to involve real-time recording and syn-

thesis. Rather than using a communications trace file, the events could be processed

as they arrive over the network. The benefit of this is a simulation model that is im-

mediately ready. This could also be used with old communication traces by playing

the traces back in real-time so that the events can be used in synthesis. Of course

with any real-time system, processing efficiency becomes very important, which was

not considered in this thesis since it was implemented on a sufficiently fast computer.

One possibility that a real-time synthesis provides is active adaptation. As more

information comes in, the model can be adapted based on how the module communi-

cates. An operator could identify which device behaviors still need to be demonstrated

in the recording so that all necessary information is captured by the synthesis.

Another addition could be to merge automatons generated from multiple data

sets. Discrepancies could be identified in order to achieve an optimal solution and

thus reduce the need for operator modification. The timing data and weights of edges

could be modified in order to make a stronger resemblance to the ideal case.

In this implementation, when two states are merged the transition times are up-

dated using an average. Instead, it could be changed to use a maximum or minimum

value for all transitions. Another option would be to use the maximum time that

was waited for reception events while using the minimum time that was waited for

transmission events.

4.5.2 Simulation Variations

There are many minor variations that could be applied to the simulation algo-

rithms. These minor variations do not necessarily provide a large difference in the

overall random simulation but could be adjusted based on individual test needs. For

example, when the simulation must choose which event to wait for, a transmittable

77

event could always be chosen, and then if one of the other transitions is received while

waiting it could be accepted instead.

One major variation could be in changing how the state machine is navigated.

Rather than randomly choosing which transitions to take from how their weights are

set (based on how many times the events were seen in the trace), more priority could

be given to transitions that have not been visited. In this way, a full test could be

run to make sure all states are visited and all possibilities are taken into account.

For example, the weights could be predefined based on the number of times each was

seen in the trace as described in the methods in this work. Then, when a transition

is taken from one state to another, it’s weight would be lowered. The next time the

state is entered, a transition that has been visited would have a lower chance of being

visited again until the other transitions have also been visited.

Another variation could involve more operator input. Instead of randomly choos-

ing which path to take, an operator could specify at each point what should occur.

This, of course, reduces the level of automation but could provide some benefits in

directed and predictable testing.

78

5. CONCLUSION

The work presented in this thesis serves to advance the field of automatic model

generation. Building upon previous work with communication protocol recovery, a

new method of automatic synthesis of finite state machine models was proposed to

save the time and expense needed to create simulation models by hand. Results were

presented showing the success of the method and were analyzed using a proposed eval-

uation method. Some of the benefits and limitations of the methods were discussed

along with possible variations for improvement.

The goals of the implemented method as stated in Chapter 3 were achieved. The

generated models are acceptably accurate for the applications and can adequately

replace the devices they model. The time and resources necessary for simulation

model creation were reduced. The method is automated and thus requires minimal

interaction and input from an operator. The synthesis results are repeatable and

predictable. The environment requires little to no configuration changes in order to

use the described methods. The methods are adaptable to other environments and

architectures.

Possible future work could include some of the variations described in Chapter

4, such as real-time recording and synthesis, active model adaptation, and finite

state machine mergers. Some of the simulation variations could be pursued, such as

automatic or operator-guided state navigation.

LIST OF REFERENCES

79

LIST OF REFERENCES

[1] H.H. Yeh and C.Y. Huang, “Automatic constraint generation for guided random
simulation,” 15th Asia and South Pacific Design Automation Conference, pp.
613-618, January 2010.

[2] M. Barth, M. Strube, A. Fay, P. Weber, and J. Greifeneder, “Object-oriented
engineering data exchange as a base for automatic generation of simulation mod-
els,” 35th Annual Conference of IEEE Industrial Electronics, pp. 2465-2470,
November 2009.

[3] S. Demers, P. Gopalakrishnan, and L. Kant, “A generic solution to software-in-
the-loop,” IEEE Military Communications Conference, pp. 1-6, October 2007.

[4] A.M. Law and M.G. McComas, “Simulation software for communications net-
works: the state of the art,” IEEE Communications Magazine, vol. 32, no. 3,
pp. 44-50, March 1994.

[5] Z. Tao and S.X. Cheng, “Communication simulation aided with AI,” Global
Telecommunications Conference, pp. 820-824, vol. 2, December 1991.

[6] J.W. Lee and S. Kang, “Efficient simulation model generation using automatic
programming techniques,” Winter Simulation Conference, pp. 708-713, 1996.

[7] S. Kang, “Knowledge based automatic simulation model generation system,”
Circuits, Devices and Systems, vol. 144, no. 2, pp. 88-96, April 1997.

[8] M. Yumoto, T. Ohkawa, N. Komoda, and F. Miyasaka, “An approach to au-
tomatic model generation for stochastic qualitative simulation of building air
conditioning systems,” Proceedings of the IEEE International Symposium on In-
dustrial Electronics, vol. 2, pp. 1037-1042, June 1996.

[9] D. Huber, M. Eberling, C. Laroque, and W. Dangelmaier, “Stochastic gener-
ation of discrete-event simulation models,” Tenth International Conference on
Computer Modeling and Simulation, pp. 241-246, April 2008.

[10] J. Lu, Y. Guo, and H. Wang, “Rapid prototyping real-time simulation platform
for digital electronic engine control,” 2nd International Symposium on Systems
and Control in Aerospace and Astronautics, pp. 1-5, December 2008.

[11] R. Mueller, C. Alexopoulos, and L.F. McGinnis, “Automatic generation of simu-
lation models for semiconductor manufacturing,” Winter Simulation Conference,
pp. 648-657, December 2007.

[12] X. Wu, H. Figueroa, and A. Monti, “Testing of digital controllers using real-
time hardware in the loop simulation,” IEEE 35th Annual Power Electronics
Specialists Conference, vol.5, pp. 3622-3627, June 2004.

80

[13] Y. Chen, W. Cai, and Y. Zhang, “The research and implementation of auto-
matic unit test recording framework,” 2nd International Conference on Software
Technology and Engineering, vol. 2, pp. 395-399, October 2010.

[14] T. Zhang, T. Lv, and X. Li, “An abstraction-guided simulation approach using
Markov models for microprocessor verification,” Design, Automation and Test
in Europe Conference and Exhibition, pp. 484-489, March 2010.

[15] C. Yen, J. Jou, and K. Chen, “A divide-and-conquer-based algorithm for auto-
matic simulation vector generation,” Design and Test of Computers, IEEE, vol.
21, no. 2, pp. 111-120, March-April 2004.

[16] H. Chen and J. Tian, “Research on the controller area network,” International
Conference on Networking and Digital Society, vol. 2, pp. 251-254, May 2009.

[17] C.G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems, Sec-
ond Edition. New York, NY: Springer, 2008.

[18] R.T. Yeh, “Structural equivalence of automata,” 9th Annual Symposium on
Switching and Automata Theory, pp. 405-412, October 1968.

[19] K. Saleh, R. Probert, and I. Manonmani, “Recovery of communications protocol
design from protocol execution traces,” Second IEEE International Conference
on Engineering of Complex Computer Systems, pp. 265-272, October 1996.

[20] H. Bunke, “Error correcting graph matching: on the influence of the underlying
cost function,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 21, no. 9, pp. 917-922, September 1999.

[21] The GraphViz project, http://www.graphviz.org. Last accessed April 2011.

[22] H.T. Mouftah and R.P. Sturgeon, “Distributed discrete event simulation for com-
munication networks,” IEEE Journal on Selected Areas in Communications, vol.
8, no. 9, pp. 1723-1734, December 1990.

[23] W.H. Kwon and S. Choi, “Real-time distributed software-in-the-loop simulation
for distributed control systems,” Proceedings of the 1999 IEEE International
Symposium on Computer Aided Control System Design, pp. 115-119, 1999.

	gs-9-e
	gs-20-e
	thesis.pdf

