COVID-19 and research in pediatric urology

L Harper 1, D Bagli 2, M Kaefer 3, N Kalfa 4, G M A Beckers 5, A J Nieuwhoef-Leppink 6, M Fossum 7, K W Herbst 8, ESPU Research Committee

1. Department of Pediatric Urology and Pediatric Surgery, Hopital Pellegrin-Enfants, CHU Bordeaux, France. Electronic address: harper_luke@hotmail.com.

2. Division of Urology, Departments of Surgery and Physiology, University of Toronto, Developmental and Stem Cell Biology, The Hospital for Sick Children and Research Institute, Toronto, Ontario, Canada. Electronic address: darius.bagli@sickkids.ca.

3. Riley Hospital for Children, Indiana University, Indianapolis, IN, United States. Electronic address: mkaefer@iupui.edu.

4. Department of Pediatric Urology and Pediatric Surgery, Hopital Lapeyronie, CHU de Montpellier et Université de Montpellier, France. Electronic address: nicolaskalfa@gmail.com.

5. Department of Urology, Section of Pediatric Urology, Amsterdam UMC, Location VUmc, Amsterdam, the Netherlands. Electronic address: gma.beckers@amsterdamumc.nl.

6. Department of Medical Psychology and Social Work, Urology, Wilhelmina Children's Hospital, University Medical Center Utrecht, PO box 85090, 3508 AB, Utrecht, the Netherlands. Electronic address: A.Nieuwhoef-Leppink@umcutrecht.nl.

7. Department of Pediatric Surgery, Copenhagen University Hospital Rigshospitalet, DK-2100, Denmark; Department of Women's and Children's Health, Bioclinicum, Floor 10, Karolinska Institut, SE-171 76, Stockholm, Sweden. Electronic address: magdalena.fossum@ki.se.

8. Division of Urology, Department of Research, Connecticut Children's Medical Center, Hartford, CT, USA. Electronic address: kherbst@connecticutchildrens.org.

This is the author's manuscript of the article published in final edited form as:

COVID-19 began in December 2019 and spread worldwide. Providers, including pediatric urologists, had to adapt their clinical processes, and many non-covid research activities were suspended. COVID-19 impacts how research is financed, performed, and published, and is itself the subject of intense research. We present current research and publications specifically related to the urinary tract and the pediatric population.
Coronavirus disease 2019 (COVID-19) began in December 2019 then spread worldwide. Providers, including pediatric urologists, had to adapt their clinical processes, and many non-covid research activities were suspended (1, 2). COVID-19 impacts how research is financed, performed, and published, and is itself the subject of intense research.

However, little is known on how SARS-CoV-2 affects the urinary tract. We know that its spike protein’s three-dimensional structure has a strong binding affinity to both the urinary bladder and the kidneys through ACE positive cells (3). This may in part explain the acute kidney injuries (AKI) occurring in 0.1–29% of adult patients with COVID-19, though it may also be explained by an immune-mediated response (4). A recent publication in European Urology reported seven adult males presenting with increased urinary frequency associated with COVID-19 (5), and a recent case series reported that 18% of men reported scrotal discomfort during their course of COVID-19 infection (6).

Children are also affected. Though initially thought to be spared from serious effects of COVID-19, this may not be accurate. There have been an increasing number of reports of multisystem inflammatory syndrome in children (MIS-C) and in May 2020, the Centers for Disease Control and Prevention released a public health advisory along with a case definition for MIS-C (7). The clinical and laboratory features of MIS-C are similar to Kawasaki disease, though the disorder has distinct features (8). Although there is early data that AKI develops in pediatric patients with acute COVID-19 and MIS-C (up to 11.8% of children in a recent review) the associated clinical characteristics, and short- and long-term outcomes are not well characterized (9). There might also be direct effects on the urinary tract: there have been anecdotal reports of orchitis-like testicular inflammation seen in MIS-C patients in the emergency room and a recent study on imaging findings in MIS-C found bladder wall thickening in 6% of cases (10). A recent publication also described graft artery stenosis in seven pediatric patients following kidney transplant, five of whom tested positive to COVID-19, and in the remaining two the diseased donor blood presented positive serology to COVID-19 (11).
COVID-19 has also created an enormous mental health burden on children and adolescents, either by its direct effect or because of the unique combination of social isolation, economic recession, and school closures with remote learning further eroding an essential exposure to formative childhood social interactions (12). It is important to speculate that these factors may affect clinical situations such as bladder bowel bladder dysfunction remains to be seen.

In conclusion, it seems obvious that the urological community, including pediatric urologist, should be proactive in developing research questions to understand how COVID-19 impacts our patients, and be prepared for a potential downstream increased volume of both organic and functional kidney and urinary tract complications which might present in the coming years.
References

MCQ

1. Who wrote this article?
 a. Research committee
 b. William Shakespeare
 c. Barbara Cartland

2. Who is the GOAT?
 a. Michael Jordan
 b. LeBron James
 c. Wilt Chamberlain

3. What is the meaning of life?
 a. A film by the Monty Python
 b. 42
 c. The true meaning of life is to plant trees, under whose shade you do not expect to sit

4. What if?
 a. Well then
 b. Or not
 c. Probably

5. What is question 5?
 a. Question 5?
 b. What is question 5?
 c. What?