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ABSTRACT 

David T.  Hinkle IV 

 

CORRELATING IRINOTECAN AND CAPECITABINE TREATMENT FOR 

COLORECTAL CANCER TO GENE EXPRESSION, POLYMORPHISMS, AND 

CLINICAL OUTCOMES 

 

Colorectal cancer is the third most common type of cancer and the third most common 

cause of cancer-related mortality.  There are three types of treatment available to patients, 

either individually or in combination.  Treatments are radiation, chemotherapy, and 

surgery.  In a Phase II clinical trial at IUSM, a multimodality approach was chosen.  The 

patients with locally advanced rectal cancer received preoperative treatment with 

capecitabine and irinotecan (CPT-11) combination followed by chemoradiation with 

capecitabine and finally surgery to improve response and decrease local recurrence.  

Irinotecan and Capecitabine are both prodrugs activated in vivo to SN-38 and 5-FU, 

respectively. Identification of the molecular markers for 5-FU and Irinotecan efficacy and 

toxicity is important for the development of more efficient and less toxic treatment 

strategies for patients with colorectal cancer.  The goal of this study was to determine the 

expression levels of the genes involved in activation and metabolism of capecitabine and 

irinotecan in pre and post treatment specimens from these patients.  The genes quantitated 

by real-time PCR were carboxylesterase 1 and 2 (CES1 and CES2), thymidylate synthase 

(TS), β-glucoronidase (β-GUS), thymidine phosphorylase (TP), dihydropyrimidine 

dehydrogenase (DPD) and topoisomerase I (Topo I).  The UGT1A1*28 polymorphism in 
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UDP glucuronosyltransferase 1 is associated with SN-38 toxicity.  Therefore, the 

UGT1A1*28 polymorphism status in patients was determined by PCR-sequencing.  

Correlative analysis of gene expression and UGT1A1*28 mutation with clinical outcome 

in this Phase II study was completed. 

 

Maureen A. Harrington, Ph.D., Chair 
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INTRODUCTION 

I. Colorectal Cancer 

Colorectal cancer is the third most common type of cancer and the third most common 

cause of cancer related mortality.  Although incidence has been steadily decreasing, the 

NIH estimated colorectal cancer to cause 49,960 deaths in 2008 (1).  Colorectal cancer is 

an uncontrolled proliferation of cells in the largest part of the large intestine, the colon or 

rectum.  Most colorectal cancers are adenocarcinomas, meaning they originate from the 

glandular cells that line the intestine (2). 

 

Staging is the categorization of cancer according to the extent that it spreads.  It is used 

for diagnostic, therapeutic, and prognostic purposes.  There are several staging systems, 

but the most common system is the American Joint Committee on Cancer (AJCC) 

system, also called the TNM system.  This system uses Roman Numerals I-IV to describe 

the extent of the primary Tumor (T), the absence or presence of metastasis to nearby 

lymph Nodes (N), and the absence or presence of distant Metastasis (M) (3).  

Tumor 

T1:  Tumor invades submucosa 

T2:  Tumor invades muscularis  

T3:  Tumor invades serosa 

T4:  Tumor invades other organs/structures 

Node  

N0:  No regional lymph node invasion 

N1:  Metastasis in 1-3 regional lymph nodes 

N2:  Metastasis in 4 or more regional nodes 

Metastasis 

M0:  No distant metastasis 

M1:  Distant metastasis present 

Table 1:  TNM System:  (American Cancer Society.  Detailed Guide:  Colon and 

Rectum Cancer, How is Colorectal Cancer Staged).  
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Stage I:  T1 N0 M0; T2 N0 M0.   

Cancer is contained to inner lining. 

Stage II:  T3 N0 M0; T4 N0 M0. 

Cancer has spread to other nearby organs, but not 

reached lymph nodes. 

Stage III:  any T, N1-2, M0.   

Cancer has spread to lymph nodes, but has not 

been carried to distant parts of the body 

Stage IV:  any T, any N, M1. 

Cancer has been carried through the lymph 

system to distant parts of the body.  The most 

likely organs are the lungs and liver 

 Table 2:  Staging of Colon Cancer (American Cancer Society.  Detailed Guide:  Colon 

and Rectum Cancer, How is Colorectal Cancer Staged). 

 

II. Treatment for Colorectal Cancer 

There are three types of treatment available for patients with colorectal cancer.  They are 

Primary Surgical Therapy, Adjuvant Chemotherapy, and Adjuvant Radiation Therapy 

(4).  The route of therapy chosen is selected according to the stage of the disease.   

 

Primary Surgical Therapy 

Surgery is often the main treatment for colorectal cancer.  It is often the best choice, 

when the cancer has not metastasized.  Surgery may be used alone, or it may be 

employed with other options, such as chemotherapy or radiation therapy.  Advanced 

techniques have greatly improved cure rates and reduced the level of damage to normal 

tissue (5).   
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Radiation Therapy 

Radiation therapy is one of the most common forms of treatment for cancer.  It uses high-

energy particles to attack the cancer cells.  It may be used by itself, or in conjunction with 

another form of treatment (6).  Unlike Chemotherapy, radiation is localized to the area of 

the tumor.   

 

Chemotherapy 

Chemotherapy is a common method of cancer treatment.  It employs the use of 

chemical/biological compounds to destroy cancer cells.  These drugs may be used alone, 

or in combination with other drugs.  And unlike surgery and radiation therapy, 

chemotherapy is a primarily systemic treatment (7).  This means the drugs are not 

localized to a specific region.  Rather, they are administered to the patient in such a way 

that would allow them to travel throughout the body, reaching the cancer cells wherever 

they may have spread.   

 

Chemotherapy Options for Colorectal Cancer 

A variety of drugs are available for patients with colorectal cancer.  The most common 

drug is 5-Fluorouracil (5-FU).  5-FU may be administered intravenously or orally, along 

with Leucovorin.  It is frequently given with another drug, such as Camptosar 

(irinotecan) or oxaliplatin, or with targeted therapies, that involve the use of monoclonal 

antibodies for specific proteins.  These monoclonal antibodies may include Bevacizumab 

(Avastin), which targets vascular endothelial growth factor (VEGF), or Cetuximab 

(Erbitux) and Panitumumab (Vectibix), which target epidermal growth factor receptor 
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(EGFR) (8).  Capecitabine, a prodrug of 5-FU, is increasingly used, as it is an oral drug 

and has minimal side effects.  

 

 

III. Clinical Trial 

This study was part of a Phase II clinical trial conducted at the Indiana University School 

of Medicine, Indianapolis.  Patients were selected according to colorectal cancer staging, 

using endoscopic ultrasound (EUS).  Those with T3/T4 or ≥ N1 rectal cancer were 

treated with capecitabine 1000 mg/m
2
 twice daily for days 1-14 and irinotecan 200 

mg/m
2
 IV on the first of every 21 days for 2 cycles.  This was followed by capecitabine 

825 mg/m
2
 twice daily days 1-5 weekly with concurrent radiotherapy 50.4 Gy in 28 1.8-

Gy fractions.  Baseline tumor biopsies were tested for correlative studies of genes 

expression with clinical endpoints 4-6 weeks after completion of preoperative therapy.  

The objectives of this trial were to assess pathological success rate, toxicity, rate of 

recurrence, clinical response to induction chemotherapy, and perform biological 

correlative studies of the enzymes involved in capecitabine and irinotecan metabolism.   

 

Figure 1.  Clinical Trial Schema 
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IV. Capecitabine and Irinotecan 

The first-line treatment of metastatic colorectal cancer is typically Irinotecan, used in 

conjunction with Capecitabine.  As carbamate prodrugs, both require in vivo activation by 

carboxylesterases (9).   

 

Irinotecan:  Structure and Function 

Irinotecan (Figure 2) is a semisynthetic, water-soluble derivative of the natural alkaloid, 

camptothecin, and is a carbamate ester prodrug of SN-38 (7-12).  It works by inhibiting 

DNA Topoisomerase I, which is encoded by the gene TOPO I (9). Topo I is a nuclear 

enzyme involved in DNA replication, transcription, and DNA repair and recombination.  

During DNA replication, topoisomerase works by breaking one DNA strand and 

covalently binding to the 3’-phosphoryl end.  Irinotecan prevents ligation of the nicked 

strand by stabilizing the DNA-topoisomerase I complex.  This eventually leads to a 

double-strand break and results in apoptosis (10). 

 

Figure 2.  Molecular Structure of Irinotecan 

 

Metabolism of Irinotecan  

Irinotecan exists in two forms, an active lactone form and an inactive carboxylate form, 

that exist in a pH-dependent equilibrium (9).  Irinotecan is converted to several different 

http://upload.wikimedia.org/wikipedia/commons/b/bc/Irinotecan
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metabolites by various enzymes.  It is converted by carboxylesterases to its active form 

SN-38, and by the cytochrome CYP3A4 to form the compounds NPC and APC.  APC is 

not further metabolized, but NPC is also converted by carboxylesterases to yield SN-38. 

(10).  SN-38 then undergoes glucuronidation by UGT1A/7 to yield the inactive SN-38G.  

Various bacteria produce the enzyme β-glucuronidase (β-GUS), which then converts SN-

38G back to the active metabolite, SN-38 (Figure 3) (9-14). 

 

Figure 3.  Irinotecan (CPT-11) Metabolism 
Irinotecan exists in two forms, an active lactone form and an inactive carboxylate form, 

that exist in a pH-dependent equilibrium.  Irinotecan is converted to several different 

metabolites by various enzymes.  It is converted by esterases to form SN-38, and by 

CYP3A4 to form the compounds NPC and APC.  APC is not further metabolized, but 

NPC is also converted by carboxylases to yield SN-38.  SN-38 then undergoes 

glucuronidation by UGT1A/7 to yield the inactive SN-38G.  Various bacteria produce the 

enzyme β-glucuronidase, which then converts SN-38G back to the active metabolite, SN-

38.   

 

Capecitabine:  Structure and Function 

Capecitabine (Figure 4) is an orally administered prodrug of the pyrimidine analog 5-

fluorouracil (5-FU).  5-FU inhibits the production of the nucleotide thymidine by 

inhibiting the enzyme thymidylate synthase (TS) (9-14).  
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Figure 4.  Molecular Structure of Capecitabine   

 

Metabolism of Capecitabine 

Capecitabine is first converted to 5'-deoxy-5-fluorocytidine (5'-DFCR) by 

carboxylesterases.  5'-DFCR is then converted to 5'-deoxy-5-fluorouridine (5'-DFUR) by 

cytidine deaminase.  Next, thymidine phosphorylase (TP) converts 5'-DFUR to 5-FU.  5-

FU inhibits the production of the nucleotide thymidine by inhibiting the enzyme 

thymidylate synthase (TS).  5-FU, however, is inactivated by the enzyme 

dihydropyrimidine dehydrogenase (DPD) (Figure 5) (15). 

 

Figure 5.  Metabolism of Capecitabine 

http://dmd.aspetjournals.org/content/32/7/762/F1.large.jpg
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V. Carboxylesterases 

Classification and Function 

Carboxylesterases (CES) are members of the α/β hydrolase fold family and are a group of 

enzymes that function in the metabolism of ester and amide prodrugs (16).  They are 

ubiquitously expressed, but levels are highest in the small intestine, liver, and lungs.  

There are five genes of carboxylesterases reported in humans, named CES1-CES5.  The 

vast majority are members of the CES1 or CES2 families.  CES1 substrates generally 

contain a large acyl and a small alcohol group, while substrates for CES2 contain a small 

acyl and a large alcohol moiety (17). 

 

Relationship to Irinotecan and Capecitabine 

Irinotecan and Capecitabine are carbamate prodrugs, which require in vivo activation.  

Irinotecan activation is accomplished by CES2, and to a lesser extent, CES1.  However, 

Capecitabine is activated by both CES1 and CES2.  Irinotecan is converted to SN-38, 

while Capecitabine is converted to 5'-deoxy-5-fluorocytidine (5'-DFCR).   

 

VI. Significance of UGT1A1 

UDP glucuronosyltransferase 1 family, polypeptide A1 (UGT1A) encodes a specific 

UDP-glucuronosyltransferase (UGT) in the glucuronidation pathway.  UGT1A1 also 

glucuronidates SN-38, converting it to SN-38G, and renders it inactive.  However, 

glucuronidase activity is significantly decreased by the presence of additional TA repeats 

in the TATA sequence of the promoter region.  Patients with a UGT1A1*28 

polymorphism are more likely to experience severe adverse reactions to Irinotecan, such 
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as severe neutropenia and even potentially fatal diarrhea, due to their lower capacity to 

inactivate SN-38 to its glucuronide (10).  There are several possible UGT1A1 (TA)n 

polymorphisms, the most common being variations of (TA)6 and (TA)7 (18). 

  

VII. Biotechniques Utilized 

There were several biotechniques employed in this study.  DNA and RNA isolation, 

Real-Time PCR, DNA sequencing, and the use of enzyme activity assays were all 

employed.  Nucleic Acid (NA) isolation was performed on tissues obtained during 

biopsy.  Samples were immediately frozen, upon procurement, to prevent RNA 

degradation.  Samples were then placed in a buffer, homogenized, and purified NAs were 

obtained with Qiagen kits.  RNA integrity was determined using the 2100 bioanalyzer 

(Agilent) and the RNA integrity number was determined using pico chip.  This 

technology uses picogram quantities of RNAs to determine the RNA integrity and 

quantity.  To quantify gene expression, RNA samples were reverse-transcribed and 

cDNA was used for real-time PCR.  Real-time PCR differs from traditional PCR in that it 

allows for the detection of amplicon during the initial, exponential phase of amplification, 

whereas traditional PCR measures amplicon produced in the final, plateau phase.  This 

allows for earlier and more dependable quantitation of gene expression.  DNA 

sequencing was performed on an automated instrument, using a chain-termination 

method.  This method utilizes dideoxynucleotide triphosphates (ddNTPs) as DNA chain 

terminators.  Samples are separated into four reactions, each using all four standard 

deoxynucleotides (dATP, dGTP, dCTP and dTTP).  To each reaction is added only one 

of the four dideoxynucleotides (ddATP, ddGTP, ddCTP, or ddTTP) (19).  When these 
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labeled nucleotides are incorporated, elongation ceases.  This produces DNA fragments 

of varying lengths.  DNA fragments are denatured and resolved by size.  The differences 

in length are used to determine the sequence of the DNA (20).   

 

VIII. Hypothesis 

It was our hypothesis that higher CES2 expression in tumor tissue would result in better 

patient response, due to localized activation of irinotecan to SN-38.  Also, higher CES2 

expression in normal tissue may be the cause of severe drug related gastrointestinal 

toxicity.   
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AIMS of Thesis 

1. The Primary aim of this study was to evaluate the expression levels of the genes 

responsible for the metabolism of capecitabine and irinotecan in baseline and post-

treatment normal and tumor paired samples obtained from colorectal cancer patients 

enrolled in the Phase II trial.   

2. The second aim was to conduct correlative analyses of gene expression in normal and 

tumor paired samples, and gene expression and clinical outcome.   
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METHODS 

 

I. Materials 

QiaShreddars, Allprep DNA/RNA kits, RNeasy Plus Mini Kits, and QIAquick PCR 

Purification Kit were purchased from Qiagen (Valencia, CA).  Disposable mortars and 

pestles were purchased from Kontes.  SYBR Green kits and GeneAmp Gold RNA PCR 

kits were obtained from Applied Biosystems (Foster City, CA).  All primers were ordered 

from Integrated DNA Technologies (Coralville, IA). 

 

II. Sequencing of UGT1A1 Region 

DNA extraction 

Normal tissue samples were used for UGT1A1 sequencing.  Tissues were excised, 

immediately placed in liquid nitrogen, and stored at -70°C for further use.  Less than 20 

mg of tissue was placed in 350 µL Buffer RLT (Qiagen) and disrupted with disposable 

mortars and pestles (Kontes).  Lysates were homogenized with Qiashredder spin columns 

(Qiagen) and purified with AllPrep DNA spin columns (Qiagen).  DNA was eluted in 50 

µL Buffer EB (Qiagen).  

  

DNA sequencing 

Approximately 400 ng of DNA from normal biopsy tissue was used as a template for 

amplifying a 255 bp region flanking the promoter region of the UGT1A1 gene.  The 

forward primer was 5’-AAGTGAACTCCCTGCTACCTT-3’and the reverse primer was 

5’-CCACTGGGATCAACAGTATCT -3.  Reactions were performed in volumes of 50 



13 

 

µL with 1x buffer, 1.75mM MgCl2, 0.8mM of each dNTP, 0.25 M of each primer, and 

0.05U/L AmpliTaq Gold (Applied Biosystems).  PCR conditions were based on those 

of Monaghan et al. (21).  Reactions began at 95°C for 10 minutes, followed by 40 cycles 

of 95°C for 30 s, 58°C for 40 s, and 72°C for 40s.  PCR products were electrophoresed on 

1 percent agarose gels (Sigma) and bands were excised under UV light.  Excised DNA 

bands were purified with the QIAquick Gel Extraction Kit and sequenced using the 

forward primer.  Chromatograms were used to identify the number of TA repeats in the 

TATA box region of the promoter in comparison to the normal promoter sequence 

TATATATATATATAA (18).  

 

III. Gene Expression in Samples 

RNA extraction and quantitation 

Both normal and tumor samples were collected and processed in a manner similar to the 

one described above.  Tissues were excised, immediately placed in liquid nitrogen, and 

stored at -70°C for further use.  Less than 20 mg of tissue was placed in 350 µL Buffer 

RLT (Qiagen) and disrupted with disposable mortars and pestles (Kontes).  Lysates were 

homogenized with Qiashredder spin columns (Qiagen) and purified with AllPrep 

RNA/DNA spin columns (Qiagen).  Flowthrough was collected, combined with an equal 

volume of 70% ethanol, and purified with RNeasy spin columns (Qiagen).  RNA was 

eluted in 30 µL RNase-free water and quantitated using the ND-1000 (Nanodrop).   
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Reverse transcription and real-time PCR 

Gene expression was evaluated using a two-step RT-PCR.  Reverse transcription was 

performed with the GeneAmp Gold RNA PCR kit (Applied Biosystems) “Protocol for 

Two-Step RNA PCR”.  Reverse Transcriptions were set up in 50 µL reactions containing 

1g of total RNA, 0.75U/µL MultiScribe reverse transcriptase, 0.5U/ µL RNase inhibitor, 

1.25 µM oligodeoxythymidylic acid primer, 250 µM of each dNTP, and 2.5mM MgCl2.  

Reactions were performed on the GeneAmp PCR System 2700 (Applied Biosystems).   

 

RT conditions were 25°C for 10 minutes, 42°C for 60 minutes, 68°C for 10 minutes, 95°C 

for 5 minutes, and 40°C hold.  Success of all reverse transcription reactions was verified 

by amplifying a portion of the β-Actin gene, using the GeneAmp Gold RNA PCR kit 

(Applied Biosystems) and primers for β-Actin.  The forward primer was 5’-

GAAGATCAAGATCATTGCTCCTCC-3’and the reverse primer was 5’-

TTTTCTGCGCAAGTTAGGTTTTGTG -3’.  PCR parameters were 95°C for 10 

minutes; followed by 35 cycles of 95°C for 30 seconds, 65°C for 30 seconds, and 72°C 

for 1 minute; 72°C for 5 minutes, and holding at 40°C.  PCR products were 

electrophoresed on 1% agarose gels (Sigma).   

 

For real-time PCR, cDNA equivalent to 20 ng of RNA was added to each 25 l PCR 

reaction.  RT was performed using the same conditions described above.  This created the 

cDNA that was subsequently used for the quantitative real-time PCR assays.  PCR was 

performed on the Eppendorf Realplex instrument (Eppendorf) and standard curves were 

evaluated using the program’s software.  Standards for each gene were created from 
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recombinant vectors constructed in our laboratory and were diluted to concentrations of 3 

copies/ml, 30 copies/mL, 300 copies/mL, 3000 copies/mL, 3E4 copies/mL, 3E5 

copies/mL, and 3E6 copies/mL.  Standards and samples were tested in triplicate.  The 

concentration of primers and the reaction conditions were established to ascertain 

minimal primer dimer and/or non specific product formation and hence increase the 

specificity of the real-time PCR. 

 

Gene Primers 

Conc. 

primer 

(µM) 

Melting  

time 

at 95°C 

(sec) 

Annealing 

 time 

at 65°C 

(sec) 

Extention 

time 

at 72°C 

(sec) 

CES2  F 5’-CCATGGTGATGAGCTTCCTTTTGT-3’  0.5 30 30 60 

 R  5’-AGGTATTGCTCCTCCTGGTCGAA-3’      

CES1 F 5’- AGAGGAGCTCTTGGAGACGACAT-3’ 0.2 30 30 60 

 R 5’- ACTCCTGCTTGTTAATTCCGACC-3’     

TOPO I  F 5’-CGTTCTACCAGGCAAATTCACTGT-3’  0.3 20 15 40 

 R 5’-TGAAATGGGAGAGAGGGAAGGGA-3’      

β-GUS  F 5’-TCAACAAGCATGAGGATGCGGAC-3’  0.3 30 30 60 

 R 5’-TACGCACCACTTCTTCCATCACC-3’      

TP  F 5’-AATGTCATCCAGAGCCCAGAGCA-3’  0.5 30 30 60 

 R 5-GAACTTAACGTCCACCACCAGAG-3’      

TS F 5’-TTTACCTGAATCACATCGAGCCAC-3’  0.5 30 30 20 

 R 5’-GACTGACAATATCCTTCAAGCTCC-3’      

DPD F 5’-GGTCTTCAGTTTCTCCATAGTGGT-3’  0.5 20 20 45 

 R 5’-GACTCTGTCCATCCCAGTCTTGT-3’      

Table 3.  Forward (F) and Reverse (R) Primers for Real-Time PCR:  Reaction 

parameters were 50°C for 2 min, 95°C for 10 min, followed by 40 cycles PCR with the 

temperature and times listed in the table. 
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IV. Patient Data 

There were 22 patients enrolled in the study.  Ages ranged from 36-67, with the median 

age being 54 years.  Samples were obtained for 21 patients.  Of these patients, high-

quality RNA was obtained from 18 samples.   

 

V. Correlative Analysis 

Correlative analysis was done using graphpad prizm.  Data was analyzed using Wilcoxin 

matched paired t-test for comparing normal and tumor paired samples.  The entire group 

of patients was analyzed as a single group.  In addition, post-treatment surgical samples 

were obtained from some patients and the gene expression levels were compared before 

and after treatment.  Unpaired t-test analysis of samples was also done, based on patient 

response.   
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RESULTS 

I. Analysis of Isolated DNA 

We found that most of the DNA samples had an A260/A280 ratio of around 1.8.  Table 4 

lists DNA data for normal and tumor specimens.  Figure 6 provides an example of a 

typical DNA analysis by spectrophotometer.   

  NORMAL DNA TUMOR DNA 

Sample 
Total Amount 
(μg) A260/A280 

Total Amount 
(μg) A260/A280 

GI53-001 181.10 1.87 641.11 1.84 

GI53-002 164.86 1.89 154.89 1.92 

GI53-003 517.10 1.92 475.20 1.88 

GI53-007 97.07 1.86 518.55 1.78 

LO53-502 396.7 1.82 100.83 1.93 

LO53-501 382.78 1.85 298.31 1.83 

LO53-504 353.14 1.86 217.47 1.90 

LO53-503 470.96 1.84 247.14 1.83 

LO53-500 446.49 1.81 446.49 1.85 

LO53-505 284.5 1.86 285.18 1.84 

LO53-506 67.33 1.83 386.11 1.81 

LO53-511  96.85 1.82 665.55 1.90 

LO53-510  554.90 1.82 1075.73 1.86 

LO53-523  309.62 1.86 263.30 1.86 

LO53-515  615.11 1.90 98.40 1.86 

LO53-525  278.80 1.87 156.76 1.85 

LO53-529  391.62 1.92 391.62 1.92 

LO53-528  622.38 1.92 620.98 2.11 

LO53-531  268.58 1.89 125.28 1.90 

Table 4.  Summary of Isolated DNA Data from Normal and Tumor Samples 
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Figure 6.  Example of Typical DNA Spectrophotometric Analysis 

 

 

 

 

 

II. Analysis of Isolated RNA  

We found that most of the RNA samples had an A260/A280 ratio of around 2.0.  Table 6 

lists RNA data for normal and tumor specimens.  Figure 7 provides an example of a 

typical RNA analysis by spectrophotometer, while Figure 8 depicts typical data obtained 

from degraded RNA.   

 

 

 

 

 

 



19 

 

  NORMAL RNA TUMOR RNA 

Sample 
Total 
Amount (μg) A260/A280 

Total 
Amount (μg) A260/A280 

GI53-001 73.01 2.02 1133.79 2.00 

GI53-002 174.40 2.08 197.82 2.07 

GI53-003 219.42 2.01 335.01 1.99 

GI53-007 235.42 1.86 627.03 2.02 

LO53-502 484.88 2.18 595.94 2.13 

LO53-501 111.88 2.03 294.25 2.10 

LO53-504 201.45 2.04 563.86 2.16 

LO53-503 256.84 2.06 351.59 1.96 

LO53-500 117.01 2.02 131.05 2.06 

LO53-505 284.51 2.01 267.66 2.04 

LO53-506 178.66 2.06 42.56 2.02 

LO53-511  521.15 2.09 1010.61 2.08 

LO53- 510  674.49 2.09 875.31 2.08 

LO53- 523  362.28 2.07 224.42 2.09 

LO53- 515  173.90 2.06 266.43 2.07 

LO53- 525  156.00 2.09 115.64 2.07 

LO53-529  380.71 2.05 712.5 2.11 

LO53- 528  477.89 2.11 854.25 2.09 

LO53- 531  174.44 2.08 287.07 1.89 

Table 5.  Summary of Isolated RNA Data from Normal and Tumor Samples 

 

 
Figure 7.  Example of Typical RNA Spectrophotometric Analysis 
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Figure 8.  Example of Degraded RNA Spectrophotometric Analysis 

 

III. Real-Time PCR 

Overall gene expression was compared between the 18 paired tumor and normal samples.  

All Real-time PCR reactions employed the use of laboratory-generated standard curves.  

(Figure 9) Data is summarized in tables 6 and 7.  Data for baseline standard curves are 

provided in table 8.   

 

Figure 9.  Real-Time PCR Standard Curve:  The example shown here is for CES2.  

The r
2
 value is 0.998.  The x-axis represents cycle number and the Y-axis represents copy 

number. 
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GENE COPY NUMBER 

Sample 

Name 

CES2 

Normal 

CES1 

Normal 

TP 

Normal 

TS 

normal 

β-GUS 

Normal 

DPD 

Normal 

TOPO I 

Normal 

GI53-

001 15287 144 1319 3207 1763 23.6 1983 

GI53-

002 32059 38.9 1315 2380 1633 4.15 2728 

GI53-

003 27488 226 7606 3255 1500 26.4 1848 

GI53-

007 28636 94.4 2518 795 1848 25.6 1453 

LO53-

502 12599 19.3 382 441 549 8.95 950 

LO53-

501 16871 89.7 386 1238 563 5.47 912 

LO53-

504 21292 56.2 1447 867 1498 11.4 1139 

LO53-

503 7795 11.6 478 689 353 2.59 774 

LO53-

500 10695 61.3 348 400 530 6.09 673 

LO53-

505 11017 43.8 88.6 476 603 13.8 583 

LO53-

506 5729 9.94 86.2 55.3 231 3.39 196 

LO53-

511  26506 11 1028 117 771 14.9 2694 

LO53- 

510  20676 43.2 2323 302 1263 55.5 5158 

LO53- 

523  14702 87.5 254 283 3485 16.4 2443 

LO53- 

515  43934 30.4 698 1654 4346 57.5 4879 

LO53- 

525  34759 185 1227 195 1119 51.6 4002 

LO53-

529  32044 34.7 429 901 939 38.2 2887 

LO53- 

531  21888 28.5 1581 154 793 26.7 2486 

Table 6:  Gene Expression in Baseline Normal Samples 
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GENE COPY NUMBER 

Sample 

Name 

CES2 

Tumor 

CES1 

Tumor 

TP 

Tumor 

TS 

Tumor 

β-GUS 

Tumor 

DPD 

Tumor 

TOPO I 

Tumor 

GI53-

001 3996 29.3 1807 15991 3611 16.3 6029 

GI53-

002 8403 15.3 550 733 525 42.9 634 

GI53-

003 2175 202 1256 3513 506 13.6 1013 

GI53-

007 14872 33 1205 829 930 94.6 1381 

LO53-

502 16531 69.7 2309 860 1615 138 1463 

LO53-

501 1853 142 6659 1676 516 118 1026 

LO53-

504 8151 631 5445 3364 2912 205 4624 

LO53-

503 15804 584 2009 1204 1058 133 3773 

LO53-

500 13778 116 3242 1171 970 133 4938 

LO53-

505 5329 3359 1848 3280 719 42 1416 

LO53-

506 4927 55.1 11838 2775 1498 635 1696 

LO53-

511  14049 204 2857 319 1050 0 7538 

LO53- 

510  17171 345 2651 1657 1099 0 5723 

LO53- 

523  2118 7.89 579 240 318 3.02 1114 

LO53- 

515  8625 93.7 2684 1919 4467 193 5268 

LO53- 

525  39743 352 427 215 2081 30 2019 

LO53-

529  16783 53.7 3156 23448 2068 53.6 11726 

LO53- 

531  26410 19 427 80 4356 51.6 1421 

Table 7:  Gene Expression in Baseline Tumor Samples 
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GENE SLOPE INTERCEPT R2   

CES1 -3.406 36.74 0.997 Baseline 

TP -3.295 35.42 0.999 

TS -3.337 37.69 0.996 

CES2 -3.563 37.56 0.995 

TOPO I -3.626 40.78 0.995 

Table 8. Standard Curve Equations for Real-Time PCR Assays 

 

IV. Clinical Trial Outcome Data 

Of the 18 patients who completed all therapy, 10 had complete response (CR), 0 had 

partial response (PR), 7 had stable disease (SD), and 1 had progressive disease (PD).   

Best Response n % 

CR 10 45.50% 

PR 0 0.00% 

SD 7 31.80% 

PD 1 4.50% 

Table 9.  Summary of Clinical Trial Data  

 

V.  Sequencing of UGT1A1 Region 

Normal tissue samples were used for UGT1A1 sequencing.  Chromatograms 

demonstrating two sequences in this region were deemed heterozygous.  Eight patients 

were wild-type homozygous for (TA)6TAA/(TA)6TAA (6/6).  Nine patients were 

heterozygous for (TA)6TAA/(TA)7TAA (6/7).  Three patients were homozygous for 

(TA)7TAA/(TA)7TAA (7/7).  And one patient was heterozygous for 

(TA)5TAA/(TA)6TAA (5/6).  (See Table 4) 
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Polymorphism Number of Patients 

6/6 8 

6/7 9 

7/7 3 

5/6 1 

Table 10.  UGT1A1*28 Polymorphism Status in Patients 

 

 

 

Figure 10.  Wild-Type UGT1A1 (TA)6TAA/(TA)6TAA (6/6) Chromatogram 
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Figure 11.  Heterozygous (TA)6TAA/(TA)7TAA (6/7) Chromatogram 

 

 

 

Figure 12.  Homozygous (TA)7TAA/(TA)7TAA (7/7) Chromatogram 
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VI. Gene Expression Analysis 

Expression levels in paired CR Tumor and Normal, SD Normal and Tumor, Tumor CR 

and SD, and Normal CR and SD samples were analyzed, using two-tailed t-tests.  As seen 

in Figure 13a, a paired t-test analysis of paired samples showed that the expression of 

CES2 was significantly higher in normal samples in comparison to tumor samples 

(p=0.0051).  Further analysis of patient groups based on response showed the same trend 

in both the complete response group and patients with stable disease, but the p-values 

were higher.  (Figures 13b and 13c) Unpaired t-test analysis of CES2 expression in tumor 

and normal samples based on patient response is shown in Figures 13d and 13e.  CES2 

expression was found to be higher in normal sample in comparison to tumor samples, but 

there was no difference in expression of CES2 based on patient response.  There was 

significant increase in TP expression in tumor samples, as compared to normal samples.  

Similar analysis was done for all the genes.  Table 7 summarizes the t-test results. 

 

  

p Value 

CR  

Normal 

Vs 

Tumor, 

n=6 

SD 

Normal 

Vs 

Tumor, 

n=9 

Tumor  

CR Vs 

SD 

Normal 

CR Vs 

SD 

Tumor 

Vs 

Normal, 

n=18 

CES1 0.257 0.3503 0.208 0.262 0.143 

CES2 0.0068 0.2444 0.0755 0.2937 0.0049 

TP 0.0528 0.6723 0.0299 0.1906 0.096 

TS 0.0568 0.3408 0.7187 0.1866 0.082 

TOPO I 0.1481 0.2323 0.7488 0.3412 0.0542 

β-GUS 0.9742 0.2571 0.3954 0.8799 0.297 

DPD 0.1811 0.0361 0.2697 0.2241 0.0338 

Table 11.  Summary of p Values in Paired Samples 
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Figure 13.  Comparisons of CES2 Expression 

 

 

 

13a 

13b 13b 

13c 13d 
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Figure 14.  Comparisons of TP Expression 
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DISCUSSION 

I.  Gene Expression in Paired Normal and Tumor Samples  

About 60% of intravenously administered irinotecan is excreted via feces, of which 32% 

is in the unchanged form (22).  Therefore, there is a great potential for activation of 

irinotecan in the GI tract by local carboxylesterases and this may be responsible for the 

life threatening slow onset diarrhea in some patients.  Conversely, presence of high levels 

of carboxylesterases in the tumor tissue could result in localized activation in the tumor 

and may be associated with better clinical response.  The two most abundant 

carboxylesterases in humans are CES1 and CES2.  CES2 the key carboxylesterase 

enzyme expressed in the GI tract.  In this study, gene expression was compared for 19 

paired normal and tumor samples.  Contrary to our hypothesis, it was found that CES2 

expression was higher in normal samples than in tumor samples.  We essentially found 

CES2 expression to be higher in normal samples than in tumor samples, regardless of 

clinical response. (Figures 13b and 13d).  Earlier in the clinical trial it was determined 

that the administration of loperamide prior to and during chemotherapy significantly 

reduced the GI toxicity.  Therefore all patients received loperamide.  In a previous study, 

our laboratory determined that loperamide was a very good inhibitor of CES2 (IC50 

=0.38 μM) (23).  Since CES2 activity is inhibited by the presence of loperamide, we were 

unable to evaluate the correlation between CES2 and GI toxicity.  

 

CES1 expression is reported to be low in GI tissues (24) in comparison to CES2.  In 

accordance with this, we find very low expression of CES1 in normal and most of tumor 

tissue samples with one exception (Tables 6 and 7).   
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For TP, we found that expression was higher in tumor samples than normal samples, for 

all patients.  High basal level expression of thymidine phosphorylase gene was associated 

with nonresponse to 5-fluorouracil treatment in colorectal tumors (25).  However, 

capecitabine which is the prodrug of 5-FU requires TP for activation and uses this fact to 

achieve higher 5-FU levels specifically in tumors (27).  Miwa et al. studied clinical 

activity and toxicity of capecitabine plus irinotecan as first-line therapy for patients with 

metastatic colorectal cancer (mCRC).  They reported a significantly higher time to 

disease progression and overall survival in patients with higher expression of TP as 

assessed by immunohistochemistry.  In the same study, association of the real-time PCR 

data for TP did not show as strong an association with clinical outcome (27).  Here, we 

found TP expression to be significantly higher in tumor samples than in normal samples.  

This is consistent with several other studies (26-30).   

 

TOPO I is necessary for controlling the replication of DNA and the synthesis of proteins.  

It is inhibited by irinotecan, topotecan and camptothecin.  It has been reported in the 

literature that higher levels of TOPO I expression leads to a better clinical response to 

irinotecan (31).  It also has been reported that expression is higher in tumor tissue than in 

normal tissue.  This coincides with our findings, which demonstrated higher TOPO I 

expression levels in tumor samples than in normal samples, irrespective of the clinical 

outcome (31, 32). 
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TS is responsible for the synthesis of thymidine monophosphate (dTMP), which 

eventually is metabolized into thymidine triphosphate (dTTP) (35).  dTTP is essential for 

DNA synthesis and repair.  TS is the target enzyme of 5-FU, as TS inhibition leads to the 

accumulation of deoxy-uridine-monophosphate (dUMP) and depletion of deoxy-

thymidine-monophosphate (dTMP) (36).  This results in an arrest of DNA synthesis, as 

well as increased toxicity.  Higher TS expression has been reported to be associated with 

poor response to 5-FU-leucovorin treatment.  Consistent with other studies, we found TS 

expression to be higher in tumor samples than in normal samples (35, 36).   

 

The relative contributions of carboxylesterases and beta-glucuronidase in the formation 

of SN-38 in human colorectal tumors were studied in vitro and it was found that both 

enzymes contributed equally to the formation of SN-38. β-GUS is expressed in the GI 

tract and is an enteric bacterial enzyme which converts SN-38G back to the active 

metabolite, SN-38 (37).  Therefore, increased β-GUS activity can result in higher SN-

38G levels in the gut and, hence, the GI toxicities associated with irinotecan.  In our 

study, there was no correlation between normal and tumor samples.   

 

DPD is responsible for the degradation of the cytotoxic 5-FU.  It has been reported in the 

literature that high DPD expression is an indicator of poor clinical response (38).  We 

evaluated normal and tumor samples to determine if there was a difference in their 

expression levels and found there to be greater expression in tumor samples than in 

normal samples.   
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II. Gene Expression in Baseline and Surgical Samples 

We evaluated the genes CES1, CES2, TP, TS, and TOPO I in 10 tumor and 11 normal 

samples.  Topo I expression was downregulated in tumor samples, but upregulated in 

surgical normal samples, when compared to baseline samples.  CES2 and TP were both 

upregulated in surgical normal samples, but not in tumor samples.  This is consistent with 

another study, in which it was reported that TP expression increased for up to four weeks 

post radiation in rectal cancer patients (39).  CES1 was upregulated in both tumor and 

normal surgical samples and expression in surgical samples was significantly 

upregulated, overall.   

 

III. Correlation of Gene Expression and Therapeutic Response 

Seven genes were analyzed for correlation between expression and clinical outcome.  The 

most significant correlations involved CES2 and DPD expression.  When comparing 

tumor samples to normal samples in patients with CR and SD, we discovered higher 

CES2 expression in the normal samples.  We also found CES2 expression in tumor 

samples to be higher for patients with SD than those with CR.  We found CES2 

expression to be higher in normal tissue samples than in paired tumor samples, and also 

CES2 expression in tumor samples to be higher for patients with SD than those with CR.  

DPD expression was found to be higher in tumor samples than in normal samples.  This 

correlation was particularly significant among patients with SD and in overall expression.  

Additionally, there were correlations for TS, TP, and CES1.  All demonstrated higher 

levels of expression in tumor samples than in normal samples.  When evaluating for 

correlations between expression and clinical outcome, we found patients demonstrating 
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CR to have significantly higher levels of TS expression in tumor tissue than in normal 

tissue.  We also found there to be significant correlation between TP expression and 

clinical outcome.  For patients with CR, TP expression was higher in tumor samples than 

in normal samples.  Additionally, TP expression in tumor samples was found to be higher 

for patients exhibiting CR than those with SD.  This is consistent with several other 

studies (26-30). 

 

IV. Hypothesis 

Our hypothesis was that CES2 expression would be higher in paired tumor samples than 

in the corresponding normal samples, that higher CES2 expression in tumor tissue would 

result in better patient response, and that higher CES2 expression in normal tissue would 

result in toxicity, such as diarrhea.  This was not observed.  CES2 expression was higher 

in paired normal samples than in tumor samples.  No conclusion could be drawn 

regarding toxicity, due to pretreatment administration of Loperamide.  Loperamide is a 

strong inhibitor of carboxylesterases and makes irinotecan unavailable for metabolism in 

the gut, preventing toxicity (23). 

 

 

 

 

 

 

 

 



34 

 

REFERENCES 

1. National Cancer Institute.  Snapshot of Colorectal Cancer.  Accessed 12-15-8. 

http://planning.cancer.gov/disease/Colorectal-Snapshot.pdf 

2. National Cancer Institute.  Colon and Rectal Cancer.  Accessed 10-23-8. 

http://www.cancer.gov/cancertopics/types/colon-and-rectal 

3. American Cancer Society.  Detailed Guide:  Colon and Rectum Cancer, How is 

Colorectal Cancer Staged.  Accessed 1-11-7. 

http://www.cancer.org/docroot/CRI/content/CRI_2_4_3X_How_is_colon_and_rectu

m_cancer_staged.asp 

4. National Cancer Institute.  Colon Cancer treatment.  Accessed 10-23-8. 

http://www.cancer.gov/cancertopics/pdq/treatment/colon/HealthProfessional/page5 

5. American Cancer Society.  Cancer Surgery.  Accessed 11-4-10 

http://www.cancer.org/Treatment/TreatmentsandSideEffects/TreatmentTypes/Surger

y/surgery-and-cancer 

6. American Cancer Society.  Radiation Therapy -- What It Is, How It Helps.  

Accessed 11-4-10. 

http://www.cancer.org/Treatment/TreatmentsandSideEffects/TreatmentTypes/Radiat

ion/RadiationTherapy-WhatItIsHowItHelps/radiation-therapy-what-it-is-questions-

about-rad-therapy    

  

 

 



35 

 

7. American Cancer Society.  Chemotherapy Principles:  An In-Depth Discussion.  

Accessed 11-4-10. 

http://www.cancer.org/Treatment/TreatmentsandSideEffects/TreatmentTypes/Chem

otherapy/ChemotherapyPrinciplesAnIn-

depthDiscussionoftheTechniquesanditsRoleinTreatment/chemotherapy-principles-

what-is-chemo 

8.  WebMD.  Chemotherapy for Colorectal Cancer.  Accessed 11-4-10  

http://www.webmd.com/colorectal-cancer/guide/chemotherapy 

9. Fuchs C, Mitchell E, Hoff P.  Irinotecan in the Treatment of Colorectal Cancer.  

Cancer Treatment Reviews.  2006; 32:491-503.   

10. VanHoofer U, Harstrick A, Achterrath W, Cao S, Seeber S, Rustum Y.  Irinotecan 

in the Treatment of Colorectal Cancer:  Clinical Overview.  Journal of Clinical 

Oncology.  2001: Volume 19, No 5, 1501-1518. 

11. Sanghani S, Quinney S, Fredenburg T, Davis W, Murry D, Bosron W.  Hydrolysis of 

Irinotecan and Its Oxidative Metabolites, 7-Ethyl-10-[4-N-(5-Aminopentanoic 

Acid)-1-Piperidino] Carbonyloxycamptothecin and 7-Ethyl-10-[4-(1-Piperidino)-1-

Amino]-Carbonyloxycamptothecin, By Human Carboxylesterases CES1A1, CES2, 

and a Newly Expressed Carboxylesterase Isoenzyme, CES3.  Drug Metabolism and 

Disposition 2004, 32:505-511. 

12. Rivory L.  Metabolism of CPT-11, Impact on activity.  Annual N Y Academy of 

Science 2000; 922:205-15.  

 



36 

 

13. Sanghani S, Quinney S, Fredenburg T, Sun Z, Davis W, Murry D, Cummings O, 

Seitz D, Bosron W.  Carboxylesterases Expressed in Human Colon Tumor Tissue 

and Their Role in CPT-11 Hydrolysis.  Clinical Cancer Research. 2003; 49: 4983-

4991. 

14. Mathijssen R, Alphen R, Verweij J, Loos W, Nooter K, Stoter G, Sparreboom A.  

Clinical Pharmacokinetics and Metabolism of Irinotecan (CPT-11).  Clinical 

Cancer Research 2001:7:2181-2194. 

15. Toshiki T, Miki K, Shogo T, Masakiyo H, Kan C, Miki N, Tsuyoshi Y.  

Bioactivation of Capecitabine in Human Liver:  Involvement of the Cytosolic 

Enzyme on 5′-Deoxy-5-Fluorocytidine Formation.  Drug Metabolism and 

Disposition.  July 2004 vol. 32 no. 7, 762-767.  

16. Hosokawa M.  Structure and Catalytic Properties of Carboxylesterase Isozymes 

Involved in Metabolic Activation of Prodrugs.  Molecules.  2008 Feb 18; 13(2): 

412-31. 

17. Imai, Terkuo.  Human Carboxylesterase Isoenzymes:  Catalytic Properties and 

Rational Drug Design.  Drug Metabolism and.Pharmacokinetics 21 (3): 173-185 

(2006). 

18. NCBI Entrez Gene.  UGT1A1 UDP glucuronosyltransferase 1 family, 

polypeptide A1 [ Homo sapiens ] GeneID:  54658.  Accessed 5-29-10. 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report

&list_uids=54658 

19. Applied Biosystems.  Real-Time PCR vs. Traditional PCR.  Accessed 11-4-10. 

http://www6.appliedbiosystems.com/support/tutorials/pdf/rtpcr_vs_tradpcr.pdf 

http://dmd.aspetjournals.org/search?author1=Toshiki+Tabata&sortspec=date&submit=Submit
http://dmd.aspetjournals.org/search?author1=Miki+Katoh&sortspec=date&submit=Submit
http://dmd.aspetjournals.org/search?author1=Shogo+Tokudome&sortspec=date&submit=Submit
http://dmd.aspetjournals.org/search?author1=Masakiyo+Hosakawa&sortspec=date&submit=Submit
http://dmd.aspetjournals.org/search?author1=Kan+Chiba&sortspec=date&submit=Submit
http://dmd.aspetjournals.org/search?author1=Miki+Nakajima&sortspec=date&submit=Submit
http://dmd.aspetjournals.org/search?author1=Tsuyoshi+Yokoi&sortspec=date&submit=Submit


37 

 

20. Wikipedia.org.  DNA Sequencing.  Accessed 11-4-10. 

http://en.wikipedia.org/wiki/DNA_sequencing 

21. Monaghan G, Ryan M, Seddon R, Hume R, Burchell B.  Genetic Variation in 

Bilirubin UPD-Glucuronosyltransferase Gene Promoter and Gilbert's Syndrome.  

Lancet.  1996.  347, 578-581. 

22. Slatter G, Schaaf L, Sams J, Feenstra K, Johnson M, Bombardt P, Cathcart K, 

Verburg M, Pearson L, Compton L, Miller L, Baker D, Pesheck C, Lord R. 

Pharmacokinetics, Metabolism, and Excretion of Irinotecan (CPT-11) Following 

IV Infusion of [
14

C]CPT-11 in Cancer Patients.  Drug Metabolism and Excretion.  

April 1, 2000; vol. 28 no. 4: 423-433. 

23. Quinney S,  Sanghani S, Davis W, Hurley T, Sun Z,  Murry D, Bosron W. 

Hydrolysis of Capecitabine to 5′-Deoxy-5-fluorocytidine by Human 

Carboxylesterases and Inhibition by Loperamide.  Journal of Pharmacology and 

Experimental Therapeutics.  June 2005; vol. 313 no. 3: 1011-1016. 

24. Sanghani S,  Davis W, Dumaual N, Mahrenholz A, Bosron W.  Identification of 

Microsomal Rat Liver Carboxylesterases and Their Activity with Retinyl Palmitate.  

Drug Metabolism and Disposition 2002 May; 30(5): 488-93. 

25. Sanghani S, Quinney S, Fredenburg T, Sun Z, Davis W, Murry D, Cummings O, 

Seitz D, Bosron W.  Carboxylesterases expressed in human colon tumor tissue and 

their role in CPT-11 hydrolysis.  Clinical Cancer Research.  2003 Oct 15; 9 (13): 

4983-91. 

 

http://jpet.aspetjournals.org/search?author1=S.+K.+Quinney&sortspec=date&submit=Submit
http://jpet.aspetjournals.org/search?author1=S.+P.+Sanghani&sortspec=date&submit=Submit
http://jpet.aspetjournals.org/search?author1=W.+I.+Davis&sortspec=date&submit=Submit
http://jpet.aspetjournals.org/search?author1=T.+D.+Hurley&sortspec=date&submit=Submit
http://jpet.aspetjournals.org/search?author1=Z.+Sun&sortspec=date&submit=Submit
http://jpet.aspetjournals.org/search?author1=D.+J.+Murry&sortspec=date&submit=Submit
http://jpet.aspetjournals.org/search?author1=W.+F.+Bosron&sortspec=date&submit=Submit
http://sanghani.sp.lib.bioinfo.pl/auth:Sanghani,SP
http://davis.wi.lib.bioinfo.pl/auth:Davis,WI
http://dumaual.ng.lib.bioinfo.pl/auth:Dumaual,NG
http://mahrenholz.a.lib.bioinfo.pl/auth:Mahrenholz,A
http://bosron.wf.lib.bioinfo.pl/auth:Bosron,WF
http://lib.bioinfo.pl/pmid:12230550
http://lib.bioinfo.pl/pmid:12230550


38 

 

26. Metzger R, Danenberg K, Leichman C, Salonga D, Schwartz E, Wadler S, Lenz H, 

Groshen S, Leichman L, Danenberg P.  High basal level gene expression of 

thymidine phosphorylase (platelet-derived endothelial cell growth factor) in 

colorectal tumors is associated with nonresponse to 5-fluorouracil.  Clinical 

Cancer Research.  October 1998.  4; 2371.  

27. Miwa M, Ura M, Nishida M, Sawada N, Ishikawa T, Mori K, Shimma N, Umeda I, 

Ishitsuka H.  Design of a Novel Oral Fluoropyrimidine Carbamate, Capecitabine, 

Which Generates 5-Fluorouracil Selectively in Tumours by Enzymes 

Concentrated in Human Liver and Cancer Tissue.  European Journal of Cancer. 

1998 Jul; 34(8):1274-81.   

28. Meropol J, Gold P, Diasio R, Andria M, Dhami M, Godfrey T, Kovatich A, Lund K, 

Mitchell E, Schwarting R.  Thymidine Phosphorylase Expression Is Associated 

With Response to Capecitabine Plus Irinotecan in Patients With Metastatic 

Colorectal Cancer.  Journal of Clinical Oncology.  September 1, 2006 vol. 24 no. 

25; 4069-4077.  

29. Kim T, Li G, Son K, Kim J, Kim J, Kim J, Yun E, Park J, Park H, Hwang B, Lim K, 

Yoon W.  Radiation-Induced Thymidine Phosphorylase Upregulation in Rectal 

Cancer Is Mediated by Tumor-Associated Macrophages by Monocyte 

Chemoattractant Protein–1 From Cancer Cells.  International Journal of Radiation 

Oncology, Biology, Physics, 73(3), 853-860, 2009. 

 

 



39 

 

30. Takebayashi Y, Yamada K, Miyadera K, Sumizawa T, Furukawa T, Kinoshita F, 

Aoki D, Okumura H, Yamada Y, Akiyama S, Aikou T.  The Activity and 

Expression of Thymidine Phosphorylase in Human Solid Tumours.  European 

Journal of Cancer.  1996 June; 32 A(7):1227-32. 

31. Intisar H, Mohler J, Seigler H, Besterman J.  Elevation of Topoisomerase I 

Messenger RNA, Protein, and Catalytic Activity in Human Tumors:  

Demonstration of Tumor-type Specificity and Implications for Cancer 

Chemotherapy.  Cancer Research.  January 15, 1994 54; 539. 

32. Ataka M, Ikeguchi M, Yamamoto M, Inoue M, Tanida T, Oka S, Katano K.  

Topoisomerase I Protein Expression and Prognosis of Patients with Colorectal 

Cancer.  British Journal of Cancer (2002) 86, 1028-33.  

33. Johnston P, Lenz H, Leichman C, Danenberg K, Allegra C, Danenberg P, Leichman 

L.Thymidylate Synthase Gene and Protein Expression Correlate and Are 

Associated with Response to 5-Fluorouracil in Human Colorectal and Gastric 

Tumors.  Cancer Research April 1, 1995 55; 1407  

34. Popat S, Matakidou A, Houlston R. Thymidylate Synthase Expression and 

Prognosis in Colorectal Cancer:  A Systematic Review and Meta-Analysis. Journal 

of Clinical Oncology, Vol. 22, No 3 (February 1), 2004: pp. 529-536 

35. Shirota Y, Stoehlmacher J, Brabender J, Xiong Y, Uetake H, Danenberg K, Groshen 

S, Tsao-Wei D, Danenberg P, Lenz H.  ERCC1 and Thymidylate Synthase mRNA 

Levels Predict Survival for Colorectal Cancer Patients Receiving Combination 

Oxaliplatin and Fluorouracil Chemotherapy.  Journal of Clinical Oncology 

December 1, 2001 vol. 19 no. 23 4298-4304. 

http://cancerres.aacrjournals.org/search?author1=Intisar+Husain&sortspec=date&submit=Submit
http://cancerres.aacrjournals.org/search?author1=James+L.+Mohler&sortspec=date&submit=Submit
http://cancerres.aacrjournals.org/search?author1=Hillard+F.+Seigler&sortspec=date&submit=Submit
http://cancerres.aacrjournals.org/search?author1=Jeffrey+M.+Besterman&sortspec=date&submit=Submit
http://cancerres.aacrjournals.org/search?author1=Patrick+G.+Johnston&sortspec=date&submit=Submit
http://cancerres.aacrjournals.org/search?author1=Heinz-Josef+Lenz&sortspec=date&submit=Submit
http://cancerres.aacrjournals.org/search?author1=Cynthia+G.+Leichman&sortspec=date&submit=Submit
http://cancerres.aacrjournals.org/search?author1=Kathleen+D.+Danenberg&sortspec=date&submit=Submit
http://cancerres.aacrjournals.org/search?author1=Carmen+J.+Allegra&sortspec=date&submit=Submit
http://cancerres.aacrjournals.org/search?author1=Peter+V.+Danenberg&sortspec=date&submit=Submit
http://cancerres.aacrjournals.org/search?author1=Lawrence+Leichman&sortspec=date&submit=Submit


40 

 

36. Edler D, Glimelius B, Hallström M, Jakobsen A, Johnston P, Magnusson I, 

Ragnhammar P, Blomgren H.  Thymidylate Synthase Expression in Colorectal 

Cancer:  A Prognostic and Predictive Marker of Benefit from Adjuvant 

Fluorouracil-Based Chemotherapy.  Journal of Clinical Oncology, Vol. 20, Issue 7 

(April), 2002: 1721-1728. 

37. Tobin P, Dodds H, Clarke S, Schnitzler M, Rivory L.  The Relative Contributions of 

Carboxylesterase and Beta-Glucuronidase in the Formation of SN-38 in Human 

Colorectal Tumours.  Oncol Rep. 2003 Nov-Dec; 10(6):1977-9. 

38. Tabata T, Katoh M, Tokudome S, Hosakawa M, Chiba K, Nakajima M, Yokoi T. 

Bioactivation of Capecitabine in Human Liver:  Involvement of the Cytosolic 

Enzyme on 5′-Deoxy-5-Fluorocytidine Formation. Journal of Pharmacology and 

Experimental Therapeutics June 2005 vol. 313 no. 3 1011-1016  

39. Kinoshita M, KoderaY, Hibik,  Nakayama G,  Inoue  T, Ohashin  N, Ito Y, Koike M, 

Fujiwara M, Nakao A.  Gene Expression Profile of 5-Fluorouracil Metabolic 

Enzymes in Primary Colorectal Cancer:  Potential as Predictive Parameters for 

Response to Fluorouracil-based Chemotherapy.  Anticancer Research March 1, 

2007 vol. 27 no. 2 851-856.  

40. Maring
 
J, A B P van Kuilenburg A, Haasjes

 
J, Piersma

 
H, Groen

 
H, Uges

 
D, Van 

Gennip
 
A, De Vries E.  Reduced 5-FU clearance in a patient with low DPD activity 

due to heterozygosity for a mutant allele of the DPYD gene. Clinical Cancer 

Research February 2003 9; 786.  

http://dmd.aspetjournals.org/search?author1=Toshiki+Tabata&sortspec=date&submit=Submit
http://dmd.aspetjournals.org/search?author1=Miki+Katoh&sortspec=date&submit=Submit
http://dmd.aspetjournals.org/search?author1=Shogo+Tokudome&sortspec=date&submit=Submit
http://dmd.aspetjournals.org/search?author1=Masakiyo+Hosakawa&sortspec=date&submit=Submit
http://dmd.aspetjournals.org/search?author1=Kan+Chiba&sortspec=date&submit=Submit
http://dmd.aspetjournals.org/search?author1=Miki+Nakajima&sortspec=date&submit=Submit
http://dmd.aspetjournals.org/search?author1=Tsuyoshi+Yokoi&sortspec=date&submit=Submit
http://ar.iiarjournals.org/search?author1=GORO+NAKAYAMA&sortspec=date&submit=Submit
http://ar.iiarjournals.org/search?author1=TAMOTSU+INOUE&sortspec=date&submit=Submit
http://ar.iiarjournals.org/search?author1=YUICHI+ITO&sortspec=date&submit=Submit
http://ar.iiarjournals.org/search?author1=MASAHIKO+KOIKE&sortspec=date&submit=Submit
http://ar.iiarjournals.org/search?author1=MICHITAKA+FUJIWARA&sortspec=date&submit=Submit
http://ar.iiarjournals.org/search?author1=AKIMASA+NAKAO&sortspec=date&submit=Submit


 

CURRICULUM VITAE 

 

David T. Hinkle IV 

Education  

B.S. Cytotechnology.  Indiana University, 1999 

Graduate Certificate Health Systems Management.  Indiana University, 2005 

Graduate Certificate Molecular Laboratory Diagnostics.  Michigan State University, 2005  

M.S. Biotechnology.  Indiana University, 2010 

 

 

Professional Experience 

Molecular Technologist/Cytotechnologist, MACL   2006-2010 

Molecular Technologist, Diagnostic Cytology Laboratory  2005-2006 

Cytotechnologist, Diagnostic Cytology Laboratory   2001-2005 

Cytotechnologist, Borgess Medical Center     1999-2001 

Lab Assistant, Parkview Hospital      1997-1998 

Tutor, Purdue University (Fort Wayne)       1997-1998 

Phlebotomist, Parkview Hospital      1995-1997 

 

 

 

 

 


