Safety of Same and Next Day Discharge FollowingRevision Hip and Knee Arthroplasty
Using Modern Perioperative Protocols

Running Title: Safety of Early Discharge Revision Total Joint Arthroplasty

Authors: Leonard T. Buller, MD1,2, Trey Hubbard, BA, Mary Ziemba-Davis, BA2, Evan R. Deckard BSE1, R. Michael Meneghini MD1,2

1Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
2Indiana University Health Physicians, Indianapolis, IN, USA

Leonard T. Buller, MD: Assistant Professor, Department of Orthopedic Surgery, Indiana University School of Medicine, 13000 East 136th Street Suite 2000, Fishers, IN 46037, USA. Email: leonard.buller@gmail.com

Trey Hubbard, BA: Research assistant, Indiana University School of Medicine, Indianapolis, IN, USA, Treyhubbard3@gmail.com

Mary Ziemba-Davis, BA, Indiana University Health Physicians, Indianapolis, IN, USA. mziembadavis@iuhealth.org

Evan R. Deckard, BSE, Department of Orthopedic Surgery, Indiana University School of Medicine, evredeck@indiana.edu

R. Michael Meneghini MD, Director of Hip and Knee Center, Department of Orthopedic Surgery, Indiana University School of Medicine, rmeneghi@iuhealth.org

Conflict of Interest Statement: Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

This is the author's manuscript of the work published in final edited form as:

Funding Statement: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Ethical Board Review statement: This study received Institutional Review Board Approval prior to initiation. The study was performed in accordance with the ethical standards in the 1964 Declaration of Helsinki. This study was carried out in accordance with relevant regulations of the US Health Insurance Portability and Accountability Act (HIPAA).

Corresponding Author:
Leonard T. Buller
Assistant Professor
Orthopaedic Surgery
Indiana University School of Medicine
13000 East 136th Street Suite 2000, Fishers, IN 46037, USA
P 216-780-6534 F 317.678.3222
Leonard.buller@gmail.com
Safety of Early Discharge Revision Total Joint Arthroplasty

Safety of Same and Next Day Discharge Following Revision Hip and Knee Arthroplasty

Using Modern Perioperative Protocols

Abstract:

Introduction: Advances in perioperative care have enabled early discharge and outpatient primary total joint arthroplasty (TJA). However, the safety of early discharge after revision TJA (rTJA) remains unknown and the COVID-19 pandemic will force decreased hospitalization. This study compared 90-day outcomes in patients undergoing aseptic rTJA discharged the same or next day (early) to those discharged two or three days postoperatively (later).

Methods: 530 aseptic rTJAs performed at a single tertiary referral center (12/5/2011-12/30/2019) were identified. Early and later discharge patients were matched as closely as possible on procedure type, sex, ASA-PS classification, age, and BMI. All patients were optimized using modern perioperative protocols. The rate of 90-day ED visits and hospital admissions was compared between groups.

Results: 183 early discharge rTJAs (54 hips, 129 knees) in 178 patients were matched to 183 later discharge rTJAs (71 hips, 112 knees) in 165 patients. 62% of the sample was female, with an overall average age and BMI of 63±9.9 (range: 18-92) years and 32±6.9 (range: 18-58) kg/m². There was no statistical difference in 90-day ED visit rates between early (6/178, 3.4%) and later (11/165, 6.7%) discharge patients (p=0.214). 90-day hospital admission rates for early (7/178, 3.9%) and later (4/165, 2.4%) did not differ (p=0.545)

Conclusions: Using modern perioperative protocols and with appropriate patient selection, early discharge following aseptic rTJA does not increase 90-day readmissions or ED visits. As hospital inpatient capacity remains limited due to COVID-19, select rTJA patients may discharge home
the same or next day to preserve hospital beds and resources for more critical medically related illness.

Keywords: Total joint arthroplasty, Outpatient, Rapid Recovery, Revision, Readmissions, Complications
Introduction:

Total joint arthroplasty (TJA) is one of the most successful of orthopaedic procedures [1]. Historically, multiple days of inpatient care was the expectation following primary TJA. However, innovations in perioperative care, including surgical technique, pain management, blood conservation and physical therapy, have enabled rapid recovery and early discharge [2–4]. Evidence demonstrates early discharge primary TJA (<24 hour stay) to be safe [5–12] and cost saving [13,14], without increasing readmission rates [15–17]. Despite the clinical success of primary TJA, complications requiring revision remain a costly societal burden [18]. As the demand for TJA increases [19], so will the number of revisions [20]. The most common etiologies leading to revision total hip arthroplasty (rTHA) include: instability, aseptic loosening and infection [21]. The most common etiologies leading to revision total knee arthroplasty (rTKA) include: infection, aseptic loosening and instability [22,23]. Revision TJA traditionally results in longer inpatient lengths of stay (LOS) than primary TJAs. For example, in a 2009 study the average LOS following the most basic rTHA (head-liner exchange) was reported as five days and the average LOS for all types of rTHA procedures was over six days [21]. Similarly, the average LOS for an aseptic rTKA was reported to be over four days and increased to over five days when infection cases were included [22,23]. As surgeons, patients, and institutions become more comfortable with rapid recovery primary TJA, a natural evolution is to consider subsequently reducing inpatient LOS in the revision setting as well. Indeed, a goal for better healthcare is to reduce unnecessary waste by deterring patients and providers from the belief that ‘more is better’ [24,25]. Further, the COVID-19 pandemic of 2020 has brought to light our somewhat limited healthcare resources and highlighted our need to preserve inpatient hospital equipment and beds for patients who are
stricken with severe medical illness. However, due to increased surgical complexity associated
with revision TJA and the associated physical stress on patients with medical comorbidities,
early discharge after rTJA must be appropriately studied. The primary aim of this study was to
compare 90-day readmission and emergency department (ED) visit rates between patients
undergoing aseptic rTJA discharged the same or next day to those discharged two or more days
postoperatively. Our null hypothesis was that there would be no difference in readmission and
ED visit rates between the two groups.

Methods:

Study Sample: Five-hundred and thirty unilateral aseptic revision TJAs (rTJA)
consecutively performed between 12/5/2011 and 12/30/2019 were identified in our total
joint arthroplasty registry with institutional review board approval. All cases were
performed by a single surgeon at a dedicated hip and knee center in a tertiary care
hospital. As shown in Figure 1, 204 (38.5%) rTJAs were discharged on postoperative day 0
or 1 (early discharge TJAs), 316 (59.6%) were discharged on postoperative day 2 or 3 (later
discharge TJAs), and 10 (1.9%) were hospitalized for 4 or more days. The latter cases were
not included in the current study.

Twenty-one (10.3%) of the 204 early discharge rTJAs were excluded as shown in
Table 1 leaving a final analysis sample of 183 index rTJAs. Table 1 shows that 100 (31.6%)
of the 316 later discharge comparison cases were excluded leaving a pool of 216 cases to
match to the 183 index cases. From this pool, 183 later discharge cases were matched as
closely as possible to early discharge cases on procedure type (rTHA, rTKA), sex, ASA-PS
classification (1 through 4), age (±5 years), and BMI (±5 kg/m²).
Patient Care Protocols: As part of our standardized perioperative care program, all patients underwent preoperative risk assessment and medical clearance within four weeks of surgery by a medical specialist whose practice focuses exclusively on hip and knee arthroplasty patients. Each patient’s upcoming surgery was discussed at a coordinated care conference attended by members of the multidisciplinary team the week prior to their scheduled surgery. During this meeting, information is shared across disciplines and patient care plans are proactively developed, which are shared with everyone who provides direct care or services to the patient. Preoperatively, patients and family members received comprehensive clinic-based education and attended a hospital-based joint replacement class. Postoperatively, all patients were encouraged to ambulate by the afternoon on the day of surgery when possible and attempts were made to standardize rehabilitation protocols. Postoperative care was assumed by the operative surgeon, the internal medicine specialist, clinic staff, and a multidisciplinary inpatient care team. Postoperative pain control for the first 24 hours was by an anesthesia pain service. The same modern perioperative pain control, clinical, and rehabilitation protocols were used for all patients.

Perioperative and Postoperative Pain Control and Anesthesia Protocols: A multimodal preoperative pain protocol was used in all cases. Unless allergic or contraindicated, patients were given acetaminophen (1000 mg PO) 24 hours before surgery and oxycodone (10 to 20 mg PO), celecoxib (200 mg PO), and pregabalin (75 mg PO) immediately before surgery.

Intraoperatively, surgeries were performed with standardized light general anesthesia (desflurane or sevoflurane) and a low-dose intrathecal, single-shot spinal injection of either 0.40 mg of morphine with a median of 10.5 mg bupivacaine local anesthetic or 25 mcg of fentanyl with a median of 7.5 mg bupivacaine. Beginning January 1, 2015, the spinal anesthesia medication cocktail was changed from morphine to fentanyl. Between September 01, 2012 and May 31,
2016, patients were instructed not to consume liquids after 12 AM on the day of surgery. Beginning on June 01, 2016, patients were allowed to drink liquids up to two hours before surgery. Postoperatively, patients were permitted to drink freely. Patient-specific, goal-directed fluid therapy called for preoperative, intraoperative, and postoperative administration of approximately 2000 mL total of crystalloid sodium lactate unless patients had significant renal diseases in which case normal saline was used. In knees only, a periarticular injection of 0.2% (200 mg) ropivacaine, 0.5 mg epinephrine, 80 mcg clonidine, and 30 mcg ketorolac (removed for patients with renal insufficiency) to equal 101.3 mL total volume was used immediately following final implant fixation. Postoperatively, unless allergic or contraindicated, patients received acetaminophen (1000 mg PO tid), OxyContin (10 to 20 mg PO q12 hours), celecoxib (200 mg PO bid), oxycodone (5-10 mg hourly prn for mild pain and 10-20 mg hourly prn for moderate pain), or hydromorphone (0.5 mg IV q20 minutes prn for severe pain). IV tranexamic acid (1 g prior to incision followed by 1 g two hours later) was standardly used.

Thromboprophylaxis was with enteric coated aspirin 81 mg twice daily for six weeks along with 23 hours of sequential compression devices during hospitalization. Those patients at higher risk for thromboembolism were treated with additional chemoprophylaxis.

Data Analysis: Data were prospectively recorded in and retrieved from the electronic medical record (EMR) and verified for accuracy. A retrospective review of the EMR was completed for each patient. Demographic data including patient age in years, sex (male/female), body mass index (BMI) in kg/m\(^2\), American Society of Anesthesiologists (ASA) physical status classification (1, 2, 3 or 4), type of procedure (rTHA or rTKA), and reason for revision were recorded. **Details of the procedure were collected and categorized based on the components revised. Surgical case duration was defined as the length of time, in minutes, from**
Safety of Early Discharge Revision Total Joint Arthroplasty

procedure start to procedure stop. Discharge disposition was recorded. All-cause inpatient readmissions and ED visits were recorded for each patient within 90 days of surgery. For each readmission or ED visit, date, time, results, and cause for the readmission or visit was recorded.

Minitab 19 (Minitab Inc, State College, PA) was used for data analysis. Continuous data are reported as means with standard deviations, and categorical data are reported as numbers and percentages. Means and standard deviations in early and later discharge cases were compared using Student’s t-test and the Pearson Chi-square test was used to compare categorical variables. ED visit and hospital readmission rates in the two groups were compared with the 2-proportion test using Fishers Exact \(p \) value. A critical \(p \) value of 0.05 was set for all comparisons.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Results:

Demographic and case characteristics for the two study groups are shown in Table 2. rTHA was performed in 30% of early discharge and 39% of later discharge patients (\(p=0.078 \)). Fifty-eight percent of early discharge and 66% of later discharge patients were female (\(p=0.162 \)). The average age (62.6 vs. 64.2 years) and BMI (32.5 vs. 32.3 kg/m\(^2\)) of early and later discharge patients, respectively, were not significantly different. ASA-PS classification was similarly distributed in the two groups (\(p=0.094 \)). Fewer later discharge patients had private insurance with more of them insured by Medicare (\(p=0.017 \)). On average, mean procedure time was 24 minutes longer in later discharge patients (\(p<0.001 \)).

Revision etiology for early discharge and later discharge cases is shown separately for hip and knee procedures in Table 3. ALTR was the most common reason for rTHA in early discharge patients whereas loosening was more common in later discharge patients.
(p=0.008). In knees, instability was the most prevalent cause of revision for both early and later discharge patients (p=0.152). Components revised in early discharge and later discharge cases are shown in Table 4. Revision of both acetabular and femoral components was most common in early discharge rTHA patients, whereas acetabular revision alone was more common in later discharge rTHA patients (p<0.001). The majority of early and later discharge rTKA patients underwent both femoral and tibial component revision (p=0.063).

One later discharge patient transitioned to a skilled nursing facility. Among the remainder of patients, all early discharge patients went home with 75.8% of later discharge patients going home and 24.2% transitioning to a rehabilitation facility (p<0.001). Emergency department (ED) visits and hospital admissions within 90 days of aseptic revision TJA are shown in Table 5. Six (6/178, 3.4%) early discharge patients and 11 (11/165, 6.7%) later discharge patients presented to the ED (p=0.214). Complaints ranged from nausea to shortness of breath and surgical site bleeding, all of which were resolved without subsequent hospital admission (Table 5). Three patients in each group (3/178, 1.7% vs. 3/165, 1.8%; p=1.00) presented to the ED and were subsequently admitted to the hospital (Table 5). Causes ranged from allergic rash to a pain pump to acute hematogenous infection in the study joint requiring I&D with component retention. Table 5 also shows that four early discharge patient (4/178, 2.2%) and one later discharge patient (1/165, 0.06%) were directly admitted to the hospital within 90 days of rTJA (p=0.373). One of the early discharge patients was admitted for NSTEMI myocardial infarction and the others required surgical intervention for superficial wound and/or soft tissue repair.
The later discharge patient was directly admitted for acute confusional state with 104° temperature and evidence of pneumonia.

Discussion:

Over the past decade and a half, there has been a shift from a ‘sick-patient model’ to a ‘well-patient model’ among patients undergoing elective primary TJA, with optimization occurring prior to surgery and many patients not requiring a prolonged in-hospital stay. An enhanced understanding of multimodal approaches to pain management, blood conservation and early mobilization have improved the standardization of care for TJA patients, which has increased the efficiency of care [5–7,9,26]. Rapid recovery for primary TJA has been successfully performed in multiple patient populations, with low rates of complications and readmissions, even among elderly patients [16,27–29]. In its current state, appropriately performed rapid recovery primary TJA is a safe, [30] cost-efficient, [14,31,32] and patient-friendly strategy [33]. However, there remains disagreement on the optimal inpatient LOS, with some authors criticizing outpatient TJA as risky and claiming longer inpatient stays allow for the recognition of life-threatening complications and those complications that prompt readmission [34,35].

The exponentially increased demand for TJA has imposed an enormous economic burden on the healthcare system, accounting for more Medicare expense than any other inpatient procedure [36]. Not surprisingly, resource utilization and cost containment have become a primary focus of policy and research on primary and rTJA. Multiple strategies have been adopted to improve the value of TJA, including a reduction in wasteful spending and a reduction in hospital LOS [13]. As surgeons, patients, and institutions become more comfortable with rapid recovery primary TJA, it is likely a similar trend will follow among patients requiring rTJA. To
prevent an increase in perioperative complications and assure the focus is on patient safety, as opposed to financial incentives, we sought to determine the safety of a reduced hospital LOS in aseptic rTJA patients using modern perioperative protocols. The results of this study demonstrated no significant difference in the 90-day readmission or ED visit rates between patients undergoing aseptic rTJA discharged on POD zero or one compared to those patients discharge on POD two or later. These are novel findings, as this is the first paper, to the authors’ knowledge, that reports on the safety of early discharge revision TJA.

The results of this study are similar to a large database study presented at the 2019 Annual Meeting of the American Academy of Orthopaedic Surgeons by Gu et al, which analyzed all patients in the American College of Surgeons National Surgical Quality Improvement Program database who underwent aseptic rTKA and were discharged zero to two days after the procedure and compared to those discharged three to four days postoperatively [37]. The authors found no difference in the 30-day complication rate between the two groups. In contrast to the study by Gu et al, a major strength of the present study is the lack of selection bias inherent in a large database study. Specifically, all patients included in our study were exposed to the same modern perioperative protocols. Additionally, a large database study lacks the appropriate granularity to adjust for institutional protocols or other medical reasons that may delay discharge following rTKA. Our study utilized matching on multiple potential confounders, including age, ASA status, gender and BMI to reduce this bias. However, it is possible uncontrolled variables played a role in the timing of discharge, such as surgical duration, complexity of the surgery, or other social confounders. Future studies should investigate these variables further to determine whether a particular combination of patient and surgical factors decreases the safety of early discharge. Despite not detecting a
Safety of Early Discharge Revision Total Joint Arthroplasty

statistically significant difference in ED visit rates between the early and late discharge rTJA patients, there were 10 more ED visits in the early discharge patients than the late discharge patients. It is possible we lacked the numbers necessary to detect a statistically significant difference, representing type-two error. It should be emphasized that the authors of this study do not interpret the results to mean every aseptic rTJA should be discharged early. Instead, patients should only be discharged when they are medically and socially safe for discharge. It appears that when this approach is taken, appropriately selected aseptic rTJA patients may be discharged early without an increase in complications.

The results of this study are comparable to those found in investigations of early discharge after primary TJA. For example, a study conducted at a Veteran’s Affairs hospital compared patients discharged within one day to more than one day following primary TJA. The authors reported no significant difference in returns to the operating room, readmissions to the hospital or visits to the ED [38]. Similarly, in a large database query of 1,220 outpatient primary TJAs between 2011 and 2014, Maxwell Courtney et al. reported no increased risk of readmissions or complications [39], a finding that has been reproduced in a number of other studies [40–42]. Moreover, Feder et al evaluated the safety of 850 same day discharge TJA patients at a single institution and noted a 90-day readmission rate of 0.94% and a 90-day ED rate of 1.18% [43]. The higher rates noted in our study can be explained by the findings of Schairer et al, who showed patients undergoing revision TKA [44] and THA [45] were more likely to have an unplanned readmission than are patients undergoing a primary TJA. The all-cause 90-day readmission rate in their studies was 8.8% in hips and 13% in knees, which is higher than the results found in our study. Edwards et al also evaluated the safety of rapid
recovery TJA, including octogenarians and revisions [46]. Despite a developed clinical
pathway, the authors noted an overall 90-day readmission rate of 15% in THAs and 12%
in TKAs, which are also higher than ours, though direct comparison is limited given the
different patient populations. The lower rates reported in our series may also reflect
differences in our clinical pathway including the multidisciplinary team approach, however
additional research is required to establish this.

This study is not without limitations, including its retrospective cohort design. Despite
the inherent bias of the study design, all data were prospectively collected on consecutive cases
performed with consistent institutional protocols, which may reduce selection and interpretation
biases. However, it is possible the matching criteria used to match the early and later
discharge patients did not account for potential confounding variables that may have
influenced the results in a way that was not detected statistically. For example, there were
significantly more private insurance patients in the early discharge group and more
Medicare patients in the later discharge group. Moreover, though not statistically
significant, the case complexity was different between early and late discharge rTHAs.
Specifically, more of the late discharge rTHAs had diagnoses of aseptic loosening and
osteolysis, whereas more of the early discharge rTHAs had ALTR. It is possible the
difference in diagnosis was associated with an increased level of surgical complexity or
bone loss and that this difference was associated with a longer length of stay. Future studies
may seek to evaluate whether increased surgical complexity is associated with longer length
of stay in aseptic rTHA. Additionally, this study excluded patients undergoing revision for PJI,
in part because none of the infection cases performed during the study period were discharged
early, within POD zero or one. Therefore, this study is not generalizable to the PJI patient
population. We chose not to include these patients as controls as they are oftentimes more
medically complex, have defined logistical issues related to orchestrating long-term intravenous
antibiotics mandating an extended hospital stay, and have higher unplanned readmission rates
[44,45], which would have introduced significant bias. Future studies should seek to determine
whether a reduction in LOS among patients with PJI has a detrimental effect on outcomes
including readmission rates, complication rates and infection eradication rates. Moreover, it
should be noted that this study only evaluated readmission and ED visit rates and did not
evaluate other outcomes related to patient outcomes following rTJA, like patient reported
outcome measures or long-term success of the implants. Finally, the results of this study are
generalizable, in as much as one is able to adopt the multidisciplinary approach described in the
present study. One part of the multidisciplinary approach is attendance at the joint
replacement class, which is strongly suggested for all revision patients. We did not record
the relative number of participants in each group and this may also represent a source of
confounding and future studies should determine whether this affects discharge timing and
safety in aseptic rTJA. This study demonstrates the feasibility and safety of short stay rTJA, but
also emphasizes the fact that even with a multidisciplinary approach and rapid recovery
protocols, not all revision patients will be safe to undergo early discharge.

In conclusion, this study demonstrates the relative safety of early discharge of aseptic
rTJA patients without an increase in readmission or ED visits within the first 90-days after
surgery. As lengths of stay following rTJA continue to decrease, it is crucial to create evidence-
based safeguards to assure focus remains on patient safety to keep the perioperative complication
rates as low as possible. Implementation of a multidisciplinary approach to patient care is
Safety of Early Discharge Revision Total Joint Arthroplasty

essential to predicting patient needs in the perioperative period and improves the safety and feasibility of early discharge patients undergoing aseptic rTJA.

Table Legends:

Table 1: Early and late discharge revision total joint arthroplasty cases excluded from final analysis and reasons for exclusion.

Table 2. Comparison of Demographics and Case Characteristics in Early and Later Discharge Aseptic Revision TJAs

Table 3: Revision Indications in Early and Later Discharge Aseptic Revision TJAs

Table 4: Components Revised in Early and Later Discharge Aseptic Revision TJAs

Table 5. 90-Day Emergency Department (ED) Visits and Hospital Admissions in Early and Later Discharge Aseptic Revision TJAs

Acknowledgements

The project described was supported by the Indiana University Health – Indiana School of Medicine Strategic Research Initiative.

References:

Safety of Early Discharge Revision Total Joint Arthroplasty

Safety of Early Discharge Revision Total Joint Arthroplasty

[18] Bhandari M, Smith J, Miller LE, Block JE. Clinical and economic burden of revision knee
Safety of Early Discharge Revision Total Joint Arthroplasty

Safety of Early Discharge Revision Total Joint Arthroplasty

[34] Pulido L, Parvizi J, Macgibeny M, Sharkey PF, Purtill JJ, Rothman RH, et al. In Hospital
Safety of Early Discharge Revision Total Joint Arthroplasty

Safety of Early Discharge Revision Total Joint Arthroplasty

Table 1: Early and late discharge revision total joint arthroplasty cases excluded from final analysis and reasons for exclusion.

<table>
<thead>
<tr>
<th>Exclusion Reason</th>
<th>N (%) Early Discharge Cases</th>
<th>N (%) Later Discharge Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Another Procedure Within a Year</td>
<td>10 (47.6)</td>
<td>27 (27.0)</td>
</tr>
<tr>
<td>Distal Femoral Replacement</td>
<td>0 (0.0)</td>
<td>5 (5.0)</td>
</tr>
<tr>
<td>Extensor Mechanism Repair</td>
<td>2 (9.5)</td>
<td>10 (10.0)</td>
</tr>
<tr>
<td>Heterotopic Ossification Resection</td>
<td>0 (0.0)</td>
<td>2 (2.0)</td>
</tr>
<tr>
<td>Re-Revised</td>
<td>9 (42.9)</td>
<td>56 (56.0)</td>
</tr>
<tr>
<td>Total</td>
<td>21 (100.0)</td>
<td>100 (100.0)</td>
</tr>
</tbody>
</table>
Table 2. Comparison of Demographics and Case Characteristics in Early and Later Discharge Aseptic Revision TJAs

<table>
<thead>
<tr>
<th></th>
<th>Early Discharge Cases</th>
<th>Later Discharge Cases</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Cases</td>
<td>183</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>N Patients</td>
<td>178</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>% Female</td>
<td>57.9</td>
<td>65.6</td>
<td>0.162</td>
</tr>
<tr>
<td>% Male</td>
<td>42.1</td>
<td>34.4</td>
<td></td>
</tr>
<tr>
<td>Mean (SD) Age in Years</td>
<td>62.6 (9.5)</td>
<td>64.2 (10.3)</td>
<td>0.132</td>
</tr>
<tr>
<td>Mean (SD) BMI in kg/m²</td>
<td>32.5 (7.0)</td>
<td>32.3 (6.8)</td>
<td>0.755</td>
</tr>
<tr>
<td>% rTHA</td>
<td>29.5</td>
<td>38.8</td>
<td>0.078</td>
</tr>
<tr>
<td>% rTKA</td>
<td>70.5</td>
<td>61.2</td>
<td></td>
</tr>
<tr>
<td>ASA-PS Classification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>1.1</td>
<td>0.094</td>
</tr>
<tr>
<td>2</td>
<td>38.3</td>
<td>33.3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>60.7</td>
<td>61.2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>Insurance Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Medicaid</td>
<td>9.8</td>
<td>7.7</td>
<td>0.017</td>
</tr>
<tr>
<td>% Medicare</td>
<td>49.0</td>
<td>63.9</td>
<td></td>
</tr>
<tr>
<td>% Private</td>
<td>40.1</td>
<td>28.4</td>
<td></td>
</tr>
<tr>
<td>Mean (SD) Procedure Time in Minutes</td>
<td>111.6 (34.2)</td>
<td>135.7 (48.5)</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Early DC Cases</td>
<td>Later DC Cases</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>THA REVISIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTR</td>
<td>31</td>
<td>24.8%</td>
<td>17</td>
</tr>
<tr>
<td>Component malposition</td>
<td>5</td>
<td>4.0%</td>
<td>5</td>
</tr>
<tr>
<td>Instability</td>
<td>24</td>
<td>19.2%</td>
<td>13</td>
</tr>
<tr>
<td>Loosening</td>
<td>50</td>
<td>40.0%</td>
<td>16</td>
</tr>
<tr>
<td>Osteolysis/polyethylene Wear</td>
<td>12</td>
<td>9.6%</td>
<td>2</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>2.4%</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>125</td>
<td>100.0%</td>
<td>54</td>
</tr>
<tr>
<td>TKA REVISIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrofibrosis</td>
<td>21</td>
<td>8.7%</td>
<td>16</td>
</tr>
<tr>
<td>Component malposition</td>
<td>3</td>
<td>1.2%</td>
<td>1</td>
</tr>
<tr>
<td>Instability</td>
<td>115</td>
<td>47.7%</td>
<td>65</td>
</tr>
<tr>
<td>Loosening</td>
<td>83</td>
<td>34.4%</td>
<td>37</td>
</tr>
<tr>
<td>Osteolysis/polyethylene Wear</td>
<td>14</td>
<td>5.8%</td>
<td>7</td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
<td>2.1%</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>241</td>
<td>100.0%</td>
<td>129</td>
</tr>
</tbody>
</table>
Table 4: Components Revised in Early and Later Discharge Aseptic Revision TJAs

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Early DC Cases</th>
<th>Later DC Cases</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>THA REVISIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both AC and FC</td>
<td>46</td>
<td>36.8%</td>
<td>29</td>
<td>53.7%</td>
</tr>
<tr>
<td>AC Only</td>
<td>35</td>
<td>28.0%</td>
<td>4</td>
<td>7.4%</td>
</tr>
<tr>
<td>FC Only</td>
<td>18</td>
<td>14.4%</td>
<td>5</td>
<td>9.3%</td>
</tr>
<tr>
<td>Head and Liner Exchange</td>
<td>26</td>
<td>20.8%</td>
<td>16</td>
<td>29.6%</td>
</tr>
<tr>
<td>Total</td>
<td>125</td>
<td>100.0%</td>
<td>54</td>
<td>100.0%</td>
</tr>
<tr>
<td>TKA REVISIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both FC and TC</td>
<td>106</td>
<td>82.2%</td>
<td>103</td>
<td>92.0%</td>
</tr>
<tr>
<td>FC Only</td>
<td>8</td>
<td>6.2%</td>
<td>6</td>
<td>5.4%</td>
</tr>
<tr>
<td>TC Only</td>
<td>3</td>
<td>2.3%</td>
<td>1</td>
<td>0.9%</td>
</tr>
<tr>
<td>Polyethylene Exchange</td>
<td>12</td>
<td>9.3%</td>
<td>2</td>
<td>1.8%</td>
</tr>
<tr>
<td>Total</td>
<td>129</td>
<td>100.0%</td>
<td>112</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Table 5. 90-Day Emergency Department (ED) Visits and Hospital Admissions in Early and Later Discharge Aseptic Revision TJAs

<table>
<thead>
<tr>
<th></th>
<th>Early Discharge Cases</th>
<th>Later Discharge Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED Visit Only</td>
<td>N = 6</td>
<td>N = 11</td>
</tr>
<tr>
<td>Cough</td>
<td>Weakness, Hypotension, Dehydration</td>
<td></td>
</tr>
<tr>
<td>Bleeding surgical wound (study joint)</td>
<td>Nausea</td>
<td></td>
</tr>
<tr>
<td>Bilateral lower extremity edema</td>
<td>Acute fever normal at presentation</td>
<td></td>
</tr>
<tr>
<td>Concern for GI bleed, but no bleeding found</td>
<td>Pain in study joint (3)</td>
<td></td>
</tr>
<tr>
<td>Study joint dislocation requiring closed reduction</td>
<td>Shortness of breath (3)</td>
<td></td>
</tr>
<tr>
<td>Severe headache, resolved</td>
<td>DVT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ED followed by Inpatient Admission</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 3</td>
<td>N = 3</td>
</tr>
<tr>
<td>Acute on chronic CHF exacerbation</td>
<td>Non-study joint pain and swelling</td>
<td></td>
</tr>
<tr>
<td>Acute hematogenous infection of study joint treated with I&D and component retention</td>
<td>Study joint superficial wound I&D and aspiration</td>
<td></td>
</tr>
<tr>
<td>Rash reaction to pain pump</td>
<td>Nausea, vomiting, abdominal pain, likely from constipation</td>
<td></td>
</tr>
<tr>
<td>Inpatient Admission Only</td>
<td>N = 4</td>
<td>N = 1</td>
</tr>
<tr>
<td>Study joint superficial wound I&D</td>
<td>Acute confusional state with 104° temperature and evidence of pneumonia</td>
<td></td>
</tr>
<tr>
<td>NSTEMI myocardial infarction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superficial seroma evacuation and retinacular defect repair (study joint)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall with knee dislocation and extensor mesh rupture (study joint)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
530 Unilateral Aseptic TJA Revisions 2011 to 2019

INDEX CASES
204 Discharged Postoperative Day 0 or 1
- 21 Exclusions
- FINAL SAMPLE 183 Cases

COMPARISON CASES
316 Discharged Postoperative Day 2 or 3
- 100 Exclusions
- 33 Not Used for Matching
- FINAL SAMPLE 183 Cases

NOT IN STUDY CATCHMENT
10 Discharged Postoperative Day ≥ 4
Figure 1. Flowchart of index (LOS 0 to 1) and comparison (LOS 2 to 3) cases.