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Purpose of review 

Hematopoietic cell transplantation (HCT) is a life-saving treatment for a variety of hematological 

and non-hematological disorders. Successful clinical outcomes after transplantation rely on 

adequate hematopoietic stem cell (HSC) numbers, and the homing and subsequent short- and 

long-term engraftment of these cells in the bone marrow. Enhancing the homing capability of 

HSCs has the potential for high impact on improving HCT and patient survival.  

Recent findings 

There are a number of ways to enhance HSC engraftment. Neutralizing negative epigenetic 

regulation by histone deacetylase 5 (HDAC5) increases surface CXCR4 expression and promotes 

human HSC homing and engraftment in immune deficient (NSG) mice. Short-term treatment of 

cells with glucocorticoids, pharmacological stabilization of hypoxia inducible factor (HIF)-1α, 

increasing membrane lipid raft aggregation, and inhibition of Dipeptidyl peptidase 4 (DPP4) 

facilitates HSC homing and engraftment. Added to these procedures, modulating the mitochondria 

permeability transition pore (MPTP) to mitigate ambient air induced Extra Physiological Oxygen 

Stress/Shock (EPHOSS) by hypoxic harvest and processing, or using cyclosporine A during air 

collection increases functional HSC numbers and improves HSC engraftment.  

Summary 

A Better understanding of the regulation of human HSC homing mediated by various 

signaling pathways will facilitate development of more efficient means to enhance HCT efficacy.  
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INTRODUCTION 

Each day, over 100 billion new blood cells are produced by the human body. These new blood 

cells, containing more than ten different mature cell types, are derived from a rare population of 

hematopoietic stem cells (HSCs) throughout a lifetime[1-3]. HSCs are the most well-characterized 

adult stem cell type, and there has been an enormous boost in our understandings of cellular and 

molecular properties of HSCs, with many studies documenting various pathways involved in the 

balance between HSC self-renewal and differentiation[3]. Therapeutically, HSCs are the only stem 

cells routinely used successfully in clinical practice, and allogeneic hematopoietic cell 

transplantation (HCT) remains the only curative treatment strategy for many malignant and 

non-malignant blood cell disorders[4,5]. Upon transplantation, HSCs can provide the recipient a 

new hematopoietic and immune system, and thus they have been recognized as relevant target 

cells for gene therapy[6■,7]. 

Homing is an initial critical step for HSC transplantations, wherein intravenously 

administered HSC containing cell population migrate after infusion into recipients from peripheral 

blood to the bone marrow (BM) microenvironment[8]. BM niche provides a unique environment 

of matrix supports and signals that balance HSCs proliferation and differentiation, and HSC 

homing to BM is necessary for reconstituting the whole hematopoietic system [9■,10,11]. 

Successful clinical outcomes after HCT rely on adequate HSC number and their homing and 

subsequent short- and long-term engraftment in the BM. Therefore, developing better strategies to 

enhance HSC homing efficacy has the potential to improve HCT and patient survival, especially 

when the numbers of HSCs are limited, as seen in poorly mobilized peripheral blood (mPB) or 

umbilical cord blood (CB) [12-14]. The interaction between CXCL12/stromal cell-derived factor 



(SDF)-1 and its receptor CXCR4 play an important role in directing HSC homing, 

CXCL12/CXCR4 interactions are involved in chemotaxis (directed cell movement of immature 

hematopoietic cells)[15] and their intracellular signaling has been considered as a promising target 

for improving HSC transplantations[16,17]. Recent studies from our group and others have 

identified new approaches to potentially improve HSC homing and engraftment, including 

enhancement of CXCL12/CXCR4 interactions, stabilization of HIF-1α and mitigating EPHOSS. 

We discuss these emerging findings, with an emphasis on unique and overlapping themes. 

 

EPIGENETIC REGULATION OF HSC HOMING 

The word “epigenetic” refers to a heritable alteration in gene activity by mechanisms other than 

changes of the genetic code itself[18,19]. Epigenetic control of gene expression is very important 

for animal development and human health[20,21]. Dysregulation of epigenetic mechanisms have 

been associated with many diseases, including cancer, heart diseases, and neuropsychiatric 

disorders[22,23,24■]. Epigenetic regulation involves DNA methylation, histone modifications, 

and RNA associated silencing. These different epigenetic mechanisms can function coordinately 

via interactions and cross-talk to form layers of regulation[25,26,27■,28]. The histones around 

which DNA is wrapped are subject to a series of modifications including acetylation, methylation, 

ubiquitination and phosphorylation[29]. These histone modifications are usually located on the 

histone tails and can directly affect chromatin structure, which further defines active or repressed 

gene expression states. 

In order to gain an understanding of epigenetic regulation of HSC homing, we screened a 

chemical compound library containing various epigenetic enzyme inhibitors to evaluate their 



effects on human HSC surface expression of CXCR4. We found that treatment of histone 

deacetylase inhibitors resulted in dramatic increases in surface expression of CXCR4 [30■■]. We 

further demonstrated that inhibition of histone deacetylase led to increased HSC chemotaxis 

(directed cell movement) towards CXCL12, leading to enhanced homing and long term 

engraftment of human HSCs in an NSG mouse model. Protein acetylation, especially histone 

acetylation, plays a crucial role in the regulation of protein function and gene transcription. 

Histone deacetylases (HDACs) are erasers of acetylation from lysine residues, while histone 

acetyltransferases (HATs) are responsible for adding an acetyl functional group back[31]. The 

balance between HDACs and HATs controls many physiological processes[32]. Indeed, we found 

that p300 HAT inhibitors, C646 and EML425, both showed suppressive effects of HDAC 

inhibitors on surface CXCR4 expression, suggesting that the balance between acetylation and 

deacetylation is important for the regulation of CXCR4 expression[30■■]. In mammals, HDACs 

comprise 18 genes that are grouped into five subfamilies (class I, IIa, IIb, III, IV) based on 

sequence similarity[33]. To further reveal the mechanisms of HSC homing regulation by HDACs, 

shRNA corresponding to individual HDACs or specific HDAC inhibitors, were used and their 

effects on surface CXCR4 expression were examined. Surprisingly, we found that only HDAC5 

inhibition resulted in strong upregulation of CXCR4 expression on the cell membrane[30■■]. 

Consistently, HDAC5 inhibition promoted HSC chemotaxis, homing and long-term engraftment 

similar to that of pan HDAC inhibitors. HDAC5 belongs to class IIa HDACs, which can shuttle 

between the cytoplasm and nucleus, assemble into multiprotein complexes and which are 

responsive to various environmental stimuli. Thus, regulation of HDAC5 provides a mechanism 

for linking extracellular signaling with HSC homing to the BM environment. We further found 



that HDAC5 inhibition increased histone acetylation at the CXCR4 promoter and acetylated p65 

levels in the nucleus, which is important for CXCR4 transcription. Inhibition of Nuclear Factor-κB 

(NF-κB) signaling suppressed CXCR4 upregulation and enhanced HSC homing after HDCA5 

inhibition, suggesting involvement of NF-κB signaling in HSC homing. 

 

GLUCOCORTICOID REGULATION OF HSC HOMING 

  We also identified glucocorticoids as significant enhancers of CXCR4 surface expression and 

HSC chemotaxis[13,34■■]. Glucocorticoids are a class of steroid hormones secreted by the 

adrenal cortex[35]. Glucocorticoids bind to the glucocorticoid receptor to exert their biological 

effects[36]. We found that in human HSCs, the activated glucocorticoid receptor translocated into 

the nucleus and bound to glucocorticoid response elements in the promoter region of CXCR4, 

followed by the recruitment of SRC1/p300 histone acetyltransferase complex, which promoted 

histone H4 acetylation to facilitate CXCR4 transcription. Similar to effects of HDAC5 inhibition, 

this was associated with increased CXCR4 expression on the surface of HSC and resulted in 

enhanced human HSC homing and long-term engraftment in recipient NSG mice. Both HDAC5 

inhibition and glucocorticoid treatment involved elevated histone acetylation at the CXCR4 

promoter region. It will be interesting to see if there is any cross talk between HDAC5 and 

glucocorticoid, and if combination of such treatment resulted in an enhanced effect on 

homing/engrafting capability of HSCs. 

 

STABILIZATION OF HIF-1α PROMOTES HSC HOMING 

HIF-1α is a DNA binding transcriptional factor and functions as a critical mediator of cellular 



response to hypoxia [37■,38,39]. Thus HIF-1α plays an important role during animal development, 

energy metabolism, cell survival and tumor angiogenesis. HSCs reside in a hypoxic BM 

microenvironment that supports stabilization of HIF-1α. It has been shown that HIF-1α regulates 

HSC activity and quiescence[40-42]. It has been reported that pharmacological stabilization of 

HIF-1α facilitates HSC homing and engraftment[43]. Pulse treatment with 16-16 dimethyl 

prostaglandin E2 (dmPGE2) or dimethyloxalylglycine (DMOG) led to significant increases in 

HIF-1α protein level. This resulted in upregulation of CXCR4 transcription by HIF-1α binding 

with hypoxia response elements -1.3kb from the transcription start site at the CXCR4 promoter 

region. Consequently, both dmPGE2 and DMOG treatment resulted in enhanced HSC chemotaxis, 

homing and engraftment due to better responsiveness to BM CXCL12 gradients[43,44]. 

Furthermore, it was demonstrated that HIF-1α is required for dmPGE2 mediated CXCR4 

upregulation, enhanced HSC migration and homing. Recent work from another group reported 

that caffeic acid phenethyl ester (CAPE) administration promotes HSC homing and engraftment 

by inducing expression of HIF-1α [45]. CAPE treatment upregulated protein levels of HIF-1α and 

CXCL12 in BM endothelial cells. The HIF-1α inhibitor PX-478 suppressed CAPE-mediated 

enhanced HSC homing, further adding evidence for the importance of HIF-1α upregulation during 

HSC homing and engraftment.   

 

INCREASING MEMBRANE LIPID RAFT AGGREGATION ENHANCES HSC HOMING 

Cell membranes are composed of lipid bilayers containing many peripheral and integral 

membrane proteins. Lipid rafts are specialized membrane microdomains enriched in cholesterol 

and glycosphingolipids, and have been identified as playing a primary role in membrane signaling 



transduction[46,47]. Incorporation of CXCR4 into lipid rafts is essential for optimal association 

with downstream signaling molecules. Studies from our laboratory found that short-term mild 

heating (39°C) resulted in increased membrane lipid raft aggregation, leading to elevated CXCR4 

aggregation and colocalization with lipid rafts[48]. Increased co-localization of CXCR4 with lipid 

rafts resulted in enhanced interaction between CXCR4 and RAC1, thus leading to enhanced RAC1 

activation and responsiveness of HSC towards BM CXCL12 gradients. Consequently, mild 

heating promoted human HSC homing and engraftment in an NSG mouse model. This suggested 

that mild heat treatment may be a simple and expensive approach to enhance human HCT in 

patients. However, other potential consequences of short-term mild heating of cells must be 

assessed to make sure that there are no side effects associated with such cell treatments. 

 

INHIBITION OF DPP4 PROMOTES HSC HOMING AND ENGRAFTMENT 

Dipeptidyl peptidase 4 (DPP4) is a 110-kDa cell surface serine protease expressed on the surface 

of HSCs and functions to selectively cleave the N-terminal penultimate Alanine or Proline amino 

acids[49]. The enzymatic activity of DPP4 is important for regulation of cellular functions and 

modulation of certain disease states[50,51]. Studies from our laboratory have demonstrated the 

roles of DPP4 in HSC mobilization induced by G-CSF[52,53], as well as HSC homing and 

engraftment by modulating CXCL12[54]. DPP4 cleaves the N-terminal dipeptide of CXCL12, 

generating a truncated form of CXCL12 that could not activate CXCR4. To suppress this 

unwanted effect, blocking the enzymatic activity of DPP4 served as a practical strategy to promote 

CXCL12/CXCR4 interaction and enhance the responsiveness of HSCs to CXCL12 gradients. 

Short term pretreatment of human CB CD34
+
 cells or donor mouse BM cells with Diprotin A, a 



DPP4 inhibitor, led to enhanced homing and engraftment in sublethally irradiated NSG mouse 

recipients[55] and lethally irradiated mouse recipients[54]. Sitagliptin is an FDA approved DPP4 

inhibitor for the treatment of type II diabetes, and Sitagliptin administration to recipients has been 

shown in the clinical trials to enhance engraftment of single cord blood transplantation in 

patients[56,57]. This promising clinical strategy is now waiting for clinical verification by others. 

 

MITIGATING EPHOSS TO ENHANCE COLLECTION OF HSCS 

HSCs reside in a hypoxic BM niche in vivo[58-60]. Our studies demonstrated a pernicious 

effect of collecting and processing of BM and CB HSCs in ambient air that involved a 

phenomenon termed Extra Physiological Oxygen Stress/Shock (EPHOSS)[61,62]. This 

irreversible EPHOSS phenomenon is mediated by a p53-cyclophilin D-mitochondria permeability 

transition pore (MPTP) axis, with links to HIF-1α and the hypoxamir mir-210. Collection and 

processing of mouse BM and human CB HSCs under hypoxia conditions, such that the collected 

cells were never exposed to ambient air oxygen tension, mitigated EPHOSS and resulted in 2-5 

fold increases in recovery of long-term repopulating HSCs compared to that of ambient air 

collection. Alternatively, HSCs could be protected from EPHOSS by modulating the MPTP 

opening via Cyclophilin D inhibition, genetically or by using the small molecule inhibitor 

cyclosporine A. This resulted in increased recovery of long-term repopulating HSCs. Thus, there 

are greater numbers of HSCs residing in mouse BM and human CB than previously reported, 

suggesting that HCT could be improved if EPHOSS is mitigated during the collection and 

processing of the cells. In an effort to identify other approaches to mimic “hypoxia harvest”, we 

found that collection and processing of mouse BM in the presence of specific combinations of 



anti-oxidants and epigenetic enzyme inhibitors could also enhance recovery of HSCs[63]. Efforts 

to identify other means to suppress the phenomenon of EPHOSS are currently ongoing in our 

laboratory.  

 

CONCLUSION 

Successful clinical outcomes after HCT rely on adequate HSC numbers and the homing and 

subsequent short- and long-term engraftment of these cells in the BM. Enhancing the homing 

capability of HSCs could have a great impact on improving HCT procedures and patient survival. 

A better understanding of the molecular mechanisms regulating HSC homing and engraftment 

should facilitate development of more efficient means to enhance HCT in the future. In this review, 

we summarized current knowledge of the regulation of HSC homing and engraftment (Fig.1). 

These regulations form several different layers, and range from the cell membrane (DPP4, lipid 

rafts) to the cytoplasm (MPTP) and inside the nucleus (HDAC5, glucocorticoid receptor, HIF-1α). 

Among all these means, the effects of dmPGE2 and DPP4 inhibitor on HSC therapy have been 

tested in the clinic [56,57,64]. Importantly, combinations of DPP4 inhibition and dmPGE2 

treatment has been shown to have synergistic effects on HSC engraftment in murine models[65]. 

Thus, a combination of DPP4 inhibition and dmPGE2 treatment represents a potentially promising 

way worthy of further testing in clinical settings in the future.  

It remains to be seen if combinations of treatment to enhance CXCR4 expression can further 

increase homing and engrafting capacity of HSCs, and if not, which procedure might be best used 

in the clinical setting. It also remains to be seen if the increased number of HSCs obtained after 

collection/processing under hypoxic conditions to mitigate EPHOSS effects, can further enhance 



engrafting capacity, since hypoxia collected/processed HSCs expressed lower CXCR4 surface 

protein than that of ambient air collected HSCs. In addition, ex-vivo expansion of HSCs is 

currently being studied as another means to enhance HCT[66-71], of interest is to integrate 

collection of cells in hypoxia with ex-vivo expansion and homing modulators (Fig.2). Recently, 

functional human HSCs have been successfully generated from pluripotent stem cells and 

endothelial cells[72,73]. It would also be of interest to determine if engraftment of these 

reprogrammed HSCs can be enhanced by modulating mechanisms regulating HSC homing as 

discussed in this review article.  

 

KEY POINTS 

● Inhibiting HDAC5 increases surface CXCR4 expression and promotes human HSC homing and 

engraftment by increasing acetylation levels of histone and p65. 

● Glucocorticoid pretreatment of human HSCs and HPCs enhances their homing and engraftment 

capability in NSG mice. 

● Pharmacological stabilization of HIF-1α by dmPGE2 and DMOG facilitates HSC homing and 

engraftment.  

● Modulating MPTP to mitigate EPHOSS by hypoxic harvest and cyclosporine A increases 

functional HSC numbers and thus improves HSC engraftment, but enhance CXCR4 

expression in HSCs might further enhance their engrafting capacity. 

● Enhancing homing of cells collected by mitigating EPHOSS or after ex-vivo expansion may 

result in further increased engraftment.  
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Figure legned 

Figure 1. Model for the molecule mechanisms regulating HSC homing and engraftment. The 

regulation of HSC homing and engraftment form several different layers, and range from the 

cell membrane (DPP4, lipid rafts) to the cytoplasm (MPTP) and inside the nucleus (HDAC5, 

glucocorticoid receptor, HIF-1α). 

Figure 2. Multiple strategies involving enhanced homing of cells collected by EPHOSS mitigation 

and ex-vivo expansion to increase the efficacy of HCT. Shown are examples of such studies 

by our group that may be incorporated into future experimental models eventually leading to 

evaluation in a clinical setting. [ ], designates references. 
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