PURDUE UNIVERSITY
GRADUATE SCHOOL
Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By Chang Jiang

Entitled Signaling Pathways Involved in Mechanical Stimulation and ECM Geometry in Bone Cells

For the degree of Master of Science in Biomedical Engineering

Is approved by the final examining committee:

Hiroki Yokota
Chair

Yunlong Liu

Julie Ji

To the best of my knowledge and as understood by the student in the Research Integrity and Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): Hiroki Yokota

Approved by: John H. Schild June 11, 2010

Head of the Graduate Program Date
Title of Thesis/Dissertation:
Signaling Pathways Involved in Mechanical Stimulation and ECM Geometry in Bone Cells

For the degree of Master of Science in Biomedical Engineering

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University Teaching, Research, and Outreach Policy on Research Misconduct (VIII.3.1), October 1, 2008.*

Further, I certify that this work is free of plagiarism and all materials appearing in this thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the United States’ copyright law and that I have received written permission from the copyright owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save harmless Purdue University from any and all claims that may be asserted or that may arise from any copyright violation.

CHANG JIANG
Printed Name and Signature of Candidate

06/11/2010
Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/viii_3_1.html
SIGNALING PATHWAYS INVOLVED IN MECHANICAL STIMULATION AND ECM GEOMETRY IN BONE CELLS

A Thesis
Submitted to the Faculty
of
Purdue University
by
Chang Jiang

In Partial Fulfillment of the
Requirements for the Degree
of
Master of Science in Biomedical Engineering

August 2010
Purdue University
Indianapolis, Indiana
ACKNOWLEDGMENTS

I would like to acknowledge my major advisor Dr. Hiroki Yokota for his guidance, support and encouragement to me during the process of this research. Dr. Yokota not only introduced me to the world of biology and guided me in research, but also serves as a role model for me due to his meticulous and passionate attitude towards science.

I would like to thank my advisor committee member Dr. Yunlong Liu for the guidance on microarray analysis, the generous help in usage of software in his lab, and for the tremendous support to my family.

I would like to thank my advisory committee member and my friend Dr. Julie Ji for reading this thesis and the great help and encouragement she has given to me.

I would like to extend my acknowledgement to my amazing colleagues: Dr. Hideyuki Hirasawa, without whose help I could not have finished this study on time; Dr. Ping Zhang, who did a wonderful job in the animal study; and Dr. Kazunori Hamamura, who provided valuable preliminary data for this study.

I would like to thank Wai-Sei Valerie Lim for her help on thesis formatting.

I would like to thank Frank Smith for his help in editing this thesis.

Special thanks to my husband Mingxiang Teng for his incredible support to my career as well as for his assistance on microarray analysis.
TABLE OF CONTENTS

Page

LIST OF TABLES .. v

LIST OF FIGURES ... vi

LIST OF ABBREVIATIONS ... x

ABSTRACT ... xi

1. INTRODUCTION .. 1
 1.1 Objective and Background .. 1
 1.2 Organization of the Thesis .. 4

2. MECHANICAL STIMULATION SUPPRESSES PHOSPHORYLATION
 OF EIF2α THROUGH PERK IN RESPONSE TO ER STRESS .. 5
 2.1 Materials and Methods .. 5
 2.1.1 Elbow Loading .. 5
 2.1.2 Cell Culture ... 6
 2.1.3 Treatment of Cells ... 6
 2.1.4 Fluid Flow Systems ... 6
 2.1.4.1 Chamber Flow System ... 6
 2.1.4.2 Shaker Flow System ... 9
 2.1.4.3 Comparisons Between the Chamber Flow System
 and the Shaker Flow System ... 11
 2.1.5 Real-time PCR ... 12
 2.1.6 Immunoblots .. 12
 2.1.7 RNA Interference .. 13
 2.1.8 Statistical Analysis .. 13
 2.2 Results .. 14
 2.2.1 Comparisons of Messenger RNA Levels Using the
 Two Flow Systems .. 14
 2.2.2 Load-driven Down-regulation of eIF2α-p In Vivo and In Vitro 15
2.2.3 Alterations in the Protein Levels of Perk-p ... 17
2.2.4 Messenger RNA Expression of Xbp1, ATF3, ATF4, ATF6 and CHOP ... 19
2.2.5 Effects of Tg with and without Fluid Flow on Cell Mortality 21
2.2.6 Effects of Oxidative Stress on Cell Mortality ... 22
2.2.7 Effects of Perk siRNA on Tg-induced Cell Death 24

3. ECM-DEPENDENT VARIATIONS IN PHOSPHORYLATION PATTERNS OF GENES IN OSTEOBLAST-LIKE CELLS..................................... 25
3.1 Materials and Methods .. 25
3.1.1 Cell Culture ... 25
3.1.2 Reverse Transcription and Real-time PCR ... 26
3.1.3 Microarray Analysis .. 27
3.1.4 Western Blot Analysis.. 27
3.1.5 Mineralization Assay... 28
3.1.6 Statistical Analysis .. 28
3.2 Results ... 29
3.2.1 Altered Messenger RNA Expression on Day 1 between 2D and 3D Substrates .. 29
3.2.2 Effect of Collagens in 2D and 3D Substrates.. 31
3.2.3 Suppression of Focal Adhesion Pathways in the 3D Culture................. 32
3.2.4 Suppression of Cell-cycle Related Genes in the 3D Culture............... 33
3.2.5 Transcription Factor Prediction... 35
3.2.6 Involvement of p38 MAPK in Expression of DMP1 and BSP 35
3.2.7 Enhanced Mineralization on Day 8 in 3D Environment 37

4. DISCUSSION ... 39
4.1 Discussion on the Mechanical Stimulation Study 39
4.2 Discussion on the ECM Geometry Study .. 41
4.3 Limitations and Future Direction ... 43

5. CONCLUSION ... 45

LIST OF REFERENCES .. 46
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Real-time PCR primers for the mechanical stimulation study</td>
<td>12</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Real-time PCR primers for the ECM geometry study</td>
<td>26</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Predicted transcription-factor binding motifs</td>
<td>35</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Schematic of the chamber flow system</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Poiseuille flow in the chamber flow system: medium flows from high to low pressure, exerting shear stress on the slide’s surface in the flow direction</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Schematic of the shaker flow system</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Boundary layer in the shaker flow system: medium flows uniformly except in a boundary layer that grows along the length of a glass slide</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Relative mRNA levels of ATF4 and c-fos of MC3T3 cells in response to a series of shear stress generated by the chamber flow system</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Experimental time scheme for in vitro fluid flow treatment</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Load-driven down-regulation of eIF2α phosphorylation. (a) Reduction in eIF2α-p in the loaded ulnae. (b) Reduction in eIF2α-p in MSCs. (c) Reduction in eIF2α-p in MC3T3 cells</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Experimental time scheme for in vitro fluid flow in combination with Thapsigargin (Tg)/Tunicamycin (Tn) treatment</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Decreased protein levels of Perk-p, CHOP and ATF4 in response to mechanical stimulation. (a) Reduction in Perk-p in the loaded ulnae. (b) Suppression of Tg-driven increases in Perk-p, CHOP and ATF4 by 1 h flow in MC3T3 cells. Cells were incubated with 1µM Tg for 3 h. (c) Suppression of Tn-driven increases in eIF2α-p, Perk-p and CHOP by 1 h flow in MC3T3 cells. Cells were incubated with 1µg/ml Tn for 3 h</td>
<td>18</td>
</tr>
</tbody>
</table>
Figure 2.10 Relative mRNA levels of Xbp1, ATF3, ATF4, ATF6 and CHOP in response to Tg and/or mechanical stimulation in MC3T3 cells. (a) Relative Xbp1 mRNA levels after 1 h incubation with Tg. (b) Relative Xbp1 mRNA after 3 h incubation with Tg. (c) Gel images showing the spliced and the unspliced Xbp1 mRNAs after 3 h incubation with Tg. (d) - (g) Messenger RNA levels of ATF3, ATF4, ATF6 and CHOP after 3 h incubation with Tg 20

Figure 2.11 Experimental time scheme for cell mortality study by Tg with and without fluid flow treatment ... 21

Figure 2.12 Cell mortality in response to 1 µM Tg for 24 h with and without flow pre-treatment in MC3T3 cells. (a) Trypan blue stained control cells. (b) Trypan blue stained cells treated with Tg. (c) Cell mortality (in %) in 4 experimental groups (control, flow alone, Tg alone and Tg preceded by flow). (d) Caspase 3 expression (cleaved and uncleaved isoforms) for the cells incubated with Tg .. 22

Figure 2.13 Responses to hydrogen peroxide in MC3T3 cells. (a) & (b) Cell mortality in response to 3 and 6 h incubation in the medium containing 0.5, 1 or 2 mM hydrogen peroxide, respectively. (c) Expression levels of eIF2α-p, eIF2α and Perk-p after 3 h incubation with 1mM H2O2 ... 23

Figure 2.14 Effects of Perk siRNA on Tg-induced cell death. (a) Relative Perk mRNA levels in MC3T3 cells in normal control, siRNA control and Perk siRNA groups. (b) Cell mortality (in %) in response to 8 h incubation with Tg for normal control, siRNA control and Perk siRNA groups with and without 1 h flow pre-treatment ... 24
Figure 3.1 Relative mRNA abundance in the 3D model. The relative mRNA expression level in the 3D model was normalized by the level in the 2D model. The asterisks indicate statistical significance at $p < 0.05$ (*) and $p < 0.01$ (**), and the dotted line shows the normalized ratio of 1. (a) Relative mRNA abundance of 5 anabolic genes (DMP1, ALP, BSP, Col Iα1 and OCN) at 24 h. (b) Relative mRNA abundance of 3 transcriptional factors (Runx2, ATF4 and Osx) at 2 and 24 h.

Figure 3.2 Effects of collagen coating. The relative mRNA levels of DMP1, BSP and OCN in the 2D model with and without collagen coating. The asterisk indicates statistical significance at $p < 0.05$, and the dotted line shows the normalized ratio of 1. Note that 2D (No Col) = no collagen coating, 2D (Col) = coating with liquid collagen, and 2D (Matrix) = coating with collagen extracted from 3D matrix. (a) Comparison between 2D (No Col) and 2D (Col). (b) Comparison between 2D (Matrix) and 2D (Col).

Figure 3.3 Focal adhesion pathways. Molecular network in the focal adhesion pathway. Note that 39 out of 60 genes were down-regulated in the 3D model (shown in red). The pathway includes 8 regulatory subunits such as ECM-receptor interaction, cytokine-cytokine receptor interaction, phosphatidylinositol signaling system, regulation of actin cytoskeleton, Wnt signaling pathway, apoptosis, MAPK signaling pathway and cell cycle.

Figure 3.4 Comparison of the expression levels of phosphorylated forms of ERK1/2, p130Cas and FAK in 2D and 3D model. (a) Down-regulated p-ERK1/2 in the 3D model at 30 and 60 min (b) Decrease in the phosphorylated levels of p130Cas (tyr 410) and FAK (tyr861) in the 3D model at 30 and 60 min.
Figure 3.5 Cell-cycle pathways. Molecular network in the cell-cycle pathway. Note that 38 out of 64 genes were down-regulated in the 3D model (shown in red). The pathway includes 4 regulatory subunits such as MAPK signaling pathway, apoptosis, DNA biosynthesis and ubiquitin mediated proteolysis .. 34

Figure 3.6 Suppression of relative mRNA abundance of Cyclins E1 and E2 in the 3D model. The dotted line shows the normalized ratio of 1 35

Figure 3.7 Linkage of phosphorylation of p38 MAPK to relative mRNA abundance of DMP1 and BSP. (a) Activation of p-p38 MAPK in the 3D model. (b) Suppression of relative mRNA abundance of DMP1 and BSP by 10 µM SB203580 in the 2D and 3D models. The dotted line shows the normalized ratio of 1 .. 36

Figure 3.8 Alizarin staining for the 2D and 3D models. (a) Alizarin staining for the 2D model. (b) Alizarin staining for the 3D control matrix (no cells). (c) Alizarin staining for the 3D model. White bar = 5 mm ... 37

Figure 3.9 Ascorbic-acid stimulated mineralization and mRNA up-regulation of the select osteogenic genes in the 3D model on day 8. Relative mRNA abundance of DMP1, ALP, BSP, Col Iα1 and OCN as a ratio of expression in the 3D model to that in the 2D model. The dotted line (normalized ratio of 1) indicates no change in mRNA levels in the 2D and 3D models. The asterisks indicate statistical significance at p < 0.05 (*) and p < 0.01 (**), and the dotted line shows the normalized ratio of 1 ... 38

Figure 4.1 Schematic diagram illustrating the effects of ER stress and mechanical stimulation on Perk-p and eIF2α-p 39
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>2-dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>3-dimensional</td>
</tr>
<tr>
<td>ALP</td>
<td>alkaline phosphatase</td>
</tr>
<tr>
<td>ATF3</td>
<td>activating transcription factor 3</td>
</tr>
<tr>
<td>ATF4</td>
<td>activating transcription factor 4</td>
</tr>
<tr>
<td>ATF6</td>
<td>activating transcription factor 6</td>
</tr>
<tr>
<td>BSP</td>
<td>bone sialoprotein</td>
</tr>
<tr>
<td>CDK2</td>
<td>cyclin-dependent kinase 2</td>
</tr>
<tr>
<td>CHOP</td>
<td>C/EBP homologous protein</td>
</tr>
<tr>
<td>Col I</td>
<td>type I collagen</td>
</tr>
<tr>
<td>DMP1</td>
<td>dentin matrix protein 1</td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>eIF2α</td>
<td>eukaryotic initiation factor 2, subunit α</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>ERK</td>
<td>extracellular signal-regulated protein kinase</td>
</tr>
<tr>
<td>FAK</td>
<td>focal adhesion kinase</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>GAPDH</td>
<td>glyceraldehydes-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>IRE1</td>
<td>inositol-requiring protein-1</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MEM</td>
<td>minimum essential medium</td>
</tr>
<tr>
<td>MSCs</td>
<td>mesenchymal stem cells</td>
</tr>
<tr>
<td>OCN</td>
<td>osteocalcin</td>
</tr>
<tr>
<td>Osx</td>
<td>osterix</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>Perk</td>
<td>protein kinase RNA-like ER kinase</td>
</tr>
<tr>
<td>PI3K</td>
<td>phosphatidylinositol-3 kinase</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>siRNA</td>
<td>small interfering RNA</td>
</tr>
<tr>
<td>Tg</td>
<td>thapsigargin</td>
</tr>
<tr>
<td>Tn</td>
<td>tunicamycin</td>
</tr>
<tr>
<td>UPR</td>
<td>unfolded protein responses</td>
</tr>
<tr>
<td>Xbp1</td>
<td>X-box binding protein 1</td>
</tr>
</tbody>
</table>
ABSTRACT

Jiang, Chang. M.S.B.M.E., Purdue University, August 2010. Signaling Pathways Involved in Mechanical Stimulation and ECM Geometry in Bone Cells. Major Professor: Hiroki Yokota.

The proliferation and differentiation of osteoblasts are influenced by mechanical and geometrical growth environments. A specific aim of my thesis was the elucidation of signaling pathways involved in mechanical stimulation and geometric alterations of the extracellular matrix (ECM). A pair of questions addressed herein was (a) Does mechanical stimulation modulate translational regulation through the phosphorylation of eukaryotic initiation factor 2α (eIF2α)? (b) Do geometric alterations affect the phosphorylation patterns of mitogen-activated protein kinase (MAPK) signaling? My hypothesis was mechanical stress enhances the proliferation and survival of osteoblasts through the reduction in phosphorylation of eIF2α, while 3-dimensional (3D) ECM stimulates differentiation of osteoblasts through the elevation of phosphorylation of p38 MAPK.

First, mechanical stimulation reduced the phosphorylation of eIF2α. Furthermore, flow pre-treatment reduced thapsigargin-induced cell mortality through suppression of phosphorylation of protein kinase RNA-like ER kinase (Perk). However, H2O2-driven cell mortality, which is not mediated by Perk, was not suppressed by mechanical stimulation. Second, in the ECM geometry study, the expression of the active (phosphorylated) form of p130Cas, focal adhesion kinase (FAK) and extracellular signal-regulated protein kinase (ERK) was reduced in cells grown in the 3D matrix. Conversely,
phosphorylation of p38 MAPK was elevated in the 3D matrix and its up-regulation was linked to an increase in mRNA levels of dentin matrix protein 1 and bone sialoprotein.

In summary, our observations suggest the pro-survival role of mechanical stimulation and the modulation of osteoblastic fates by ECM geometry.
1. INTRODUCTION

1.1 Objective and Background

The objective of my thesis is to elucidate the role of mechanical stimulation and ECM geometry in the proliferation and differentiation of osteoblasts. Two specific aims are:

- **Aim 1:** Examine the effects of varying cellular stresses such as mechanical stimulation, stress to the endoplasmic reticulum and oxidation on translational regulation through eIF2α.

- **Aim 2:** Evaluate the effects of environmental alterations, in particular ECM geometry, in osteoblastic development.

In Aim 1, an integrated stress response within cells can be caused by a number of insults including hypoxia, nutrient deprivation, viral infection, oxidation and stress to the endoplasmic reticulum (ER) [1-3]. That stress response leads to preferential translational activation by a mechanism involving phosphorylation of eIF2α [4]. In the case of extreme levels of insults the response leads to apoptosis [5]. Although mechanical stimulation increases anabolic responses in bone tissue [6-8] and reduces TNFα driven cell death [9], little is known about load-driven transcriptional and translational regulation mediated by phosphorylation of eIF2α.

In Aim 2, the alteration of ECM is treated as a unique form of cellular stress. Skeletal tissues are responsive to alterations in ECM and capable of adjusting their structural and functional integrity through a process called remodeling [10]. ECM in bone
offers a track for cellular migration and a communication link for cell-cell interactions and multiple types of cells such as osteocytes, osteoclasts and osteoblasts act synergistically for remodeling of ECM. Osteoblasts are primarily responsible for synthesizing and depositing ECM molecules such as type I collagen, bone sialoprotein (BSP) and dentin matrix protein 1 (DMP1) [11]. To actively control the fate of osteoblasts and promote wound healing or organ reconstruction, the effects of various stimulators including chemical agents such as ascorbic acid [12], growth hormones such as PTH [13] and mechanical loading [14] have been investigated. Little is known, however, about the role of ECM milieu in osteoblastic development.

The present study was designed to examine: (a) effects of various stresses on phosphorylation of eIF2α and cell mortality; and (b) role of ECM milieu in osteoblastic development. The following sets of specific questions were posed:

1. Does mechanical stimulation (in vivo loading and in vitro fluid flow treatment) modulate phosphorylation of eIF2α? If yes, what eIF2α kinase is responsible for? Does fluid flow treatment of osteoblasts suppress stress-driven cell mortality?

2. Do alterations of ECM milieu change genome-wide signaling pathways? If yes, are those pathways involved in the interactions with ECM molecules or osteoblastic mineralization?

Regarding Aim 1, previous studies have shown that thapsigargin, a pharmacological inducer of stress to the ER, alters expression of transcription factors such as ATF4, Runx2 and Osterix in MC3T3 osteoblast-like cells [15]. Since Perk, one of the four known eIF2α kinases, is responsive to ER mediated stress [16], we hypothesized that mechanical stimulation to bone would alter phosphorylation of eIF2α through Perk and affect cell mortality. Regarding Aim 2, the elevation of alkaline phosphatase activity is reported in adult human osteoblasts grown in native collagen gels [17]. It is
hypothesized in the current study that a 3D culture would activate molecular pathways that suppress cellular proliferation and promote osteoblastic differentiation.

To examine the hypotheses in Aim 1, we evaluated the protein expression levels of eIF2α and its phosphorylated form in mouse ulnae, primary mesenchymal stem cells (MSCs) and MC3T3 cells under various stress conditions. The ulnae were loaded with an elbow loading modality [18], while the MSCs and MC3T3 cells were treated with 1 h fluid flow at 20 dynes/cm². Focusing on the MC3T3 cells, the mRNA and protein levels of the selected stress-linked genes were determined and cell mortality was evaluated in the presence and the absence of mechanical stimulation, the stressors to the ER (thapsigargin and tunicamycin) or an oxidative agent (H₂O₂) [19-20]. Gene expression was determined by quantitative real-time PCR and Western blot analysis, and the role of Perk was examined by depleting its mRNA with small interfering RNA (siRNA).

To examine the hypotheses in Aim 2, we undertook a genome-wide gene expression analysis using MC3T3 E1 osteoblast-like cells that were grown on a collagen-coated dish (2D model) or seeded in a collagen matrix (3D model). We first predicted molecular signaling pathways that were linked to differential gene expression in the 2D and 3D models, and then examined their potential roles in osteoblast differentiation through a series of real-time PCR and Western analyses. Signaling pathways were analyzed using PathwayExpress software, while the prediction of transcriptional factor binding motifs was conducted using custom-made software. In order to evaluate the mRNA-based prediction in a proteome level, we examined phosphorylation patterns of the selected proteins linked to cellular proliferation and differentiation. Those proteins include a docking protein (p130Crk-associated substrate-p130Cas) [21] and 4 kinases such as focal adhesion kinase (FAK) [22], extracellular signal-regulated protein kinase 1/2 (ERK1/2) [23] and p38 mitogen-activated protein kinase (p38 MAPK) [24]. The role of p38 MAPK in promoting osteoblast differentiation was verified using its selective inhibitor – SB203580 [25].
1.2 Organization of the Thesis

The present thesis is divided into 5 chapters.

- Chapter 1: Introduction including the specific aims, questions and hypotheses.
- Chapter 2: Materials and Methods, and Results of Aim 1 (study on mechanical stimulation and other cellular stresses).
- Chapter 3: Materials and Methods, and Results of Aim 2 (study on ECM geometry and signaling pathways).
- Chapter 4: Discussion of the results in Aims 1 and 2 including significance to human health care, the limitation of current studies and potential future directions.
- Chapter 5: Summary and conclusions.
2. MECHANICAL STIMULATION SUPPRESSES PHOSPHORYLATION OF EIF2α THROUGH PERK IN RESPONSE TO ER STRESS

This study investigated the role of mechanical stimulation in the regulation of eIF2α and cell death. Mechanical stimulation was applied to mouse ulnae, MC3T3 cells and mesenchymal stem cells. Our hypothesis was that mechanical stimulation to bone would alter phosphorylation of eIF2α through Perk and affect cell mortality. To examine this hypothesis, we employed two flow shear systems. Agents such as thapsigargin and H₂O₂ were used to induce cell mortality, and siRNA technology was applied to silence a specific kinase: Perk. A series of western analysis and real time PCR experiments were conducted.

2.1 Materials and Methods

2.1.1 Elbow Loading

Using C57/BL6 mice (female, ~12 weeks; Harlan Sprague-Dawley, Inc.), elbow loading was conducted with the procedure described previously [18]. In brief, the mouse was anesthetized and loads were applied to the left elbow for 3 min in the lateral-medial direction with 0.5 N force at 5 Hz. The right forelimb was used as a contralateral control. The pairs of ulnae were harvested at 1, 3 and 5 h after loading. Soft surrounding tissues were dissected out. The bone sample was ground with a mortar and pestle in a RIPA lysis buffer and centrifuged at 4°C. The supernatant was used for Western blot analysis.
2.1.2 Cell Culture

MC3T3 osteoblast-like cells (C4 clone) were cultured on a glass slide coated with 40 μg/ml type I collagen (BD Biosciences) in αMEM containing 10% fetal bovine serum (FBS) and antibiotics (50 units/ml penicillin and 50 μg/ml streptomycin) [26]. To establish primary MSC culture, femurs and tibias were collected from 4 to 8 week old C57/BL6 mice. Using a 21-gauge needle, bone marrow cells were harvested with Iscove’s MEM (Gibco-invitrogen) containing 2% FBS [27-28]. Mononuclear cells were separated by low density gradient centrifugation. Cells were then washed twice with Iscove’s MEM and cultured in mouse MesenCult basal medium supplemented with MesenCult Supplemental (Stem Cell Technologies Inc.).

2.1.3 Treatment of Cells

Cellular stress was induced by incubating cells with either 1 μM thapsigargin (Tg, Santa Cruz Biotech.) for 1 - 24 h, 1 μg/ml tunicamycin (Tn, MP Biomedicals) for 3 h, or 0.5 - 2 mM hydrogen peroxide (H2O2, Fisher Scientific) for 3 or 6 h. The flow pre-treatment was applied for 1 h at 20 dynes/cm² shear stress. Note that this shear stress is relevant to the loading force employed in the in vivo model [29]. Prior to flow application, cells were grown for 1 day in a medium containing 1% FBS. For examination of cell mortality, cells were stained with trypan blue and the numbers of live and dead cells were counted separately using a hemacytometer.

2.1.4 Fluid Flow Systems

2.1.4.1 Chamber Flow System

Two fluid flow systems (the chamber flow system and shaker flow system) were employed. The chamber flow system used a Streamer Gold flow device (Flexcell International) depicted in Figure 2.1. The flow chamber contains six slots into which
glass slides with cells can be placed. The flow reservoir was filled with 180 ml cell culture medium, and the whole system was placed into a standard cell culture incubator with an environment of 37ºC and 5% CO₂ [30].

Figure 2.1 Schematic of the chamber flow system

In this system, the medium flow was constrained by a pair of stationary parallel plates and a Poiseuille flow was driven by a pressure gradient as shown in Figure 2.2.
Figure 2.2 Poiseuille flow in the chamber flow system: medium flows from high to low pressure, exerting shear stress on the slide’s surface in the flow direction

The shear stress on the flow chamber can be calculated:

\[\tau = \mu \frac{\partial u}{\partial y} \]

(2.1)

where \(\mu \) = dynamic viscosity of the fluid, \(u \) = velocity of the fluid along the boundary, and \(y \) = height of the boundary. For a Plane Poiseuille flow model, the Navier-Stokes equation was simplified:

\[\frac{d^2 u}{dy^2} = \frac{1}{\mu} \frac{dp}{dx} \]

(2.2)

in which \(p \) = pressure, and \(x \) = coordinate along the flow direction. Shear stress \(\tau \) is thus estimated:

\[\tau = \frac{dp}{dx} \left(y - \frac{h}{2} \right) \]

(2.3)

where \(h \) = separating distance between the two parallel boundaries. Deducing from a momentum balance for a Newtonian fluid,
\[\tau = \frac{6Q\mu}{wh^2} \]

(2.4)

in which \(Q \) = volumetric flow rate, and \(wh \) = the cross section area of the slots in the chamber. The wall shear stress \(\tau \) is then determined. The Reynolds number for this system is:

\[Re = \frac{VL\rho}{\mu} = \frac{Q\rho}{\mu wh} \]

(2.5)

where \(V \) = mean fluid velocity, \(L \) = travelled length of medium, and \(\rho \) = medium density. When \(Q \) is in the range of 0 - 1700 ml/min in the current study, \(Re \) is less than 2000. Thus, the fluid flow in the chamber is laminar and the shear stress calculation above is valid. With this system, shear stress in the range of 2 to 45 dynes/cm\(^2\) was induced.

2.1.4.2 Shaker Flow System

In the shaker flow system, illustrated in Figure 2.3, the cell covered glass slides were placed in a rotating flow consisting of 30 ml cell culture medium.
Figure 2.3 Schematic of the shaker flow system

The Reynolds number of this system is calculated:

$$Re = \frac{VL}{\nu} = \frac{\omega rL}{\nu}$$ \hspace{1cm} (2.6)

where $L =$ length of the glass slides, $r =$ mean radius of the medium flow, $\omega =$ angular velocity of fluid flow, and $\nu =$ kinematic viscosity of the medium.
For the system at 30 rpm, \(Re \) is 8,600 (laminar when \(Re < 500,000 \)). Using the Blasius equation for a laminar flow, shear stress on the glass slides is estimated:

\[
\tau = \frac{0.332 \rho V^2 \sqrt{V}}{\sqrt{Vx}} = \frac{0.332 \rho (rw)^2}{\sqrt{x}} \sqrt{V} \tag{2.7}
\]

where \(V \) = fluid velocity at infinity, and \(x \) = coordinate along the flow direction. When integrating \(\tau \) along the slide length \(L \), the stress becomes:

\[
\tau = \int_0^L \frac{0.332 \rho (rw)^2}{\sqrt{x}} \sqrt{V} = \frac{0.664 \rho (rw)^2}{\sqrt{L}} \sqrt{V} \tag{2.8}
\]

We employed shear stress of 2 - 5 dynes/cm² at 30 - 50 rpm.

2.1.4.3 Comparisons Between the Chamber Flow System and the Shaker Flow System

To verify predicted stress values induced by the two systems (chamber and shaker flow systems), the expression levels of two stress response genes (c-fos and ATF4) were determined. Using the chamber flow system, a series of shear stress including 2, 5, 20 and 45 dynes/cm² were applied. For the shaker flow system, 30 and 50 rpm rotation
speeds were employed. After 1 h fluid flow, RNA was isolated and reverse transcription followed by real-time PCR was conducted.

2.1.5 Real-time PCR

The mRNA levels of ATF3, ATF4, ATF6, CHOP, c-fos and Xbp1 in response to Tg and/or flow were determined using quantitative real-time PCR with the primers listed in Table 2.1. Total RNA was extracted using an RNase Plus mini kit (Qiagen). Reverse transcription was performed, and real-time PCR was carried out using ABI 7500 with SYBR green PCR kits (Applied Biosystems). The mRNA level of GAPDH was used as an internal control to calibrate potential variations in cell numbers. Within the four experimental groups (control, flow alone, Tg alone and flow followed by Tg), the relative mRNA levels of the selected genes were determined with respect to the GAPDH mRNA levels. The results were analyzed using a ΔC\textsubscript{T} method [15], in which mRNA levels were normalized by setting the levels in the control group to 1. For analysis of Xbp1 splicing, PCR products were separated on a 2.5% agarose gel and ethidium bromide stained bands were captured using a Fujifilm Luminescent image analyzer (LAS-3000). Note that the expected Xbp1 mRNA sizes were 289 bp (unspliced) and 263 bp (spliced).

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward primer</th>
<th>Backward primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATF3</td>
<td>5'-CGAAGACTGGAGCAAAATGATG-3'</td>
<td>5'-CAGGTTAGCAAAATCTCTAAATAC-3'</td>
</tr>
<tr>
<td>ATF4</td>
<td>5'-TGGCGAGTGTAAAGGACTAGAAA-3'</td>
<td>5'-CTTCCCCCTTGCCTTAG-3'</td>
</tr>
<tr>
<td>ATF6</td>
<td>5'-GGATTTTGATGCTTGGAGTCAGAC-3'</td>
<td>5'-ATTITTTTTTTTTGGAGTCAGCTCCAT-3'</td>
</tr>
<tr>
<td>CHOP</td>
<td>5'-CACCACACCTGAAAGCAGAA-3'</td>
<td>5'-GGTCGCCCAATTTTATCCT-3'</td>
</tr>
<tr>
<td>Perk</td>
<td>5'-CCGTGACCCATCCTGACATAT-3'</td>
<td>5'-CATAAATGGCCACCCAGCTTT-3'</td>
</tr>
<tr>
<td>Xbp1</td>
<td>5'-TTACGGGAGAAATCTACAGGC-3'</td>
<td>5'-GGGTCCAACTTGTCCAGAATGC-3'</td>
</tr>
<tr>
<td>GAPDH</td>
<td>5'-TGCACCACCAACTCCTAG-3'</td>
<td>5'-GGATGCAGGGATGTTCAG-3'</td>
</tr>
</tbody>
</table>

2.1.6 Immunoblots

Cells were sonicated using a sonic dismembrator (Model 100, Fisher Scientific) and lysed in a RIPA lysis buffer containing protease inhibitors (Santa Cruz Biotech) and
phosphatase inhibitors (Calbiochem). Isolated proteins were fractionated using 8 - 12% SDS gels and electro-transferred to Immobilon-P membranes (Millipore). Immunoblots were carried out using antibodies specific to ATF4, eIF2α, Perk, phospho-Perk (Thr980), caspase-3 (total and cleaved forms; Cell Signaling); CHOP (Santa Cruz); phospho-eIF2α (pS52) (Biosource) and β-actin (Sigma). After incubation with anti-rabbit IgG (Cell Signaling) or anti-mouse IgG (Amersham) antibodies conjugated with HRP, signals were detected with ECL chemiluminescence. Images were captured using a Fujifilm Luminescent image analyzer and analyzed using Adobe Photoshop (version 7.0).

2.1.7 RNA Interference

To evaluate the role of Perk in Tg-induced stress with and without the flow pre-treatment, cells were treated with siRNA specific to Perk. In brief, Perk siRNA (sc-36214, Santa Cruz Biotech.) was mixed with a siRNA transfection reagent (sc-36868) in a transfection medium (sc-36868), and the mixture was incubated with cells for 18 h without FBS and antibiotics. Control siRNA-A (sc-37007) was employed as the siRNA control. The Perk mRNA level was evaluated by real-time PCR using the pair of primers included in Table 2.1. Transfected cells were used for experiments after growing in a normal αMEM medium for 2 days.

2.1.8 Statistical Analysis

All values are expressed as mean ± S.D. Data were evaluated using Fisher’s PLSD post hoc test after one-way ANOVA tests with Stat View 5.0 (SAS Institute). Statistical significance was examined at $p < 0.05$. Note that statistical significance was indicated in figures with * ($p < 0.05$), ** ($p < 0.01$) and *** ($p < 0.001$).
2.2 Results

2.2.1 Comparisons of Messenger RNA Levels Using the Two Flow Systems

We chose ATF4 and c-fos as two stress responsive genes in osteoblasts, since their RNA expression levels altered depending on shear intensities. In Figure 2.5, a linear regression analysis was conducted to establish the relationships between the induced mRNA expression levels and estimated shear stress intensities.

In the shaker system, the ATF4 mRNA levels were increased 1.1-fold (30 rpm) and 1.25-fold (50 rpm) of those of the control cells. The c-fos mRNA expression levels were elevated by 1.35 and 2.75 times at 30 rpm and 50 rpm respectively. Note that all the data were the average of the results generated from experiments replicated at least once.

The two linear regression lines, generated for ATF4 and c-fos with the chamber flow system, provided a “reference curve” for estimating shear intensities with the shaker flow system. Consequently, the rotations at 30 and 50 rpm induced shear stress equivalent to 2 and 5 dynes/cm² with the chamber flow system respectively. This experiment based estimation was in congruity with the estimation obtained from the Blasius equation.

![Figure 2.5](image.png)

Figure 2.5 Relative mRNA levels of ATF4 and c-fos of MC3T3 cells in response to a series of shear stress generated by the chamber flow system
2.2.2 Load-driven Down-regulation of eIF2α-p

Mechanical stimulation reduced the phosphorylated level of eIF2α (eIF2α-p) (Figure 2.7). First, the loaded ulnae exhibited a lower level of eIF2α-p than the contralateral counterpart with no alteration in the level of eIF2α. Second, in response to flow treatment, the level of eIF2α-p decreased in both MSCs and MC3T3 cells. Figure 2.6 shows the experimental time scheme for \textit{in vitro} fluid flow treatment by the chamber flow system.

Figure 2.6 Experimental time scheme for \textit{in vitro} fluid flow treatment
Figure 2.7 Load-driven down-regulation of eIF2α phosphorylation. (a) Reduction in eIF2α-p in the loaded ulnae. (b) Reduction in eIF2α-p in MSCs. (c) Reduction in eIF2α-p in MC3T3 cells.
2.2.3 Alterations in the Protein Levels of Perk-p

In concert with load-driven down-regulation of eIF2α-p, mechanical stimulation reduced the level of phosphorylated Perk (Perk-p) in the mouse ulnae (Figure 2.9). Since the basal expression level of Perk-p was low, we confirmed the effects of mechanical stimulation on the expression levels of Perk-p in the presence of ER stress inducers (1 μM Tg and 1 μg/ml Tn) in MC3T3 cells. Figure 2.8 shows the time scheme of this experiment. First, Tg elevated the Perk-p levels as well as the levels of a pro-apoptotic gene: CHOP. However, the 1 h flow pre-treatment suppressed their elevation by 31% (Perk-p) and 49% (CHOP). Second, the flow pre-treatment reduced Tn-driven up-regulation of eIF2α-p, Perk-p and CHOP by 20%, 22% and 75%, respectively. Note that the levels of ATF4 protein were up-regulated by Tg and Tn, and the levels of Perk were unchanged in all cases.

![Figure 2.8 Experimental time scheme for in vitro fluid flow in combination with Thapsigargin (Tg)/Tunicamycin (Tn) treatment](image-url)
Figure 2.9 Decreased protein levels of Perk-p, CHOP and ATF4 in response to mechanical stimulation. (a) Reduction in Perk-p in the loaded ulnae. (b) Suppression of Tg-driven increases in Perk-p, CHOP and ATF4 by 1 h flow in MC3T3 cells. Cells were incubated with 1µM Tg for 3 h. (c) Suppression of Tn-driven increases in eIF2α-p, Perk-p and CHOP by 1 h flow in MC3T3 cells. Cells were incubated with 1µg/ml Tn for 3 h.
2.2.4 Messenger RNA Expression of Xbp1, ATF3, ATF4, ATF6 and CHOP

Expression and splicing of Xbp1 are known to be sensitive to stress to the ER. We examined the effects of Tg and flow pre-treatment on the total Xbp1 mRNA levels and two splicing isoforms. First, 1h incubation with Tg elevated the Xbp1 mRNA levels approximately 2-fold regardless of the flow pre-treatment (Figure 2.10 (a)). Second, additional incubation for 2 h in the presence of Tg increased mRNA levels (14-fold increase) but flow pre-treatment significantly reduced Tg-driven increase (Figure 2.10 (b)). Third, the electrophoretic agarose gel showed that Tg stimulated the splicing of Xbp1 mRNA (Figure 2.10 (c)). Flow pre-treatment reduced the levels of spliced Xbp1 mRNA.

We next examined the mRNA levels of 4 other genes (ATF3, ATF4, ATF6 and CHOP), which are known to be responsive to stress to the ER (Figure 2.10 (d) - (g)). In the absence of Tg, their mRNA levels were not significantly affected by the flow pre-treatment. However, Tg elevated all of the mRNA levels. Flow pre-treatment did not affect the levels of ATF3 mRNA or ATF4 mRNA but suppressed Tg-driven mRNA increases of ATF6 ($p < 0.01$) and CHOP ($p < 0.05$).
Figure 2.10 Relative mRNA levels of Xbp1, ATF3, ATF4, ATF6 and CHOP in response to Tg and/or mechanical stimulation in MC3T3 cells. (a) Relative Xbp1 mRNA levels after 1 h incubation with Tg. (b) Relative Xbp1 mRNA after 3 h incubation with Tg. (c) Gel images showing the spliced and the unspliced Xbp1 mRNAs after 3 h incubation with Tg. (d) - (g) Messenger RNA levels of ATF3, ATF4, ATF6 and CHOP after 3 h incubation with Tg.
2.2.5 Effects of Tg with and without Fluid Flow on Cell Mortality

To investigate a potential effect of mechanical stimulation on cell mortality, cells were incubated with Tg for 24 h with and without 1 h flow pre-treatment generated by shaker flow system (Figure 2.11). First, Tg increased the mortality rate from 3% to 23%, and this increase was suppressed to 10% by 1 h flow pre-treatment (Figure 2.12 (c)). Second, the level of the cleaved isoform of caspase 3, which was undetectable in control regardless of flow treatment (data not shown), was elevated by Tg. In agreement with observations of flow-driven reduction in cell mortality, 1 h flow pre-treatment suppressed this Tg-induced caspase 3 (cleaved) level by 39% (Figure 2.12 (d)).

![Figure 2.11: Experimental time scheme for cell mortality study by Tg with and without fluid flow treatment](image-url)
Figure 2.12 Cell mortality in response to 1 μM Tg for 24 h with and without flow pretreatment in MC3T3 cells. (a) Trypan blue stained control cells. (b) Trypan blue stained cells treated with Tg. (c) Cell mortality (in %) in 4 experimental groups (control, flow alone, Tg alone and Tg preceded by flow). (d) Caspase 3 expression (cleaved and uncleaved isoforms) for the cells incubated with Tg

2.2.6 Effects of Oxidative Stress on Cell Mortality

Since oxidative stress by H₂O₂ also induces an integrated stress response, a potential role of the flow pre-treatment in H₂O₂ induced regulation of eIF2α was examined. First, the flow pre-treatment did not significantly alter the number of dead cells in response to 3 or 6 h incubation with 0.5, 1 or 2 mM H₂O₂ (Figure 2.13 (a) - (b)). Second, Western blot analysis revealed that although administration of H₂O₂ up-regulated eIF2α-p, phosphorylation of Perk was not activated (Figure 2.13 (c)). Furthermore, the
flow pre-treatment did not alter levels of eIF2α-p. These results indicate that efficacy of mechanical stimulation in alleviating cell mortality depends on the stress source and activation of Perk.

Figure 2.13 Responses to hydrogen peroxide in MC3T3 cells. (a) & (b) Cell mortality in response to 3 and 6 h incubation in the medium containing 0.5, 1 or 2 mM hydrogen peroxide, respectively. (c) Expression levels of eIF2α-p, eIF2α and Perk-p after 3 h incubation with 1 mM H₂O₂
2.2.7 Effects of Perk siRNA on Tg-induced Cell Death

Since Tg activated phosphorylation of Perk and the flow pre-treatment partially inhibited its activation, we examined whether depleting Perk by siRNA would decrease Tg-driven cell mortality. Compared to normal control (no transfection), Perk siRNA reduced the Perk mRNA level to 14% (Figure 2.14 (a)). In agreement with the observed responses to stress to the ER, incubation with Tg for 8 h increased the cell mortality ratio to 17% (normal control) and 16% (siRNA control). Furthermore, 1 h flow pre-treatment reduced those mortality ratios down to 7% (normal control – white bars) and 5% (siRNA control – gray bars) (Figure 2.14 (b)). In the cells treated with Perk siRNA (black bars), no significant difference was observed in the cell mortality ratios between Tg alone and flow pre-treatment plus administration of Tg.

Figure 2.14 Effects of Perk siRNA on Tg-induced cell death. (a) Relative Perk mRNA levels in MC3T3 cells in normal control, siRNA control and Perk siRNA groups. (b) Cell mortality (in %) in response to 8 h incubation with Tg for normal control, siRNA control and Perk siRNA groups with and without 1 h flow pre-treatment.
3. ECM-DEPENDENT VARIATIONS IN PHOSPHORYLATION PATTERNS OF GENES IN OSTEOBLAST-LIKE CELLS

In this chapter, molecular signaling involved in ECM geometry is presented. A genome-wide mRNA expression analysis was conducted using cells grown in the 2D and 3D models, and signaling pathways as well as active transcription factors were predicted. Real-time PCR, Western blot analysis and a mineralizing assay were conducted to verify the microarray-derived predictions.

3.1 Materials and Methods

3.1.1 Cell Culture

MC3T3 osteoblast-like cells (C4 clone) [12] were cultured in αMEM medium containing 10% FBS and antibiotics (50 units/ml penicillin and 50 µg/ml streptomycin; Invitrogen). Cells were incubated at 37°C in a humid chamber with 5% CO2 and prepared for experiments at 70 - 80% confluency. For the 2D model, approximately 4×10^5 cells were seeded in a 60 mm polystyrene tissue culture dish (Falcon), which was coated with rat-tail type I collagen (BD Bioscience). As a control, cells were also grown in the dish without coating type I collagen. For the 3D model, three concentrations (low density: 7×10^5 cells; medium density: 1.4×10^6 cells; and high density: 2.1×10^6 cells) of cells were seeded on the 3D collagen matrix (20 mm \times 40 mm \times 2 mm; CollaCote, Zimmer Dental), which was fabricated from bovine flexor tendon. To evaluate potential differences between the collagen solution used for the 2D model and the matrix form of collagen for
the 3D model, the collagen matrix was physically disrupted and the liquid form of collagen was extracted. These two sources of collagen were equally coated on the polystyrene dish, and the mRNA expression levels were compared. For evaluation of mRNA expression levels by real-time PCR and microarrays, cells were harvested 1 day after seeding. In evaluation of the role of p38 MAPK, cells were incubated in the presence of 10 µM SB203580 (Cat# 559398, Calbiochem).

3.1.2 Reverse Transcription and Real-time PCR

Using approximately 50 ng of total RNA, reverse transcription was conducted with high capacity cDNA reverse transcription kits (Applied Biosystems). Quantitative real-time PCR was performed using ABI 7500 with Power SYBR green PCR master mix kits (Applied Biosystems). We evaluated the mRNA levels of 5 osteogenic genes (Dentin matrix protein 1 – DMP1, Alkaline phosphatase – ALP, Bone sialoprotein – BSP, type I collagen – Col Iα1 and Osteocalcin – OCN), 3 transcriptional factors (Runx2, ATF4 and Osterix – Osx) [31-35], 2 cell cycle related genes (Cyclins E1 and E2) [36] and GAPDH. The PCR primers are listed in Table 3.1. The mRNA level of GAPDH was used as an internal control to calibrate potential variations in cell numbers in cell cultures. The relative mRNA levels of the selected genes were obtained with respect to the mRNA level of GAPDH for each sample, and relative mRNA abundance was determined as a ratio of the mRNA levels in the 3D model to those in the 2D model. The ratio of 1, for instance, implies that there is no difference in mRNA levels between the two models.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward primer</th>
<th>Backward primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALP</td>
<td>5'-CCGATGCCACACTGCTT-3'</td>
<td>5'-GAGGCATACGCCATCACATG-3'</td>
</tr>
<tr>
<td>ATF4</td>
<td>5'-TGGCGAGGTAAGGGACTAGAA-3'</td>
<td>5'-TCTTCCCCCTGGCTTACG-3'</td>
</tr>
<tr>
<td>BSP</td>
<td>5'-ACCCAAAGCACAGACTTTTG-3'</td>
<td>5'-CTTCTGCAATCCTCACAGGCTCTT-3'</td>
</tr>
<tr>
<td>Col Iα1</td>
<td>5'-AAACTCCCCACCCCCAATCT-3'</td>
<td>5'-TTTGAGGGTTGCTTCAGGCTTCT-3'</td>
</tr>
<tr>
<td>Cyclin E1</td>
<td>5'-TGCCAAAGATGCAAAGACCTGGA-3'</td>
<td>5'-TCCACGCCATCTGAAATTATCA-3'</td>
</tr>
<tr>
<td>Cyclin E2</td>
<td>5'-GCCATCGACTCTTTGAGATTTCAATA-3'</td>
<td>5'-TCTTAACCCACTTGAATGGGATAAA-3'</td>
</tr>
<tr>
<td>DMP1</td>
<td>5'-CCGCGACACCCCCGAGT-3'</td>
<td>5'-CTTATGTCTCCGACCTGACACAC-3'</td>
</tr>
<tr>
<td>Osteocalcin</td>
<td>5'-CCCGGGAGGAGTGGAGCTTA-3'</td>
<td>5'-AGGGCCCTTCTCAAGCCTACT-3'</td>
</tr>
<tr>
<td>Osterix</td>
<td>5'-CCCTTCTCAGACCAAATGTTG-3'</td>
<td>5'-AGGCTTGGATCTGTTGCTTAG-3'</td>
</tr>
<tr>
<td>Runx2</td>
<td>5'-AAATGCCCTCCGCTTATGAA-3'</td>
<td>5'-GCTCCGGCCACAAATCT-3'</td>
</tr>
<tr>
<td>GAPDH</td>
<td>5'-TGACCCACACACTGCTTAG-3'</td>
<td>5'-GGATGCAGGATGATGTT-3'</td>
</tr>
</tbody>
</table>
3.1.3 Microarray Analysis

Microarray experiments were conducted using Agilent whole mouse genome arrays (G4112A, Agilent). A total of 8 RNA samples were isolated with an RNeasy Plus mini kit (Qiagen) from 4 pairs of cells grown in the 2D and 3D substrates for 24 h. They were labeled with Agilent low RNA input fluorescent linear amplification kits and hybridized to 8 one-color arrays using in situ hybridization kits (Agilent).

Data were filtered to remove background noise, and a modified t-test was performed to identify a group of genes that were altered > 2-fold or < 0.5-fold with statistical significance at p < 0.01. The list of genes identified was imported into Pathway-Express, which was used to predict molecular signaling pathways through evaluation of an impact factor that accounts for contributions of the proportion of differentially regulated genes on the pathway [37-38].

MotifModeler II was employed to predict transcription factors involved in the microarray derived data [39]. The raw data generated from the 8 arrays were imported into the Partek Software and signal intensity for each probe set was evaluated. Quantile normalization was then performed and the normalized signals were further adjusted by aligning medium values [40]. The probe sets whose expression levels were below a threshold in each condition were then removed. Differentially expressed genes in the 2D and 3D conditions were then selected using Student t-test.

3.1.4 Western Blot Analysis

To evaluate the role of kinases linked to the predicted signaling pathways, we conducted Western blot analysis. Cells were sonicated using a sonic dismembrator (Model 100, Fisher Scientific) and lysed in a RIPA lysis buffer containing protease inhibitors (Santa Cruz Biotech) and phosphatase inhibitors (Calbiochem). Isolated proteins were fractionated using 10% SDS gels and electro-transferred to Immobilon-P membranes (Millipore). The membrane was incubated for 1 h with primary antibodies
followed by 45 min incubation with goat anti-rabbit IgG (Cell Signaling Tech) or goat anti-mouse IgG conjugated horseradish peroxidase (Amersham Biosciences). We used antibodies against ERK1/2, p-ERK1/2 (Thr202/Tyr204), p38MAPK, p-p38MAPK (Thr180/Tyr182), p-p130Cas (Tyr410) (Cell Signaling Tech), p-FAK (Tyr861) (Santa Cruz Biotech) and β-actin (Sigma). Protein levels were assayed using an ECL advance Western blotting detection kit (Amersham Biosciences), and signal intensities were quantified with a luminescent image analyzer (LAS-3000, Fuji Film).

3.1.5 Mineralization Assay

Mineralization of ECM was assayed by Alizarin red S staining [41]. Prior to culturing cells in mineralizing medium, approximately 1 × 10^6 cells were grown in the αMEM medium for 2 days. Then, 50 µg/ml of ascorbic acid (Sigma) was added (day 1), and 5 mM β-glycerophosphate (Sigma) was added on the next day (day 2). The medium was changed every 2 or 3 days, and staining was conducted on day 8. The earlier staining on day 8 rather than day 10 or later was chosen to evaluate accelerated differentiation in the 3D model. Cells were washed with PBS three times and fixed with ice-cold 70% ethanol for 1 h followed by several washes with distilled water. They were stained with 2% Alizarin red S (pH 4.2) (Sigma) for 10 min and washed with distilled water.

3.1.6 Statistical Analysis

Experiments were conducted twice (Western blotting) and four times (PCR), and the data were expressed as mean ± s.d. Statistical significance from a t-test was evaluated at p < 0.05.

Regarding the prediction of transcription factors that potentially caused differential expression patterns in the 2D and 3D models, 382 differentially expressed genes were selected from the microarray data. These genes presented alterations of their mRNA expression levels (> 2-fold or < 0.5-fold) with statistical significance at p < 0.01.
Among them, 367 genes were used for the prediction with MotifModeler II, since 15 genes in the microarray data did not have their Entrez ID. MotifModeler II provides two scores for each of the potential transcription factors: the TCS score is calculated by how well its occurrences in the promoter or 3’-UTR correlate with the expression level difference, in the context of combinatorial regulation, and the Xm score evaluates its potential function on the global gene expression. A positive and negative Xm imply that its occurrence in the gene regulatory region contributes to the global gene over and under-expression in the 3D samples compared with the 2D samples [39].

3.2 Results

3.2.1 Altered Messenger RNA Expression on Day 1 between 2D and 3D Substrates

We first examined alterations in mRNA expression on day 1. Compared to the cells in the 2D model, relative mRNA abundance of three genes (DMP1, BSP and OCN) was significantly elevated in the 3D model (Figure 3.1 (a)). For instance, DMP1 abundance was 5.2 times higher in the 3D model (low cell density culture) than in the 2D model. Interestingly, the OCN mRNA level was elevated 18.5 times in the 3D model, while relative mRNA abundance of Collagen Iα1 was unchanged.

We next evaluated relative mRNA abundance of transcription factors (Runx2, ATF4 and Osx). The relative mRNA levels of Runx2 and ATF4 did not change either at 2 h or 24 h, while the relative level of Osx mRNA at 2 h after seeding was higher in the 3D model than that in the 2D model (Figure 3.1 (b)). Furthermore, the density of cells in the 3D culture did not significantly affect the relative mRNA expression levels (data not shown).
Figure 3.1 Relative mRNA abundance in the 3D model. The relative mRNA expression level in the 3D model was normalized by the level in the 2D model. The asterisks indicate statistical significance at $p < 0.05$ (*) and $p < 0.01$ (**), and the dotted line shows the normalized ratio of 1. (a) Relative mRNA abundance of 5 anabolic genes (DMP1, ALP, BSP, Col Iα1 and OCN) at 24 h. (b) Relative mRNA abundance of 3 transcriptional factors (Runx2, ATF4 and Osx) at 2 and 24 h.
3.2.2 Effect of Collagens in 2D and 3D Substrates

For three genes (DMP1, BSP and OCN) whose mRNA levels were elevated in the 3D model, we examined their expression levels in the 2D model with and without collagen coating (Figure 3.2).

Figure 3.2 Effects of collagen coating. The relative mRNA levels of DMP1, BSP and OCN in the 2D model with and without collagen coating. The asterisk indicates statistical significance at p < 0.05, and the dotted line shows the normalized ratio of 1. Note that 2D (No Col) = no collagen coating, 2D (Col) = coating with liquid collagen, and 2D (Matrix) = coating with collagen extracted from 3D matrix. (a) Comparison between 2D (No Col) and 2D (Col). (b) Comparison between 2D (Matrix) and 2D (Col).

Compared to the substrate coated with type I collagen, the DMP1 mRNA levels were reduced on the polystyrene surface without collagen coating. The levels of BSP and OCN mRNAs were not, however, significantly altered (Figure 3.2 (a)). We further examined any differential effect between two collagen sources (liquid collagen in the 2D model and the collagen extracted from the 3D matrix). Between these two forms of collagen coating on the culture dishes, where 2D (Matrix) = coating with collagen extracted from 3D matrix and 2D (Col) = coating with liquid collagen, no significant
3.2.3 Suppression of Focal Adhesion Pathways in the 3D Culture

To identify potential molecular pathways that promote mineralization in the 3D model, microarray experiments and Pathway-Express software were employed. Focal adhesion pathway was selected, in which, 39 genes out of 60 were down-regulated in the 3D model (Figure 3.3). This pathway included 8 regulatory subunits: ECM-receptor interaction, cytokine-cytokine receptor interaction, phosphatidylinositol signaling system, regulation of actin cytoskeleton, Wnt signaling pathway, apoptosis, MAPK signaling pathway and cell cycle.

Figure 3.3 Focal adhesion pathways. Molecular network in the focal adhesion pathway. Note that 39 out of 60 genes were down-regulated in the 3D model (shown in red). The pathway includes 8 regulatory subunits such as ECM-receptor interaction, cytokine-cytokine receptor interaction, phosphatidylinositol signaling system, regulation of actin cytoskeleton, Wnt signaling pathway, apoptosis, MAPK signaling pathway and cell cycle.
Since phosphorylated ERK1/2 can stimulate cell proliferation as well as cell cycling, we assayed the phosphorylation level of ERK1/2. At both 30 min and 60 min after cell seeding, the level of its phosphorylated form (p-ERK1/2) was reduced more in the 3D model than in the 2D model (Figure 3.4 (a)). The results were consistent with the notion that the 3D environment has a suppressive effect on the proliferation of osteoblasts.

In order to verify involvement of a docking protein as well as a key kinase in focal adhesion, we evaluated the phosphorylated levels of p130Cas (p-p130Cas, tyr410) and FAK (p-FAK, tyr861). Those phosphorylation sites are known to be important for stimulating cell adhesion [42]. The results revealed that their phosphorylated levels were attenuated in the 3D model (Figure 3.4 (b)).

![Figure 3.4](image.png)

Figure 3.4 Comparison of the expression levels of phosphorylated forms of ERK1/2, p130Cas and FAK in 2D and 3D model. (a) Down-regulated p-ERK1/2 in the 3D model at 30 and 60 min (b) Decrease in the phosphorylated levels of p130Cas (tyr 410) and FAK (tyr861) in the 3D model at 30 and 60 min

3.2.4 Suppression of Cell-cycle Related Genes in the 3D Culture

The cell-cycle pathway was selected as well according to the results from Pathway-Express. Four regulatory subunits were included in this pathway: MAPK signaling pathway, apoptosis, DNA biosynthesis and ubiquitin mediated proteolysis. Note that the subunits linked to cell cycle, MAPK signaling pathway and apoptosis were also included in the cell adhesion pathway.
In order to verify array-derived expression data, we conducted real-time PCR and confirmed the mRNA levels of Cyclins E1 and E2. It has been shown that these cyclins bind to CDK2 and promote the transition from G1 to S phase [37]. Our PCR results were consistent with the pathway prediction, showing that the relative mRNA levels of those two cyclin genes were reduced in the 3D model. Compared to the low density culture, the high density culture exhibited a stronger decrease in the mRNA level of those two Cyclin genes (Figure 3.6).
3.2.5 Transcription Factor Prediction

Table 3.2 lists the predicted transcription factors whose TCS scores are larger than a threshold value defined as \((\text{mean value} + 3 \times \text{standard deviation})\). Among 7 transcription factors, the positive Xm score (stimulatory in the 3D model) was given to NF-κB and the negative Xm (inhibitory in the 3D model) to AIRE (autoimmune regulator), AP-4 (activating enhancer binding protein 1), STAT (signal transducers and activator of transcription) and HEB (HeLa E-box binding protein).

<table>
<thead>
<tr>
<th>Accession</th>
<th>Transcription Factors</th>
<th>TCS score</th>
<th>Xm Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>M00999</td>
<td>AIRE</td>
<td>2.69e-03</td>
<td>-1.14e+06</td>
</tr>
<tr>
<td>M00927</td>
<td>AP-4</td>
<td>2.68e-03</td>
<td>-1.35e+06</td>
</tr>
<tr>
<td>M00279</td>
<td>MIF-1</td>
<td>2.68e-03</td>
<td>-1.33e+06</td>
</tr>
<tr>
<td>M00070</td>
<td>Tal-1beta:ITF-2</td>
<td>2.67e-03</td>
<td>-1.17e+06</td>
</tr>
<tr>
<td>M00051</td>
<td>NF-kappaB (p50)</td>
<td>2.66e-03</td>
<td>9.98e+05</td>
</tr>
<tr>
<td>M00223</td>
<td>STATx</td>
<td>2.65e-03</td>
<td>-1.28e+06</td>
</tr>
<tr>
<td>M00698</td>
<td>HEB</td>
<td>2.65e-03</td>
<td>-1.33e+06</td>
</tr>
</tbody>
</table>

3.2.6 Involvement of p38 MAPK in Expression of DMP1 and BSP

Two of the osteogenic genes (DMP1 and BSP) exhibited significantly elevated mRNA expression levels on days 1 and 8. It has been reported that expression of DMP1 is activated by p38 MAPK [24], which is part of the predicted cell cycle pathway.
Western blots showed that the level of phosphorylated p38 MAPK was higher in the 3D model than in the 2D model (Figure 3.7 (a)). In order to examine the role of p38 MAPK in expression of DMP1 and BSP, we employed a p38 MAPK inhibitor (SB203580). The result demonstrated that this pharmacological agent suppressed relative mRNA abundance of DMP1 and BSP (Figure 3.7 (b)). In the 3D model, a normalized induction ratio (based on expression in 2D without SB203580) changed from 9.7 ± 1.3 (mean ± s.d.) to 4.8 ± 1.6 (DMP1) and from 2.0 ± 0.8 to 0.61 ± 0.15 (BSP).

![Western blots showing phosphorylation of p38 MAPK](image)

Figure 3.7 Linkage of phosphorylation of p38 MAPK to relative mRNA abundance of DMP1 and BSP. (a) Activation of p-p38 MAPK in the 3D model. (b) Suppression of relative mRNA abundance of DMP1 and BSP by 10 µM SB203580 in the 2D and 3D models. The dotted line shows the normalized ratio of 1.
3.2.7 Enhanced Mineralization on Day 8 in 3D Environment

In the presence of ascorbic acid the degree of mineralization was assayed 8 days after addition of β-glycerophosphate with Alizarin red S. This dye produces red staining for crystallized calcium salts [31]. The level of red staining intensity was increased in cells grown in the 3D matrix (Figure 3.8), indicating that the 3D environment stimulates differentiation of osteoblasts.

![Figure 3.8](image)

Figure 3.8 Alizarin staining for the 2D and 3D models. (a) Alizarin staining for the 2D model. (b) Alizarin staining for the 3D control matrix (no cells). (c) Alizarin staining for the 3D model. White bar = 5 mm

The results with real-time PCR revealed that compared to cells in the 2D model, relative mRNA abundance of DMP1 (6.77 ± 1.44; mean ± s.d.), ALP (2.82 ± 0.16), and BSP (1.19 ± 0.06) was significantly up-regulated in the 3D model (Figure 3.9), although the OCN mRNA level (0.68 ± 0.06) was down-regulated.
Figure 3.9 Ascorbic-acid stimulated mineralization and mRNA up-regulation of the select osteogenic genes in the 3D model on day 8. Relative mRNA abundance of DMP1, ALP, BSP, Col Iα, and OCN as a ratio of expression in the 3D model to that in the 2D model. The dotted line (normalized ratio of 1) indicates no change in mRNA levels in the 2D and 3D models. The asterisks indicate statistical significance at p < 0.05 (*) and p < 0.01 (**), and the dotted line shows the normalized ratio of 1.
4. DISCUSSION

The present studies demonstrated signaling pathways involved in mechanical stimulation and ECM geometry in osteoblasts. The mechanical stimulation study focused on eIF2α-mediated responses, while the ECM geometry study focused on genome-wide pathway analysis.

4.1 Discussion on the Mechanical Stimulation Study

In the first study, the results showed that mechanical stimulation reduced the levels of Perk-p and eIF2α-p, and suppressed cell death caused by Tg-induced stress to the ER. Western analysis showed that the active phosphorylated form of Perk, induced by Tg and Tn, was down-regulated by mechanical stimulation although the load-driven expression profile of ATF4 in Figure 2.9 was not identical in response to Tg and Tn. Since depleting the expression of Perk by siRNA in Tg-treated cells reduced the cell mortality ratio regardless of application of fluid shear, we postulated that Perk was involved in the interplay of mechanical stimulation and Perk-mediated cellular stress (Figure 4.1). Note that fluid shear did not suppress cell death induced by H2O2, since H2O2 driven elevation of the level of eIF2α-p was not mediated by Perk.

![Figure 4.1 Schematic diagram illustrating the effects of ER stress and mechanical stimulation on Perk-p and eIF2α-p](image-url)
Our molecular analysis indicated the complex interactions at the transcriptional and translational levels between ER mediated stress and mechanical stimulation. The genes directly responsive to stress to the ER, such as Xbp1, ATF6 and CHOP, were up-regulated by Tg and partially suppressed by mechanical stimulation. It is reported that in the ER membrane of stressed cells, IRE1 can remove a 26-nucleotide intron from unspliced Xbp1 mRNA by its RNase activity. Then the two ends of the mRNA are ligated, resulting in a frame shift in the coding sequence. The spliced Xbp1 mRNA encodes a potent transcriptional activator of many genes involved in unfolded protein responses (UPR) [43-44]. In the current study, Xbp1 was actively spliced by Tg, and this splicing event was suppressed by mechanical stimulation. ATF6 is activated by Tg and induces gene expression to alleviate stress to ER [45]. Due to the role of CHOP in an apoptotic pathway [46] through activation of Perk [47], the load-driven suppression of CHOP was consistent with the observed reduction in cell mortality. In addition, mRNA levels of ATF3 [48] and ATF4 [49] were increased by Tg regardless of mechanical stimulation. Note that CHOP can also be up-regulated through activation of ATF4, ATF6 and Xbp1 [50].

Protein expression analysis supported the role of mechanical stimulation in stress-linked translational regulation. In concert with the observed suppression of cell death, mechanical stimulation down-regulated the protein levels of eIF2α-p and CHOP. Although the basal expression level of Perk protein was undetectably low, the elevated level of Perk-p in Tg treated cells was decreased by flow pre-treatment. Furthermore, Tg driven cell death was mediated by Perk-p and the reduction in Perk-p by mechanical stimulation decreased cell mortality. Besides, the Perk siRNA treated group showed the reduced level of cell mortality, suggesting the correlation between the expression level of Perk and cell death. In addition, the fact that flow pre-treatment did not significantly modulate the cell mortality in the Perk siRNA treated group also supports the correlation between the expression level of Perk and mechanical loading. Therefore mechanical stimulation and cell mortality were connected through Perk. It is well known that mechanical stimulation enhances bone formation [6-8]. Thus, it is conceivable that
reduction of cell death through regulation of Perk and eIF2α may enhance cellular survival and contribute to bone formation. Note that Perk knockout mice die with severe diabetic and skeletal defects [51], thus Perk has an indispensible role in the development of bone.

Suppression of cell death by mechanical stimulation is considered to be mediated by multiple signaling pathways. Besides the Perk and eIF2α effects identified in this study, it has been shown that apoptosis of osteoblasts caused by TNFα and serum deprivation are suppressed by mechanical stimulation through a PI3K pathway [9] and a Wnt signaling pathway [52], respectively. In accordance with those observations, our previous in vivo data revealed that mechanical loading activated both PI3K and Wnt pathways [53]. Taken together, load-driven suppression of cell mortality is mediated through multiple signaling pathways including the eIF2α pathway as well as the PI3K and Wnt signaling pathways. Since cytoplasmic concentration of calcium ions is altered by stress to the ER as well as mechanical stimulation, the regulation of calcium ions might be involved in the observed alteration in Perk phosphorylation.

4.2 Discussion on the ECM Geometry Study

In the second study, two molecular signaling pathways – focal adhesion and cell cycling – were predicted as the potential modulators of the proliferation and differentiation of osteoblasts in the two ECM environments using genome-wide analysis. Transcription factors as well as the binding sites relating with ECM geometry variations were predicted. Associated with enhanced mineralization in the 3D culture, relative mRNA abundance of the selected osteogenic genes such as DMP1 and BSP were elevated in the 3D model. The proteome analysis for phosphorylation verified that in accordance with the diminished role of focal adhesion and cell cycling in the 3D model, the levels of p-p130Cas, p-FAK and p-ERK1/2 were decreased. Phosphorylation of FAK at tyr861 is known to induce interaction with p130Cas. The level of p-p38 MAPK was elevated in cells seeded in the 3D model, and inhibition of p-p38 MAPK by 10 µM of
SB203580 reduced relative mRNA abundance of DMP1 and BSP. Consequently, the present study supports the notion that differential gene expression and altered osteoblastic fates in the 2D and 3D models are linked to focal adhesion and cell cycling through modulations in the phosphorylation pattern of kinases and a docking protein.

By analyzing microarray data, we also predicted the most influential transcription factors that potentially cause the differences in global gene expression profile between 2D and 3D models. In the 6 transcription factors that were predicted to contribute to the gene under expression in 3D samples, SATA was reported to promote osteoblast differentiation [54]. As to the transcription factor that was predicted to contribute to gene over expression in 3D samples in comparison with 2D samples, inactivation of NF-κB was reported to be involved with osteoblast development [55]. One potential interpretation is that, decreased level of SATA was contributing to under expression of genes involving in osteoblast differentiation in 3D sample, while decreased expression level of NF-κB was contributing to the over expression of genes involved in osteoblast development in 3D samples.

The observed reduction in proliferation and enhancement of mineralization in the 3D model is consistent with previous reports in which bone marrow-derived cells [56] or adult human osteoblasts [17] grown in native collagen gels stopped proliferation and exhibited higher alkaline phosphatase activity. However, those cells grown in a solidified collagen gel had restricted medium circulation as well as a limited migration space. In our 3D model, cells were seeded on a porous type I collagen matrix whose typical pore size ranged from 10 to 100 µm. Thus, the retarded proliferation in our 3D model is less influenced by physical or chemical confinement than the previous studies. Our results show that osteoblasts in the 3D environment promote differentiation by suppressing the cell adhesion and cell cycle pathways. Note that since the mRNA levels of Cyclins E1 and E2 were down-regulated the most in the 3D culture with the highest number of cells, cell density is also a factor to regulate cellular proliferation. However, up-regulation of the selected osteogenic genes was largely insensitive to cell density.
In a focal adhesion pathway, FAK serves as a marker for focal adhesions as a non-receptor focal adhesion kinase. Consistent with its reduced phosphorylation level in the 3D model, down-regulation of its auto-phosphorylation is reported in vascular smooth muscle cells in a honeycomb-like mesh substrate [57]. Interestingly, we observed in the 3D environment that the level of p-ERK1/2 was suppressed, while that of p-p38 MAPK was elevated and its up-regulation was linked to mRNA up-regulation of DMP1 and BSP. In response to mechanical stimulation, osteoblasts are known to activate FAK and increase the level of p-ERK1/2 [58]. Thus, it is conceivable that the 3D environment would offer a stimulus that would act oppositely to mechanical stimulation. However, there is a report that fluid flow to mesenchymal stem cells cultured in a bone-like ECM matrix stimulates osteoblastic differentiation [59].

Although most of the selected osteogenic genes were up-regulated in the 3D model, we observed their differential temporal responses. For instance, expression of DMP1 and BSP was up-regulated on both day 1 and day 8. Expression of OCN was, however, elevated on day 1 and decreased on day 8. Furthermore, in spite of ~ 20 times increase in relative OCN mRNA abundance in the 3D model on day 1, relative mRNA abundance of Runx2 or ATF4 was unchanged. The results indicate a possibility that post-transcriptional regulation of Runx2 or ATF4 is needed to activate OCN transcription [34]. The observed up-regulation of Osx expression in the 3D model is agreeable with the understanding that osteoblast differentiation is mediated by p38 MAPK through Osx [60].

4.3 Limitations and Future Direction

There are several limitations in the present study. First, in the mechanical stimulation study, the relationship of shear stress and mRNA expression levels of stress response genes needs to be further confirmed and studied. Second, further evidence needs to be provided to support the causal relationship between mechanical stimulation and the reduced level of Perk phosphorylation. Third, in the ECM geometry study, the ECM differences between the 2D and 3D models here not only include geometric configuration
but also variations in cell density, collagen structures and mechanical properties. Although we employed three cell densities and two collagen sources for 2D models, the two signaling pathways examined herein are potentially affected not only by 2D/3D differences but also by other causes including differences in mechanical properties of the cells in culture. Fourth, we investigated the initial response (up to 1 h) for phosphorylation patterns, the 1-day response for genome-wide mRNA levels, and the 8-day outcome for mineralization. However, the signaling pathways were temporarily regulated, and other molecular networks can be involved in different time periods. Lastly, the ECM geometry study was based on a single cell line, and further verification is necessary using primary cells.

The two studies in the thesis are both bone cell signaling pathway studies. As we know, bone diseases, like osteoporosis and osteopenia, can reduce bone mass and strength and increase the possibility of fracture or bone necrosis, which can significantly affect quality of life. Studies have found that some bone diseases are directly or indirectly related with stress to ER. Our mechanical study potentially provides a therapeutic treatment by focusing on phosphorylation of eIF2α which is a response to ER stress. In the ECM geometry study, we have found that the 3D culture environment employed in the current study stimulated differentiation of osteoblasts through suppression of the cell adhesion and cell cycling pathways, and we have also shown that the 3D model reduces the levels of p-130Cas, p-FAK and p-ERK1/2 while elevating that of p-p38 MAPK. The results would be useful in developing an in vitro assay for regulating proliferation and differentiation of bone forming cells.

In the future, the mechanical stimulation study can be further developed by studying behavior differences of young osteoblasts and aged osteoblasts in response to mechanical stimulation. The ECM geometry study can also be extended to primary bone cells, e.g. MSCs. Also, the role of the predicted transcription factors should be further evaluated in the 2D and 3D models.
5. CONCLUSION

Signaling pathways involved in mechanical stimulation and ECM geometry in bone cells were studied to examine the role of cellular stress to osteoblastic fates. Specifically, eIF2α pathways in response to mechanical stimulation in Aim 1 and phosphorylation patterns of p130Cas, FAK, ERK and p38MAPK in response to ECM variations in Aim 2 were analyzed.

In the eIF2α pathway study in Aim 1, two flow systems were developed to induce mechanical loading to bone cells. A joint loading method was developed to apply mechanical loading to mouse ulnae. According to both in vitro and in vivo experimental results, it was concluded that load-driven suppression of cell mortality is achieved through multiple signaling pathways, including the Perk mediated eIF2α pathway, and this study supports the notion that mechanical stimulation is a suppressor of Perk-mediated stress and cell death. In the ECM geometry study in Aim 2, a 3D culture environment was employed to stimulate differentiation of osteoblasts through suppression of the cell adhesion and cell cycling pathways. The 3D model was shown to reduce the levels of p-130Cas, p-FAK and p-ERK1/2 while elevating that of p-p38 MAPK.

In summary, the present studies will be useful in establishing in vitro assay for regulating proliferation and differentiation of bone forming cells and identifying new therapeutic targets for bone diseases.
LIST OF REFERENCES

