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The same system can run a different algorithm which will serve a different purpose

on the road [42]. Certain intersections become very busy during rush hour and hence

many drivers find themselves waiting a long period of time trying to go through the

intersection from one side. However, the other side of the intersection might not be

as busy, but the traffic light gives the same time period for cars in each side of the

intersection to go through. Sensors embedded in the road can count the number of

cars in each side of the intersection, then a network algorithm can increase the green

time at the side with most traffic in order to reduce the congestion. This application

can be further enhanced by placing devices on the cars themselves than can send

information to access points on the road side, such as vehicle speed, size, etc, which

can be later used by the network algorithm to make the decisions that will make the

road safer and less congested.

Using WSNs integrated in ITSs will definitely improve traffic management. How-

ever, it would be very expensive to install a WSN on every single road in an entire

metropolitan area. Thus, some algorithms can be designed to take in the data col-

lected by the different WSNs deployed in a certain metropolitan area for instance to

estimate the traffic flow in the roads between the WSNs [37]. This will help reduce

the number of WSNs deployed but still manage the traffic in a larger number of roads.

Furthermore, the accumulated data can be used to build trends of traffic flow in

different roads in a metropolitan area [43]. If the timing of the traffic congestion can

be predicted using historic data collected over time, then measures can be taken in

order to solve the problem permanently by building new roads.

3.3 Communication Error Model - Fading of Wireless Signals

Modeling errors in wireless communication channels is a very challenging task

as it needs to take into consideration several different factors that cause errors in

data transmitted over a wireless channel. Some of those factors are related to the

environment where the wireless signal is transmitted and others are related to the
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objects that reflect or diffract the signal. Thus, it is usually hard to generalize any

mathematical analysis that will take into consideration every single factor that in-

duces error in wireless communication. Consequently, many of the models that were

constructed to describe the behavior of errors in wireless communication are faulty

due to simplification or underestimation of factors that cause errors [44].

The following is a list of some of the most common causes that introduce error

into the wireless signal:

• Attenuation: decrease of signal power at the receiver’s end reducing the signal

to noise ratio.

• Doppler Shift : If the sender and receiver are mobile, the difference in their

velocity will make the reception of the signal harder.

• Multi-path Fading : fluctuation in angle, phase and amplitude of the signal due

to the presence of obstacles between the sender and the receiver or due to

other sources of error induced by the environment through which the signal is

propagated.

As a result, introducing any wireless communication error model into the development

of any network algorithm or protocol, such as the average consensus algorithm, is very

challenging to achieve as it will most likely be able to satisfy only a few of the factors

that cause error. On the other hand, considering no error model at all means that the

algorithm assumes the free space model, where nothing but free space exists between

the sender and the receiver, which is unrealistic in wireless communications [45].

Introducing a realistic error model will help better design and evaluate any network

algorithm or protocol.

At the physical layer of the network, it is common to measure communication

errors in Bit Error Rate (BER). However, most network algorithm and protocols that

operate at the application layer of the network are mostly interested in a measure at

the data packet level as most such applications exchange message that consist of a
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series of packets, losing one of them will corrupt the whole message. Thus, in order

to formulate an end-to-end measure of the performance of a given network protocol,

it is important to conduct the error analysis at the packet level [44].

Furthermore, discrete time models such as the Markov Chain can be used to model

the behavior of an entire communication link [46]. This is because errors usually occur

in bursts which can be modeled by one state in a Markov chain and no errors can

be modeled by another state. The communication link will move from one state to

another depending on the error intensity.

One of the most important factors that lead to errors in wireless communication is

fading. As mentioned before, it is caused by obstacles that stand in the way between

the sender and the receiver causing the deflection of the wireless signal. This causes

fluctuations in the signal’s phase and angle.

The three main causes of error in radio propagation and hence wireless commu-

nication are [47,48]:

• Reflection occurs when a signal falls on a surface and then gets reflected to a

different direction where the angle of reflection is unpredictable. Furthermore,

it is unpredictable if reflection will construct or destruct the signal.

• Scattering occurs when a radio signal hits an object that causes the signal to

be dispersed in many different directions.

• Diffraction occurs when a signal falls on an object larger than the wave-length

of the signal causing it to break up into a number of signals smaller in wave-

length. While this introduces error into the signal, it can help receive the signal

in areas with very large obstacles such as sky-scrappers.

The impact of fading increases on the strength of wireless signals at the receiver’s

end with respect to the propagation time and the distance between the sender and

the receiver. As a result, many mathematical models were devised to describe fading

in different scenarios [44]:
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• One scenario is when the receiver node gets many scattered and reflected signals

such that the overlapping signals cancel each other. It is proposed to use the

Rayleigh distribution where the received power would be modeled as a random

variable dependent on the distance between the sender and receiver.

• If the previous scenario contains some strong signal that stands out among all

other signals, the Rice distribution may be used.

• If the scattering and reflection mentioned in the first scenario is severe, the

Nakagami-m distribution may be used, as it can be used to model many different

in-door and out-door conditions for both stationary and mobile nodes.

• If fading is accompanied by shadowing, the log-normal distribution may be used.

In addition to probability distribution functions, discrete-time modeling methods

such as the Markov Chain can be used to describe the behavior of wireless communica-

tion channels. This model can be used to define two states of transmission, successful

and unsuccessful. The transition probabilities associated with this model can be used

to predict when the transmission is going to fail for each communication channel [49].

Other studies such as [50, 51] have extended this model to include certain forms of

noise and predict channel quality.

Furthermore, the Markov model is very adapted to describing the behavior of

communication channel for networks composed of mobile nodes [52]. Some of the

most common metrics used in such cases are the link expiration time and the link

connectivity [53,54].

The link expiration time is defined as the period of time during which the connec-

tion between the sender and the receiver nodes is active. This is usually predicted in

rare cases when the node is moving at a steady speed or when it randomly changes

direction [55,56].

The Markov Chain approach to modeling wireless communication errors has been

very useful in evaluating the performance of many network protocols that were ini-



22

tially designed for wired networking. This can be used to measure their adaptability

to wireless communications [44].

3.4 Consensus Theory Overview

The main focus of this study is going to be directed discrete-time wireless sensor

networks in order to make the outcomes of this study more relevant to wireless sensor

networks. Due to communication errors introduced by different factors such as hidden

or exposed terminal problems in WSNs, full-duplex communication between any two

given nodes within communication range of each other cannot be always guaranteed.

As a result, directed graphs better model the network nodes and links between them

and will be assumed necessary for any consensus algorithm proposed.

Most studies that approached the average consensus problem assumed a variation

of the following problem framework:

Given a network of N ”decision-making” agents, modeled by the 2-tuple dynamic

graph G(V,E(t)), where each agent or node i ∈ V has some initial reading or state-

value xi(0), the goal of an average consensus algorithm is to have all agents in the

network converge to the following agreement space [22]:

x1 = x2 = x3 = ... = xN (3.1)

When the average consensus algorithm halts, each state-value in the network is

going to be equal to the average of all the initial state-values:

x̄ =
∑
ı∈V

xi(0) (3.2)

The average consensus algorithm assumes that each agent i is capable of exchang-

ing its state-value with its neighborhood Ni after each iteration of the algorithm.

The discrete-time form of the iterative average consensus algorithm is formulated

as follows:
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xi(k + 1) = xi(k) + ε
∑
j∈Ni

aij(xj(k)− xi(k)) (3.3)

The same algorithm can be expressed in matrix-multiplication form as follows:

xk+1 = Pxk (3.4)

The Perron matrix [57] is defined as follows:

P = I − εL (3.5)

where I is defined as the identity matrix, ε is a step size and L is a Laplacian matrix

defined as:

L = D −A (3.6)

D is defined as the degree matrix of the graph representing the network and A is its

adjacency matrix.

The idea of using the Perron matrix stems from discrete-time models such as the

Markov Chain which was also embraced by other studies such as [22,58,59].

An N-state Markov Chain is defined as follows:

π(k + 1) = π(k)P (3.7)

The row vector π(k) is the distribution of the states of the Markov Chain and P in this

case is the transition probability matrix such that the entry P (i, j) is the transition

probability from state i to state j. This matrix is non-negative and stochastic (the

row sums add up to 1).

If the given Markov Chain is irreducible (the associated graph is strongly con-

nected) and ergodic (there exists one maximum eigen-value associated with the cor-

responding transition matrix), the following applies when the distribution vector is

multiplied by P over time:

lim
t→∞

πt = π∗ (3.8)
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The vector π∗ is the stationary distribution of the Markov Chain [60].

Likewise, if the Perron matrix is non-negative and stochastic, consensus will be

achieved by the corresponding network. Furthermore, if the Perron matrix is doubly-

stochastic, where both row and column sums are equal to 1, average consensus will be

reached because the associated directed graph will be balanced in this case [22,61,62].

Perron [57] showed that the Algorithm 3.5, given a network modeled by a strongly

connected graph, will asymptotically lead to convergence. However, if the directed

graph representing the network turns out to be balanced where the in-degree of each

node is equal to its out-degree and the Perron matrix is doubly stochastic, average

consensus will be asymptotically reached. Furthermore, the speed of convergence is

proven to be equal to the second smallest eigen-value of the Laplacian matrix λ2(L)

associated with the network.

This convergence rate analysis is more relevant to static networks, where no edges

are activated or de-activated over time. It is a much more difficult problem to apply

this analysis to switching or dynamic networks where the corresponding adjacency

matrix of the network is time-varying resulting in a dynamic Laplacian matrix for

the given network. The main difficulty is maintaining the spectral properties of the

network stated above that allows it to converge to average consensus. This is discussed

by many different studies including [15,17,63,64].

While Perron [57] outlines the theoretical framework for achieving average con-

sensus, it does not take into consideration the problems that usually arise in wireless

communications such as communication errors, hidden terminal problem, etc. Also,

this theory assumes that each node in the network stores the weight matrix associ-

ated with iterative consensus algorithm, even the ones that it never communicated

with, not to mention that it does not handle the changes in the weight matrix when

the power of a node dies out. Moreover, the rate of convergence to consensus repre-

sented by the second smallest eigen-value of the Perron matrix is not bounded. The

assumptions of this theory are difficult to meet in real-world networks where there is
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no guarantee that the directed network is always going to be balanced, which is the

necessary condition to achieve average consensus.

Pappas et. al. [59] proposed to associate every node in an undirected network G

with the stochastic matrix of a Markov chain. A unique stochastic matrix Si is to be

constructed by every node i based on a certain sparsity pattern P associated with the

network G by sampling a set of 0-1 stochastic matrices that form the vertices of the

convex polyhedron of the stochastic matrix to be constructed. Using the convergence

properties of the Markov processes, the algorithm will converge to a consensus matrix

Ṡ using the following algorithm:

Ṡi = − 1

|Ni|
∑
j∈Ni

(Si − Sj), ∀i = 1, · · · ,m, (3.9)

The convergence rate to consensus is equal to the minimum second smallest eigen-

value of the Laplacian matrix associated with the network G. Once Ṡ is reached, the

equilibrium distribution of the initial states of the network can be computed.

This study relies on each node constructing a stochastic matrix based on a certain

sparsity pattern P of the network, and then all the nodes exchange their respective

stochastic matrices with each other in order to compute the consensus stochastic ma-

trix Ṡ. First, pre-defining a sparsity pattern for the network assumes that the initial

position of each sensor node in the network is going to be pre-defined, which makes this

proposal unsuitable for WSNs where the nodes are often randomly scattered in the

topology where they are deployed. Second, the process of sampling the 0-1 stochastic

matrices in each node to construct stochastic matrices and the process of transmitting

and receiving those stochastic matrices and running the computationally-intensive al-

gorithm 3.9 is unsuitable for modest computational and storage capabilities of the

nodes in WSNs. Third, there is no bound established on the convergence rate to the

stochastic matrix Ṡ.

Another scheme for consensus was proposed by Yin et. al. [58] which assumed

that node state-values are communicated over a stochastically switching network rep-

resented by the strongly connected graph G. Also, they proposed a stochastic ap-
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proximation algorithm that adjusts the weights on the network links as they claimed

that fixed weighs will never achieve average consensus due to dynamic nature of the

switching network.

Any given node in the network is expected to construct a Markov chain Xi(k)

as:

Xi(k) = ej ⇒ (j, i) ∈ E(k) (3.10)

which is based on the sequence of signals it receives from its neighborhood Ni. This

study employs the well known distributed averaging algorithm:

si(k + 1) = si(k) +
n∑
j=1

W ij(k + 1)Iij(sj(k)− si(k)) (3.11)

but adds to it a binary indicator function I that will be employed when a a trans-

mission fails at a certain iteration.

Using several constant-weight schemes, Yin et.al. demonstrated that fixed weights

in the stochastic network settings assumed in their study would most likely lead to an

unpredictable arbitrary consensus. Hence, the following adaptive weighting scheme

was adopted:

W ij(k) =
α

π̂ij(k)
, α > 0, (3.12)

which the authors claim can improve the convergence to consensus by allowing each

node to predict when its respective Markov chain is going to switch state and receive

transmission from a different neighbor.

Yin et.al. [58] modified the distributed averaging algorithm to incorporate trans-

mission failures which is a very relevant problem that often arises in WSNs that can

prevent the network from reaching average consensus. However, it fails to incorpo-

rate any stochastic model for the transmission failure into the consensus algorithm;

instead it employs a weighting scheme that helps each node predict transmission

failure without taking any measures to reduce the effect of this failure on reaching

average consensus. In addition, the convergence figures used to illustrate the theoret-

ical results indicate that several thousand time steps are required for the initial state



27

values to converge to consensus. This is not suitable for WSNs due to the limited

power and computational resources available in each node.

Boyd et.al. [21] considered the problem of each node in a given network G estimate

the value of the average consensus without the knowledge of the network topology and

using fast linear iterations. The study focused on devising a simple way to compute

average consensus without incurring much overhead in terms of data communication

and memory storage. Other studies such as [65–69] devised more sophisticated ways

to estimate the average consensus value.

The following distributed average consensus algorithm was adopted [20]:

xk+1 = Wxk (3.13)

The Average Consensus algorithm can be reformulated as follows [23]:

x̄k+1 = W tx(0) (3.14)

The previous equation shows that a discrete-time Markov Chain model can be

used to model the problem of computing the average consensus where weight matrix

W would be the transition probability matrix and the the average consensus vector

the stationary distribution.

The goal of Boyd’s study [20] is to minimize the convergence time to average

consensus. Hence, the measure of the rate of convergence to consensus was defined

as the spectral radius of the weight matrix.

Furthermore, the Metropolis weight matrix was defined:

Wij(t) =


1

1+max{di(t),dj(t)} if(i, j) ∈ E(t),

1−
∑
{i,k}∈E(t) Wik(t) if i = j,

0 otherwise.

(3.15)

This weighting scheme was derived from methods of constructing Markov chains

on graphs [70]. The advantage of the Metropolis scheme is that each node needs to

only know the in-degree and out-degree of each node in its neighborhood. There is
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no need to accumulate information about the whole network topology thus saving

significant amount of memory and processing power. Consequently, the Metropolis

weighting scheme is very suitable to the distributed average consensus algorithm.

However, Boyd et. al. [21] did not incorporate any wireless communication error

model to the Metropolis weighting scheme. Consequently, the impact of communi-

cation errors on the performance of their proposed average consensus algorithm was

not clear.

Mesbahi et.al. [71] introduced the notion of modeling a switching network using

a random graph, which is defined as a graph where an edge is formed between any

two given vertices with a certain probability p. If this probability is set to zero for all

edges, the resulting graph is the empty graph. On the other hand, if this probability

is set to one for all edges, the resulting graph is the static graph. The value of the

probability can be set to a constant or it can be a variable that is generated by some

function. Thus, the expected number of edges formed in a graph can be modeled as

a random variable that has a binomial distribution as each edge in the graph has a

Bernoulli random variable associated with it. Hence, the graph itself can be modeled

as a sum of all of those Bernoulli random variables.

Since the adjacency matrix of the graph is dynamic, the degree of each node in

the graph can be modeled by a random variable defined as a sum of the Bernoulli

random variables that represent the different edges. As a result, the Laplacian matrix

representing the network will become dynamic and dependent on the edge probabil-

ity [71].

Using random graphs makes proving convergence to consensus relatively easy. One

of the main conditions that need to be met for convergence to occur is that the graph

representing the network needs to be connected. This can be proven by showing that

the union of all the possible random graphs will be connected [71].

The rate of convergence analysis was reformulated using the random graphs’ the-

ory presented. It was concluded that the rate of convergence in random graphs with

fixed edge probabilities will improve the rate of convergence because fixing the prob-
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abilities will improve the “robustness” of the random graph. This was demonstrated

using simulations for different numbers of nodes.

While Mesbahi et.al. [71] showed that using the notion of random graphs simplifies

proving convergence to consensus and analysis of the rate of convergence, it did not

clarify the reasons why a random graph can model a switching network.

Failure of communication links in a switching network is usually modeled by a

wireless communication error model, like the fading signal model. Such models take

into account many factors such as communication protocols, distance between sender

and receiver, density of nodes in the topology considered, presence of interference that

might be relevant in certain applications of WSNs, etc. Assuming that all such factors

are simply random does not properly model communication channels in WSNs.

Furthermore, the conclusion of the study [71] that fixing the edge probabilities

will improve the robustness of the graph was not relevant to WSNs. This is because

a portion of the nodes in a WSN is expected to run out of power and no longer

function over time, which means that the probability of forming an edge with such

nodes will be zero. Fixing the probability of forming edges does not account for the

power constraints of the WSN or any of the other factors that might cause the nodes

to quit working. Thus, improving the robustness of the graph described [71] is not

realistic in the WSN.

Kar et. al. [72] studied the problem of achieving average consensus in WSN where

the communication links fail randomly. Thus, they assumed that the edge set of the

graph representing the WSN is dynamic because they assumed that each link in the

WSN can fail independently of other links in the network. Furthermore, they defined

the matrix of edge formation probabilities for each possible link in the network:

P (i, j) =

p(i, j) if(i, j) ∈ E(t),

0 otherwise.

(3.16)

As a result, the edge set E(t) was defined as a subset of E(t), the set of all edges

that can possibly exist in the given WSN.
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The average consensus algorithm used was stated in matrix form:

x(i+ 1) = W (i)x(i) (3.17)

The matrix W (i) is the weight matrix at time i such that it was heuristically defined

as follows [21]:

W (i) = I − αL(i) (3.18)

This study used a simple weighting scheme where each edge formed is assigned the

constant weight α at each iteration, claiming that this implementation eliminates a

certain level of complexity associated with calculating the weight of each link activated

at time i.

Kar et. al. [72] concluded that the weight matrix W (i) is random because the

Laplacian matrix of the network is random as the network links fail randomly as well.

As a result, the convergence properties of the average consensus algorithm need to be

analyzed from a probabilistic point of view.

Consequently, Kar [72] decided to study the convergence of the following mean

square process in the standard Euclidean form as the necessary condition to achieve

average consensus:

lim
i→∞

E[‖ x(i)− x̄ ‖2] = 0 (3.19)

The spectral radius of the weight matrix W (i) is still needed to be less than one

in absolute value for convergence to take place.

Furthermore, Kar et. al. [72] defined the expected Laplacian matrix of the WSN

as:

L̄ = E[L] (3.20)

Furthermore, the algebraic connectivity of the expected Laplacian matrix L̄ needed

to be less than one for convergence to take place.
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The authors [72] added another definition for the expected Laplacian:

L̄ = D̄ − Ā (3.21)

If Ā is irreducible, which means that the associated graph is connected, the alge-

braic connectivity of the Laplacian matrix is greater than zero.

Given the following spectral graph theory result [73]:

λN(L) ≤ 2dmax(G) (3.22)

The constant 2dmax(G) is defined as the maximum vertex degree of the given graph.

Kar et.al. [72] claimed that the average consensus algorithm will converge in the

mean-sense if the each edge weight is defined as:

αms =
1

2dmax
(3.23)

In order to maximize the convergence rate to average consensus, the authors [72]

claimed the value of αms must be chosen in such a way that minimizes the algebraic

connectivity of the expected Laplacian matrix.

The study of [72] provided a realistic model of a switching network and seemed

to have provided a simple solution to the weighting problem of the average consensus

algorithm. However, the assumption of having the link failures to be random was

not clearly justified or connected with any communication errors relevant to WSNs.

Furthermore, the proposed weighting scheme cannot be easily applied in a deployed

WSN because computing minimum αms is too complex to be done in a decentralized

manner. This is because each node needs to know the maximum vertex degree in the

whole network, which is dynamic in itself as nodes might die overtime causing the

degrees of the remaining ones to decrease. The authors assume that each node in the

network is going to have the edge weight value pre-programmed which does not leave

much room for updating the edge weight if a significant part of the network is lost

upon deployment. This also means that node will have to be pre-positioned, which

undermines one of the most important features of the WSN.
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The ideas presented in the study of Kar [72] were further extended in [74–76]

to include noise introduced to the communications between the nodes of the WSN.

Kar et.al. [75] proposed to incorporate both noise and random link failures into the

iterative average consensus algorithm. This is relevant when a certain transmission

between any two given nodes succeeds, but the transmission itself is corrupted due to

noise introduced by the communication channel established.The various studies dis-

cussed considered link failure only, others considered incorporating topology-related

factors into the link failures [77].

Another study of Kar [75] proposed to model the changes in topology that occur

over time by making the degree of each node in the network time varying, which was

also assumed for weights of the communication links. However, the weights for all

links in the network are going to have the same value at each time step. Furthermore,

the effect of quantization error is also taken into account.

It is explained by another study [74] that when a transmission actually succeeds

to make it from a sender to a receiver, some error is going to be introduced to the

transmission due to channel noise, quantization, etc. This error could possible lead

to divergence because the transmission itself no longer represents the state-value of

the sender node. Thus, the value of the transmission itself need to be redefined so

that it will account for the error introduced.

The impact of the random link failures were modeled by Kar [74] as “a sequence

of independent identically distributed Laplacian matrices with mean defined as L̄ =

E[L(i)]”. Thus, during a particular iteration of the average consensus algorithm, a

link may fail independently of the other links in the network. A noise sequence was

defined to be added to the state-values of the nodes.

Formal proofs were formulated to show that convergence to consensus can actually

take place with very high probability. Also, it was proven that convergence to will

take place towards a finite random variable θ, which can be defined as an estimate of

the desired average consensus value [74].
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Furthermore, it was shown that by introducing a certain scheme to update the

weights of the communication links, it would be possible to minimize the mean square

error of θ. However, this was proven to affect the rate of convergence to consensus,

which is usually not desired when running the average consensus algorithm in the

WSN [74].

The study of [74,75] introduced another level of complexity to the average consen-

sus problem, taking into account the channel noise and quantization errors. However,

it was not clarified how much this error introduced is going to affect the convergence

to average consensus.

Channel noise is often measured in terms of power. Thus, low power noise is

not likely to affect the convergence to average consensus. Hence, it was important

to quantify the impact of introducing the noise to the transmissions and distinguish

between noise that will affect the convergence to average consensus and other that

does not.

Also, the introduction of high levels of noise from the communication channel can

be assumed to be a transmission failure. Thus, it could be assumed that the com-

munication error model can be upgraded to take the channel noise and quantization

into consideration, such that the link between two nodes would be considered to be

broken if the channel noise level exceeds a certain predefined power threshold.

Moreover, the impact of introducing the channel noise on the rate of convergence

was not clarified. Since WSNs usually have a limited power resource, designers of the

any WSN protocol or algorithm need to be concerned with minimizing communication

of data. Thus, it is important to describe the impact of channel noise on the rate of

convergence in order to predict the life-time of the WSN if it employs the proposed

average consensus algorithm.

Bamieh et. al. [78] proposed a novel method of evaluating the performance of

the average consensus algorithm. The assumptions that were made in this study

about the switching network are similar to other studies where each link is assumed

to have an independent failure probability. Furthermore, each node in the WSN was
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assumed to transmit its weighted state-value to its neighborhood after each iteration

of the average consensus algorithm. The study proposed to run the average consensus

algorithm on the whole static network, then introduced a new term to the average

consensus algorithm that will “undo” the effect of the error by subtracting the state-

values associated with the links that failed.

Hence, a vector B(i, j) was defined were the value of entry i is 1, entry j is −1

and all other entries are set to zero. A Bernoulli random variable δi,j(k) was defined

as follows:

δi,j(k) =

1 edge failed with probabilityp(i, j),

0 edge did not fail with probability1− p(i, j).
(3.24)

The average consensus algorithm was reconstructed incorporating the Bernoulli

random variable:

x(k + 1) = (A+
∑
{i,k}∈E

δi,j(k)Bij)x(k) (3.25)

The rate of convergence to average consensus was measured in terms of the de-

viation of the state-values of the network from the the average consensus value as

the topology of the WSN is continually changing due to communication link failures

and hence the corresponding Laplacian matrix is dynamic. Thus, it was proposed

that using the traditional method of computing the rate of convergence to average

consensus using the algebraic connectivity of the Laplacian matrix is not accurate

and that measuring the rate of convergence in terms of the deviation from average

consensus is more accurate.

The observation of Bamieh et. al. regarding the use of the algebraic connectivity

of the Laplacian matrix of a switching WSN is very accurate. However, this study

does not address any WSN specific problem or introduce any solution that can be im-

plemented in a WSN. This is because the method of using the deviation from average

consensus to measure the rate of convergence is very theoretical as it assumes that

the value of average consensus is known in advance. Also, the idea that was proposed
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to eliminate the effect of the failed links by introducing the Bernoulli random variable

does not map to any real-world communication error model that could possibly occur

in a WSN. This makes the whole convergence rate analysis introduced unrealistic as

the error that is causing the network to become dynamic is poorly modeled.

Lopez et.al. [79] yet proposed another way to ensure convergence to average con-

sensus in the presence of communication failures. The study focussed on tuning the

value of the step-size α dynamically in order to account for noise that will affect the

communication channels’ robustness. The step-size itself is factored in the heuristic

definition of the weight matrix of the network [20]:

W (i) = I − αL(i) (3.26)

It was proposed by Lopez [79] that the two factors affecting a good estimate of a

solution for the convergence problem is the noise power and the value of α.

According to Lopez [79], the proposed algorithm that is going to devise a sequence

for the value of the step-size will have to make a trade-off between the rate of con-

vergence to consensus and the accuracy of the mean square estimate of the average

consensus value. Thus, a greedy approached was chosen to generate the sequence of

step-sizes that will lead to average consensus.

However, this approach will require the pre-knowledge of the topology of the

network considered. This problem was then resolved by assuming that the Laplcian

of the network is always going to be circular, which means that each node in the

network is going to have a fixed number of neighbors and hence a fixed degree matrix

will be obtained for the whole network.

Moreover, if the nodes of the network considered are going to be randomly scat-

tered in the given topology, then the idea of using a fixed degree value for each node

will make sense. This is because each node is going to connect to other nodes that

are within its communication range. The expected degree of each node can then be

computed based on the “spatial distribution” of the nodes [79].
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It was demonstrated by Lopez et.al. [79] that generating a step-size sequence can

improve the performance of the iterative consensus algorithm. However, it implies

from the heuristic weight equation that changing the step size will also change the

value of the weights in the graph. It was not clear how this change in weights is going

to be coordinated among the different nodes of the network given the fact that the

communication links are not reliable. Such a proposition will require the knowledge

of the topology of the network by each node, which is not possible as mentioned in

the study.

Furthermore, the assumption that the degree of each node is totally reliant on

the scattering the nodes in the topology is not completely accurate. This is because

two neighboring nodes may fail at communicating with each other due to interference

or other forms or noise that were not taken into consideration when this assumption

was formulated. No communication error model was proposed to justify the presence

of the failure in communication links. Also, nodes that run out of power may cause

a change in the degrees of other nodes in the network, which was not taken into

consideration in this assumption as well.
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4. DISTRIBUTED AVERAGE CONSENSUS SCHEME

4.1 Consensus in Wireless Sensor Networks

The design of any algorithm for WSN, such as the average consensus algorithm, is

influenced by many important factors [1]. One of the most important factors is fault

tolerance [80], [81], [82] because sensors in the network are prone to failure, physical

damage and interference in the environments they are deployed in. However, the

algorithm running in the network should be able to achieve its task even after the

failure of some of the nodes of the network. As a result, a decentralized scheme for

average consensus is inevitable because the probability of a node failure in high in

WSNs.

Another important factor influencing the design of WSN algorithms is scalability.

Given a certain application the WSN is expected to be deployed in, the number of

nodes used in the network can vary between a few nodes to several hundred of them

in an area less than 10m in diameter [83]. As a result, several studies proposed

different ways to evaluate the node density in a WSN [84]. Others [85], [86], [87],

have listed typical node densities for different applications such as habitat monitoring

and machine diagnosis applications. When the node density is too low, the graph

representing the WSN can possibly be disconnected which means that the consensus

performance is going to be affected [22]. On the other hand, having a high node

density could overload the network thus inhibiting the ability of nodes to exchange

information with each other.

Moreover, the power consumption of each node in a WSN is a major constraint

that needs to be taken into consideration when designing the decentralized average

consensus algorithm [1], [88], [89]. The power consumption in a WSN node takes

place in three different functionalities: data sensing, communication and processing.
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The power consumption of the data sensing component of the node is application and

environment dependent. More power is going to be consumed in applications that

requires the node to sense the environment over longer periods of times in order to

make one measurement. More power is going to be consumed in noisy environments

as the measurement is going to be repeated several times before it is taken. Further-

more, the circuity used to receive and transmit data consumes a significant amount of

energy depending on its design and the size of the packets it communicates. Larger

packets will consume more power to communicate. However, using smaller packet

sizes was proven to be less efficient than using large packet sizes as a significant

amount of inefficiency is going to be introduced turning on and off the circuitry of

the communication component of the node [86]. Also, the processing component of

the node is going to be application dependent. In the case of average consensus, each

node is going to be expected to perform a number of additions and multiplications of

scalar numbers relative to the amount of transmissions it receives from its neighbors;

the higher the node density, the more power is going to be consumed by the average

consensus algorithm. Consequently, minimizing the number of iterations needed to

compute the average consensus will reduce the overall power consumption.

Most of the previous studies presented earlier assume that each node in a WSN

can obtain all the most updated state values of its neighbors all at the same time.

However, this is not going to be the case in a real-world WSN because packets sent

by different nodes that are located at varying distances from the receiver node will

have different propagation times. Also, nodes can run out of power or get damaged

which means that their neighbors will never receive any data from them again. Fur-

thermore, many communication errors are introduced in a WSN due to noise from

the environment, interference from other nodes and other common wireless commu-

nication problems such as the hidden terminal problem, exposed terminal problem,

etc.

As a result, the proposed decentralized average consensus algorithm is going to

run in epochs, where each epoch is defined as a fixed period of time during which each
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node tries to receive as many transmissions as possible. This gives the neighboring

nodes the time to transmit their new state values and potentially retransmit them if

the transmission fails for any reason.

Moreover, the fading signal model [90] is going to be incorporated in the proposed

decentralized average consensus algorithm to model the communication errors that

take place in a WSN. It is going to be used to compute the probability of communi-

cation between any two neighboring nodes in a given epoch, which will redefine the

neighborhood of each node.

4.2 Problem Formulation

The WSN considered in this study is modeled by the graph G(V,E(t)), where

V represents the set of nodes of the WSN and E(t) is the dynamic edge set of the

network at epoch t. E(t) is a subset of E , which is the set of all edges that could

possibly be formed between the different nodes in the network. Each edge is assumed

to represent a communication link; where each link connecting node i to node j has an

independent success probability p(i, j). For each epoch, a random probability matrix

P (t) is generated for all links that could possibly exist in the WSN:

Pij(t) =

p(i, j) if(i, j) ∈ E ,

0 otherwise.

(4.1)

E(t) is equal to E if and only if no communication errors take place in the network

during a certain epoch t. If a communication link is not formed between node i and

node j, node i will not be able to transmit data to node j. On the other hand, if the

communication link does not fail, then it is considered to be active and hence node i

can transmit data to node j.

The neighborhood Ni of a certain node i is the set of all nodes that are located

within communication range R of node i. This means that node i can communicate

its state value, node ID and the number of nodes within its neighborhood that it
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can communicate with (out-degree) to node j ∈ Ni during epoch t if and only if the

edge (i, j) ∈ E(t). Ni is dynamic because the nodes of the WSN are prone to failure,

damage, power depletion, etc, which will cause the topology to change.

Each node i is assumed to make an initial analog measurement at the beginning

of epoch 0. This reading is defined as the initial state of the node i; xi(0). Using

linear distributed iterations, the goal of the average consensus algorithm is to have

the state of each node converge to x̄, the average of all the initial states values of all

nodes i ∈ V [78]:

x̄ =
∑
ı∈V

xi(0) (4.2)

During each iteration of the consensus algorithm, node i ∈ V will broadcast its

current state to all its neighbors Ni. The average consensus algorithm does not

assume any information regarding link success probabilities. It will just use whatever

transmissions that it receives as input in any epoch. Also, each node cannot assume

that its transmission was received by any of its neighbors.

The convergence to the equilibrium x̄ will take place in each node i ∈ V if and

only if the algebraic connectivity of the Laplacian matrix L of the network is less

than 1 in magnitude [21].

The rate convergence to average consensus τ is computed using the following

equation [21]:

τ =
1

log 1
ρ

(4.3)

The average consensus algorithm will halt when the difference between the state

value of each node i ∈ V and x̄ is minimized. Thus, it is desired after a running the

average consensus algorithm for a number of epochs to achieve the following:

lim
t→∞

xi(t)− x̄ = 0 (4.4)
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4.3 Metropolis Weighting Scheme

The proposed decentralized average consensus algorithm needs a weighting al-

gorithm that allows it to modify the weights of the communication links when the

neighborhood of each node changes every epoch such that the sum of the weights of

the incoming communication links into every node is equal to the sum of weights of

the outgoing communication links. As a result, the directed graph representing the

WSN will be balanced. Thus, the condition for converging to the average consensus

is met as the resulting weight matrix is symmetric such that its eigen-values are real

and strictly less than one in magnitude [22].

At the end of each epoch and before running any iteration of the consensus al-

gorithm, each node i is going to calculate the weight on each communication link it

established with any of its neighbors j. Then, it is going to count the number of

transmissions it received within the current epoch and use the out-degree values that

it received with the transmissions to compute the Metropolis weights:

Wij(t) =


1

1+max{di(t),dj(t)} if(i, j) ∈ E(t),

1−
∑
{i,k}∈E(t) Wik(t) if i = j,

0 otherwise.

(4.5)

where E(t) is the edge set of node i formed with its neighbors at epoch t. It is

determined at each time step t using the fading signal error model.

The proposed consensus algorithm in this study uses the following matrix format:

xk+1 = Wkxk (4.6)

where Wk is the Metropolis weight matrix and xk is the state values’ vector at

iteration k.

The Metropolis weighting scheme was designed using theory for constructing

fastest mixing Markov chains for a graph [70]. The weight matrix it produces every

epoch is going to be symmetric and doubly stochastic. If the graph representing the
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WSN is connected, the following necessary and sufficient conditions for convergence

to average consensus are met [21]:

1TW = 1T ,W1 = 1, ρ(W − 11T/n) < 1 (4.7)

4.4 Fading Signal Error Model

Fig. 4.1.: Node placement and communication range in the WSN topology

The reliability of wireless communication deteriorates in WSNs due to many fac-

tors such as interference, path loss and blockage. One of the most likely sources of

wireless communication errors is fading, which is defined as the deterioration of signal

power as it is transmitted from the sender to the receiver due to absorption of the

signal power by the transmission medium or some obstacle lying between the sender

and the receiver. The longer the distance between the sender and the receiver, the

lower the signal to noise ratio. In order to accept a certain transmission, the receiver

needs to detect a certain threshold power on the transmission; otherwise it will drop

the transmission [91].

Consequently, the average consensus algorithm needs to have a fading signal error

model incorporated into it in order to determine whether a particular link (i, j) ∈ E

is going to be activated or not.
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Fig. 4.2.: The truncated Exponential Probability Density Function (PDF)

A truncated form of the Exponential probability density function, shown in Fig. 4.2,

can be used to model the fading effect on the signal between the sender and the re-

ceiver. Since the nodes are uniform-randomly scatted in the topology, the random

variable X can model the distance between sender i and receiver j where both i and

j ∈ V [60]:

fX(x) =

l + λe−λx 0 ≤ x ≤ R,

0 otherwise.

(4.8)

The parameter λ is defined in terms of the the communication range R of each

node in the WSN and a constant A:

λ =
A

R
(4.9)

The constant l is added to the truncated Exponential probability density function

because it is only defined up to R such that any sender located outside the commu-

nication range R of the receiver would not be able transmit anything to the receiver.
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Thus l offsets the area under the graph of the truncated Exponential probability

density function so that it adds up to one:

fX(x) =


e−A

R
+ A

R
e−

Ax
R 0 ≤ x ≤ R,

0 otherwise.

(4.10)

The corresponding truncated Exponential probability distribution function for the

fading signal model is:

FX(x) =


1 x > R,

xe−A

R
− e−Ax

R + 1 0 ≤ x ≤ R,

0 otherwise.

(4.11)

The truncated Exponential probability distribution function is then used to find

the probability of forming a communication link between node i and node j using the

inter-nodal distance as input. Then, this probability is compared to the corresponding

random probability p(i, j). The link will be established if the value generated by the

fading signal model is smaller than the random probability associated with the link.

4.5 Approximation of the Fading Signal Error Model

The effectiveness of any proposed average consensus scheme is often measured in

terms of the rate of convergence to average consensus. One of most complicated pa-

rameters in the proposed average consensus scheme to deal with in this analysis would

be the inter-nodal distance between a node i and its neighbor j ∈ Ni, introduced by

the fading signal error model. This value is completely random in the range [0, R] for

each neighbor of i.

One way to eliminate the difficulty associated with the randomness of the inter-

nodal distance is to approximate this value for all nodes in the WSN. It is assumed

that the WSN nodes are uniform-randomly dispersed throughout the topology where
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their WSN is going to be deployed. Hence, the distances between each node i and

node j ∈ Ni, will be random as well.

Let Y be a random variable that models the distance between node i and node

j ∈ Ni. At the end of each epoch, node i is going to broadcast its state-value to all its

neighbors Ni. Let X1, X2, X3, ..., XN be a sequence of random variables that model

observations of the distances between node i and any of its neighbors j ∈ Ni. The

goal is to obtain a good estimate of Y in terms of the observations X1, X2, X3, ..., XN .

Let Ŷ = g(X1, X2, X3, ..., XN) = g( ~X) represent an estimate of Y . The error of

the estimate is defined as:

E( ~X) = Y − Ŷ (4.12)

The square of the error is defined as:

E2( ~X) = (Y − Ŷ )2 (4.13)

Since the error is a random variables as it is defined in terms of the of Y and

the observations X1, X2, X3, ..., XN , E[E2] represents the mean square error of the

inter-nodal distance estimate. Hence, the goal is to find a good estimator that would

minimize this mean square error.

Theorem 1 : The best estimator of Y in terms of X1, X2, X3, ..., XN is given by

Ŷ = E[Y | ~X] [60].

Suppose X1, X2, X3, ..., XN are independent and identically-distributed random

variables (i.i.d.), then one possible estimator of Ŷ can be defined as:

g( ~X) =
1

n

n∑
i=1

Xi (4.14)

Let the expected value of the random variables Xi be E[Xi] = µ and the variance

V ar(Xi) = σi. The expected value of the estimator is defined as:

E[Ŷ ] = E[
1

n

n∑
i=1

Xi] =
1

n

n∑
i=1

µi (4.15)
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The Law of Large Numbers [60]states that the average of the results obtained from

performing the same independent experiment a large number of trials should be close

to the expected value and will tend to become closer as more trials are performed.

The Strong Law of Large Numbers [60]states that for a given a sequence of inde-

pendent random variables X1, X2, X3, ..., XN with finite mean µ:

Sn =
1

n

n∑
i=1

Xi
Almost Everywhere−−−−−−−−−−−→ µ (4.16)

Hence:

P ( lim
n→∞

X1 +X2 +X3 + ...+XN

n
= µ) = 1 (4.17)

By the Strong Law of Large numbers, the expected value of the inter-nodal dis-

tance between the node i ∈ V and its neighbors Ni can be used as an estimate of the

distance distance between any node i ∈ V and its neighbors Ni.

These results are useful in formulating an approximation of the fading signal error

model where the inter-nodal distance variable would be eliminated. This would reduce

the complexity of analyzing the rate of convergence to consensus for the proposed

average consensus algorithm.

Given the above truncated Exponential probability density function, the expected

value of the distance X between the sender and the receiver is defined as:

E[X] =
Re−A

2
− (

R2

A
+
R2

A2
)e−A +

R2

A2
(4.18)

In the approximated fading (AF) signal error model, the expected value of the

inter-nodal distance is input to the fading model truncated Exponential probability

distribution function to compute an approximated fading signal threshold probability

γ, which is defined as the probability of turning a particular communication link

(i, j) off given the defined fading signal model. On the other hand, 1− γ will be the

probability of activating the link (i, j).
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Suppose that d is the expected inter-nodal distance between node i and node j

where both nodes i, j ∈ V , the probability of activating the communication link (i, j),

1− γ, can be defined based on the fading signal error model probability distribution

function as follows:

1− γ = FX(d) (4.19)

If the previous formula is rearranged, γ can be defined as follows:

γ = e−
Ad
R − de−A

R
(4.20)

4.6 Rate of Convergence to Consensus

In the communication link model established so far, the link (i, j) is established

if the probability of the fading signal model is greater than the independent random

probability p(i, j) of the link. Consequently, γ less communication links are going to

be established during any given epoch as a result of incorporating the approximated

fading signal model. Also, the expected degree of each node i ∈ Ni is going to be

decrease by γ. Thus, the expected degree matrix of the WSN is going to defined as:

D = (1− γ)diag(d1, ..., dN). (4.21)

As a result, the expected Laplacian matrix L is going to be defined as follows:

L(i, j) =


(1− γ) ∗ deg(Vi) if i = j,

(1− γ) ∗ −1 if(i, j) ∈ E(t),

0 otherwise.

(4.22)

The rate of convergence to average consensus is characterized by the second small-

est eigen-value of the Laplacian matrix L. This rate is going to decrease by a constant

factor γ as the number of edges formed in the graph decreased as a result of com-
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munication failures [17]. Thus, it is expected that the convergence time to average

consensus is going to increase by a constant factor γ.
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5. SIMULATION

This section summarizes the simulation experiments that were carried out to evaluate

the proposed scheme in the previous section, summarizes the outcomes of the different

simulation scenarios and finally analyzes the outcomes in terms of their relevance to

WSNs.

5.1 Setup

A simulation script was put together in order to evaluate the performance of the

consensus scheme that was described in the previous section. The following table

summarizes the parameters used in the simulations:

Table 5.1: Simulation Parameters

Parameter Value

Topology Size 100 m × 100 m

Node Communication Range 10 m

Average Node Degree 3.99-17.56

Exponential Probability Distribution Function parameter - λ 0.5

Approximated Fading Signal Model Threshold probability - γ 0.1-0.25

The topology and the number of nodes were chosen to create node densities that

would ensure that the graph representing the WSN will be strongly connected over

time.

Extensive simulations were carried out with different topologies that have different

average node degrees for both communication error models proposed earlier: the
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fading model and the approximated fading error model. For the approximated fading

error model, the same simulations were carried out for different γ values. Also, the

same simulations were carried without any error model, which is the benchmark for

evaluating consensus.

Several simulation scenarios were ran in order to collect the metrics that would

evaluate the different aspects of the proposed consensus scheme.

5.2 Convergence to Average Consensus using proposed Scheme with No

Error Model

The first set of simulations involved running the same simulation setup as de-

scribed earlier without using an error model for different node numbers in order to

verify that the proposed scheme converges to average consensus and to capture the

number of iterations of the consensus algorithm needed for that purpose. Fig. 5.1

shows one sample of the simulations carried out for this purpose where the node

number was set to 300. The average node degree for this scenario was approximately

10 and the average consensus value was approximately 50. As shown in Fig. 5.1, all

300 node state value converged to the average consensus value which is represented by

the horizontal line on the graph. This needed less than 400 iterations of the consensus

algorithm.

This simulation represents the convergence in a static, non-switching network,

which was addressed in many previous studies such as [57]. It is obvious that the

Metropolis weighting scheme was effective in enabling all the nodes in the network to

converge to the average consensus value. This is going to be the benchmark simulation

as it will later be compared to other simulations carried out that incorporated a

communication error model.
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5.3 Convergence to Average Consensus using proposed Scheme with the

Fading Signal Error Model

In the second set of simulations, the fading error model was introduced to the

scenario described earlier. Fig. 5.2 shows the impact of introducing the error model

as almost 450 iterations were needed for the all the nodes to reach average consensus.

The increase in the number of iterations needed to converge to average consensus

is a result of incorporating the fading signal communication error model. This is be-

cause introducing the model prevented forming many communication links such that

each node has access to a smaller number of its neighboring state-values during each

iteration. Since the algorithm employed computes the weighted average of neighbor-

ing state-values in order to estimate the average consensus value, more iterations were

needed to accumulate enough state-values in order to achieve this purpose.

5.4 Convergence to Average Consensus using proposed Scheme with the

Approximated Fading Error Model

Fig. 5.3 shows the impact of using the approximated fading error model for a

relatively low value of γ set to 0.1. The number of iterations needed by the different

nodes to reach average consensus is smaller than that for the fading model shown

in Fig. 5.2. This value of γ did not cause many communication links to be broken.

Thus, each node still had access to most of its neighboring state-values, if not all of

them, at each iteration. This resulted in needing a similar number of iterations to

the static network in order to converge to average consensus.

On the other hand, increasing the value of γ to 0.2 caused the number of iterations

needed to reach average consensus to increase compared to the simulations where the

value of γ was set to 0.1. This can be clearly observed in Fig. 5.4, which is similar

to that of the fading model in Fig. 5.2. This is because this value of γ caused a

larger number of communication links to fail for every node. As a result, each node
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Fig. 5.1.: Static Network convergence to average consensus
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Fig. 5.2.: Fading Error Model convergence to average consensus
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Fig. 5.4.: Approximated Fading Model convergence to average consensus - γ = 0.2

had access to a smaller number of neighboring state-values and hence needed a larger

number of iterations to accumulate enough data to converge to average consensus.
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Fig. 5.5.: Iterations to average consensus vs. AF model threshold probability γ

Fig. 5.5 summarizes the effect of introducing γ on different topologies with varying

average node degrees. Networks whose nodes have a smaller number of nodes on

average, and hence lower average node degrees, needed more iterations to converge

to average consensus than networks where nodes have larger numbers of neighbors.

This is because introducing γ caused nodes with lower average node degrees to lose

communication with a significant portion of its neighbors, which caused each node

to have access to a smaller number of neighboring state-values. As a result, more

iterations were needed to accumulate enough transmissions from the neighborhood

in order to converge to average consensus. The larger the value of γ, the more

communication links fail on average per node.

However, networks with larger average node degrees were not as affected, if at

all, because each node has access to a large number of neighbors where losing a few

of them won’t much affect the number of state-values accumulated at each node.

This will allow the network to converge to average consensus without needing more

iterations of the consensus algorithms.
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Fig. 5.7.: Convergence time vs. Spectral Radius

Fig. 5.6 summarizes the impact of using the different error models on the same

simulation scenario. It is observed that using no error model needed the least number
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of iterations to converge to average consensus, whereas the approximated fading model

with γ set to 0.15 and the fading model simulations yielded close results. Given the

value of λ specified in Table 5.1 as a parameter of the Exponential probability density

function of the fading signal model, a γ value of approximately equal to 0.15 will be

generated according to the analysis presented earlier. It is clear that behavior of the

approximated fading model with γ = 0.15 is similar to the fading signal model itself.
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Fig. 5.8.: Spectral Radius vs. Average Node Degree

The scenario where the value of γ is set to 0.25 needed more iterations to average

consensus than any other scenario presented. This shows that increasing the value of

γ will increase the number of iterations needed to converge to consensus. However,

networks with higher average node degrees will yield similar results no matter what

error model is used. This is because the different error model did not reduce the

number of communication links per node enough to make the convergence to average

consensus need more iterations.

Fig. 5.9 shows the effect of increasing the value of γ on the convergence time to

average consensus, which is computed using the the average spectral radius of the
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Fig. 5.9.: Convergence time vs. AF Model threshold probabilities γ

weight matrix of the WSN considered using the formula discussed earlier. Increasing

the value of γ increased the convergence time to consensus more significantly for

networks with lower average node degrees. On the other hand, networks with higher

average node degrees were not much affected. This resembles the result that was

obtained for iterations to consensus summarized in Fig. 5.5. Furthermore, Fig. 5.10

describes the impact of using different communication error models on the convergence

time to average consensus. This result is similar to the one shown in Fig. 5.6 for

iterations to consensus.

As mentioned before, the average spectral radius of the weight matrix of the WSN

was used to compute the convergence time to average consensus. Fig. 5.7 shows that

increasing the spectral radius value will increase the convergence time exponentially.

Also, Fig. 5.8 shows that higher average node degree in the network results in a smaller

average spectral radius of the WSN weight matrix. Hence, it is can be deduced from

both figures that higher average node degree will need a smaller convergence time

to average consensus, as expected. Moreover, Fig. 5.7 explains why the impact of
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increasing the value of γ on the convergence time was sharper in Fig. 5.9 than its

impact on iterations to consensus described in Fig. 5.5, even though the two results

were still similar. This is because the convergence time tends to increase exponentially

as the value of γ is increased while the iterations increase linearly in that respect.

Fig. 5.11 and Fig. 5.12 further explain the relationship between the convergence

time to consensus and the number of iterations needed to converge to consensus.

Fig. 5.11 shows the scenario were the average node degree is approximately 4. The

iterations to consensus recorded seem to increase sharply then decrease slightly as

the value of convergence time computed is increased. Fig. 5.12, which describes

the scenario were the average node degree is approximately 17.5, shows that the

relationship is linear.
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Fig. 5.11.: Iterations to Consensus vs. Convergence Time-avg node degree = 3.99
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Fig. 5.12.: Iterations to Consensus vs. Convergence Time-avg node degree = 17.56
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6. RESULTS ANALYSIS

This section will use the theory developed and simulations carried out earlier to high-

light the different aspects of the proposed average consensus scheme and its relevance

to WSNs.

6.1 The Significance of the Approximated Fading Signal Error Model

Introducing the fading signal error model to the proposed average consensus

scheme was very relevant to WSNs. Furthermore, approximating this model was

important for several reasons. First, it simplified the theoretical analysis of the pro-

posed scheme by eliminating the need to consider the inter-nodal distance of each

pair of neighboring nodes in the WSNs by taking advantage of the uniform random

spatial distribution of the WSN nodes in the topology. Second, as each node in a

WSN may not be able to measure the inter-nodal distance with its neighbors, it pro-

vides a means for it to predict whether a certain transmission is going to be delivered

to a certain neighbor or not. If a given node predicts that the transmissions is not

going to succeed, then it will defer it for later thus reducing the network overloading.

Third, keeping track of delivered transmissions might give the node an idea about

the rate to convergence and may allow it to predict when will the average consensus

algorithm halt.

6.2 The Metropolis Weighting Scheme and the incorporated Communi-

cation Error Models

In all the simulations that were carried out, node state values converged to the av-

erage consensus value, which is the average of all initial state values of all nodes. This
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is because the Metropolis weighting scheme allowed each node to generate weights

for their different communication links for each iteration of the consensus algorithm

that kept the overall weight matrix of the network doubly-stochastic over time, which

is the property needed to converge to average consensus [57]. None of this required

any node in the network to collect information about the topology or store any his-

toric data. This enabled the average consensus algorithm to operate irrespective of

topology changes induced by communication failures, power depletion in nodes, etc.

However, introducing the different error models increased the number of iterations

needed by state node values to converge to average consensus. This is because each

node will receive less state values in each epoch, and hence will not have enough data

to quickly approximate the average consensus value using the consensus algorithm.

Hence, using no error model while evaluating the consensus algorithm for WSNs is

not realistic and gives misleading results about the performance of the algorithm in

potential real world applications.

Introducing the fading model increased the number of iterations needed for conver-

gence to average consensus the most since. This is because the generated probability

of establishing a communication link between any two neighboring nodes is dependent

on the distance between them, which results in assigning most communication links

low success probabilities as a limited number of nodes can be very close to any given

of their neighbors. The communication range of each node is already small as shown

in Table 5.1.

Furthermore, Fig. 5.6 showed that the approximated fading signal error model

with γ set to 0.15 has a similar impact as the fading signal error model, whereas

using γ set to 0.1 had a similar impact as having no error model at all. This is

because the using a smaller γ means that very few communication link will fail. As

a result, the approximated fading signal error model with γ set to 0.15 can possibly

be used to approximate the effect of the fading signal error model.
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6.3 Rate of Convergence to Average Consensus

As shown in Fig. 5.9, increasing the value of γ increased the convergence time

to average consensus. Earlier in this study, it was theoretically predicted that the

increase in convergence time is going to be linear. This is clearly illustrated by the

simulation of the WSN with average node degree equal to 13.34. However, simulations

carried out with a lower number of nodes, and hence with a lower average node degree,

have shown that the increase in convergence time was exponential. This is because

networks simulated with a lower number of nodes had a lower algebraic connectivity

as they had a smaller number of edges formed in the first place. When the error

model was introduced, even more edges were deactivated and hence the impact on the

convergence time was very significant, possibly disconnecting the network at times.

However, average consensus was still achieved as the network does not need to be

connected all the time to achieve average consensus [74].

On the other hand, simulations of networks with very large node number, and

hence very large average node degree, did not seem to be affected at all by the

introduction of the error model. This is because each node still received enough

transmissions from its neighbors after the introduction of the error model to compute

the average consensus value at the same rate.

Consequently, the theoretical analysis was accurate for simulations where the al-

gebraic connectivity was moderate in the sense that the number of edges deactivated

was increased by a linear factor only. In the case of lower algebraic connectivity,

many disconnected components were created over time where the edges within those

components were less useful in transmitting signals that contributed to computing

average consensus, which was not taken into consideration by the theoretical analy-

sis. Furthermore, in the case of the very high average node degree, the error model

still did not break enough edges to make a difference in the convergence time, which

was not reflected in the theoretical analysis as well. Increasing the value of γ in the

network with very high average node degree will eventually affect convergence time,
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but then it would be impossible to compare this scenario with networks with lower

average node degrees as those will completely get disconnected and hence divergence

will take place.

6.4 Rate of Convergence and Number of Iterations of the algorithm to

Average Consensus

Fig. 5.9 shows that the number of iterations to consensus and the corresponding

computed convergence time are linearly related. First, this illustrates that the rate

of convergence to average consensus as measured by the average of the spectral radii

of the weight matrices formed during the different epochs of the average consensus

algorithm accurately measures the performance of the average consensus algorithm.

Second, this relationship provides a way to predict the number of iterations the av-

erage consensus algorithm is going to run in a certain period of time given a network

with a certain algebraic connectivity. Third, it shows that the algebraic characteris-

tics of the graph representing a network can be used to estimate how many iterations

the algorithm is going to run given a certain topology.

However, the convergence time does not take into consideration the propagation

time of wireless signals and the processing times of the nodes. In a real-world scenario,

this will definitely increase the rate of convergence to consensus.

6.5 Suitability of the proposed Scheme to WSNs

As discussed earlier, power is one of the most critical constraints in WSNs. Thus,

any proposed WSN algorithm or protocol must take into consideration minimizing

the power consumption of the WSN. Also, it was clarified earlier that the power

of the WSN is mainly consumed in processing, communication and sensing, where

communication is the most significant power consumer [1].

The simulations that were carried show that the number of iterations needed to

reach average consensus is smaller than those needed by other proposed schemes such
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as [58]. Moreover, each node only needs to communicate its state-value, ID, in-degree

and out-degree, which is a relatively small amount of data. Also, the proposed scheme

does not require any node in the WSN to run any lengthy or complex computations

to calculate the average consensus value or the communication links’ weights. This

will significantly reduce the power consumption of each node.

Another issue that is usually taken into consideration in WSNs is the scalability

of the network [1]. Since the Metropolis weighting scheme does not require any node

in the WSN to store any information about the topology or about the other nodes,

the proposed scheme should work the same way for both small and large networks.

However, large WSNs deployed in a small topology will generate a larger node density.

This could possibly lead to overloading the WSN as all nodes will be competing to

broadcast their state-values concurrently.
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7. CONCLUSIONS AND FUTURE WORK

7.1 Summary

In summary, a decentralized scheme to compute the average consensus of the initial

values of all nodes in a WSN was introduced. Also, two different error model, the

fading model and the approximated fading error model, were introduced to describe

the probability of establishing communication links between the neighboring nodes.

It was shown that the proposed scheme enabled all nodes to converge to average

consensus.

However, the number of iterations needed to converge to consensus was greater

when the error models were incorporated as compared to the error-free scenarios. Fur-

thermore, it was shown that the fading model was the most realistic one in modeling

the communication errors that usually occur in WSNs and that the approximated

fading error model can possibly approximate the fading model.

The advantage of using the approximated fading error model is that it simplifies

the mathematical analysis of the convergence to consensus as it eliminates the need to

take the inter-nodal distance parameter into consideration. Also, from an implemen-

tation point of view, the approximated threshold probability γ that the approximated

fading error model provides can help a given node in the network predict whether its

transmission at a particular epoch is going to succeed or not. If the node determines

that the transmission is going to fail, then it can defer the transmission for some time

to reduce transmission collision and improve network throughput.

Moreover, the analysis of the simulations introduced has shown that increasing the

value of γ is going to impact the number of iterations needed to converge to average

consensus. This will not be as significant on networks with high average node degree

as compared to others with lower average node degree.
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The same results were obtained in terms of convergence time, which is calculated

using the average spectral radius of the weight matrix of the WSN. However, the sim-

ulations that were carried out have shown that the relationship between the number

of iterations to average consensus and convergence time based on spectral radius is

linear for networks with high average node degree and almost logarithmic for networks

with lower average node degree.

7.2 Future Work

There are many aspects of this study that still need to be explored. First, this

study used the approximated fading signal error model to represent the communi-

cation failures in the WSN. There are more sophisticated methods to describe the

behavior of the communication links using discrete-event systems such as the Markov

Chain. Second, the proposed scheme should be assessed in terms of throughput,

packet delay, power efficiency and other metrics that are often used to assess the

performance of WSNs. Third, the average consensus scheme proposed may intro-

duce some overhead that needs to be better studied. This will give a better estimate

of convergence time to average consensus. Fourth, the proposed scheme should be

upgraded to take power as a factor in the design of the consensus algorithm.
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Appendix A: Simulation Source Code file 1

% Steve Saed

% July 2010

% Simulation of average consensus algorithm in wireless

%sensor network

% File: main.m

clear;

clc;

%********************************************************

% Simulation Parameters’ definition

N = 250; % Set number of nodes in network

T = 100; % Set the size of the topology of the

%simulation (TxT)

R = 10; % Set the range of communication of each node

E = 0.001;% Set the (Epsilon) difference between max and

% min state value as a threshold to show that

% consensus is reached

Th = 0.1:0.01:0.25;%Threshold

Mode = 1;%Communication error mode:

% 0-no error model

% 1-random model

% 2-fading model

%**************************************************************

% Simulation intermediate output

%L - random location coordinates matrix (Nx2)

%A - adjacency matrix based on the L matrix (NxN)

%D - Distance matrix for nodes that are within comm

%range with each other
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%PA -Probabilistic adjacency matrix based on the A matrix (NxN)

%CPA - Current Probabilistic adjacency matrix (NxN)

%weight - metropolis weight matrix

%y - initial state values

%x - intermediate state values

%****************************************************************

%Make sure a strongly connected graph is generated

connectivity = 0;

while(~connectivity)

%Generate Random location coordinates for each node in the

%network

L = random_location(N,T);

%Calculate the distances between nodes then construct the

%adj matrix

[A,D,Degree] = adj_matrix(N,L,R);

%Check if graph is strongly connected and find the diameter

%of the network

[is_connected,H] = is_graph_strongly_connected(A);

connectivity = is_connected;

end

%Average node degree

average_node_degree = mean(diag(Degree));

%Network diameter

network_diameter = max(max(H));

%Initial node state values

y = floor(rand(N,1)*100);

x = y;

%Run consensus Algorithm

%No Error
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[mean_eigen,numIterations,con_x, trace]=

consensus_algorithm(A,D,R,N,Th(1),0,x)

static_output(1) = mean_eigen;

static_output(2) = numIterations;

static_output(3) = mean(y);

static_output(4) = average_node_degree;

static_output(5) = network_diameter;

static_output(6) = 1/(log(1/mean_eigen));%Convergence time

state_value(:,1) = y;

state_value(:,2) = con_x;

save static_trace.dat trace -ascii

%Fading Model

[mean_eigen,numIterations,con_x,trace]=

consensus_algorithm(A,D,R,N,Th(1),2,x)

fading_output(1) = mean_eigen;

fading_output(2) = numIterations;

fading_output(3) = mean(y);

fading_output(4) = average_node_degree;

fading_output(5) = network_diameter;

fading_output(6) = 1/(log(1/mean_eigen));%Convergence time

state_value(:,3) = con_x;

save fading_trace.dat trace -ascii

%Threshold=0.1 simulation

[mean_eigen,numIterations,con_x,trace] =

consensus_algorithm(A,D,R,N,0.1,1,x)

state_value(:,4) = con_x;

threshold_output(1,1) = 0.1;

threshold_output(1,2) = mean_eigen;

threshold_output(1,3) = numIterations;
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threshold_output(1,4) = 1/(log(1/mean_eigen));%Convergence time

save th1_trace.dat trace -ascii
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Appendix B: Simulation Source Code file 2

%*******************************************************

% function [A,D] = adj_matrix(N,L,R)

% Description : Calculate the distance between each node

%and every other

% node, then generate an adjacency matrix based on the

%communication range of each node

% Arguments : (1) N - number of nodes in network

% (2) L - location coordinates matrix

% (3) R - communication range of each node

% Return Value: Adjacency matrix, distance matrix,

% and degree vector of all the nodes in the network

%*******************************************************/

function [A,D,Degree] = adj_matrix(N,L,R)

Degree(N,N) = 0;%Initialize the Degree matrix of the network

A = eye(N,N);%initialize adj matrix to identity matrix

% Compute euclidean distance between each pair of nodes

D = squareform(pdist(L));

for i=1:N;

for j=1:N;

if((D(i,j) <=R) && i~=j)

A(i,j) = 1;

Degree(i,i) = Degree(i,i) + 1;

end

end

end
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Appendix C: Simulation Source Code file 3

%************************************************************

% function [mean_eigen,numIterations,average_consensus_value,

average_node_degree,network_diameter] =

%consensus_algorithm(A,D,R,N,Th,Mode,x)

% Description : Consensus iterative algorithm

% Arguments :

% Return Value:

%************************************************************/

function [mean_eigen,numIterations,con_x,Trace]

= consensus_algorithm(A,D,R,N,Th,Mode,x)

numIterations = 0;

while ((max(x)-min(x)) > 1 )

%No error

if (Mode == 0)

weight = metropolis(A);

%Error Model

elseif ((Mode==1) || (Mode==2))

%Determine new adjacency matrix after comm errors are

%considered

PA = prob_adj_matrix(A,D,R,N,Th,Mode);

% Construct metropolis weight matrix

weight = metropolis(PA);

end

% New Consensus Algorithm Iteration

newx = weight * x;

% Check whether a new iteration needs to be run

%halt_algo = percent_change(E,x,newx);
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% Upadate node state value

x = newx;

% Update the number of iterations of the algorithm

numIterations = numIterations + 1;

% Record the state values at each iteration

% state values (not) converging to consensus

Trace(:,numIterations) = x;

%Find all eigen values of eight matrix

eig_vector = sort(abs(eig(weight)));

%Record second largest eigen value of the weight matrix

Eigen_Values(numIterations) =

eig_vector(length(eig_vector)-1);

end

%Node state values after running the average algorithm

con_x = x;

%Eigen Values

mean_eigen = mean(Eigen_Values);

numIterations;
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Appendix D: Simulation Source Code file 4

%********************************************************

% function [C,H] = is_graph_connected(A)

% Description : Check if the adjacency matrix represents

%a connected graphFor a graph to be strongly connected,

%there must exist a path between any two given nodes.

%The graph is assumed to be undirected because of two

%nodes are within comm range from each other, then they

%theoretically can communicate with each other

% Arguments : (1) A - Adjacency matrix of the network

% Return Value: (1) is_connected - Bool value to indicate

if the graph is connected

% (2) H - Hop-matrix, a matrix with the same

% size as A, eachentry (i,j) gives the

% number of hops needed to go from i to j

%***********************************************************/

function [is_connected,H] = is_graph_strongly_connected(A)

%Check size of the matrix

[n1 n2] = size(A);

if (n1~=n2)

return;

end

%Initialization

is_connected = 1;

%One hop to each neighboring node

H(n1,n2) = 0;

%Check if there is a path from every node to every other node

for i=1:n1
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for j=1:n2

%find shortest path between any two given nodes

H(i,j) =

graphshortestpath(sparse(A),i,j,’Method’,’BFS’);

if( H(i,j)==Inf)

is_connected = 0;

break;

end

end

end
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Appendix E: Simulation Source Code file 5

%**************************************************

% function [L] = random_location(N,T)

% Description : Generate random coordinates for the

% N network agent within the square topology TxT

% Arguments : (1) N - number of nodes in network

% (2) T - TxT size of square topology

% Return Value: Nx2 vector of random location

% coordinates of each node

%*************************************************/

function [L] = random_location(N,T)

L = rand(N,2)*T;
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Appendix F: Simulation Source Code file 6

%************************************************

% function [PA] = prob_adj_matrix(A,D)

% Description : Calculate the probability of

% communication between nodes within comm range

% of each other based on the distance between them.

% Arguments : (1) D - distance matrix between nodes

% (2) R - communication range

% (3) N - number of nodes in the network

% (4)Mode - 0-fading model; 1- random model

% Return Value: Probabilistic Adjacency matrix of the network

%**********************************************************/

function [PA] = prob_adj_matrix(A,D,R,N,Th,Mode)

PA = eye(N,N);

for i=1:N;

for j = 1:N;

if ((A(i,j)==1) && (i~=j))

%Generate random number for Bernouilli experiment

rand_ber = rand(N,N);

%Random model/Approximated fading model

if(Mode == 1)

comm_prob = Th;

%Fading Model

elseif (Mode == 2)

comm_prob = exp(-5*D(i,j)/R)-(D(i,j)/R)*exp(-5);

end

%Bernouilli experiment to determine if link is connected

if (rand_ber(i,j) >= comm_prob)
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PA(i,j) = 1;

elseif (rand_ber(i,j) < comm_prob)

PA(i,j) = 0;

end

end

end

end
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Appendix G: Simulation Source Code file 7

%******************************************************

% function [halt_algo] = percent_change(E,x,newx)

% Description : determine whether the algorithm should

% be stopped based on percent change between

% current and previous state values

% Arguments : (1) E - epsilon

% (2) x - previous state value

% (3) newx - current state value

% Return Value: halt_algo - bool value to determine if

% the algorithm should be stopped

%*****************************************************/

function [halt_algo] = percent_change(E,x,newx)

x1 = x;

x2 = newx;

x3 = x2 - x1;

x3 = x3./x1;

%Set default value to 1 - halt algorithm

halt_algo = 1;

for i=1:length(x3)

if (abs(x3(i)) > E)

%If one state value changed by more than E,

%continue running the algorithm

halt_algo = 0;

end

end
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Appendix H: Simulation Source Code file 8

%*****************************************************

% function [W] = metropolis(A)

% Description : Construct metropolis weight matrix

% Arguments :

%(1) CPA - Current Probabilistix Adjacency matrix

% Return Value: Mertropolis weight matrix

%*****************************************************/

function [W] = metropolis(CPA)

[n,m] = size(CPA);

%Make-sure CPA matrix is square

if n ~= m

return

end

%Initialization

W = zeros(n,n);

in_degree = zeros(n);

out_degree = zeros(n);

%construct in-degree, out-degree vectors

for i=1:n;

%find in-degree of each node in the network

in_degree(i) = length(find(CPA(i,:)))+1;

%find out-degree of each node in the network

out_degree(i) = length(find(CPA(:,i)))+1;

end

%Calculate metro-weights except self-weights

for i=1:n;

for j=1:n;
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if ((i~=j) && (CPA(i,j) ~= 0));

W(i,j) = 1/(max(in_degree(i),out_degree(j)));

end

end

end

%Calculate metropolis self-weights

for i=1:n;

W(i,i) = 1-sum(W(i,:));

end
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Appendix I: Simulation Source Code file 9

%*************************************************

% dskim- consensus

% function [answer] = is_doubly_stochastic(A)

% Description : Construct metropolis weight matrix

% Arguments : (1) A - metropolis weight matrix

% Return Value: 1 if weight matrix is doubly stochastic,

%otherwise 0

%**************************************************/

function [answer] = is_doubly_stochastic(A)

[n,m]=size(A);

if n ~= m

answer = false;

return

end

h = sum(A);

v = sum(A’);

u = ones(1,n);

if h ~= u

answer = false;

return

end

if v ~= u

answer = false;

return

end

answer = true;


