POLITICAL ELEMENTS OF RECOGNITION FOR MICROPOLITAN AREAS

Suaní I. Nieto

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements
for the degree
Master of Arts
in the Department of Political Science,
Indiana University
December 2019
Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Master of Arts.

Master’s Thesis Committee

William A. Blomquist, Ph.D., Chair

Margaret R. Ferguson, Ph.D.

Ramla M. Bandele, Ph.D.
Suani I. Nieto

POLITICAL ELEMENTS OF RECOGNITION FOR MICROPOLITAN AREAS

The U.S. Office of Management and Budget’s designation of Micropolitan Statistical Areas brought to light communities with quasi-rural characteristics that had previously been ignored or hidden between their metro and non-metro category. The present study analyzes three recognition elements: political atmosphere, geography, and population characteristics of the state to analyze their effects on micropolitan areas’ economic strength.

William A. Blomquist, Ph.D., Chair
Table of Contents

Introduction ... 1
Micropolitan Statistical Areas: An Overview 4
Significance of the OMB’s Designation 7
The Electoral Politics of MicroSAs ... 10
The Importance of Elected Officials for MicroSAs 14
Recognizing MicroSAs in State Legislature 17
Hypotheses and Rationale .. 21
Methodology .. 25
Discussion .. 33
Conclusion .. 36
Tables .. 40
Bibliography .. 48
Curriculum Vitae
Introduction

In 2003, the U.S. Office of Management and Budget (OMB) introduced a new set of standards defining metropolitan areas (Frey et al., 2011). This shift in their widely-recognized system introduced micropolitan statistical areas (microSAs), a designation for areas with a principal city containing a population of 10,000 to 50,000 (Frey et al., 2014). The new designation was significant for several reasons. Among other things, it recognized diversity within the non-metropolitan designation, a group that prior to 2003 was seen as residual (Brown et al., 2004). All non-metropolitan areas are not rural; the new designation points to pockets of concentrated population and economic activity outside the familiar standard metropolitan statistical area (SMSA), and recognizes that small cities (in that 10,000 to 50,000 population range) are economically important to their surrounding areas. Since the creation of the new microSA designation, 576 microSAs have been recognized with the number shifting from year to year. SMSAs and microSAs combine include 93% of the population and 46% of the land area of the United States (Frey et al., 2004).1 This new category of microSAs also provided policy makers with a new classification for funding eligibility under certain government programs. The use of OMB-designated statistical areas qualifies certain areas or communities for government funding, a practice that has been widely criticized (Ratcliffe, 2002; Frey et al., 2014; Hart et al., 2005; Isserman, 2007).

1 On March 1, 2013, the Office of Management and Budget released revised definitions for metropolitan, micropolitan, and consolidated statistical areas. However, this study follows the definition as of February 2013, and includes information prior to the newly released definitions. The starting number of microSAs for this study was 586 with only 526 making it to the final analysis. Different references give different numbers for microSAs. This study follows two different references: the Census and POLICOM.
Research conducted immediately after the creation of the new microSA designation focused primarily on exploring and understanding the validity of the designation (Berube et al., 2004). As the new designation proved valid and even necessary, the emphasis of subsequent research shifted toward understanding the implications of the change for policy makers, designated communities, and statistical measurements. Prior to the designation, these areas were not recognized as part of an important integrated socio-economic system and were generally ignored by political data analysis as well.

Soon after the microSA designation was published, organizations began developing formal statistical measures to better understand these areas. POLICOM Corporation, for example, has published microSA economic strength rankings since 2004 and the U.S. Census publishes population growth information. Research has been conducted on micropolitan areas since the designation was established, but much remains to be done in order to develop a fuller understanding of these quasi-rural, quasi-urban areas.

For political scientists in particular, this is a whole new category to understand and utilize. Political science research on microSAs should seek to understand this new category, what it measures, and how it affects policy and politics (local, state, and federal). Research should also seek to understand the political atmosphere of these areas: how they vote and/or who they vote for. More importantly, as this new category becomes more visible, it is imperative for these communities to understand how their political atmosphere affects them since their recognition in terms of policy, such as in program funding eligibility, depends to a considerable extent on elected officials.
Voting research has already begun to utilize microSAs as a category. During the 2008 election, a RUPRI policy brief examined voting patterns of microSAs (Miller, 2008; Lesh 2010). The brief showed that 516 out of 691 micropolitan counties\(^2\) were won by presidential nominee John McCain (Miller 2008).\(^3\) This is an example of how micropolitan areas might be studied in political science terms. Though important, I fear that political science will focus on a one-way approach to microSAs in politics early on: how they have affected and will affect future elections. As microSAs emerge from obscurity, they will need a two-way approach from our field. Research should focus on how the new designation affects politics and on how politics (local, state, and federal) affect these areas.

The range of questions that derive from this new category is immense, and so we start with a few basic ones. Does party control in state legislatures affect microSAs, and if so, in what ways? Recent studies show a positive relationship between micropolitan voting and the Republican Party. Yet, research remains to be done and presented on the other direction of this relationship, i.e., whether and how Republican elected officials affect these areas. The present study reviews the effects of microSAs’ characteristics such as political atmosphere, population clusters, and geography on a microSA’s economy.

\(^2\) The RUPRI Study includes 691 micropolitan counties, a count that differs from other research. Two reasons may have contributed to this disparity. One, the study was conducted in 2007 and may have included more microSAs than in previous years. Two, the study includes “counties and surrounding counties that are linked by commuting ties,” and not cities.

\(^3\) Similarly, in 2004 John Kerry received the majority of the vote in Ohio SMSAs, but lost the state. It was the areas in between the urban democrats and the rural Republicans that won Ohio for the GOP in 2004 (Land and Sanchez, 2006b).
Micropolitan Statistical Areas: An Overview

Micropolitan areas came to be recognized by the OMB in 2003 after a series of revisions were made with the newly acquired census data. While revising the metropolitan area concept, the OMB found smaller areas to be significantly integrated economically and socially and concluded they should have their own designation: a microSA contains at least one population “core cluster” between 10,000 to 50,000 people (Berube et al., 2004).

Originally, 573 microSAs were included in the OMB’s data (Berube et al., 2004) covering all or parts of 582 counties (Brown et al., 2004). Those microSA counties had a population of 29.1 million people, or 11% of the U.S. population (Dabson, 2007). Metropolitan areas cover all or parts of 891 counties and contain 79% of the U.S population. However, the significance of the micropolitan areas is evident when contrasted with the other non-metropolitan areas. These remaining areas cover 1,668 counties and include 10% of the total population. Thus the 582 counties in microSAs contain more people than all other non-metropolitan areas combined.

Since 1950, the OMB has performed periodic reviews to reexamine the metropolitan areas designation and accommodate any changes in social or economic patterns that have happened over a 10 year period (Ratcliffe, 2002). The concept of a metropolitan area has not changed much since its original designation. The general definition describes a metropolitan area as an “area containing a significant population nucleus and adjacent communities that have a high degree of integration with said

\footnote{Some microSAs are located within two counties.}
“nucleus” (Ratcliffe, 2002). This description is now being used to define micropolitan areas, but on a smaller scale.

Interest in these quasi-rural areas had been growing even before their formal designation. Some academics were concerned with the valuable information missing from the ignored intermediate areas and what this meant in terms of understanding our nation’s population growth and economic development (Davidson and Rickman, 2011). Others were more concerned with the policy implications of misusing equivalent terms for areas that were not metropolitan, i.e., lumping them all together as non-metropolitan and rural. Those two terms have been used interchangeably in the past to describe areas similar to microSA’s in research, in media coverage, and in public policy, which raised some concerns (Isserman, 2007; Hartman et al., 2004).

With the OMB changes, governmental and non-governmental entities were provided information which allowed them to formally recognize the intricate economic and social factors of smaller communities where farmers, industrial entrepreneurs, and urban middle class commuters coexist (Dabson, 2007). Equally important, the designation provides a microSA with a status similar to their bigger metropolitan counterparts (Berube, et al., 2004).

Prior to their OMB designation, micropolitan areas were hidden between the categorical spectrum of metropolitan and non-metropolitan based statistical areas. Through the preliminary analysis for the 2003 designation changes, microSAs were observed to have intermediate characteristics compared to the two existing designations. This was an important finding as it denied the belief that a non-metropolitan area had no social or economic autonomy (Brown, Cromartie, and Kulscar, 2004).
Populations in urban areas are found to disperse from their core city to make smaller clusters. Therefore, it became evident that smaller communities should be part of the statistical designation system (Berube, et al., 2004). The new system of metropolitan and micropolitan areas include 46 percent of the U.S. land area as compared to 20 percent covered by SMSAs alone; microSAs account for most of the increase (Berube, et al., 2004). These changes have provided a more comprehensive overview of the current population and geography of the United States.
Significance of the OMB’s Designation

What does a designation mean to a recent microSA? The Brooking Institution Policy research explains that OMB designations have “real world implications.” Private sector organizations use these designations for business and market research. Residents within a microSA have been found to perceive their communities differently (Berube, et al, 2004). Potentially more significant in economic development terms, government programs can use the designation for funding allocation and classifications purposes (Ratcliffe, 2002; Frey et al., 2014; Hart, Larson and Lishner, 2005; Isserman, 2007).

The term metropolitan has been used to generalize areas and outline rules for government programs. “Metropolitan” is a term constantly articulated by the media, history books, and cultural institutions as cosmopolitan (Frey et al., 2014). The word metropolitan resonates with busy cities filled with culture, business, and people. The metropolitan designation has been used in our society for 50 years. It is a definition that has been passed along from generation to generation, and it has been used from children in elementary school to legislators in state governments.

Researchers have long criticized the use of statistical designations such as the SMSA for purposes other than statistical analysis (Ratcliffe, 2002; Frey et al., 2014; Hart, Larson and Lishner, 2005; Isserman, 2007). The OMB itself warns against using their information for local, state, and federal programs because of the negative consequences that misusing a designation may have on a community. The designations, nevertheless, serve as a foundation for classifications that are used by the federal government when determining eligibility and reimbursement levels for more than 30 federal programs (Hart et al., 2005).
The new microSA designation was well received by those who were concerned about the misuse of OMB’s terms in policy because it provides a better understanding of what an integrated socio-economic area means (Isserman, 2007). The OMB has long measured integration by adhering counties that provide 25% of labor force to a core area without categorizing one or the other as urban or rural (Isserman, 2007) and has continued to point out the differences between their designations and the census population-based categories (Isserman, 2007).

Furthermore, the new microSA term also provides a different perspective on the non-metropolitan area category. Prior to the microSA designation, anything “non-metropolitan” was interchangeably defined as “rural” in much of the analysis. Plenty of policy language continues to substitute the terms “urban” with metropolitan and “rural” with non-metropolitan -- a move that can cost many communities their eligibility for funding (Isserman, 2007). Various definitions of “rural” in federal laws and regulations can include anything from 2% to 58% of the U.S. population (Isserman, 2007). MicroSA communities can finally stand on their own dimension without being mistakenly defined in policy. But, the historical misconception may be their first big obstacle. Regardless of the criticism or advice, the statistical area designations continue to be used by federal programs to establish criteria to allocate funds, and the term micropolitan can be a new tool to develop programs and criteria for funding that reaches the people and places initially intended (Isserman, 2007).

Many state governments follow a similar funding process using statistical area designation in legislation and program funding allocations. The SMSA designation is well established while the microSA designation is newer. The adoption in state
government policy of this term is not automatic and microSA communities may need to mobilize through local-state politics to obtain recognition through the inclusion of the microSA term in more state funding and program eligibility language. Presumably, a sensible strategy for such an effort would be for microSAs to first tap those whom these communities have politically supported in the past: the state representative from their area. These elected officials are the connection that local areas have to state legislature, and they are usually politically and personally invested to these areas.
The Electoral Politics of MicroSAs

As more research focuses on microSAs, it reveals a fascinating story about part of our country that as recently as a decade ago had been ignored by political data. The emerging information has focused on their voting behavior, but not much attention has focused on the relationship between elected officials (voted on by these communities) and microSAs. The present study attempts to analyze if there is a correlation between a party majority in state legislature and the economic strength of microSAs. The State House of Representatives5 provides the closest relationship between communities and their elected officials -- the way the founders of our government intended. “As it is essential to liberty that the government in general should have a consideration [the House of Representatives] should have an immediate dependence on, an intimate sympathy with the people” (Federalist, 52). Although our study deals with the House of Representatives at a state level, the quote still provides a good basis for using state representatives to understand the relationship between microSAs and immediate relationship to their state government. Representatives of the state’s lower house are in constant election mode, which may strengthen their affinity for and attachment to communities that support them. MicroSAs have shown support towards the Republican Party, so this analysis examines whether there is a positive relationship between Republican control of the State House of Representatives and some benefits for microSAs.

In 2000, the red and blue mapping began trending as a visual aid that showed valuable pockets of voters (Lesh, 2010). In a similar analysis to Lang and Sanchez’s, the

5 Not every state uses this name for the lower chamber of their state legislature, but it is the most common name and will be used for convenience.
map began to show bright blue pockets in the center of metropolitan areas and a strong shade of red on the outskirts near the metropolitan fringe (Lang and Sanchez, 2006). This visual aid stimulated an interest in these lesser known red areas, and research began to identify variables that would explain their voting behavior. Variables such as median household income, population density, race, education, foreign born populations, and women voters were reviewed to begin analyzing these areas’ voting behavior (Lang and Sanchez, 2006). Like much of the early or microSA pre-designation analysis, some of this research needs to be deciphered to identify micropolitan-like communities. Lang and Sanchez, for example, use the term “exurb” to refer to communities similar to microSAs: they have lower density population, they are largely rural, and they have long commutes to the closest metropolitan area.

In analysis of the “red” areas, population density proved to be an indicator for voting behavior, even more so at the county level (Lang and Sanchez, 2006). In his research on Maryland’s political landscape where the focus was areas with microSA characteristics, Lesh finds that higher density populations tended to vote Democratic and those with lower density populations tend to favor Republicans (2010).

Recent studies where the microSA designation was used show a similar pattern of voting behavior. The 2008 RUPRI brief referred to three trends: differences in party support between SMSAs and microSAs, general microSA support for the Republican Party, and a quick shift toward Democratic support in some microSAs within 4 years (Miller and Fluharty, 2008).

In the 2008 election, Democratic presidential candidate Barack Obama took 54.7 percent of the voters in metropolitan areas while the Republican candidate, John McCain,
took 55.2 percent of the microSAs’ voters (Miller and Fluharty, 2008). Between the 2004 and 2008 presidential elections, seven microSAs had shifted from being Democrat to Republican, while 63 microSAs had shifted from Republican to Democrat (Miller and Fluharty, 2008).

For political scientists, political strategists, and political candidates, the new micropolitan designation raises four points. First, lower density population areas similar to microSAs constitute an important voting margin, especially for close election races (Lesh, 2010). Second, the old pattern of voting (metropolitan equals Democratic vote and non-metropolitan equals Republican vote) can be less predictable as metropolitan populations fluctuate, and a conventional pattern is yet to be establish for microSAs. (Lang and Sanchez, 2006). Third, the new microSA designation calls for a reassessment of party commitment to these areas (Miller and Fluharty, 2008) which were previously ignored. Fourth, microSAs may display a more versatile voting behavior than their metropolitan or rural counterparts.

The stereotype of rural areas is that their conservative views run their voting behavior (Miller and Fluharty, 2008). This speculation has developed the War Culture ideology: the idea that “rural” areas vote for the Republican Party because it aligns with their conservative beliefs, even if the party’s economic policies may affect them negatively (Ansolabehere et al., 2006). As mentioned before, the term “rural” was where microSAs were placed pre-OMB designation and therefore, it is safe to assume they have also been placed within this conservative stereotype. The assumption is a fair one as these communities have shown their support for the Republican Party during presidential
elections. Research has yet to look deep into the voting behavior for state and local races in microSAs.

This Republican support from microSAs may have to do with their morals, but it can also be due to how the party aligns with these areas’ economic views. Even if there has been a trend that shows moral issues have become an important factor in voting behavior in the past 30 years, it has not surpassed the importance of economic policy preference among voters (Ansolabehere et al., 2006). Red conservative areas are in part red because of their moral stand, but become more reliable Republican voters because of their concern with economic issues (Ansolabehere et al., 2006).

As more research on micropolitan voting and political behavior surfaces, it provides a glimpse of the relationship between microSAs and the Republican Party; demographics, geography, and ideology all point to shared attitudes between microSAs and the party’s ideology. Yet this early literature does not examine the relationship from the other perspective, whether and how the predominance of the Republican Party in a state affects the microSAs in that state. Based on their voting behavior, one may venture to guess that MicroSAs may fare better in a state where the Republican Party has a majority, but little research has been done on this topic. In fact, not much political science research has been done on the effects of the presence of a political party in a state on certain types of communities. The present study aims to understand what effect Republican Party strength in states has on the economic strength of microSAs in those states.
The Importance of Elected Officials for MicroSAs

Now that microSAs are recognized by the OMB, they need to focus on how to use this designation to their advantage, and their first step should be to seek recognition within state legislation.

Through significant layers, an elected official (particularly a legislator) can be vital to the recognition of microSAs. First, the elected individual starts including the term microSA in legislation that sets criteria for program funding. Second, the program funding can be related to infrastructure, tourism, education, health, or other economic development projects. These projects are inherently tools for recognition. For example, infrastructure and tourism become recognition tools to attract the private sector; health and education programs become tools to attract individuals. Although at the surface, legislation is just one point of recognition, it can help develop economic opportunities for microSAs.

Through legislation, elected officials can promote the recognition of microSAs. Legislators have the power to introduce microSAs into legislation or recognize them in legislative language. Recognition through program funding eligibility opens doors for economic opportunity. Being eligible for an infrastructure program may attract a new employer into their city. Being eligible for an education grant for a university or community college may attract individuals to their community. The microSA designation provides new opportunities for these communities, but they will need the support from their representatives in office to begin acknowledging and including the microSA term into legislation for funding standards. Compared to the metropolitan term, microSAs are
decades behind with regard to inclusion in legislation and other federal and state criteria used for fund allocation.

As mentioned before, research has found that microSAs support the Republican Party, but research has yet to find if this political relationship support is mutual. With the new awareness of the importance of the designation, the lag in recognition for microSAs, and the negative consequences this lag may have on economic opportunities for these communities, will Republican representatives be there to push for recognition in legislation?

When it comes to microSAs, political scientists have focused on voting behavior, and this type of research only helps political parties and interest groups for election strategy. Although important, the voting research of microSAs has ignored the other face of the voting-election relationship; once elected, what does the election outcome mean to an area?

The Lower House of Representatives in the state was chosen to measure the political atmosphere in this study because these individuals are generally more personally involved within their community. By comparing the percentage of Republican representatives in state legislatures with POLICOM’s ranking of microSAs’ economic strength, we aim to find whether there appears to be a relation between parties and the economic enhancement of a microSA.

As noted earlier, another reason why a state’s lower legislative chamber was chosen for analysis is the length of their terms. In nearly all states, representatives in the lower chamber serve two-year terms. In a study on representational activities, it was found that electoral competiveness influences the activities of legislators (Hogan, 2012).
That study included a survey from 16 states’ lower house members elected in a regular election. The survey exposed three top activities: Committee activities, studying, reading, and diffusing pending legislation, and communicating with citizens from their district (Hogan, 2012).

Due to the length of their terms, these representatives are in constant election mode until they choose to leave legislative service. Their projects have to be visible, and their results have to be fast. As microSAs become more cognizant of their designation, and how these designations have provided metropolitan areas with funds through legislative language, they too will want to be recognized for state funds. Their representatives will have to be more aware of opportunities to support these microSAs. Following this notion, this study hypothesizes that there would be a positive correlation between the number of Republicans in session and POLICOM’s economic strength ranking and rank movement.

The microSA movement in ranking relative to other microSAs is used to assess the effect that a Republican Party majority in a state may have on the economic strength of a microSA. If party presence affects microSA prosperity, it should be shown in the movement of the microSA ranking and not only on the rank itself.
Recognizing MicroSAs in State Legislature

OMB statistical area designation terms such as SMSA have been used in state legislation for decades. Conceivably it should be fairly easy to include the newer microSA term in state legislation as well. It is worth noting that as the microSA term usage increases; it may increase competition for allocations and decrease the advantage of metropolitan areas, at least to some degree. But to study the process of the inclusion of a term which can affect areas is unique because the addition of a term is not a “new policy.”

Much of the political science research on policy innovation and implementation has to do with factors that helped their inclusion into mainstream legislation, but not much is provided about the inclusion of a new term into legislation. Yet the inclusion of the microSA term is innovative and has its own repercussions similar to policy. Therefore, we venture to use policy innovation and implementation literature to understand the path microSAs may have to take to be recognized by their state legislature.

The first step to innovation, according to literature, is to provide extensive information on the policy, or in this case the term in question, to policy makers. Although the OMB has published this information, state representatives are constantly bombarded with information from private and public individuals and interest groups (Jewell and Bero, 2008). Political responsibilities may take priority over understanding a new term for population area designations, and diminishing budgets may even take a toll on the number of staff that may assist legislators in understanding a new term (Jewell and Bero, 2008). Aside from the time and budget constraints, government officials tend to be
overwhelmed by data and research that is hard to understand. Furthermore, many informed incumbents can be quickly replaced in one volatile election (Jewell and Bero, 2008). To be recognized, microSAs may have to rely on themselves to demonstrate their importance within their state and maintain legislative attention as legislators themselves change.

“Backward mapping” for policy implementation can be a roadmap to state policy and legislation change that those interested in microSA term inclusion can analyze (Elmer, 2005). The process of the inclusion of the term into legislation can be enhanced by efforts from local officials (Elmore, 2005). If they can move their case up the political agenda, this term can become a policy staple, or at least be recognized (Elmore, 2005). Elmore develops his “backward mapping” theory from earlier research by Martha Derthick. Derthick’s findings pin the importance of local coalitions on the development and success of federal policy (2005). Elmore concludes that it is individuals with immediate proximity to a “problem” that will affect the success of policy (2005).

MicroSAs’ local officials are those within proximity to this issue. If their communities are not recognized, their communities may suffer economic loss from being ineligible for state programs. Yes, the information is out there provided by a government entity, but it is up to the local officials to provide relative information to show the consequences from lack of recognition and ineligibility. The representative needs to relate to a story (Jewell and Bero, 2008). The importance of local movements for policy innovation and implementation is also supported by another policy specific study. In their study on the diffusion of antismoking policies from local to state settings, Shipan and Volden find that given a certain political environment, local-state policy fusion is
significant (2006). Their political environment includes legislature professionalism and interest groups. Once microSAs’ designation, consequences, and the need for the addition of the designation to legislation become evident at a state level, state-state diffusion for the recognition of the microSA term may develop.

Two policy specific studies, one dealing with state lottery adoption and the other with tax innovation, show there is a significant correlation between adoption of policies in states where other states within their vicinity have adopted a similar policy (Stokes and Berry, 1990:1992). Interestingly enough, these two studies also find that internal political characteristics of a state affect the adoption of new policies. For lottery adoption, it was found that a government under split control is more likely to adopt a state lottery. Stokes and Berry’s explanation of this phenomenon is that state lottery adoption may be a non-controversial policy that, even in a split government, many can agree on (1990:1992). This resonates with microSAs’ situation. MicroSAs’ inclusion in legislation is not expected to be a controversial policy. Even when there is a split government, microSAs would be able to push for their inclusion.

Nevertheless, someone within the legislature would have to make a move to begin the inclusion of this term -- someone connected to the local issues of microSAs and connected to State politics -- someone like a state house representative. This representative’s local ties would be a factor to push for their support to use the microSA term, but their party may be a stronger variable in the decision to support said term.

Ideology has been found to determine what states adopt laws first (Gray, 1973). Party has been found to be a factor for legislators’ policy support. In a study measuring gender for policy preference, party/ideology becomes the first variable from which to
understand legislature policy preference (Poggione, 2004). Once the difference in ideology was set for state legislature, the study finds that women tend to be more liberal than men regardless of party/ideology (Poggione, 2004).

Aside from the variables mentioned before for policy creation, let’s not forget a very important factor in any actions taken by an elected official: being reelected. In their study, Wright and Schaffer conclude that parties adopt new issues to bring new voters. Their legislative actions are based on their goal for electoral advantage. So aside from their ideology, their quest for more votes is important in policy creation, or term inclusion.

Although the present study takes into consideration the importance of the process of our term’s inclusion to legislature, the inclusion variable is hard to determine. Instead, this study focuses on the economic strength of a microSA and the factors that may affect it.
Hypotheses and Rationale

There are various assumptions made in this study due to the scarcity of research on micropolitan areas. The first assumption connects eligibility for state programs to the economic strength of microSAs. Since state programs and projects may positively affect microSAs’ development programs, we assume the more a microSA is recognized in writing by legislation, the better its chances for eligibility, which consequently enhances its economic strength. If state legislation has such a bearing on microSA’s economic prosperity, a second assumption arises: that state representatives are vital to microSAs’ inclusion to state legislation that outlines eligibility criteria for state programs and funding. State representatives can provide the recognition needed to provide funds that would enhance the economy in microSAs. The number of inclusions of the microSA term is not easily available; the economic strength of an area is easier to acquire. Therefore, we measure whether the presence of the Republican Party in the lower state legislative chamber is correlated with 1) the economic strength of a microSA or 2) changes in its economic strength rank. Understanding these assumptions, the first two hypotheses deal with the presence of the Republican Party in the House of Representatives.

Hypothesis 1: Percentage of Republican Representatives in session will be positively correlated to microSAs’ economic strength rank.

Hypothesis 2: Percentage of Republican Representatives in session will positively correlate to the movement in the economic strength rank of a microSA.

Political support in micropolitan areas for the Republican Party may be due to the party’s often heard platform rhetoric in support of small business, manufacturing, and agriculture -- three economic sectors commonly linked to the livelihoods of microSAs. If
micropolitan areas and Republican politicians support each other, a microSA’s economic success should be linked to a Republican presence in state legislature.

Other factors that may affect legislators’ interest in microSAs and their interest in adding microSAs to legislation are population and geography. Population has been an important factor in the designation of microSAs by the OMB. The agency did not actually move to have a third designation in their settlement system until dense clusters of population were evident. Population may also be a factor of recognition for microSAs in state legislatures, both for policy and political strategy. If a state has a larger population living in microSAs, legislators may have already been supporting these areas, or may tend to recognize the microSA communities sooner than those representatives in states with a relatively larger metropolitan or rural population. Population is the most readily evident characteristic of microSAs that can affect their recognition by state legislators. This leads to three hypotheses.

Hypothesis 3: The percent of the state population living in microSAs is positively correlated to positive movement in the economic strength ranking.

Hypothesis 4: A state’s total microSA population relative to its total metropolitan population is positively correlated to positive movement in the economic strength ranking of microSAs.

Hypothesis 5: A state’s total microSA population relative to its total rural population is positively related to positive movement in the economic strength ranking of microSAs.

Lack of recognition of micropolitan areas in legislation may also have to do with being outnumbered by their metropolitan counterparts -- not in population, but in the
number of metropolitan areas located in a state. For example, the State of Ohio has 32 microSA areas and nine metropolitan areas while Wisconsin has 11 metropolitan areas and 11 micropolitan areas. To the extent they are outnumbered, micropolitan areas may have greater difficulty getting recognized by their state representatives which leads us to the next two hypotheses.

Hypothesis 6: The number of microSAs in a state is positively correlated to the economic strength ranking of a microSA. The rationale here is that the presence of several microSAs creates a “critical mass” effect which spurs attention to them by state policymakers.

Hypothesis 7: The number of microSAs in a state is positively correlated to positive movement in the economic strength ranking. The rationale is the same as Hypothesis 6.

MicroSAs’ geography has been previously analyzed to understand its effect on economic strength. MicroSAs have been found to be affected by how far they are from a metropolitan area (Dhavale and Lang, 2004). Metropolitan areas are home to key transportation infrastructure hubs such as airports. The distance from such centers can be of advantage or disadvantage to a microSA (Dhavale and Lang, 2004). There are two views to the consequences of being close to or far from a metropolitan area. Some researchers find that microSAs benefit from the “bigger sister” city (Dhavale and Lang, 2004). Others find that being in the shadow of a bigger city can negatively affect a microSA since they cannot compete with the amenities and labor force metropolitan areas possess (Yoder, 2012).
Hypothesis 8 deals with distance and geography of a microSA in relation to metropolitan areas within their state. Previous research has shown both a positive and negative relation to proximity to a metropolitan area. The positive relation is based on manufacturers and businesses looking for a smaller city-like community that is close to a city that would provide workers, incentives, and easy transportation to main hubs. A negative relation is explained by the microSA’s presumed inability to compete with a metropolitan area for manufacturers, businesses, and public program incentives.

Hypothesis 8: Distance from a microSA to the nearest metropolitan area is negatively correlated to the microSA economic strength ranking.
Methodology

Sample

Overall, the sample includes 525 microSAs. The sample is a compilation of microSAs collected from two different sources: POLICOM Corporation’s 2012 Economic Strength Rankings and the Census Bureau population numbers for microSAs (as defined by the Office of Management and Budget as of June 6, 2003). A Micropolitan Statistical Area is defined to “have at least one urban cluster of at least 10,000 but less than 50,000 population, plus adjacent territory that has a high degree of social and economic integration with the core as measured by commuting ties (OMB, 2003).” Some microSAs combine a number of towns or cities that together surpass the 50,000 population.

To maintain a level of consistency in the data, the following criteria were followed. The study includes all original microSAs since the beginning of the designation in 2003 as listed in the census data that was also included in POLICOM’s economic strength ranking from 2004 through 2012. Areas that were included at a later date to any of the two lists used in this study have been omitted in an effort to follow only areas that have been in this designation since the beginning of this program. Data on state legislatures are from the data set “State Partisan Balance,” provided by the Indiana State University Center for Governmental Services and collected by Carl Klarner. MicroSAs

6 The original Census list contained 586 MicroSAs. 34 MicroSAs were omitted because they did not appear on both lists (POLICOM’s and Census). 17 MicroSAs were omitted because their population was located within the boundaries of two states. Nebraska’s 10 MicroSAs were omitted.
in Nebraska were omitted from this study both because the state is nonpartisan and because Nebraska has a unicameral legislature.

The study also omitted any microSAs that fall between two states. Generally in such cases, the core city of the microSA is situated in one state, but the total area and population of the microSA extends into a second state. Seventeen microSAs were excluded for this reason.

Following these criteria reduced the number of anomalies that could have confounded the hypothesis testing.

Variables

Eight variables are used in the study. Three categories of recognition are analyzed in correlation to economic strength. The first category has to do with the political atmosphere of a state, the second with the microSA’s geography, and the third with population characteristics of a state in relation to microSAs. To measure economic strength, two dependent variables are used: POLICOM’s Micropolitan Economic Strength Ranking between years 2004-2011, and each microSA’s movement in ranking between years 2004-2011.

Dependent Variable: *POLICOM’s 2012 Micropolitan Economic Strength Ranking*. As independent economic research, POLICOM has provided microSAs ranking data since 2004. POLICOM’s ranking derives from data from two years prior. The ranking appears from 1-527 with one being the highest rank and 527 being the lowest

7 It would not have been feasible to include data on party composition of the state legislative chamber or on the distance of a MicroSA to its state capital for these 17 MicroSAs that straddle state lines.
rank. The ranking was inverted for this study to allow an easier reading of the correlations. Therefore, 1 is expected to be the lowest rank and 527 is the highest rank.

This same ranking data has been used to measure the movement of economic strength for microSAs. This was done by subtracting the first year ranking from the second-year ranking (i.e., 2004 rank-2005 rank; 2005 rank-2006 rank). The results were then multiplied by -1 to make movement up the scale positive, and movement down the scale negative (i.e., rank 516 moves to 521 and would equal -5 which then needs to be made positive because a movement up the scale is a positive move).

POLICOM’s ranking data was chosen because it “measures how the economy has behaved, not what has caused it to perform (Fruth, 2012).” This is important, as this study aims to provide some variables that may affect the ranking. Three groups of variables are used to reflect economic behavior (Fruth, 2012).

The first group includes variables that reflect the size and quality of the economy in the microSA: all workers’ earnings, jobs, wages; per capita - total worker earnings and personal income; earnings by place of residence; per capita earnings by residences; wage and salaried workers – earnings, jobs, and wages (Fruth, 2012).

The second group of variables measures the growth and decline of small businesses, construction, and retail industries. Fruth explains these are very reactive industries that provide an accurate picture of how the economy in that area is performing (2012). This group includes earnings, jobs, and wages from non-farm proprietors, construction, and retail (Fruth, 2012). The third group of variables includes the negative side of the economy with numbers of welfare and Medicaid. A growth in these reflects a poor economy (Fruth, 2012).
Political Atmosphere: Political atmosphere is used as an independent variable. The political atmosphere is recorded through the percent of Republicans in session in the State’s lower legislative chamber. The percent is recorded for the years 2004-2011.

Geography is represented with one variable: A microSA’s distance to the closest metropolitan area in their state.

Proximity to a Metropolitan Area: Proximity to a metropolitan area has been a closely watched factor of growth and development in microSAs. Since the beginning of the new microSA designation, researchers noticed a positive relationship of economic growth and proximity to a metropolitan area. The research attributes this to the private sector looking to settle in smaller cities that were close to a bigger worker market.

The state-based Metropolitan and Micropolitan Statistical Areas Maps of 2003 provided by the U.S. Census were used as visual aids to determine what metropolitan areas had a proximity to the microSA. To provide more specificity, the distance was measured from core city in the microSA to core city in the chosen metropolitan area. If a metropolitan area had more than one core city, the distance was recorded to the city with the largest population. A metropolitan area in many cases is a group of overlapping core populations that identify to one city. Each city has its own population number, but the metropolitan area population is recorded as a group. The largest city has been used to measure the distance to a microSA. Distances were recorded within a state boundary and ignored metropolitan areas from another state.

The website application “Google Maps” was used to determine the distance between the microSA core city and the metropolitan area core city. The shortest driving distance was always recorded. It is important to emphasize that driving distance was used
for this study, as the term “distance” has many meanings in Google Maps. For example, Fresno, California is the closest metropolitan area to the microSA of Bishop, California. Both cities are separated by the Yosemite National Forest. The straight distance between the two cities, across Yosemite, is approximately 86.90 miles\(^8\). Yet, the shortest driving distance is 336 miles. By using the driving distance, the study aims at not ignoring geographic obstacles that may affect the connection to a metropolitan area.

For this study, roads contribute to the connection between a recognized, developed metropolitan area and the microSA. The more difficult the connection is from metropolitan area to a microSA, the less the chances are that a manufacturer may want to move there for many reasons. For example, the longer commute may prove difficult and expensive for the transportation of their goods or materials. Roads are also connections to main hubs for transportation, communication, and manufacturing. Therefore, proximity to a metropolitan area from a microSA is expected to positively affect a microSA’s ranking.

State population characteristics in relation to microSAs are measured by percent of state population living in micropolitan areas; state’s microSAs population as a percent of its total metropolitan population; state microSA population as a percent of total rural population.; number of metropolitan areas in a state; and number of micropolitan areas in a state.

\(^8\) Distance provided by www.distance-cities.com. The distance provides the straight distance across Yosemite National Forest between Fresno, California and Bishop, California.
Percent of MicroSA Population within a State: All population numbers were acquired from the census data for 2010 for each state except Nebraska. The microSA population in a state was divided by the total population of the state. The total microSA population was the outcome of the addition of every microSA’s population used in the model, per state.

Total MicroSA Population in the State as a Percentage of Total Metropolitan Population: This variable was the outcome of the total microSA population in a state divided by that state’s metropolitan population acquired through the Census Bureau.

Total MicroSA Population in the State as a Percentage of Total Rural Population: The variable was acquired in a similar manner as the percentage of total metropolitan population. The total microSA population in a state was divided by the total non-metropolitan population of a state acquired through the Census Bureau.

Number of Metropolitan and Micropolitan Areas: This variable came from counting the metropolitan and micropolitan areas within a state from the list provided by the Census Bureau.

Findings

By using Pearson’s R test, three areas of recognition (State Politics, State Population Characteristics, and Geography) are tested in relation to the economic strength and economic improvement of microSAs.

Hypothesis 1: Percentage of Republican Representatives in session will be positively correlated to microSA’s economic strength rank. The test negates this hypothesis. In fact, the results showed a significant negative correlation between economic strength ranking and percent of Republicans in session for the years 2006,

Interestingly, the data supports hypothesis 2: Republican Representatives in session will be positively correlated to microSA’s economic strength rank movement. A significant trend of positive correlation appears from 2008-2010. Other years showed non-significant positive correlation, but there was a significant negative correlation for 2005.

The two tests provide an overview of a Republican-microSA relationship. While those microSAs located in states with a higher percent of Republicans in session tend to be at a lower rank, there was at least for some years a positive direction to the movement in economic strength ranking for microSAs with more Republicans in session. The rank for 2004 (the first) shows the last ten microSAs to be located in Texas, Louisiana, North Dakota, Kansas, Oklahoma, and New Mexico--highly Republican States but also highly rural areas.

Variables for hypothesis 3, 4, and 5 tested for a correlation between the state’s population characteristics in 2010 and microSAs economic strength ranking movement from 2009 to 2010. For hypothesis 3, the results were positive but not statistically significant. Correlations were positive and statistically significant in the tests of hypothesis 4: The total microSA population in the state as a percentage of total metropolitan population is positively correlated to positive movement in the economic strength ranking and hypothesis 5: Total microSA population in a state as a percent of total non-metropolitan population is positively related to positive movement in the economic strength ranking. Greater relative size of the microSA population compared
with metropolitan or rural populations showed a significant positive correlation to economic rank movement (see Table 5).

Along the same lines of recognition by population numbers, strength by number of micropolitan areas was thought to be positively correlated to the economy. Hypotheses 6 and 7 align a high number of microSAs in a state with high ranking and positive movement in the ranking. The analysis negates the hypotheses. For hypothesis 6, a significant negative correlation is seen between the number of microSAs and a microSA’s rank for all the years tested (see Table 6). A similar trend is seen in rank movement with a significant negative correlation between years 2005-2009 (see Table 7).

For hypothesis 8, it was predicted that a higher number of miles from a microSA to a metropolitan area is negatively correlated to the microSA’s economic strength rank. The findings are inconclusive: correlations were positive and significant for two years, negative and significant for one year, and non-significant for the other years (see Table 8).
Discussion

Prior to the microSA designation, microSAs were hidden in the rural category. It is hard to tell the amount of negative effects this may have had on these areas, but the assumption here is that it may have disqualified them from various government programs. Once the microSA designation was in place in the early 2000’s, voting research showed these areas leaned Republican, but had an inclination to quickly changing their voting tendencies. This may be due to a previously-discussed subject in which the voter tends to lean towards the party that aligns with their economic views. Hypotheses 1 and 2 try to explain the relationship between elected officials and microSAs. Do these areas fare better being represented by the Republican Party? The answer is ambiguous because while there was a negative correlation between Republican Party presence and economic strength rank, there was positive correlation between Republican Party presence and rank movement. This may show that microSAs follow the pattern found by Lang and Sanchez (2006) where population density and household income rule voting behavior of certain areas. It may not be that Republican presence means low ranking for a microSA. It may be that microSAs in the lower rank vote Republican. More interestingly, their perception that the Republican Party aligns with their economic interest may be accurate. The positive movement in relation to the Republican Party presence in most years in our test may be a glimpse into the positive “voter-elected official” relationship.

Population was shown to play a part in the rank of microSAs. Although the population density of a metro area may attract economic strength factors, the test exposed the importance of population concentration in microSAs to their own economic strength.
Numbers speak. When compared to metro and rural population numbers, microSAs did better in ranking when that percentage in comparison to the other two areas was higher. Although the microSA term did not appear until the early 2000’s, microSAs may have had some economic power within their state already. When it comes to government programs, this may be a consolation to these areas. Although the lack of terminology may have prevented them from getting into certain government programs, their numbers seem to have provided them with enough presence to affect their economy. This is good news to microSAs: their economic strength may continue to improve as they combine their numbers and their term to be more visible to their government. It is harder for government programs to ignore areas where a large portion of the population is located. With a new OMB designation, states now have a category with which to easily include a large portion of their population in legislation and funding formulas. Legislators now have a term to help them focus on support for areas that have shown support for them.

High numbers do not always translate well for a microSA, both in rank and rank movement, if it is located in a state with a high number of microSAs. This can be attributed to competition for resources. If population pulls in factors that affect their economy in a positive way, too many pulls from different directions on these factors may create an unfavorable environment for microSAs’ economic strength. The tests show a negative correlation between the number of microSAs and rank and rank movement. But not all is lost in these numbers. The microSA term can help locate communities that can work together to attract economic assets. Two microSAs in a vicinity can work together to pull available government resources towards their area. MicroSAs can also identify rural or metro partners to work with for “regional” development.
Although our test for hypothesis 8 showed a possible relationship between the metropolitan areas and microSAs, the results were inconclusive with positive and negative correlation varying between years. The relationship is there but it is all over the place. The question is what other variables in addition to distance contribute to a constructive relationship between these two.
Conclusion

Economic strength of microSAs appears to be related most closely to the percentage of Republican Representatives in session and the number of microSAs present in a state, though both variables showed a negative correlation. Improvement in the ranking for economic strength appears to be related to percentage of Republican Representatives in session; population living in microSAs; and the number of microSAs present in a state. The first two showed a positive correlation while the third exposed a negative one.

MicroSAs are economic regions that need to be studied and understood. The OMB’s new designation is important to smaller communities because it recognizes their economic and social impact in our country. Recognition will continue to be a challenge for these communities. Now that they have a designation, what will these mean in terms of economic development? The importance of a designation is spelled out in much of the literature review; for good or ill, legislation often uses the OMB’s metropolitan area designations to allocate funding and establish programs.

The present study focused on three factors for microSA recognition: political atmosphere, state population characteristics, and geography. All factors except distance showed some significant correlation to economic ranking or movement in ranking.

Although at first glance the Republican Party seems to be negatively correlated to that economic ranking of a microSA, a deeper look into the ranking shows that the presence of the Republican Party in session for the lower house of representatives is positively correlated to positive movement in the economic rank for a microSA. This is a fascinating first glance at party-microSA relationship. It appears that the Republican
rhetoric may translate to action for the small communities that support them. Further understanding in this relationship is needed. For example, is there a relationship between ranking and years a representative is in office? This relationship between a semi-local official and the ranking of a microSA should continue to be analyzed.

Furthermore, a study on political atmosphere and its impact on microSAs’ economic strength should include the senate majority and the party affiliated to the governor of a state. This would provide a deeper understanding in party reciprocity towards microSAs. More importantly, including these factors would allow a review of how a party’s position within the state’s legislative and executive wings affect a microSA.

Along the same line, a comparative study of how the political atmosphere of a state, including the House of Representatives, the Senate, and the Governor’s political affiliation, affects both metropolitan areas and microSAs would be recommended. It is important to see if these two similar systems are affected differently by the same political atmosphere. Is there a similarity in effects from the same party? Has there been a decrease in metropolitan term inclusion due to a party majority in the state? To understand how these areas are influenced by politics would provide a base for acknowledging any disparities in funding or treatment of communities within a state.

As this term continues to provide new categories for study, the disparity in the recognition of the metropolitan term over the micropolitan term has to be a focus for political scientists. Metropolitan areas have had years of preferential treatment in legislation. The metropolitan term has been added to legislation that provides terms for federal and state program fund allocation. MicroSAs also lag behind on these terms.
Research needs to continue focusing on legislative language and its inclusion of the micropolitan term. Research continues to link legislature professionalism to policy innovation. If using the term micropolitan is innovative, then perhaps a study is in order on how professionalism and party presence affect the number of inclusions of this term in state legislation.

The present study only scratched the surface of the importance of population density for microSAs. But this may be a path to understanding the relationship between rural, microSAs, and metropolitan areas’ economies. Even to the point of understanding how geographical distances affect this relationship. In this study, distance was analyzed with no firm conclusion. Studying population density and distance combined may prove more successful in providing a more concrete conclusion on whether being close to a metropolitan area affects micropolitan areas. This study may be broadened to include the distance of rural communities to micropolitan areas to further analyze their relationship. Rural areas, like metropolitan areas, continue to be both friends and foes to microSAs. These areas pull government resources from microSAs and further understanding of this triangle’s economies should be important to political scientists as it may start creating more competition between these areas. This competition may create interesting voting behavior as the term microSA becomes more used.

There are so many elements that affect economic growth in an area, but in the case of microSAs, one element is recognition in state legislation and funding. Continuing to be added in eligibility criteria through legislation will provide microSAs with much needed recognition for funding. All other factors stem from recognition: from attracting the private sector and manufacturers to becoming a tourist attraction. The more these
areas are seen as their definition describes them, as an integrated system with economic impact, the more they are likely to grow. Population density will grow if individuals see their home town as valuable and full of opportunities. Metropolitan areas will not be competition, but a tool of exposure to companies looking for a prime location. MicroSAs are no longer stuck in obscurity between metropolitan areas and non-metropolitan areas: they are a category in their own right. Political scientists recognizing this will be the first step to a new dimension in political science research.
Table 1: Ranking and Republicans in Session 2004-2005

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2004 % of Republicans in Session</td>
<td>Pearson Correlation</td>
<td>1</td>
<td>-.023</td>
<td>-.029</td>
<td>2005 % of Republicans in Session</td>
<td>Pearson Correlation</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.598</td>
<td>.505</td>
<td>Sig. (2-tailed)</td>
<td>.055</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>525</td>
<td>525</td>
<td>N</td>
<td>525</td>
<td>525</td>
</tr>
<tr>
<td>2004 Ranking</td>
<td>Pearson Correlation</td>
<td>-.023</td>
<td>1</td>
<td>-.167**</td>
<td>2005 Ranking</td>
<td>Pearson Correlation</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.598</td>
<td>.000</td>
<td>Sig. (2-tailed)</td>
<td>.055</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>525</td>
<td>525</td>
<td>N</td>
<td>525</td>
<td>525</td>
</tr>
<tr>
<td>0405 Ranking Improvement 2004-2005</td>
<td>Pearson Correlation</td>
<td>-.029</td>
<td>-.167**</td>
<td>1</td>
<td>0506 Ranking Improvement 2005-2006</td>
<td>Pearson Correlation</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.505</td>
<td>.000</td>
<td>Sig. (2-tailed)</td>
<td>.001</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>525</td>
<td>525</td>
<td>N</td>
<td>525</td>
<td>525</td>
</tr>
</tbody>
</table>

Correlation is significant at the 0.01 level (2-tailed).
<table>
<thead>
<tr>
<th></th>
<th>Ranking and Republicans in Session 2006</th>
<th></th>
<th></th>
<th>Ranking and Republicans in Session 2007</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2006 % of Republicans in</td>
<td>Pearson Correlation</td>
<td>1</td>
<td>-.124**</td>
<td>Pearson Correlation</td>
<td>1</td>
<td>-.184**</td>
</tr>
<tr>
<td>Session</td>
<td>Sig. (2-tailed)</td>
<td>.004</td>
<td>.112</td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
<td>.851</td>
</tr>
<tr>
<td>N</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>N</td>
<td>525</td>
<td>525</td>
</tr>
<tr>
<td>2006 Ranking</td>
<td>Pearson Correlation</td>
<td>-.124**</td>
<td>1</td>
<td>Pearson Correlation</td>
<td>-.184**</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.004</td>
<td>.002</td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>N</td>
<td>525</td>
<td>525</td>
</tr>
<tr>
<td>0607 Ranking Improvement</td>
<td>Pearson Correlation</td>
<td>.069</td>
<td>-.135**</td>
<td>Pearson Correlation</td>
<td>.008</td>
<td>-.157**</td>
</tr>
<tr>
<td>2006-2007</td>
<td>Sig. (2-tailed)</td>
<td>.112</td>
<td>.002</td>
<td>Sig. (2-tailed)</td>
<td>.851</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>N</td>
<td>525</td>
<td>525</td>
</tr>
</tbody>
</table>

Correlation is significant at the 0.01 level (2-tailed).

Correlation is significant at the 0.01 level (2-tailed).
Table 3: Ranking and Republicans in Session 2008-2009

| Ranking and Republicans in Session 2008 | Ranking and Republicans in Session 2009 |
|---|---|---
| **2008 % of Republicans in Session** | **2008 % of Republicans in Session** |
| Pearson Correlation | Pearson Correlation |
| 1 | 1 | **Correlation is significant at the 0.01 level (2-tailed).**
-.187**	-.159**
.000	.000
N	N
525	525
525	525
2008 Ranking	**2009 % of Republicans in Session**
Pearson Correlation	Pearson Correlation
-.187**	-.161**
.000	.000
N	N
525	525
525	525
0819 Ranking Improvement 2008-2009	**0708 Ranking Improvement 2008-2009**
Pearson Correlation	Pearson Correlation
.177**	.198**
-.159**	-.160**
.000	.000
N	N
525	525
525	525

Note: Pearson correlations are used to measure the linear relationship between two variables. The significance levels are indicated by **, indicating a significance level of 0.01 (2-tailed).
<table>
<thead>
<tr>
<th></th>
<th>2010 % of Republicans in Session</th>
<th>2010 Ranking</th>
<th>1011 Ranking Improvement 2010-2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 % of Republicans in Session</td>
<td>Pearson Correlation</td>
<td>1</td>
<td>-.094*</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.031</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>525</td>
<td>525</td>
</tr>
<tr>
<td>2010 Ranking</td>
<td>Pearson Correlation</td>
<td>-.094*</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.031</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>525</td>
<td>525</td>
</tr>
<tr>
<td>1011 Ranking Improvement 2010-2011</td>
<td>Pearson Correlation</td>
<td>.141**</td>
<td>-.144**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.001</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>525</td>
<td>525</td>
</tr>
</tbody>
</table>

Correlation is significant at the 0.01 level
*Correlation is significant at the 0.05 (2 tailed)
Table 5: State Population Characteristics and Ranking

<table>
<thead>
<tr>
<th>Ranking Improvement 2009-2010 Pearson Correlation</th>
<th>Ranking Improvement 2010-2011 Pearson Correlation</th>
<th>Rank</th>
<th>Rank</th>
<th>% of State Population Living in a Micropolitan Area</th>
<th>Total Micro Population as a % of Total Metropolitan Pop</th>
<th>Total Micro Population as a % of Total Non-Urban Pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.057</td>
<td>.188**</td>
<td>.204**</td>
<td>.056</td>
<td>.104*</td>
<td>.120**</td>
</tr>
<tr>
<td>.191</td>
<td>.000</td>
<td>.000</td>
<td>.200</td>
<td>.017</td>
<td>.006</td>
<td></td>
</tr>
<tr>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
</tr>
<tr>
<td>.057</td>
<td>1</td>
<td>-.144**</td>
<td>.118**</td>
<td>-.025</td>
<td>.057</td>
<td>-.027</td>
</tr>
<tr>
<td>.191</td>
<td>.001</td>
<td>.007</td>
<td>.572</td>
<td>.194</td>
<td>.532</td>
<td></td>
</tr>
<tr>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
</tr>
<tr>
<td>.188**</td>
<td>-.144**</td>
<td>1</td>
<td>.966**</td>
<td>.019</td>
<td>-.020</td>
<td>.156**</td>
</tr>
<tr>
<td>.000</td>
<td>.001</td>
<td>0.000</td>
<td>.664</td>
<td>.645</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
</tr>
<tr>
<td>.204**</td>
<td>.118**</td>
<td>.966**</td>
<td>1</td>
<td>.013</td>
<td>-.005</td>
<td>.149**</td>
</tr>
<tr>
<td>.000</td>
<td>.007</td>
<td>0.000</td>
<td>.774</td>
<td>.903</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
</tr>
</tbody>
</table>

Correlation is significant at the 0.01 level (2-tailed).

*Correlation is significant at the 0.05 level (2-tailed).
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>1</td>
<td>.572**</td>
<td>.257**</td>
<td>.261**</td>
<td>-.240**</td>
<td>.235**</td>
<td>-.199**</td>
<td>-.168**</td>
<td>-.128**</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td></td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.003</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
</tr>
</tbody>
</table>

# of Metro	Pearson Correlation	.572**	1	-.061	-.076	-.062	-.064	-.062	-.046	-.041	-.078
	Sig. (2-tailed)	.000		.165	.080	.155	.142	.155	.290	.349	.075
N		525		525	525	525	525	525	525	525	525

Correlation is significant at the 0.01 level (2-tailed).

*Correlation is significant at the 0.05 level (2-tailed).
Table 7: Number of Micropolitan and Rank Improvement

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># of Micropolitan</td>
<td>1</td>
<td>.572**</td>
<td>-.059</td>
<td>-.127**</td>
<td>-.118**</td>
<td>-.114**</td>
<td>-.008</td>
<td>-.066</td>
<td>.019</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td></td>
<td></td>
<td>.000</td>
<td>.174</td>
<td>.004</td>
<td>.007</td>
<td>.009</td>
<td>.850</td>
<td>.128</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
</tr>
<tr>
<td># of Metro</td>
<td>.572**</td>
<td>1</td>
<td>.110*</td>
<td>-.017</td>
<td>-.062</td>
<td>-.006</td>
<td>.011</td>
<td>-.042</td>
<td>.061</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td></td>
<td></td>
<td>.000</td>
<td>.011</td>
<td>.695</td>
<td>.158</td>
<td>.884</td>
<td>.810</td>
<td>.337</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
<td>525</td>
</tr>
</tbody>
</table>

**Correlation is significant at the 0.01 level (2-tailed).

*Correlation is significant at the 0.05 level (2-tailed).
Table 8: Miles to Capital and Closest Metropolitan

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles to Metro</td>
<td>1</td>
<td>.237**</td>
<td>-0.90*</td>
<td>-0.079</td>
<td>-0.047</td>
<td>-0.026</td>
<td>0.005</td>
<td>0.056</td>
<td>0.106*</td>
<td>0.119**</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>0.000</td>
<td>0.039</td>
<td>0.071</td>
<td>0.285</td>
<td>0.551</td>
<td>0.908</td>
<td>0.201</td>
<td>0.015</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.000</td>
<td>0.207</td>
<td>0.524</td>
<td>0.430</td>
<td>0.501</td>
<td>0.595</td>
<td>0.940</td>
<td>0.793</td>
<td>0.811</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>524</td>
</tr>
</tbody>
</table>

**Correlation is significant at the 0.01 level (2-tailed).

*Correlation is significant at the 0.05 level (2-tailed).
Bibliography

Beard, Jeffry W. Transitional and Generational Poverty in a Micropolitan and Rural County in New Hampshire, a Review of the Literature Concerning Poverty Prevention and Intervention Programs. Paper presented by Center for Rural Partnerships, Plymouth State University.

US Census

http://www.census.gov/population/www/cen2010/cph-t/cph-t-5.html

http://www.census.gov/popest/data/state/totals/2013/tables/NST-EST2013-01.xls

http://www.census.gov/compendia/statab/2012/tables/12s0029.xls

Curriculum Vitae

SUANI NIETO

Education

2005 Bachelor of Science, Environmental Studies-Public Policy, Sociology Minor, Northland College Ashland, WI

Work Experience

October 2016-Present: Co-Owner, Tlapa Management, LLC, Gladstone, MI

June 2018-Present: Co-Owner, R Gym, Gladstone, MI

January 2019-October 2019: Executive Administrative Assistant, Delta County Chamber of Commerce, Escanaba, MI

September 2013-January 2019: Assistant Airport Manager, Delta County Airport, Escanaba, MI

November 2011- September 2013: Executive Administrative Assistant, Delta County Economic Development Alliance (EDA), Escanaba, MI

April 2011-November 2011: Public Relations & Environmental Consultant, H2O in Motion, Escanaba, MI
Patents and Publications

Memberships

2018, 2019 Delta County Chamber of Commerce, Escanaba, MI

2011 Delta County Delta Force Leadership Program, Escanaba, MI

Awards and Honors

2005 University of Wisconsin, Superior, WI, McNair Scholars Program

2005 Sigurd Olson Environmental Institute Ashland, WI, Phillips Taylor Writing Fellowship

2005 Northland College Ashland, WI, Student Body Secretary

2004 Northland College, Ashland WI, Student Alumni Representative