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Abstract—As the raising of traffic accidents caused by 

commercial vehicle drivers, more regulations have been issued 

for improving their safety status. Driving record instruments are 

required to be installed on such vehicles in China. The obtained 

naturalistic driving data offer insight into the causal factors of 

hazardous events with the requirements to identify where 

hazardous events happen within large volumes of data. In this 

study, we develop a model based on a low-definition driving 

record instrument and the vehicle kinematic data for post-

accident analysis by multi-modal deep learning method. With a 

higher camera position on commercial vehicles than cars that 

can observe further distance, motion profiles are extracted from 

driving video to capture the trajectory features of front vehicles 

at different depths. Then random forest is used to select 

significant kinematic variables which can reflect the potential 

crash. Finally, a multi-modal deep convolutional neural network 

(DCNN) combined both video and kinematic data is developed 

to identify potential collision risk in each 12-second vehicle trip. 

The analysis results indicate that the proposed multi-modal deep 

learning model can identify hazardous events within a large 

volumes of data at an AUC of 0.81, which outperforms the state-

of-the-art random forest model and kinematic threshold method. 

I. INTRODUCTION

More than 1.25 million people died each year because of 
road traffic crashes and 90% of the fatalities occurred on the 
roads in low- and middle-income countries according to World 
Health Organization [1]. In China, commercial vehicles had 
attributed to 30.5% of traffic crashes [2], many of them 
experienced the violations of traffic rules and chaotic driving 
by pedestrians, bicyclists, and surrounding vehicles, as well as 
driver distraction. To prevent vehicle crash and understand the 
accident causation, driving record instruments are required in 
commercial vehicles. According to the Regulation on the 
Implementation of the Road Traffic Safety Law in China, the 
road passenger automobiles, heavy lorry or semi-trailer tractor 
must be equipped with a driving record instrument. Two types 
of data are recorded: (1) driving video with a low frame rate 
and definition, and (2) kinematic data such as velocity and 
deceleration. Identification of the crash and near-crash events 
within the data plays an important role in crash and near-crash 
causal factors assessment. In this work, a high position camera 
watches father distance from a commercial vehicle captures 

early dangers in video because of the slow stopping of such 
vehicles. The camera is installed on the upper side of the 
windshield to capture far objects with less occlusion. The 
motion profile samples video frames and stacks them into one 
image along the time axis so that spatial-temporal images are 
obtained to reflect a long-term traffic conditions. The crowd 
traffic at distance, relative speed of approaching vehicles, the 
invasion of other traffic into the lane, etc. are the critical 
factors causing hard braking later if a driver is not aware of 
such events. Because of the difficulty in explicit modeling of 
such scenarios far at front, we employ the deep learning 
method to memorize such “impression” in the driving video. 
A model trained by multi-modal deep learning method which 
simultaneously considering vehicle kinematic features and its 
surrounding traffic environment is proposed in this paper. 
Three main components include: (1) Motion profile 
acquisition as temporal-spatial images [7] for the traffic 
motion, position, and depth of dynamic scenes; (2) A random 
forest model to analyze the kinematic variable importance and 
select significant variables; (3) Multi-modal deep 
convolutional neural network (DCNN) trained with motion 
profiles and selected kinematic variables. Effective features 
from the image training data that are related to image trajectory, 
divergence, density, and Time-to-collision (TTC) are reflected 
by motion profiles. And the DCNN exploits an efficient co-
representation of motion profiles and selected kinematic 
variables.  

The main contributions of this paper are: (1) Driving video 
information extraction and analysis using the motion profile. 
(2) A multi-modal deep learning model combining both video
and kinematic data. The experiments show that the proposed
model outperforms state-of-the-art model (AUC 0.81)

II. RELATED WORKS

In recent studies, the combination of kinematic thresholds 
is used to identify the hazardous event [3]. The sensitivity of 
this method is 0.62 Jerk, which indicates the differential of 
acceleration as a widely-used variable in post-accident 
analysis [4, 5].   The jerk threshold method could achieve 86% 
accuracy in a dataset with 637 hard-braking events [4]. 
However, environment factors were also proved to have 
important impacts on collision according to study [6]. They 
have not been utilized in these kinematic threshold methods. 
Not all the hard braking action lead to a hazardous event. It 
may happen in a crossing road due to the traffic signal. 
Consequently, efficient method for identifying hazardous 
driving event using video and kinematics data is in need. 

Driving videos, usually processed with computer vision 
techniques, provide environment factors during a vehicle trip. 
Works in [7, 8, 9] estimate TTC from motion in driving videos 
without applying vehicle recognition and depth measuring in 
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prior. Computer vision technique has limited performance in 
recognizing far road traffic due to a low resolution, and a cut 
in of other vehicles in complex traffic scenes due to the 
difficulty in explicit modeling of dynamic environments. In 
the following, we will discuss the data processing of 
naturalistic driving video in Section III. Data processing is 
given in Section IV. The hazardous event identification model 
including multi-modal DCNN and RF will be introduced in 
Section V. Experiments will be in Section VI followed with 
conclusion. 

Fig. 1 Timeline of driving event recorded in the video clips for analysis. Each 

twelve-second vehicle trip contains a hard breaking by driver under the 

circumstances of crowd traffic, lane occupying by others, fast ego-speed, etc.  

III. NATURALISTIC DRIVING VIDEO ANNOTATION 

The naturalistic driving video and data were obtained 

from a commercial truck fleet in Shanghai for two years. The 

obtained videos have 4 frames per second and the resolution 

is 760×368 pixels. The color of video is turned to low 

saturation like black-white video in compression. The vehicle 

velocity were recorded at 1Hz and deceleration at 3Hz. 

Anytime a high deceleration lower than -0.4g (g: Acceleration 

of Gravity) occurs, video and data for eight seconds in prior 

and four seconds after were dumped for machine learning 

later. Totally, 1959 clips of such video were sampled along 

with their vehicle control parameters including velocity and 

deceleration. For all these videos, annotation of dangerous 

levels and types were carried out by human experts. By 

observing the selected video clips, we found many critical 

incidents caused by (1) driver’s distraction while front 

vehicles were approaching quickly; (2) sudden cut-in or U-

turn of other vehicles and bicycles into the pathway; (3) some 

violations of traffic rules by other vehicles causing 

unpredictable dangers. All these were followed with a sudden 

braking and/or sharp steering to avoid crash. Depending on 

the distance where these events happen and the ego-velocity, 

the severity level is classified to 2 categories in Table I. 

TABLE I. DEFINITION OF SEVERITY LEVEL IN DRIVING 

Level Description 

Hazardous Any circumstance that requires a crash-avoidance 
response on the part of any other vehicle [10].  

Non-conflict  Any circumstance that affects normal driving and 

requires driver’s reaction. But no conflict objects 
and potential crash exist [10]. 

The timeline of recorded driving event is shown in Fig. 1. 

With a hard braking, most video recorded maneuvers avoided 

crash, but these should be replaced by a smooth breaking in 

earlier preparation. To identify whether hazardous event 

happened during the video clip, video frames which last for 

12 seconds are sampled for post-accident analysis.  

Many hazardous events happen in a sequential process. 

They can be observed at a far distance and an early stage, and 

then become hazardous when they approach to close ranges if 

the driver did not pay attention. For these reasons, we divide 

the field of view into three zones to capture frontal vehicles at 

far, middle, and near ranges respectively as shown in Fig. 2. 

For the camera obtaining frames as shown in Fig. 2, the 

horizon is first calibrated at 220 pixel high in the image, which 

represents the infinity distance. Below the horizon in the 

image, three zones are selected to cover the ranges of (5, 10], 

(10, 25], and (25, ∞] meter ahead the vehicle, respectively. 

The distant zone at high image position observes far traffic 

while the close one at low position responses to immediate 

danger of cut in. 

 
Fig. 2 Vehicle forward view taken by in-vehicle camera. Three zones are 

located below the horizon to monitor dynamic scenes at three distances on 

road. They cover ranges in (5, 10), (10, 25), and (25, ∞) meter. 

IV. VIDEO INFORMATION EXTRACTION AND CONDENSING 

To bridge the video signal to the classification of 

hazardous events and avoid influence caused by complex 

traffic environment, a data representation that reflects the 

motion trajectory information more than one video frame is 

implemented, since the divergence of trajectories can be 

linked to TTC [9].  Temporal driving video is converted to a 

spatial-temporal map so that the time, distance, position, and 

speed of surrounding scenes can be included. This mapping 

allows the machine learning process to model heterogeneous 

events. Another merit of it is the data reduction for both big-

video learning and on-line real-time event detection during 

driving. We employ the motion profile [7, 8, 9] to record the 

motion of surrounding traffic.  

To grasp the temporal changes at three distances, three 

motion profiles are generated from three zones. Fig. 3 shows 

how a motion profile is obtained from a driving video. In 

details, the color in each zone is vertically averaged to 

produce a pixel line. For each zone, the lines from all frames 

are further collected over twelve seconds to form an image 

called motion profile [8]. In the profiles, the object width (size) 

at corresponding height (depth) and their motion trajectories 

are recorded as traces. Their density, lateral position, and 

divergence/convergence rate can be further obtained through 

computing. The upper zone (far range) has dense and narrow 

traces from far/small vehicles and background, while lower 

zone (close range) has uniformed road surface and a bumper 

if a frontal vehicle gets close. Figure 4(1-3) shows such three 

motion profiles extracted from a video and their combined 

image in color is in Fig. 4(4). The data size to process now is 

the three image slices out of a video volume, which achieves 

the condensing rate to 3/368, where 368 is the frame height in 



pixels. The motion profile obtains the common motion of 

objects at each range, which is the key factor to cause accident, 

rather than the identity of objects themselves. The motion 

profile keeps the important object width and position, rather 

than object height and shape that is less related to accidents.  

 
Fig. 3 One example of motion profile obtained from driving videos. Vertical 

axis of motion profile represents time and horizontal axis represents the x 

coordinate in video frame.  

  
(1) Far traffic in upper motion profile   (2) Middle range 
 

 
(3) Close cut in in lower profile            (4) Integrated motion profile in color 
Fig. 4 Motion profiles from a video clip of 6 seconds. (1)-(3) are three motion 

profiles at different image heights. Their integrated display in color is in (4) 

obtained from gray images of (1)-(3). Middle range vehicle has a trajectory 
at center. Close range has a target cut-in from right in the view. The common 

wave across three profiles in the entire x-span comes from the sudden turning 

of camera/vehicle. The dirty glass at lower profiles draw vertical transparent 
stripes that bother the traffic flow.  

To examine the traffic at different ranges simultaneously 

and discover their correlation speed in traffic flow, we convert 

three motion profiles to gray level images (ignore color and 

illumination factor of traffic), and then combine them into a 

single color profile, in which the lower profile is set in red 

channel for alarming, middle profile in green channel for easy 

observation, and upper profile in blue channel that is less 

obvious in display. Figure 4(4) shows such a combined 

motion profile. The motion profile thus converts the temporal 

information to a spatial representation with a vertical time 

axis. The object size and position are preserved along the 

horizontal axis that is the camera angle.  

To give more examples, Figure 5 shows five typical 

driving scenarios represented in motion profiles. In a car 

following scenario (Fig. 5.1), a main trajectory lies in the 

middle of the profile, and it gets wider as the time increases. 

The color of this trajectory is mainly red because the front 

vehicle was at the close range in video. Figure 5.2 shows a 

lane changing scenario. Main trajectory is in the middle and 

it turns right when ego-vehicle is changing lane. Overtaking 

behavior is in Fig. 5.3 with two trajectories because ego-

vehicle overtook one front vehicle and then followed another 

vehicle at front. Figure 5.4 shows a turning left where a main 

trajectory is continuous as the ego-vehicle followed the same 

front vehicle while turning left. Figure 5.5 shows that a 

vehicle was following a car while another car cut in.  

 
(1) Car following 

 
(2) Lane changing 

 
(3) Overtaking and turning right 

 
(4) Turning left at crossing 

 
(5) Multiple vehicles: following car when another car cuts in. 

Fig. 5 Five typical driving scenarios represented by motion profiles.  

The key factors to cause forward collision are the density 

of frontal vehicles at different depths and speed they approach 

to the camera relatively. The earlier time happening (trace) in 

the far motion profile (b channel) may be less critical in 

causing a crash, while any happening in the close motion 

profile (r channel) may cause danger immediately. The 

approach of a vehicle has its size expanding in the profile, i.e., 

its trajectory diverges [9]. A constantly approaching vehicle 

from far to close corresponds to a transition of trajectory from 

high motion profile (b channel) to low motion profile (r 

channel), which is a serious case that requires precaution. On 

the other hand, TTC estimation is unreliable due to the low 

frame rate (4 fr./sec) of driving videos in the experiments. So 

deep learning method is adapted to exploit the features of 

motion profiles. 

V. DRIVING RISK EVALUATION MODEL 

A. Variable selection using random forest 

The random forest (RF) method is commonly used in many 

applications involving high-dimensional data [12]. It can be 

applied for both application and regression. Nominal response 

is used for classification while numeric response is used for 

regression. RF can not only obtain predictions but also 



identify predictors which are significant. A ranking of 

predictors that reflects the importance of these variables is 

available by using RF. This ranking list can be used to select 

variables with the best predictive ability. Their predictive 

ability is assessed by VIM (Variable Importance Measure). 

The formulation of VIM is: 

             VI𝑀𝑗
𝑀 =

1

𝑛𝑡𝑟𝑒𝑒
∑ (𝑀𝑃𝑡𝑗 − 𝑀𝑡𝑗)𝑛𝑡𝑟𝑒𝑒

𝑡=1                 (1) 

Where ntree denotes the number of trees in the forest. 𝑀𝑡𝑗   

denotes the error of tree t when predicting all observations that 

are OOB for tree t before permuting the values of predictor 

variable 𝑋𝑗 , 𝑀𝑃𝑡𝑗 denotes the error of tree t when predicting 

all observations that are OOB for tree t after randomly 

permuting the values of predicting variable 𝑋𝑗. 

In this study, an error-based VIM method, also known as 

MDA (Mean Decrease Accuracy), is adapted to evaluate the 

predictive ability of 135 variables. These variables consist of 

speed, acceleration, jerk and their statistical variables, such as 

mean, variance, maximum, skewness, kurtosis and CV 

(Coefficient of Variance). Skewness is a measure of the 

asymmetry of the probability distribution of a real-valued 

random variable about its mean. An ideal distribution of 

massive random data should be the normal distribution, the 

skewness reflects the offset of given data’s distribution from 

normal distribution. We assume that a normal driving event 

without crash should be in the normal distribution, so 

skewness shows how abnormal the speed, acceleration and 

jerk of a specific event are. Similar to skewness, kurtosis is 

also a measure of the shape of probability distribution. 

Intuitively, kurtosis reflects the peak value in the mean of a 

distribution. A high kurtosis of a distribution represents a 

steep rise or fall. In the driving scenario, a drastic action taken 

by driver will result in a high kurtosis of the speed/ 

acceleration/jerk distribution, which means that a potential 

collision happened in this 12 second trip. The CV, also known 

as relative standard deviation, is a standardized measure of 

dispersion of a probability distribution. Different from 

standard deviation, CV won’t be influenced by the data scale. 

Among all the driving scenarios in our dataset, the mean 

speed is different in each trip. CV is able to build a uniform 

measure of the dispersion in both high speed and low speed. 

The VIM ranking result is shown in Fig. 6. 

It shows that accelerationSkew and accelerationKurtosis 

have the highest MDA, which means they are the most 

significant variables among the 135 variables. The 

experiment result of RF proves our assumption above. 

Driver’s drastic response to emergency dose have a 

significant influence on kinematic variable’s distribution. 

And the statistics which capture the shape characteristics of 

distribution were finally recommended by the RF model. 

AccelerationCV, accelerationMin, acceleration8.0s, and 

speed6s are also significantly more important than other 

variables. After checking Fig.6, six most significant variables 

are selected, and they will be fed into the multi-modal DCNN 

as the kinematic features. 

 
Fig. 6 Variable Importance Measure 

B. Multi-modal DCNN Model for Driving Videos 

It is difficult to explicitly model the cause of hazardous 

events in video because of the following reasons: (1) the low 

video quality (4 frames per second) in color and resolution 

incapable of measuring the distant objects in shape and speed, 

(2) the variation of events in video is large across environment, 

traffic and driver. Therefore, we apply deep learning 

algorithms to understand the driving videos that caused the 

potential crash. Deep Convolutional Neural Network (DCNN) 

[11] is employed to perform the supervised learning. As 

reported, the CNN can learn object color, local features (edges 

and blobs), and spatial structure in the image, through 

convolution and pooling layers in the neural network. This 

corresponds to our depth, density, and trace position and 

orientation in the motion profile since the motion profile has 

converted the temporal motion to spatial layout of traces. The 

properties of traces for objects and background has been 

analyzed in [13].  

TABLE II. STRUCTURE OF DCNN 

No. of 

layer 
Name Parameters 

1 Input 
Image: 227 pixel × 227 pixel × 3 channel 

Kinematic Variables: 6 dimension 

2 Conv1 No. of output = 96, kernel size = 11, stride = 4 

4 Pool1 Kernel size = 3, stride = 2 

5 Norm1 Local size = 5 

6 Conv2 No. of output = 256, kernel size = 5, pad = 2 

8 Pool2 Kernel size = 3, stride = 2 

9 Norm2 Local size = 5 

10 Conv3 No. of output = 384, kernel size = 3, pad = 1 

12 Conv4 No. of output = 384, kernel size = 3, pad = 1 

14 Conv5 No. of output = 384, kernel size = 3, pad = 1 

16 Pool5 Kernel size = 3, stride = 2 

17 Full6 No. of unit = 4096 × 1 

19 Drop6 Drop rate = 0.5 

20 Full7 No. of unit = 4096 × 1 

23 Full8 

No. of unit = 12 × 1 

(6 units for selected kinematic variables from 

RF model, other 6 units for images) 

24 Output 2 classes 

Since kinematic variables and environment factors both 

contribute to the identification of non-conflict and hazardous 

events, multi-modal deep learning model is taken into 



consideration. This structure is also inspired by the thought of 

RGB-D multi-modal DCNN for object recognition [14]. 

Depth image and RGB image are sampled from different 

sensors, but the combination of them can improve the 

recognition ability of deep neural network. It proves that 

neural network has the potential to exploit the inner-

relationship between data from different format and source. 

In our multi-modal DCNN model, images are processed with 

convolution and pooling operation, while kinematic features 

of corresponding images are transferred to the last but two 

layer of the net without changing any value. The structure and 

parameters of DCNN is listed in Table II. The input of the 

network is the motion profile containing both horizontal size 

and temporal motion and the 6-dimensional kinematic 

variables. The goal of the network is to identify the trace 

divergence in the motion profile. To capture sensitive 

orientation of traces, large filter size at the first layer is 

specified. In driving videos, the scenes not only depend on the 

traffic density and size, but also related to weather, 

illumination, and environment. To avoid overfitting onto 

small number of samples and learning particular scenes rather 

than common actions of vehicles, we further invert the color 

of motion profiles to enhance edge effect (motion trajectory 

in the motion profile) in the training period. We can observe 

a dark vehicle shadow against bright road surface in a sunny 

day when the vehicle is facing the sun, or a white vehicle on 

a dark asphalt road to have the same motion. We invert the 

motion profile by 

  𝑃𝑖𝑛𝑣(i, j, k) = 255 − P(i, j, k)                               (2) 

Fig. 7 shows a contrast between an original motion profile and 

its inverted one. Trajectory remains the same shape while 

colors are different.  

  

Fig. 7 Original motion profile and inverted one. The time axis is downward. 

 
Fig. 8 Architecture of multi-modal DCNN 

VI. EXPERIMENTAL RESULTS AND DISCUSSION 

This section describes the experimental analysis and results. 

First, a detailed introduction about dataset is stated. Then 

experiment platform, settings and parameters are introduced. 

After that, experiment results and comparison with baseline 

methods are listed. Finally, both quantitative and qualitative 

analysis about experiment results are presented.  

A. Dataset 

Four types of collision events on road are considered: (1) 

forward collision, (2) side collision, (3) T-junction collision, 

and (4) collision with pedestrians. Among 1959 videos, 954 

clips are non-conflict event and 1005 video clips are 

annotated in hazardous event. Distribution of collision types 

in the 1005 clips are shown in table III. Because other types 

of collision except forward collision is relatively limited in 

sample. Besides, the causation of collision with pedestrian is 

that people appear at a blind angle of camera, which cannot 

be reflected by driving videos. So, the major collision types 

we focused on is forward collision. 1589 events (non-conflict 

& forward collision) are finally picked up in the experiments 

and have been divided into training set, validation set and 

testing set at the ratio of 8:1:1. 

TABLE III. DISTRIBUTION OF COLLISION TYPES IN TERMS OF DIRECTION 

Collision Type Amount Ratio 

Forward collision 644 33% 

Side collision 150 8% 

T-junction collision 62 3% 

Collision with pedestrian 149 7% 

Non-conflict 954 49% 

B. Experiment Setup 

 The main experiment setup includes using mini-batch 

gradient decent for optimization in training multi-modal 

DCNN. The learning rate is set to 0.01 and the number of 

maximum training epoch is about 1000. The metric used for 

representing training loss is the cross entropy. Except for the 

model proposed in this paper, 4 base-line methods, which are 

mostly mentioned in recent papers, are applied to the datasets 

for comparison. All the methods take 80% of the total data as 

training set, 10% as validation set and 10% as testing set. The 

implementation and training of multi-modal DCNN is 

realized by Tensorflow. The kinematic variable selection 

using RF is realized by R. Model training and evaluation is 

carried out on the workstation with NVIDIA Tesla K40c GPU 

and Intel Core i7 processors. Training period costs 54,000 

steps and 9.2 hours. The accuracy on training dataset is 78%. 

C. Experiment Results 

 Receiver operating characteristic (ROC) curve is plotted to 

evaluate the identification ability of the proposed model and 

the baseline methods as shown in Fig. 9. It can be seen that 

Multi-modal DCNN model has the best performance with the 

highest area under curve (AUC is 0.81). Threshold with jerk 

[4] has limited performance on this dataset. It is because that 

jerk mainly reflects the brake action of drivers. But in the 

dataset used in this study, not all the braking action finally 

lead to a hazardous event. Sometimes the drivers braked in 

advance to keep a safe distance, or a hard braking was done 

for avoiding running over a red light. RF model using all the 

kinematic features has the second best performance and its 

AUC is 0.75. Since environment factors are missing in RF 



model, it cannot judge the frontal traffic conditions and that 

may cause wrong judgement on specific events. 

 
Fig. 9 ROC curve in classifying two cases. 

Sensitivity and specificity are used to measure the 

performance of classification model. These two indexes are 

computed from 

             sensitivity =
TP

TP+FN
        specificity =

𝑇𝑁

TN+FP
            (3) 

where TP is True Positive, TN is True Negative, FP is False 
Positive, FN is False Negative, respectively. Youden index is 
used to compute the best sensitivity and specificity of methods. 
The formula of computing Youden index is shown as below. 

                𝐽 = sensitivity(n) + specificity(n) − 1                (4) 

Where n is equal to the number of data points. The threshold 

with the max Youden index will be selected to compute 

sensitivity and specificity. And the final result is shown in 

table IV. It can be concluded that multi-modal DCNN has the 

best AUC and sensitivity. It proves that combination of 

kinematic variables and video features can improve the 

performance of identifying hazardous events. Besides, the 

jerk threshold method has the best specificity. It is because 

that jerk threshold can give an accurate judgement on whether 

a braking action is happened. If no braking action happened 

during an event, no potential conflict would happen in this 

event. However, the jerk threshold’s sensitivity is the lowest. 

It can been seen that jerk threshold has limited ability to 

identify the real hazardous event. 

TABLE IV. COMPARISON OF MODELS 

Model AUC Sensitivity Specificity 

Multi-Modal DCNN 0.81 0.83 0.67 

RF with all features 0.75 0.76 0.66 

RF with Jerk and Accel 0.52 0.46 0.63 

Jerk Threshold [3,4] 0.56 0.18 0.89 

Acceleration Threshold [3] 0.65 0.77 0.43 

VII. CONCLUSION 

The contribution of this paper mainly lies in two aspects. 

One is the driving video information extraction and analysis 

using motion profile, which provides the environment factors 

for analysis of hazardous event’s causal factors. The other is 

a multi-modal deep learning model which combines both 

video and kinematic data. The experiments show that the 

proposed model outperforms state-of-the-art models with 

AUC 0.81. Since driving recording instruments are available 

in Chinese commercial vehicles, this model can be applied to 

data reduction of large volumes of driving data without any 

auxiliary high-precision sensors. In addition, the method to 

achieve multi-modality of this model also provides a solution 

to traffic scenario analysis under complex environments. 

Future research will focus on specifying different crash types 

and severity levels, which lead to a deeper understanding of 

road safety relevant events and hazardous event prevention.  
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