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ABSTRACT 

 

 

Banvait, Harpreetsingh. M.S.E.C.E., Purdue University, December 2009.  Optimal 
Energy Management System of Plug-in Hybrid Electric Vehicle.  Major Professors: 
Sohel Anwar and Yaobin Chen. 

 

 

Plug-in Hybrid Electric Vehicles (PHEV) are new generation Hybrid Electric 

Vehicles (HEV) with larger battery capacity compared to Hybrid Electric Vehicles.  They 

can store electrical energy from a domestic power supply and can drive the vehicle alone 

in Electric Vehicle (EV) mode.  According to the U.S. Department of Transportation 80 

% of the American driving public on average drives under 50 miles per day.  A PHEV 

vehicle that can drive up to 50 miles by making maximum use of cheaper electrical 

energy from a domestic supply can significantly reduce the conventional fuel 

consumption.  This may also help in improving the environment as PHEVs emit less 

harmful gases.  However, the Energy Management System (EMS) of PHEVs would have 

to be very different from existing EMSs of HEVs. 

 

In this thesis, three different Energy Management Systems have been designed 

specifically for PHEVs using simulated study.  For most of the EMS development 

mathematical vehicle models for powersplit drivetrain configuration are built and later on 

the results are tested on advanced vehicle modeling tools like ADVISOR or PSAT.  The 

main objective of the study is to design EMSs to reduce fuel consumption by the vehicle.  

These EMSs are compared with existing EMSs which show overall improvement. 



x 

In this thesis the final EMS is designed in three intermediate steps.  First, a simple 

rule based EMS was designed to improve the fuel economy for parametric study.  

Second, an optimized EMS was designed with the main objective to improve fuel 

economy of the vehicle.  Here Particle Swarm Optimization (PSO) technique is used to 

obtain the optimum parameter values.  This EMS has provided optimum parameters 

which result in optimum blended mode operation of the vehicle.  Finally, to obtain 

optimum charge depletion and charge sustaining mode operation of the vehicle an 

advanced PSO EMS is designed which provides optimal results for the vehicle to operate 

in charge depletion and charge sustaining modes. 

 

Furthermore, to implement the developed advanced PSO EMS in real-time a 

possible real time implementation technique is designed using neural networks.  This 

neural network implementation provides sub-optimal results as compared to advanced 

PSO EMS results but it can be implemented in real time in a vehicle. 

 

These EMSs can be used to obtain optimal results for the vehicle driving conditions 

such that fuel economy is improved.  Moreover, the optimal designed EMS can also be 

implemented in real-time using the neural network procedure described. 
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1. INTRODUCTION 

 

 

In the recent years, crude oil prices have increased steadily.  Additionally, the 

harmful emissions from automobiles have increased significantly.  A large percentage of 

this crude oil has been used in automobiles as gasoline or diesel.  So by reducing the 

consumption of these crude oil products, it is possible to conserve crude oil and solve 

both the above stated problems.  By replacing the conventional vehicles with electric 

vehicles (EVs), the crude oil consumption can be reduced to a very large extent.  But due 

to lack of development in infrastructure and lack of technical advancement, EVs cannot 

currently replace the conventional vehicles. 

 

This transition of vehicles from conventional to electric is expected to be 

implemented in several steps.  Firstly, conventional vehicles will be replaced by hybrid 

electric vehicles (HEV) which already exist.  HEVs are driven by two sources of energy: 

engine and battery.  In the next step, these vehicles are expected to be replaced by plug-in 

hybrid electric vehicles (PHEV) which can be driven as EVs for a certain range of 

distance and later on can be driven as HEVs.  Finally, these PHEVs would be replaced by 

EVs as the infrastructure and technical advancement occur.  So these inter-transitional 

steps will help in step by step replacement of current vehicles with EVs which would 

help in preserving crude oil and also prevent the further degradation of the environment 

by reducing the harmful emissions from IC engines. 
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As mentioned before, HEVs have two sources of energy: an electric motor via 

battery and an IC engine.  So by having two degrees of freedom in the energy, flow 

control has been a larger area of interest for researchers in the past two decades.  In 

HEVs, the battery is charged through the engine, and by regenerative braking while 

decelerating the vehicle.  But as the engine is used to charge the battery and then the 

battery is used to drive the vehicle, there are large losses in this loop while using fuel.  

The electric drive mode is very limited for an HEV due to limited battery power.  So 

having a more powerful battery will increase the electric drive range of the vehicle, thus 

improving fuel economy.  Since such a large battery cannot be charged solely by 

regenerative braking and charging via the engine would not be efficient, it needs to be 

charged externally by a domestic electric outlet.  These HEVs, having an external 

charging facility for the large battery pack and having a significantly larger EV range, are 

called plug-in hybrid electric vehicles (PHEVs). 

 

In the past, a lot of research has been done on PHEVs and HEVs.  As they have two 

energy sources many researchers have presented different energy management strategies 

and also optimized them using various optimization techniques.  Dominik Karbowski et 

al. [1] investigated a control strategy for pre-transmission parallel PHEVs using a global 

optimization technique based on the Bellman principle.  Its main objective was to reduce 

the losses in engine, motor, and battery.  Then they compared their results with the 

default control strategy given in PSAT [16] for different distances travelled by the PHEV.  

Aymeric Rousseau et al. [2] used the DIRECT algorithm to obtain some optimized 

parameters for a rule-based control strategy of pre-transmission parallel PHEVs.  They 

also analyzed the impact of distance travelled by PHEVs with these parameters.  Both 

papers showed that drive cycle and distance travelled impacted their results significantly. 

 

In [3] Qiandong Cao et al. validated the PSAT model for the Toyota Prius PHEV, 

implemented control strategies to reduce the ON/OFF frequency of the engine by tuning 

some parameters, and also made the engine to operate in more efficient region in charge 

depletion (CD) state.  Xiaolan Wu et al. [4] used Particle Swarm Optimization (PSO) to 
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optimize certain parameters of parallel PHEVs for different distances.  Fuel economy was 

the target objective for the problem along with performance and other constraints but he 

solved the problem as unconstrained PSO.  Qiuming Gong [5] used dynamic 

programming along with intelligent transport system GPS, Geographical Information 

System (GIS) and advanced traffic flow modeling technique to obtain an optimized 

power management strategy for a parallel PHEV.  Baumann et al. [6] developed load 

leveling vehicle operation strategy for HEVs and accomplished it using a fuzzy logic 

controller.  He also presented a system integration and component sizing technique.  

Finally, he simulated implementation in an actual vehicle, both system design and control 

strategy. 

 

In [7] Yimin Gao et al. presented various rule-based strategies for PHEV passenger 

cars and analyzed them for fuel consumption.  Similarly, Liqing Sun et al. [8] proposed a 

rule-based control strategy for a parallel PHEV bus model which showed better 

performance and higher engine efficiency.  In [9] Scott Moura et al. used a stochastic 

Dynamic Programming (DP) technique to obtain optimal power management of a power 

split PHEV.  He implemented it for both blended fuel use strategy and charge 

depletion/charge sustaining modes and studied the impact of battery size on these control 

strategies.  His results showed that the blending strategy is significantly better for smaller 

batteries but its effect diminishes for large batteries. 

 

In [10] Borhan et al. showed that predictive control can be implemented for the 

Energy Management of Power-split HEV which is adaptive to changes, independent of 

drive cycle and can be implemented in real time.  Bin et al. [11] used dynamic 

programming (DP) to get optimum energy distribution for certain drive cycle.  Here DP 

was implemented in spatial domain while the drive cycle was approximated which 

showed that time for DP calculations can be reduced to get suboptimal results.   Gong et 

al. [12] used a neural network to detect a highway’s on/off ramps patterns by training 

from data sets and using optimum results for it. 
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In [13] Mohebbi et al. showed that a neural network based adaptive control method 

can be used for controlling parallel hybrid electric vehicles. This leads to an online 

controller that can maximize the output torque of the engine while minimizing fuel 

consumption.  Baumann et al. [14] used artificial neural networks and fuzzy logic to 

implement a load leveling strategy for intelligent control of a parallel HEV powertrain.  

Moreno et al. [15] has developed and tested a highly efficient energy management system 

for HEVs with ultracapacitors using neural networks.  They first obtained an optimal 

control model for it, and then obtained its numerical solution.  They tested this new 

strategy using a neural network which was based on simulation results for different 

driving cycles. 

 

The following sections include modeling of different hybrid powertrains, special 

Energy Management Systems (EMSs), simulation results and analysis of those EMSs.  

Chapter 2 includes modeling of a parallel hybrid powertrain and a power split powertrain 

which will be used subsequently in simulation of vehicles for the special EMS.  Chapter 3 

provides details on three different EMSs designed specifically for PHEV and their 

simulation results for different hybrid powertrains.  Chapter 4 contains the simulation 

results for different EMSs for different drivetrain configurations.  Chapter 5 describes a 

possible real-time EMS so that some EMS mentioned in Chapter 4 can be implemented 

on the vehicle.  Finally, Chapter 5 concludes the thesis by analyzing the results of 

different EMSs. 
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2. MODELING 

 

 

In plug-in hybrid electric vehicles three main types of drivetrain configurations are 

available: 

 

 Parallel drivetrain:  In parallel drivetrain configurations the power can be supplied 

through the battery and engine separately.  Here the torque from both the sources, 

i.e. battery and engine, are coupled through a torque coupler, speed coupler or 

torque and speed coupling.  Moreover, in a parallel drivetrain the vehicle engine 

and motor are coupled to the powertrain and can drive the vehicle. 

 

 Series drivetrain:  In a series drivetrain configuration the power can be supplied 

through the battery and engine.  When the engine provides the power it is first 

converted to electrical energy through a generator, then it is converted to 

mechanical energy through the motor.  Furthermore, in a series drivetrain, only 

the motor is connected to the drivetrain. 

 

 Series/Parallel (Powersplit) drivetrain:  In a powersplit drivetrain configuration, 

both the motor and engine are connected to the powertrain of the vehicle so both 

can drive it.  Additionally, this configuration has another motor/generator.  This 

motor/generator is connected to the engine via a speed coupler.  This speed 

coupler is connected to the motor via a torque coupler which connects to the 

powertrain as shown in Figure 2.1.  Since this powertrain serves as both a series 

and a parallel powertrain, it is also called the series/parallel drivetrain 

configuration.
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In this thesis two different drivetrains, parallel and powersplit, are modeled and 

simulated for different control strategies.  The parallel and powersplit drivetrain 

configuration models have been used from ADVISOR [17], a modeling and simulation 

software tool of the National Renewable Energy Laboratory (NREL), for the rule based 

control strategy.  But for the remaining strategies, a more advanced powersplit model 

from the Powertrain System Analysis Toolkit (PSAT) of Argonne National Laboratory is 

used.  Both models are similar except for certain components.    Each component is 

selected from ADVISOR and PSAT which have preset lookup tables and constants, 

which are experimentally determined in modeling tools.  So in the following subsections 

details regarding each component of these models are provided. 

 

 

2.1 

The vehicle is modeled by considering the losses in rolling resistance and 

aerodynamic drag.  Furthermore, the force required to overcome ascent is also included 

Vehicle 

Figure 2.1   Series/Parallel Drivetrain Configuration 
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in the model for calculations.  When the vehicle moves on roads of different gradients it 

has large impact on the force required from the vehicle to drive it and can significantly 

change the accuracy of model.  The force required to overcome grade is calculated 

using Newton’s second law using Equation 2.1. 

   (2.1)  

where  is gravitational acceleration,  is the mass of vehicle in kg and  is road grade 

in degrees. 

 

As the vehicle moves it is resisted by aerodynamic drag.  To calculate this 

aerodynamic drag it is assumed that lateral wind forces are zero.  So the aerodynamic 

losses  are estimated using Equation 2.2. 

   (2.2)  

where  is the air density in Kg/m3,  is the frontal area of vehicle in m2 and  is the 

coefficient of aerodynamic drag.  All these constants can be determined from 

experimental results. 

 

Rolling resistance is produced by deformation of the tires at the points of contact 

with the road.  The rolling resistance losses for the vehicle are estimated in this vehicle 

model using the Equation 2.3. 

   (2.3)  

where  and  are the coefficients of rolling resistance defined experimentally.  

Moreover,  is the velocity of vehicle at previous instant of time in m/s2. 

 

Using these three loss equations the total force required to drive the vehicle can be 

approximated using the following Equation 2.4 in the ADVISOR model. 

   (2.4)  

where   is force demanded for particular vehicle speed. 

 

In the PSAT model the aerodynamic drag and rolling resistance losses are 

approximated as a second degree polynomial as shown in Equation 2.5. 
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   (2.5)  

where the constants ,  and  are based on experimental results from PSAT.  The 

coefficient of the first term in the above equation is such that it is reduced rapidly at low 

speeds.  It represents the rolling resistance losses.  The second term represents higher 

order co-efficients of rolling resistance and some bearing loss in the axle whereas the 

third term in this equation represents aerodynamic drag. 

 

Furthermore, the loss due to overcoming grade is calculated using Equation 2.1.  So 

finally the force required is approximated using Equation 2.6. 

   (2.6)  

 

 

2.2 

This component is only used in the PSAT model.  It simulates the driver’s actions 

while following the drive cycle and overcoming the losses due to aerodynamic drag, 

grade and rolling resistance.  Here it is assumed that the driver is driving an automatic 

transmission vehicle.    The driver is modeled as a PI controller shown in Equation 2.7. 

The values of proportional gain  and integral gain  for a particular driver are 

determined experimentally in the PSAT tool.  The output is torque demand  and 

speed demand  which are defined as equations below. 

Driver 

   (2.7)  

   (2.8)  

where  

   (2.9)  

 

Moreover, time delay to the torque command generated by the driver is also added 

to the driver response. 
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2.3 

An axle and pair of wheels connected to the vehicle are modeled together as a 

single component.  In this model the braking torque and inertia corresponding to both the 

wheels are added for simplification.  The wheel and axles are modeled by a kinematic 

equation as shown in Equation 2.10. 

Wheels and Axle 

   (2.10)  

where  is the equivalent brake torque of both wheels,  is the radius of wheel,  is 

the inertia of wheel,   is the torque acting at axle and  is the wheel rotational 

velocity. 

 

In ADVISOR the axle losses  were obtained from a lookup table which is a 

function of the tested vehicle mass  whereas in the PSAT model these losses are 

involved in a second order approximated Equation 2.5 in the Vehicle model. 

 

Moreover, PSAT neglects the losses due to slip and assumes that the angular wheel 

speed is calculated from vehicle speed which is equal to wheel angular speed.  But for the 

ADVISOR model the wheel angular speed is established by Equation 2.11. 

   (2.11)  

where  is the resultant slip which is always between -1 and 1.  It is estimated using a 

lookup table which is a function of absolute value of force  and front axle weight, 

based on experimental data. 

 

 

2.4 

The final drive or differential connects between the wheel axle and the 

transmission.  It distributes the transmission power between the two wheels connected at 

axle ends.  It is modeled similarly in both the PSAT and ADVISOR models.  Both of 

them include the losses due to inertia and final drive.  The differential torque  and 

Final Drive 
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differential angular speed  are defined using the dynamics shown in Equations 2.12 

and 2.13. 

   (2.12)  

   (2.13)  

 

In Equations 2.12 and 2.13,  is the final drive loss which is approximated using 

lookup tables.  These lookup tables are based on experimental results.  Moreover,  is 

the inertia of the differential,  is the angular velocity of the differential and  is the 

gear ratio of differential. 

 

 

2.5 

This component is used only in modeling the parallel drivetrain configuration for 

ADVISOR.  This gearbox changes the torque and speeds of the engine to the drivetrain 

by changing the gear ratio depending on the control system.  It considers both the losses 

due to gearbox inertia and other gearbox losses.  The output torque and speed are 

governed by Equations 2.14 and 2.15. 

Gearbox 

   (2.14)  

   (2.15)  

where the gearbox loss is defined by Equation 2.16,  is the Inertia of the gearbox and 

is the gear ratio of the gearbox which is determined by its control system. 

   (2.16)  

 

In Equation 2.16  is the constant gearbox losses, ,  and  variables are as 

shown in Equations 2.17-2.19. 

   (2.17)  
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   (2.18)  

   (2.19)  

 

In the above Equations 2.17 – 2.19, , ,  and  are input torque 

coefficient, input speed coefficient, output torque coefficient and output power 

coefficient respectively. 

 

 

2.6 

This component is present only in the powersplit drivetrain configuration in both 

the ADVISOR and PSAT models.  As mentioned before, for speed coupling a planetary 

gear set is used.  This planetary gear is torque coupled with the motor to provide the 

output to the drivetrain.  In the planetary gear set the sun gear was connected to Motor 2 

which can be called a generator since it mainly converts mechanical energy from the 

engine into electrical energy.  Furthermore, the carrier gear of the planetary gear set is 

connected to engine.  Finally, the ring gear of this planetary gear set is connected to 

Motor 1 which also drives the vehicle. 

 

Continuous Variable Transmission 

In the ADVISOR model the engine speed  and engine torques  are controlled 

by the vehicle control system.  Furthermore, the ring torque  and ring speed  are 

defined equivalent to differential torque and differential speed.  Equations 2.20 – 2.23 are 

used to model the continuously variable transmission and are based on kinematic 

equations of planetary gear set.  These equations define motor torque , motor speed 

, generator torque  and generator speed . 

   (2.20)  

   (2.21)  

   (2.22)  

   (2.23)  
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where, 

   (2.24)  

   (2.25)  

   (2.26)  

   (2.27)  

In Equations 2.24 – 2.27  and  are sun gear ratios and ring gear ratios. 

 

In the PSAT model the motor torque is given by Equation 2.28 below instead of 

Equation 2.20.  For further information on this equation and constants ,  and refer 

to [16]. 

   (2.28)  

 

 

2.7 

The motor model used in both the ADVISOR and PSAT models for parallel and 

powersplit drivetrain configurations is the same.  The model of the motor includes the 

effects of losses in motor inertia and motor’s torque speed-dependent capability.  The 

power losses in motor are specified for the motor using lookup tables from experimental 

results in PSAT.  The motor is modeled using the dynamic equation below. 

Motor 

   (2.29)  

   (2.30)  

 

Moreover, the motor’s maximum torque is also enforced using a lookup table which 

is indexed by motor speed.  The motor is commanded such that motor current does not 

exceed the maximum current limit.  The ADVISOR model of motor has a more detailed 

thermal model.  For more information refer to ADVISOR documentation [17].  In PSAT 
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only heat index was calculated which was used to define the maximum motor torque 

constraint. 

 

 

2.8 

In both of the simulation tools ADVISOR and PSAT it is assumed that gasoline is 

used as fuel to produce mechanical energy.  The required torque and speeds are obtained 

from the drive cycle.  The engine speed and torques are calculated in the vehicle control 

system module and sent as commands to the engine controller module.  It controls the 

engine to operate it in desired torque and speed ranges.  Here the engine is not modeled 

as a very complex dynamical system but for control analysis at vehicle level it considers 

only the inertial losses and thermal losses.  Moreover the mechanical or electrical 

accessories loads L are assumed to be a constant.  The torque and speeds available from 

the engine are defined as the following equations where  is engine inertia. 

Engine 

   (2.31)  

   (2.32)  

 

Based on engine operating torque and speed the fuel consumption is obtained from 

the 2-D lookup table as a function of engine torque and speed.   Similarly exhaust flow 

rate, hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NOX), particulate 

matter (PM), and oxygen content in exhaust gases from the engine are estimated using 

the 2-D lookup table maps which are functions of both engine torque and speed.  All 

these lookup tables were obtained using experimental results for specific engines which 

were already defined in both the PSAT and ADVISOR models.  Furthermore, the engine 

model in the ADVISOR model has a thermal model to monitor the heat transfer process.  

For more details on calculations for the thermal model of engine refer to ADVISOR 

documentation [17]. 
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2.9 

The battery is modeled in the both PSAT and ADVISOR models as an open circuit 

voltage model.  The battery pack is composed of cells arranged in specific patterns of 

series and parallel connections.  The power losses in the battery are calculated using I2R 

losses by Columbic inefficiency.  The battery state of charge (SOC) is computed from the 

power demand at the bus using Equation 2.33. 

Battery 

   (2.33)  

where, 

  (2.34)  

 

 As mentioned above the battery is modeled as an equivalent circuit consisting of 

an open circuit voltage which is in series with the battery internal resistance Rb. 

 

 
Figure 2.2   Equivalent Circuit Diagram for Energy Storage System 

 

 Here the bus current is obtained by solving the quadratic Equation 2.36 for the 

current and using Kirchhoff’s voltage law in battery equivalent open circuit diagram. 

   (2.35)  

 

   (2.36)  
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Solving this Equation 2.36 we get, 

   (2.37)  

where,  

   (2.38)  

   (2.39)  

 

Similarly the bus voltage is also obtained using Kirchhoff’s law as shown in 

Equation 2.40. 

   (2.40)  

 

The maximum power limit required is calculated by Equation 2.41. 

   (2.41)  

 

 Using Equations 2.37 and 2.40 the voltage and current of the battery are 

estimated.  Moreover by using Equation 2.41 the maximum power drawn from battery is 

approximated in the ADVISOR model whereas in the PSAT model this maximum power 

drawn by battery is evaluated using the lookup tables provided along with the battery 

specifications. 
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3. ENERGY MANAGEMENT SYSTEMS 

 

 

HEVs consist of two different energy sources, a battery and an engine.  The power 

required to drive the vehicle can be obtained from either the battery or the engine.  These 

two energy flow paths can be controlled to run the vehicle efficiently.  The Energy 

Management System (EMS) is responsible for management of the energy flow from these 

two sources by sending commands to the battery, motor and engine.  For HEVs, these 

sources of energy can be controlled so that energy flow from both sources is efficient.  

The PHEV battery is charged from an external power supply which is much cheaper than 

gasoline. The EMS of a PHEV is designed such that the vehicle makes more use of the 

battery than the engine, to drive the vehicle.  Various researchers have worked to design 

such vehicle level EMSs, and have even optimized them. 

 

In this Section the designs of three different EMSs are described.  First, is a rule 

based EMS for a parallel and powersplit drivetrain.  Second, is a Particle Swarm 

Optimization (PSO) based optimum EMS for a powersplit drivetrain.  Finally, an 

advanced optimized EMS using PSO for a powersplit drivetrain is explained.  The 

following three subsections include details regarding these three EMSs. 

 

 

3.1 

PHEVs have a higher capacity battery that is initially charged by an electric outlet.  

Since this electrical energy is much cheaper, maximum use of this battery should be 

made to reduce the fuel consumption by the engine hence resulting in lower driving cost.  

In this rule based EMS the maximum power is drawn from the battery via motor to drive 

the vehicle.  The rest of the power if demanded is provided by engine.

Rule Based EMS 
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This rule based strategy was designed and implemented for the simulation of both the 

parallel drivetrain and the powersplit drivetrain.  The parallel drivetrain configuration 

uses a gearbox so only speed was selected as a command signal to the engine while the 

operating torque of the engine is dependent on the driving cycle and battery SOC.  The 

powersplit configuration has a continuous variable transmission in the powertrain.  So 

engine speed and torque both are controlled along with motor speed and torques to drive 

the vehicle while satisfying the desired driving performance.  Moreover in both 

powertrains the engine torque is also dependent on the battery SOC.  Here the engine is 

turned ON and OFF according to a certain set of rules which are mentioned as follow. 

 

1. If SOC of the battery is below the lower limit of SOC and positive power is 

required by the vehicle then the engine must be turned ON. 

2. If the SOC of the battery is above its lower limit and the power requested by 

the vehicle is less than the maximum power that can be provided by the motor 

but positive then the engine must be turned OFF. 

3. If the SOC of the battery is above its lower limit and the power requested by 

the vehicle is more than the maximum power that can be provided by the 

motor but positive then the engine must be turned ON. 

4. If the power requested by the vehicle is negative and the state of charge of the 

battery is below its upper limit then the engine must be turned OFF. 

 

In charge sustaining mode the engine and battery are used such that the SOC of the 

battery is maintained at the desired value irrespective of the load changes in the vehicle.  

Whereas in charge depletion mode maximum use of battery, is made while limiting the 

use of the engine which results in rapid reduction in SOC of the battery.  In this rule 

based strategy vehicle operating modes are based on the charge depletion and charge 

sustaining operation modes.  The following rules define the operating modes of the 

vehicle. 
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a) If the SOC of the battery is above its lower limit and the power required by 

the vehicle can be fulfilled by the motor alone then the vehicle is driven in 

Electric Vehicle (EV) mode. 

b) If the SOC of the battery is above its lower limit and the power required by 

the vehicle cannot be provided by the motor alone then the engine is used to 

provide the rest of the power to drive the vehicle. 

c) If the SOC of the battery is below its lower limit and the power required by 

the vehicle is less than the power that can be generated by the engine at its 

optimal operating point then the engine is operated at its optimal operating 

point and the rest of the power is used to charge the battery. 

d) If the SOC of the battery is below its lower limit and the power required by 

the vehicle is more than the power that can be generated by the vehicle at the 

optimal operating point then the engine power is used to drive the vehicle. 

e) If the SOC of the battery is lower than the upper limit and the required power 

is negative then this negative power is used to charge the battery directly 

through regenerative braking. 

 

For the parallel drivetrain configuration the additional torque required from the 

engine is calculated using the following equation. 

   (3.1) 

 

In the above Equation 3.1 the  is the torque required to charge the vehicle,  is 

SOC,  is the SOC upper limit,  is the SOC lower limit and  is the maximum 

charging torque.  For the powersplit configuration the power demanded from the engine 

is estimated using the following equation. 

   (3.2) 
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In Equation 3.2  is the current required to charge the battery and other variables 

are defined in Chapter 2. 

 

Moreover, for the optimum operating points of the engine the optimum speed was 

obtained from the demanded load power using the predefined lookup table in ADVISOR.  

The subsequent optimum torque is obtained from the demanded load power and optimum 

speed. 

 

 

3.2 

In Section 3.1 the EMS was rule based so it did not promise to provide optimum 

results.  To obtain optimum results we can use gradient based algorithms.  But these 

algorithms depend on the gradients to find the optimum solution and don’t always give 

the global minimum or maximum as a solution.  Moreover it is very hard to find a 

derivative of complex non-linear problems.  So to find the global minimum solution, 

derivative free algorithms such as Genetic Algorithm (GA), DIRECT, Dynamic 

Programming, Particle Swarm Optimization (PSO), etc., can be used.  They do not 

depend on gradients to find the solution to problems.  One main advantage of such 

derivative free algorithms is that they have a tendency to provide global minimum 

solutions and don’t get stuck in local minimum solutions as the gradient based algorithms 

do.  To obtain the near optimum results for this EMS, PSO is used. 

 

Particle Swarm Optimization Based EMS 

PSO was developed by Dr. James Kennedy and Dr. Russell Eberhart [18].  It is 

based on a stochastic optimization technique and the social behaviors of bird flocking or 

fish schooling.  It is very similar to other evolutionary computation techniques like 

Genetic Algorithms (GAs).  But it does not have evolution operators like mutation and 

crossover.   In the PSO, a group of particles are randomly initialized with their own 

position and velocity in the multidimensional problem space.  Each particle in this space 

is a possible solution to the problem.  The PSO was developed by Dr. Eberhart and Dr. 

Kennedy in two versions, a Global version and a Local version [19].  This article showed 
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that the global solution has a tendency to converge at the local optimum values for certain 

problems.  It also showed that the global version takes less number of iterations to reach a 

convergence as compared to the local version.  In this application, it is required to obtain 

an optimum solution at an interval of 1 second hence the global version of the PSO is 

selected.  In the algorithm the fitness or objective function is evaluated for each particle, 

at each time interval and an update is made to the best global solution.  These  particles 

then flow generally towards the better solution using the equations defined by the PSO 

which are as follows: 

 

  
 

(3.3) 

  (3.4) 
 

Equation 3.4 is the position of the particle for the next iteration based on its velocity 

in the current iteration which is obtained using Equation 3.3.  In Equation 3.3  is 

the particle’s own best position and  is the global best position.  is 

determined by comparing the  of all particles.   is the cognition learning rate 

which controls the velocity increase or decrease depending on the particle’s personal 

best, whereas  is the social learning rate of the particle which controls the velocity 

increase or decrease depending on the .   is the inertial weight which enhances 

the performance of PSO in various applications[20].   and  are random numbers 

between 0 and 1  Each particle is updated and moved in directions at every time step 

using Equations 3.3)and 3.4.  Finally this iterative process ends when optimal solution is 

obtained and all the particles converge or a maximum number of iterations occur,.  A 

major advantage of PSO is that it requires very few parameters mentioned above to be 

adjusted to obtain optimum solutions to the problems. 

 

This PSO technique was developed for unconstrained optimization problems.  

However different versions of the PSO technique have been developed in the past which 

can be used for constrained optimization problems.  In [21] Gregorio Toscano proposed a 
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PSO approach with variation in velocity computation formula, turbulence operator and 

different mechanism to handle the constraints.  The penalty function approach as shown 

by Konstantinos Parsopuulos [22] is another approach used for solving constrained 

optimization problems with PSO.  Here an additional penalty function is added to the 

fitness function and then the problem is solved as an unconstrained problem. 

 

In [20] Hu and Eberhart suggest a method with some modification in the PSO 

algorithm used for unconstrained optimization problems so that it can be used for 

constrained optimization problems.  They suggest two changes in the PSO algorithm.  

First, all the particles have to be reinitialized until they are initialized in the feasible 

space.  Second, when updating the  and  variables for each iteration, only the 

feasible points are assigned as  and .  So the PSO algorithm always starts 

with all the particles in the feasible solution space.  Even if some particles go into 

unfeasible solution space while it is running but they always return to the feasible 

solution space region because the  and  which influence the motion of 

particles in the space are always in the feasible solution space. 

 

Here the problem for obtaining the optimum solution for the EMS of PHEV is a 

constrained optimization problem.  In this problem the near-efficient operating points of 

the engine are determined using PSO as suggested by Hu and Eberhart [20].  To achieve 

this, twenty particles are defined in a two dimensional space of engine speed and engine 

torques.   All these optimum points always satisfy the performance constraints and other 

constraints using the modified algorithm suggested by Hu and Eberhart after accounting 

for the losses in the powertrain.  The PSO parameters ,  and  were defined as 

suggested by Hu in [20] and in Table 3.1.  The PSO algorithm flowchart for constrained 

optimization is as shown in Figure 3.1. 
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Start 

Initialize each Particle 

Every Particle 
feasible ? 

Evaluate Fitness function for 
each particle 

Evaluate gbest and pbest 

Find new position and velocity 
for each particle 

Evaluate Fitness function for 
every particle 

For each particle. 
 Is it it feasibele and 

new pbest ? 

New pbest defined No change in pbest 

Find new gbest out of all pbest 

Find new position and velocity 
for each particle 

Is stopping criterion 
satisfied ? 

Convergence has reached 

End 

Figure 3.1   Flowchart of Constrained PSO Algorithm 



23 

Table 3.1     PSO Parameters 
 

PSO Parameters Value 

  

 1.49445 

 1.49445 

Dimension 2 

Number of Particles 20 

 

 

3.2.1 Problem Formulation 

The powersplit configuration has a planetary gear set which can provide an infinite  

number of gear ratios.  Hence the engine can be operated at any speed and torque while 

satisfying the required torque and speed by the vehicle to follow the drive cycle.  So the 

engine can be operated in the proximity of its most efficient operating range, and the fuel 

economy of the vehicle can be improved while satisfying the required performance. 

 

To find this best engine operating point the optimization problem was defined. The 

main objective of the research project is to increase the fuel economy of the vehicle while 

satisfying the performance required by the vehicle.  The objective function to minimize 

fuel consumption by the vehicle for the optimal energy management system is defined in 

Equation 3.5. 

 

   (3.5) 
 

The equivalent fuel consumption ( ) is obtained in Equation 3.6. 

   (3.6) 
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This equivalent fuel consumption is the sum of the fuel consumed by the engine to 

drive the vehicle and the SOC equivalent fuel ( ).  The SOC equivalent fuel is defined to 

evaluate energy consumption from the battery.  It is evaluated using Equation 3.7. 

   (3.7) 
 

In Equation 3.7  is the average fuel consumption by the engine which is 250 

g/Kwh selected from the engine Brake Specific Fuel Consumption (BSFC) map,  is the 

voltage of battery,  is the previous SOC and  is the maximum capacity of the 

battery.  The SOC equivalent fuel is positive if the battery is supplying power otherwise it 

is negative.  Here the efficiency for electrical to mechanical energy conversion is taken 

into consideration using the lookup tables. 

 

The energy management system for the powersplit configuration is very complex.  

The objective function defined is subjected to several constraints.  These constraints are 

as follows: 

 

  (3.8) 
  (3.9) 
  (3.10) 
  (3.11) 
  (3.12) 
  (3.13) 
  (3.14) 
  (3.15) 
 

Along with these constraints, performance constraints in Equations 2.22 and 2.23 

are also included so that vehicle will always achieve the desired performance.  All of 

these constraints must be satisfied to have a feasible solution to the problem.  All the 

variables including generator speed ( ), generator torque ( ), motor speed ( ), motor 

torque ( ), power required from battery ( ) and SOC ( ) are calculated using the 
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equations in Chapter 2 for the given engine speed ( ) and engine torque ( ).  The limits 

on these variables were either obtained using lookup tables or constant which were 

obtained from the component specifications.  In Equation 3.15  is the charge/discharge 

limit and  is the discharge limit of the battery.  All these variables are obtained using 

the simplified model.  The simplified model consisted of a driver model, a vehicle model, 

a final drive model, a CVT model and a battery model.  The modeling details of the 

battery model, the final drive model and the driver model are provided in Chapter 2.  The 

vehicle model consists of Equations 2.5 and 2.6, whereas the CVT model consists of 

Equations 2.28, 2.21, 2.22 and 2.23.  

 

The hierarchical implementation structure for this EMS is shown in Figure 3.2. 

 

 

3.3 

This Advanced Optimized EMS is similar to the Particle Swarm Optimization based 

EMS as described in Section 3.2 for the powersplit drivetrain.  This EMS is also based on 

optimum results obtained from PSO.  The PSO used is shown in the flow chart shown in 

the flowchart of Figure 3.1.  The PSO parameters used for optimization are also similar to 

the Section 3.1 PSO parameters. 

 

The implementation of PSO for the powersplit drivetrain PHEV is shown in the 

diagram below. 

 

Advanced Optimized EMS using PSO 
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As shown in Figure (3.2) the engine optimum points were calculated for the optimal 

control section using the PSO algorithm and the simplified model.  The simplified model 

was used to estimate the ring gear speed of planetary gear , ring gear torque  

of the planetary gear, and SOC .  The simplified model used in this EMS is same as the 

simplified model used in Section 3.2.1.  The entire calculation was repeated for each time 

step of the drive cycle demands.  The optimization process used a simplified model using 

the equations described in Chapter 2.  Finally, the optimum engine operating points were 

given as input commands to the PSAT model and then analyzed. 

 

The objective function and problem formulation were different from the problem 

formulation described in Section 3.2.1 

 

 

3.3.1 Problem Formulation 

As mentioned before the powersplit configuration is used which has a continuously 

variable transmission.  For a given drive cycle, vehicle speed  is obtained from the 

profile, while the total required torque at wheel  is calculated from the simplified 

model.  Both variables are supposed to be known  

1) 
                                                                                OPTIMAL CONTROL              

Use PSO algorithm 

to generate near 

optimal parameters 

 

Constraints Testing 

 
 

Simplified  

Model 

 

PSAT 

Engine optimum points 

 

Figure 3.2   Hierarchical Structure of EMS for Powersplit PHEV 
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The objective function for this problem is defined as follows: 

   (3.16) 

 

where, 

   (3.17) 

   (3.18) 

   (3.19) 

 

In Equation 3.16  and  are the fuel consumption rate of the engine and the 

rate of equivalent fuel consumption of the battery.  Therefore, the integral part of 

Equation 3.16 is the equivalent fuel consumption that takes both gasoline usage of the 

engine and the electrical usage of the battery into consideration.  Furthermore, an SOC 

weighting factor was introduced to determine the energy distribution policy between the 

engine and the battery.  The weighting factor is shown in Figure 3.3. 

 

 
Figure 3.3   Energy Distribution Weighting Factor  

 

Figure 3.3 shows that when SOC is high, the weighting factor was as low as 0.5 

which results in depleting more energy from the battery and less energy from the engine.  
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This weighting factor was then gradually increased to 1 and then to 2.  When SOC is low 

the weighting factor has values higher than 1 so engine usage is increased and battery 

usage is reduced. 

 

In Equation 3.16  is the added penalty cost with regard to the battery SOC as 

described in Equation 3.18.  Here  is the allowed SOC value.   When the SOC value 

is was below  a corresponding penalty cost  is added to the objective value to 

prevent the battery from being over discharged.  Hence, the vehicle is in SOC sustain 

mode which maintains battery SOC around some target value.   is penalty cost added to 

prevent frequent engine ON/OFF changes.  This extra penalty cost significantly reduced 

engine ON/OFF switches.  It is defined by Equation  3.19.  If the current engine status is 

changed then the duration of previous engine status α is used to decide the exact penalty 

cost according to different situations.  But if there is no change in engine status then no 

penalty cost is added to the objective function. 

 

 All the variables in ,  and the weighting factor are empirically determined 

and selected.  More details regarding the values of the variables are shown in Table 3.2. 

 

Table 3.2     Objective Function Parameters 
 

Parameters Values 

 240 g/Kwh 

 2.78 × 10-7 

 0.25 

 0.5 
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Moreover, this objective function is also subjected to various constraints which are 

described below. 

 

   (3.20) 
  (3.21) 
  (3.22) 

  (3.23) 

  (3.24) 

  (3.25) 

  (3.26) 
 

In addition to these equations the vehicle performance constraints are also included 

as given by Equations 2.22 and 2.23.  In Equations 3.20-3.26  ,  and  are the 

engine torque, motor torque and generator torques, while ,  and  are engine 

speed, motor speed and generator speeds respectively.  The  and  are obtained from 

the optimum results from PSO whereas the other four variables are determined using the 

equations from Chapter 2.  Furthermore,  and  are the minimum and 

maximum SOC values which are obtained from the battery’s electrical constraints.  The 

remaining maximum and minimum values of all the torques and speeds are obtained from 

the specifications of the motor, generator and engine.  Some of them are constants 

whereas others are in lookup tables obtained from their specifications.
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4. SIMULATION 

 

 

4.1 

The Rule based EMS was implemented in ADVISOR (Advanced VehIcle 

SimulatOR) software v2.1.  ADVISOR is a vehicle modeling tool designed by NREL 

(National Renewable Energy Laboratory) using the Simulink model, test data, and script 

m-files of MATLAB.  It is used to simulate vehicle performance and fuel economy of 

conventional, electric, and hybrid vehicles for different drive cycles and driving 

conditions.  Each component model of the vehicle is empirically designed based on input 

and output relationship of drivetrain components derived from their laboratories.  For 

more information regarding ADVISOR refer to ADVISOR Documentation [17]. 

 

In this section the rule based EMS and ADVISOR default strategies were tested on 

a parallel drivetrain as well as a powersplit drivetrain using the models present in 

ADVISOR.  The relevant components of the model were designed according to the 

details mentioned in Chapter 2. 

 

 

Rule-Based EMS Simulation 

4.1.1 Simulation for Parallel Drivetrain 

The following sections provide details regarding the model setup and simulation 

results based on the proposed Rule-Based EMS for parallel drivetrain. 
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4.1.1.1 

The rule-based EMS was implemented in a parallel powertrain model after some 

modifications according to the requirements of the EMS.  This HEV was converted into a 

PHEV by assuming that 100% efficiency is achieved while charging the battery from a 

domestic power supply. Moreover, the HEV parallel powertrain model in ADVISOR was 

modified into PHEV by increasing the battery size as shown in Tables 4.1 and 4.2.  The 

engine ON/OFF switching and engine torque control were designed according to strategy 

demands.  Moreover, the power routing in the planetary gear set was also designed 

according to the requirements.  The control parameters for this control strategy were set 

inside the model according to the table below: 

 

Simulation Setup 

Table 4.1     Model and Parameter Values Used for Parallel Model and Rule Based EMS 
 

Model\Variable Name\Value 

Engine FC SI 41 emis 41 kW 

Motor  AC 75 kW 

Battery LI7 Li- Ion 

Battery Max Capacity 6.3 kwh 

Initial Conditions Hot Temp Conditions 

Initial SOC 95% 

SOC High 90% 

SOC Low 35% 

 

The parallel control strategy is described in detail in the Appendix section.  For 

simulating the parallel control strategy on the parallel powertrain model the control 

parameters were defined as shown in the following table. 
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Table 4.2     Model and Parameter Values Used for Parallel Drivetrain Vehicle with 
Parallel Control Strategy 

 
Model\Variable Name\Value 

Engine  FC SI41 emiss 41 kW 

Motor  MC AC 75 

Battery  LI7 Li-Ion  

Initial Conditions Hot Temp Conditions 

Initial SOC 95% 

SOC High 90% 

SOC Low 35% 

Electric Launch Speed Limit 30 MPH 

OFF Torque Fraction 20% 

Min Torque Fraction  40% 

Charge Torque 15.25 Nm 

 

Moreover all remaining parameters for the parallel drivetrain were the default 

parameters according to the “Parallel_default_in” in the vehicle model in ADVISOR. 

 

The parallel model was simulated for UDDS drive cycle.  It was the standard EPA 

drive cycle designed by EPA which is used for simulating the Urban Driving experience 

and testing different vehicles.  The various characteristics of one UDDS drive cycle are 

shown in the following table: 
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Table 4.3     UDDS Drive Cycle Characteristics 
 

Characteristic Value 

Distance 7.45 miles 

Time 1369 s 

Max speed 56.7 mph 

Average speed 19.58 mph 

Max Acceleration 4.84 ft/s2 

Max Deceleration -4.84 ft/s2 

Average Acceleration 1.66 ft/s2 

Average Deceleration -1.9 ft/s2 

Idle time 259 s 

Number of stops 17 

 

 

4.1.1.2 

The same simulation model was used to implement both the rule based EMS and 

the parallel control strategy.  The model was then simulated for five consecutive UDDS 

or EPA drive cycles since one drive cycle did not provide a good comparison and 

maximum capability of a PHEV vehicle.  The total distance traveled by the vehicle was 

37.2 miles.  The speed attained by the vehicle while following the desired drive cycle is 

shown in Figure 4.1 below. 

 

 

 

 

 

 

 

 

Simulation Results and Analysis 
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Figure 4.1   EPA Drive Cycles 

 

 

 

 
Figure 4.2   SOC of Parallel Control Strategy (blue and continuous) and SOC of Rule 

Based EMS PHEV Strategy (red and dotted) 
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Figure 4.3   Current Drawn for Parallel Control Strategy (blue and continuous) and 

Current Drawn for Rule Based EMS (red and dotted) for Battery 
 

 
Figure 4.4   Engine Torque for Parallel Control Strategy (blue and continuous) and 

Engine Torque for Rule Based EMS 
 

Figure 4.2 shows the SOC for the rule-based EMS when the vehicle made 

maximum use of the battery for first 3000 seconds compared to that for the parallel 

control strategy. But after that, the SOC was strictly maintained at the SOC Low value 

defined in the rule-based EMS strategy.  The battery SOC is not allowed to go below this 

value so that the life time of the battery is not impacted by very deep discharge cycles. 
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Figure 4.3 reveals that ample current was drawn from and stored into the battery 

during the entire drive cycle for the Rule-Based EMS.  But the amount of current drawn 

from and stored into the battery for the parallel control strategy was less compared to the 

rule based EMS.  So the Rule-Based EMS made more use of the battery while it operated 

the engine near the efficient region during the drive cycle. 

 

Figure 4.4 shows that the engine torque was maintained around the efficient 

operating region for most of the drive cycle, resulting in an increase in the engine 

efficiency which is validated by the engine efficiency values. 

 

For these simulations on parallel powertrain the parallel control strategy provided 

75.9 MPG while the rule-based EMS provided 80.9 MPG.  During both the simulations 

the vehicle covered 37.3 miles of distance.  Furthermore, the engine efficiency for the 

parallel control strategy was 28% but for the rule-Based strategy the engine efficiency 

was 29%.  For the PHEV vehicle, Table 4.4 shows the MPG comparisons for different 

distances. 

 

Table 4.4     MPG Comparison for Different Distances of Parallel Control Strategy and 
Rule Based EMS 

 
No. of Drive 

Cycles 

(Distance in 

Miles) 

3 

 

(22.4) 

5 

 

(37.3) 

7 

 

(52.2) 

10 

 

(74.5) 

15 

 

(112) 

Parallel 

control 

strategy MPG 

124.6 74.6 62 54.3 48.4 

Rule Based 

EMS MPG 
194.2 80.9 64 55.5 50.4 
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Table 4.4 shows that the MPG results for Rule Based EMS always exceeded the 

parallel control strategy results.  It is noted that MPG for the PHEV vehicle decreased as 

distance increased because as the distance increased the battery got discharged and the 

engine was used more.  Furthermore, the starting SOC and the ending SOC for both the 

simulated strategies were the same.  It can be concluded that MPG was improved by 

using Rule Based EMS. 

 

 

4.1.2 Simulation for Powersplit Drivetrain 

This section illustrates the simulation results for the Rule Based EMS with the 

powersplit drivetrain.  Here the Rule Based EMS was simulated for a Powersplit 

drivetrain (Toyota Prius) and the results were compared with Prius default strategy in 

ADVISOR software.  The Toyota Prius is a HEV with a powersplit drivetrain.  This Prius 

can be modified into a Plug-in Hybrid Electric Vehicle by adding an additional battery 

pack and an external charging system to charge the battery from a domestic power 

supply. 

 

A123 systems provide a battery pack system called the Hymotion L5 PCM.  It is a 

Li-Ion battery pack with a maximum capacity of 5 kwh.  This battery pack was installed 

in addition to the NiMh battery pack with a maximum capacity of 1.2 kwh.  To simulate 

this battery pack a single Li-Ion battery pack of a maximum capacity of 6.3 kwh is used 

for the simulations.  The Figure 4.5 shows a Prius PHEV which is modified from a Prius 

HEV by using an additional Hymotion L5 PCM battery pack. 
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Figure 4.5   Prius PHEV at Indiana University-Purdue University Indianapolis 
   

The following sections include a simulation setup for the two strategies and their 

simulation results. 

 

 

4.1.2.1 

The simulation for the rule-based EMS for the powersplit drivetrain was 

implemented on the existing Toyota Prius vehicle model in ADVISOR.  It was simulated 

for the converted PHEV vehicle by using larger battery pack.  The energy capacity of the 

battery was redefined as 6.3 kwh.   Moreover, it was assumed that battery was charged 

from an external domestic supply with 100% efficiency. 

 

To implement the Rule Based EMS for a PHEV the same Prius powersplit 

drivetrain model was redesigned according to the requirements of the Rule Based EMS.  

Its various engine ON/OFF conditions were modified according to the characteristics of 

Rule Based EMS.  Here the engine was operated at a selected speed which depended on 

the required power.  The engine was also operated on maximum engine torque which was 

selected as an efficient operating region according to the strategy after analyzing the 

engine BSFC map.  Thus the engine was being operated at specific speeds and torques.  

The models and the control parameters were initialized as mentioned in Table 4.5. 

Simulation Setup 
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Table 4.5     Model and Parameter Values Used for Powersplit Powertrain with Rule 
Based EMS 

 
Variable/Model Value/Name 

Engine FC Prius JPN 57 kW 

Motor  MC Prius JPN 50 kW 

Battery Li-Ion LI7 

Max Battery Capacity 6.3 kwh 

Initial Conditions Hot Temp conditions 

Init SOC  95% 

SOC High 90% 

SOC Low 35% 

  

The details of the Prius control strategy are described in the appendix.  To simulate 

the Prius control strategy in ADVISOR the following control parameters were defined. 
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Table 4.6     Models and Parameter Values Used for Powersplit Powertrain with Prius 
Control Strategy 

 
Variable/Model Value/Name 

Engine FC Prius JPN 57 kW 

Motor MC Prius JPN 50 kW 

Battery Li-Ion LI7 

Max Battery Capacity 6.3 kwh 

Initial Conditions Hot Temp Conditions 

Init SOC  95% 

SOC High 90% 

SOC Low 35% 

Engine ON SOC 35% 

Target SOC 45% 

Engine ON Minimum Power 

Required 

18,000 W 

Electric Launch Speed Limit 34 MPH 

 

 

4.1.2.2 

Identical simulation models were used to implement both of the control strategies.  

Since one drive cycle cannot show a good comparison and the maximum capability of a 

PHEV, this vehicle was simulated for five drive cycles.  The Prius powersplit powertrain 

was simulated for five consecutive UDDS drive cycles.  The total distance travelled by 

vehicle was 37.2 miles.  The vehicle speed attained while following the desired UDDS 

drive cycle is shown in Figure 4.6 below. 

 

 

 

 

 

Simulation Results and Analysis 
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Figure 4.6   EPA Drive Cycle 

 

 

 

 
Figure 4.7   SOC of Prius Control Strategy (blue and continuous) and SOC of Rule based 

EMS (red and dotted) 
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Figure 4.8   Current Drawn for Prius Control Strategy (blue and continuous) and Current 

Drawn for Rule based EMS 
 

 
Figure 4.9   Engine Torque for Prius Control Strategy (blue and continuous) and Engine 

Torque for Rule Based EMS (red and dotted) 
 

Figures 4.7 through 4.9 show the simulation results for SOC, battery current drawn 

and engine torque for both the Prius control strategy and the Rule Based EMS.  Figure 

4.7 shows that the rule-based EMS made maximum use of the battery for about 300 

seconds compared to the Prius control strategy.  After 3000 seconds both control 

strategies maintain the battery SOC near the SOC low which was defined in the 

parameters to be 30%.  Both the control systems avoided the battery being depleted 
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further beyond this SOC to prevent any impact of deep discharge cycles of the battery on 

its life. 

 

Figure 4.8 reveals that this rule-based EMS stored more charge into the battery 

compared to the Prius control strategy while operating the engine in an efficient region.  

From Figure 4.9 we can ascertain that the engine torque was mostly constant near the 

efficient operating region of the engine. 

 

The Prius control strategy for PHEV powertrain showed gas mileage of 74.8 MPG, 

whereas the Rule Based EMS provided mileage of 87.6 for the drive cycle of 37.2 miles.  

Moreover the engine efficiency for the proposed RBS strategy on Prius model was 

increased to 35%.  Since it is a PHEV vehicle better analysis can be attained by 

determining the vehicle MPG for different distances.  This is shown in the table below. 

 

Table 4.7     MPG Comparison for Different Distances of Prius Control Strategy and Rule 
Based EMS 

 
No. of Drive 

cycles 

(Distance in 

Miles) 

3 

 

(22.4) 

5 

 

(37.4) 

7 

 

(52.2) 

10 

 

(74.5) 

15 

 

(112) 

Prius control 

strategy 

MPG 

202.9 74.8 59 51 45.9 

Rule Based 

EMS 
234 87.6 68.7 59.3 53.6 

 

Table 4.7 shows that the Rule Based EMS always had better MPG results as 

compared to the Prius control strategy.  It also shows that the MPG of PHEV decreased 

with increase in distance traveled by vehicle.  Moreover, Figure 4.6 shows that the SOC 
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starting value and the ending value were the same for both of the control strategies.  

Hence it ascertains that the MPG of the vehicle improved by using Rule Based EMS. 

 

 

4.2 

This section covers the simulation of the powersplit drivetrain vehicle when 

applying the Particle Swarm Optimized EMS.  This EMS was only implemented on the 

powersplit drivetrain.  Here the simulation software PSAT, a modeling tool developed by 

Argonne National Laboratory for hybrid and electric vehicles, was used.  It is a forward-

facing, simulation based vehicle modeling tool.  It is used to simulate vehicle fuel 

economy and performance by taking into consideration the transient behavior and the 

different control system characteristics.  It has a variety of different component models in 

its library which are derived from experimental results.  These components can be used to 

build a desired vehicle drivetrain configuration and then can be simulated in the 

Matlab/Simulink based environment of PSAT. 

 

In this simulation, PSAT was used to simulate the performance of the vehicle for 

different control strategies.  The following section includes the simulation setup and the 

simulation results followed by analysis. 

 

 

Particle Swarm Optimized EMS Simulation 

4.2.1 Simulation Setup 

The constrained Optimization problem formulated in Section 3.2.1 was solved 

using the Particle Swarm algorithm as shown in the Figure 3.1.  To implement this PSO 

algorithm a simplified model of the powersplit drivetrain was used as mentioned in 

Section 3.2.1.  Then this simplified model was used to get the optimum operating points 

of the engine for the entire drive cycle.  The optimum parameter values were evaluated 

after each second for the entire drive cycle.  The results of this PSO which were near 

optimal operating points of the engine were then given to more complex PSAT model for 

better analysis and study.   So the entire process of simulation was implemented as shown 
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in Figure 3.2.  The simulation results were then compared with the PSAT control 

strategy. 

 

For simulation the model was built in PSAT with the configuration described in 

Table 4.8 below: 

Table 4.8     Model Components Details. 
 

Component Model 

Generator 30 kW PM Motor 

Energy Storage  6.3 kwh Li Ion Battery 

Motor  50 kW PM Motor 

Gearbox Planetary Gear 

Engine 57 kW Prius Engine 

 

The same model components were used for both control strategies to provide 

legitimate comparisons of the control strategies.  Both the control strategies were driven 

for UDDS drive cycles.  The UDDS drive cycle was of 7.45 miles and 1367 seconds 

duration.  Other characteristics of the UDDS drive cycle are given in Table 4.3. 

 

The Figure below shows the Urban Dynamometer Drive Schedule (UDDS) drive 

cycle used for simulation. 
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Figure 4.10  UDDS Drive cycle 

 
 

4.2.2 Simulation Results and Analysis 

In this simulation one drive cycle of UDDS as shown in Figure 4.10 was given as 

input to the model.  For this given drive cycle the vehicle followed the drive cycle while 

satisfying the performance completely.  Figure 4.11 shows the output vehicle speed 

attained by the vehicle while following the desired drive cycle shown in Figure 4.10. 
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Figure 4.11  Vehicle Output Speed for PSAT and PSO Strategies 

 

During the drive cycle the engine was operated at optimum operating points 

obtained from PSO for the PSO strategy. 

 

 
Figure 4.12  Engine Torque for PSAT and PSO Strategies 

 

 Figure 4.12 shows that the engine torque was consistently near the maximum 

engine torque which was in the more efficient operating region for the engine. 
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Figure 4.13  Engine Speed for PSAT and PSO Strategies 

 

Figure 4.13 shows the engine’s operating speed for both the PSAT and the PSO 

strategies.  It can be seen that the engine was operating at lower speeds for the PSO 

strategy as compared to the PSAT strategy.  The engine speed also had some negative 

values which occur while the engine is off.  When the engine is off, the generator rotates 

because of planetary gear coupling.  Therefore the engine is rotated at minor speeds of 

about 5 rad/sec in the reverse direction. 
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Figure 4.14  SOC of Battery for PSAT and PSO Strategies 

 

Figure 4.14 shows the SOC of the battery for both strategies.  Both the strategies 

had an initial SOC of 98%.  At the ending the SOC is almost the same for both strategies 

with a minor difference of 0.75%.  The SOC was depleted more for the PSAT strategy.  

Whereas SOC for the PSO strategy depletes very rapidly between 200 and 350 seconds 

because of the sharp demand of speed in the drive cycle between that period.  But this 

SOC was almost maintained between 450 and 775 rad/sec because regenerative braking 

recovered the power and the engine provided the power to charge it. 
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Figure 4.15  Motor Torque for PSAT and PSO Strategies 

 

Figure 4.15 shows that the motor torque was more negative between 400 and 750 

seconds of the drive cycle.  Consequently, the battery current was also negative in Figure 

4.16.  Hence more regenerative energy was stored into the battery for the PSO strategy as 

compared to the PSAT strategy.  In addition to the above results, between 200 and 350 

seconds the current was more positive implying more amount of energy was used from 

the battery.  Meanwhile the motor torque was more positive for the PSO strategy 

compared to the PSAT strategy for that duration.  Hence, comparatively, the motor 

provided higher power at higher vehicle speeds to satisfy the positive power which the 

vehicle demanded for the PSO strategy. 
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Figure 4.16  Battery Current for PSAT and PSO Strategies 

 

 

 
Figure 4.17  Motor Efficiency Map PSO Strategy 
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Figure 4.18  Motor Efficiency Map PSO Strategy  

 

Figures 4.17 and 4.18 show the motor efficiency maps for both the PSAT strategy 

and the PSO strategy.  By comparing the plots it can be seen that for the PSO strategy the 

Figure had more operating points in the efficiency region of about 91% in the first 

quadrant.  It also shows that the motor efficiency increases marginally to 87.27% for the 

PSO strategy as compared to 86.43 % for the PSAT strategy.   
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Figure 4.19  Engine BSFC Hot Map for PSAT Strategy 
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Figure 4.20  Engine BSFC Hot Map for PSO Strategy 

 

Figures 4.19 and 4.20 show the engine BSFC Hot Maps for PSAT and PSO 

strategies respectively.  The Figures show that for PSO strategy all the operating points 

are near the idle speed of the engine.  It indicated that the fuel consumption was less.  

Meanwhile the performance of the vehicle was also satisfied.  Moreover the engine 

torques and engine speeds were observed to be negative, because of the speed coupling 

that existed between the engine torque and the generator. 
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Figure 4.21  Battery Temperature for PSAT and PSO Strategies 

 

Figure 4.21 shows that the battery temperature of the PSAT battery increased very 

sharply at 200 seconds because of the extra acceleration demanded by the drive cycle 

around that point.  However, the battery temperature rise for the PSO strategy was rather 

steady in this simulation because the battery was used less for the PSO strategy as 

compared to the PSAT strategy. 
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Figure 4.22  Fuel Consumption Rate by Engine for PSAT and PSO Strategies 
 

Figure 4.22 shows the fuel consumption rate of gasoline in the engine for the PSAT 

and the PSO strategies.  It can be clearly observed from the Figure that the fuel 

consumption rate for the PSO strategy was consistently less compared to the fuel 

consumption rate for the PSAT strategy because for the PSO strategy the engine was 

operated at lower speeds. 

 

These simulation results are post processed by the PSAT software.  The results of 

this post processed data are shown in Table 4.9.  The results show higher mileage for the 

PSO EMS 192.8 miles/gallon as compared to 160.7 mile/gallon for PSAT strategy.  Since 

the initial and final SOC values were the same for both the strategies the results are 

comparable. 

 

 

 

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

time (s)

Fu
el 

Co
ns

um
pt

ion
 (k

g/
s)

 

 
eng_fuel_rate (PSO Strategy) [kg/s] x 1
eng_fuel_rate (PSAT Strategy) [kg/s] x 1



57 

Table 4.9    Simulation Post Processed Data Comparison for PSAT and PSO Strategy for 
One UDDS Drive Cycle 

 
 PSAT Strategy PSO Strategy Unit 

MPG 160.7 192/8 miles/gallon 

Electrical 

consumption 
114.64 119.10 Wh/mile 

Mass of fuel to 

travel 320 miles 
5.65 4.71 Kg 

Powertrain 

bidirectional path 

Efficiency 

49.53 53.72 % 

Powertrain closed 

loop gain 
0.73 0.8 - 

Percentage energy 

recovered at battery 
34.29 61.92 % 

Absolute average 

difference on 

vehicle speeds 

0.4 0.38 miles/hr 

Absolute deviation 

from the trace 
1.84 1.62 miles/hr 

 

Both the strategies were blended mode strategies where both the engine and/or the 

battery can be used to power the vehicle, If the vehicle travels 320 miles distance on the 

same UDDS drive cycle the fuel consumption thus will be less for the PSO strategy 

compared to the PSAT strategy.  The results show that the PSO strategy will have used 

only 4.71 Kg of fuel for 320 miles whereas PSAT strategy used 5.65 Kg of fuel, which is 

significant. 

 

Table 4.9 shows that the overall bidirectional path efficiency for the PSO strategy 

was increased significantly to 53.72 % as compared with 49.52 percent for the PSAT 
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strategy.  Similar results were observed for powertrain closed loop gain where it was 

increased to 0.8 for PSO strategy.  Table 4.9 also shows that the percentage of energy 

recovered at the battery due to regeneration also increased notably to 61.92% as 

compared with 34.29% for the PSAT strategy.  This fact was verified from the motor 

torque (Figure 4.14) and battery current (Figure 4.16) from simulation results between 

400 and 800 seconds where large negative torques and negative currents were recovered 

and stored in the battery.  In the same table, the comparison of absolute average 

difference between the vehicle’s output speed and demanded drive speed was calculated.  

It also showed that the performance of vehicle was improved for the PSO strategy 

compared to the PSAT strategy. 

 

 
Figure 4.23  Engine ON/OFF for PSAT and PSO Strategies 

 

Figure 4.23 shows the engine ON/OFF activity during the entire drive cycle for the 

PSAT and PSO strategy.  Values of 1 indicate engine ON and values of 0 indicate engine 

OFF.  The Figure shows that for the PSO strategy the engine turning ON/OFF is more 

frequently as compared to the PSAT strategy, which is less practical.  So to avoid such 
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frequent engine transition an updated PSO optimized strategy was implemented which is 

described in Section 4.3. 

 

 

4.3 

This section includes the simulation of the powersplit drivetrain vehicle after 

applying the advanced optimized EMS using PSO.  The powersplit drivetrain model from 

PSAT was used to simulate the vehicle. 

 

 The following section includes the simulation setup and the simulation results 

followed by its analysis. 

 

 

Advanced Optimized EMS using PSO 

4.3.1 Simulation Setup 

The problem formulated for advanced PSO EMS described in Section 3.3.1 was 

solved using the PSO algorithm shown in Figure 3.1.  It was simulated similar to the 

process used in Section 4.2.  First, a simplified model of powersplit was used that was the 

same as the simplified model used in Section 4.2 developed using the modeling equations 

of Chapter 2.  Second, this simplified model was used with the PSO algorithm which 

provided the optimum operating points of the engine for the entire drive cycle.  Finally, 

the optimum results obtained from the second step were used in the simulation of the 

powersplit drivetrain in the PSAT as shown in Figure 3.2 for accurate modeling and easy 

analysis.  The simulation results were compared with different control strategies. 

 

The constrained optimization problem formulated in Section 3.3.1 was solved using 

the particle swarm algorithm as shown in Figure 3.1.  To implement this PSO algorithm a 

simplified model of powersplit drivetrain was developed using the modeling equations 

described in the Chapter 2 for each component as mentioned in Section 3.2.1.  Then, this 

simplified model was used to get the optimum operating points of the engine for the 

entire drive cycle.  The near optimum parameter values of the engine speed and the 
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engine torque were evaluated after each second of the duration of the drive cycle.  The 

results of this PSO, which were optimum operating points of the engine, were then given 

to more complex PSAT model for better analysis and study.   So the entire process of 

simulation was implemented as shown in Figure 3.2.  The simulation results were then 

compared with a PSAT control strategy, and results of the PSO EMS obtained in Section 

4.2. 

 

To compare the PSO EMS results with the PSAT control strategy and the advanced 

PSO EMS, the results obtained in Section 4.2 are extended to three UDDS drive cycles.  

This extension is valid because for the second and third drive cycle the power demands 

would be the same as that of the first drive cycle since the drive cycle is the same.  

Furthermore, even the SOC does not have any effect on the objective function since the 

difference in SOC is considered for the objective function evaluation.  Moreover, for the 

UDDS drive cycle, the battery power charge/discharge limit curve showed that constraint 

Equation 3.15 is always satisfied for the battery operating power demands in the first 

drive cycle.  Therefore, the PSO EMS results of the first drive cycle can be extended to 

the second and the third drive cycles and the comparison can be made to the other two 

strategies. 

 

The simulation model was built in PSAT similarly as mentioned in Section 4.2.1.  

More details regarding the simulation are given in Table 4.8. 

 

The same models were used for all the control strategies to have valid comparisons 

of the control strategies.  All the control strategies were driven for three UDDS drive 

cycles.  The total driving distance is 22.35 miles and time duration is 4109 seconds.  

Detailed characteristics regarding the UDDS drive cycle are given in Table 4.3. 
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4.3.2 Simulation Results and Analysis 

As mentioned above the simulation was completed for three continuous UDDS 

drive cycles which are shown in Figure 4.24.  For these three drive cycles the vehicle 

followed the 22.35 miles of distance for three UDDS drive cycles.  The vehicle followed 

the drive cycle while satisfying the performance completely.  The Figure shows the 

output vehicle speed attained by the vehicle while following the desired drive cycle as 

shown in Figure.  

 

 
Figure 4.24  Vehicle Speed Attained for PSAT, Basic PSO and Advanced PSO Strategies 

 

For basic and advanced PSO strategies the engine was operated at near optimum 

operating speeds and torques which were obtained from the PSO algorithm defined in 

Chapter 3. 
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Figure 4.25  Engine Output Speed for PSAT, Basic PSO and Advanced PSO Strategies 

 

Figure 4.25 shows the engine speeds for the PSAT strategy, basic PSO strategy and 

advanced PSO strategy.  For the basic PSO strategy the engine was operated from the 

beginning of the UDDS drive cycle since those were the optimal engine speeds obtained 

from the PSO algorithm where the objective function considered the equivalent fuel 

consumption consisting of SOC and fuel consumption in its calculations.  Moreover the 

engine was operated at optimum points.  For the advanced PSO strategy it was seen that 

the engine was operated at higher speeds relative to the operating speeds of Basic PSO 

since it was operated less frequently, whereas the operating speeds for the PSAT strategy 

were very high. 
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Figure 4.26  Engine Output Torques for PSAT Strategy, Basic PSO Strategy and 

Advanced PSO Strategy 
 

Figure 4.26 shows the engine output speeds for the PSAT strategy, basic PSO EMS 

and advanced PSO EMS.  The engine torques for Basic PSO EMS and advanced PSO 

EMS were obtained from the near optimum engine torque which were results obtained 

from PSO.  The PSAT strategy engine torques were higher than the other EMS torques. 
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Figure 4.27  Engine ON/OFF for PSAT Strategy 
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Figure 4.29  Engine ON/OFF for Advanced PSO Strategy 

 

Figures 4.27 – 4.29 show the engine ON/OFF events for PSAT strategy, basic PSO 

EMS and advanced PSO EMS respectively.  It was observed from the plots that the 

engine ON/OFF frequency was significantly reduced for the advanced PSO EMS as 

compared to Basic PSO EMS and the PSAT strategy.  This engine ON/OFF frequency 

made the control strategy more practical and implementable on the vehicle. 
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Figure 4.30  Engine BSFC Hot Map for PSAT Strategy 
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Figure 4.31  Engine BSFC Hot Map for Basic PSO Strategy 
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Figure 4.32  Engine BSFC Hot Map for Advanced PSO Strategy 

 

Figures 4.30-4.32 show the engine BSFC map for the PSAT strategy, basic PSO 

EMS and advanced PSO EMS.  The results of advanced PSO EMS show improvement in 

terms of fuel consumption over the PSAT EMS.  Moreover, as compared to the basic 

PSO EMS some optimum operating speeds were farther away from the idle operating 

speed of the engine since it was operated less frequently so required more power to 

charge the battery during the third drive cycle. 
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Figure 4.33  SOC of Battery for PSAT Strategy, Basic PSO Strategy and Advanced PSO 

Strategy 
 

Figure 4.33 shows the SOC of battery for PSAT strategy, basic PSO EMS and 

advanced PSO EMS.  The SOC curve for the advanced PSO strategy decreased more 

rapidly as compared to the Basic PSO EMS curve during the entire drive cycle.  Until 

1600 sec the SOC of the PSAT strategy and the advanced PSO EMS were depleted 

almost the same since they are running almost on EV mode.  In the end the advanced 

PSO strategy SOC of the battery should have ended at 30 % but it ended at 28%.  This 

was because of the approximation error between the simplified model used in 

optimization and the PSAT model used for analysis. 
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Figure 4.34  Battery Current for PSAT Strategy, Basic PSO Strategy and Advanced PSO 

Strategy 
 

Figure 4.34 shows the battery current for all three strategies, i.e., PSAT strategy, 

basic PSO EMS and advanced PSO EMS.  It clearly shows that large amount of currents 

were drawn from battery for advanced PSO EMS initially for 0 to 1600 seconds as it was 

used to drive the vehicle.  Moreover, for time from 0 to 350 seconds there were no 

negative currents because the battery was fully charged during that time interval and it 

did not require charging from the engine. 
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Figure 4.35  Battery Temperatures for PSAT Strategy, Basic PSO Strategy and Advanced 

PSO Strategy 
 

Figure 4.35 shows the battery temperatures for three different strategies.  As shown 

it clearly shows that the battery temperatures for the advanced PSO strategy were much 

higher.  So it required a better battery cooling system to maintain the battery at the 

desired temperature. The battery temperature control system is not incorporated into the 

simulation model hence the energy required for the cooling system is assumed to be zero.   
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Figure 4.36  Instantaneous Fuel Consumption for PSAT Strategy, Basic PSO Strategy 

and Advanced PSO Strategy 
 

Figure 4.36 shows fuel consumption by the engine for time intervals of 1 second.  It 

shows that the fuel consumption values for the basic PSO strategy and the advanced PSO 

EMS which were near optimal results were smaller compared to the PSAT strategy 

values. Moreover it also shows that the values of fuel consumption for the advanced PSO 

were 0 until 3000 seconds since engine was not turned on.  But when it was turned on its 

values were relatively larger than basic PSO EMS since the engine was providing more 

power during that time interval. 
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Figure 4.37  Cumulative Fuel Consumption for PSAT Strategy, Basic PSO Strategy and 

PSAT Strategy 
 

Figure 4.37 shows that fuel consumption for the basic PSO strategy was consistent 

throughout the drive cycle since it was based on optimum results of PSO for the objective 

function using equivalent fuel consumption for calculations.  Moreover the PSAT 

strategy was in EV mode for 0 to 1700 seconds but after that it started using engine and 

consumed fuel very rapidly.  The cumulative fuel consumption curve for the advanced 

PSO EMS shows that until 3000 seconds it used almost no fuel as it was running on EV 

mode and the battery was driving the vehicle.   But afterwards it started consuming the 

fuel but at faster rates.  The advanced PSO EMS problem was formulated such that 

initially the vehicle is running in EV mode while consuming battery but afterwards it uses 
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the engine to maintain SOC around a certain value to avoid further depletion and harm to 

the battery life. 

 

Figure 4.36 shows three kinds of strategies.  They are blended mode strategy which 

was basic PSO EMS, charge sustaining and charge depletion strategy which was not 

optimized i.e. PSAT strategy and optimized advanced PSO EMS. 

 

Table 4.10   Summary of Comparisons among Different Strategies 
 

 PSAT Basic PSO Advanced PSO 

Results Interval(s) 0-4109 0-4109 0-4109 

Cycle UDDS UDDS UDDS 

Cycle distance 

(mile) 
22.33 22.39 22.34 

Fuel mass (kg) 0.43 0.33 0.08 

CO2 emissions 

(g/mile) 
60.94 45.85 10.95 

Battery SOC (%) 98~60.2 98~49.38 98~28.76 

Equivalent MPG 108.39 121.68 180.2 

Powertrain 

Bidirectional path 

efficiency (%) 

49.37 54.67 68.93 

Engine ON 

percentage (%) 
19.72% 22.85% 3.82% 

Number of times 

Engine started 
78 279 26 

 

 Table 4.10 shows the comparison of numerical results obtained from simulation 

by simulating the same vehicle model for identical conditions with different EMS 

strategies.  The table shows that less gasoline was consumed for the advanced PSO 

strategy since it was optimized and was consuming battery as a fuel.  The table also 
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shows that CO2 emission into the environment was also significantly reduced over the 

basic PSO strategy and the PSAT strategy. 

 

The table shows that bidirectional powertrain efficiency was improved for the 

advanced PSO EMS as compared to the PSAT strategy and the basic PSO EMS.  It also 

shows the equivalent MPG comparison among the different strategies.  For the advanced 

PSO strategy the equivalent was improved to 180.2 MPG as compared to 121.68 for basic 

PSO and 108.39 for the PSAT strategies.  Furthermore the engine was also turned ON for 

lesser duration for the advanced PSO EMS as compared to other strategies.  It also shows 

significant reduction in the number of engine starting times for advanced PSO strategy.  

This was one of the main objectives for the EMS which makes this EMS system 

implementable on real vehicles.   
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5. POSSIBLE REAL TIME IMPLEMENTATION OF PSO EMS 

 

 

Neural networks (NN) are artificial mathematical representations of biological 

neural networks.  They roughly imitate the human neural network system to acquire 

knowledge and make intelligent decisions.  The main advantage of neural networks is 

that they can approximate the function from observations and can then be used to predict 

it.  Hence they have been widely used for complex data or tasks that cannot be 

implemented easily.  They are used for a variety of applications like function 

approximation or regression analysis, classification, including pattern recognition and 

data processing.  They are also used in system identification and control problems in 

various fields. 

 

Artificial neural networks are composed of interconnected artificial neurons which 

are mathematical models for information processing and providing results. 

   
(5.1) 

where n is the output of one neuron,  is the function such as sigmoid, linear, etc.,  are 

the weights corresponding to inputs ,  is the number of inputs and  is the constant 

bias. 

 

When such neurons are stacked together and provided with the same set of inputs, 

they form a layer of neurons.  Connecting the stack of layers of neurons, results in a 

network of neurons called the Multilayer Neural Network.  Neural networks have an 

input layer and an output layer.  In between these layers may be hidden layers of neurons.  

Figure 5.1 below shows a four layer neural network with j number of inputs and k 
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number of outputs.  In the figure X1, X2, X3,…,Xj are the inputs to the neural network 

whereas y1, y2, y3, ….yk are the outputs of the neural network. 

 

 
 

 

The number of layers and neurons in each layer are determined such that the neural 

network becomes sufficiently non-linear according to the desired application.  Initially, 

supervised NNs have to be trained for a known set of inputs and outputs to evaluate the 

weights that correspond to its inputs.  Unsupervised neural networks, which train using 

only input patterns, also exist, but this project uses a supervised network.  Often these 

weights are calculated using a Backpropogation Algorithm.  In the Backpropogation 

Algorithm, the weights of each neuron are recalculated such that the errors between the 

outputs and desired outputs are minimized. 
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  Output Layer Two hidden layers 

Figure 5.1   Neural Network Structure 
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5.1 

Implementing this neural network requires the same simulation setup of the vehicle 

that was used in Section 4.3.1 is used here.  But the neural network was implemented in 

the vehicle controller of the simulation. 

 

Simulation Setup 

The goal here is to implement the optimum control strategy in real time mentioned 

as mentioned in Section 4.3.  Due to the system complexity the control system cannot be 

approximated by using a single neural network, hence a dual neural network was 

designed.  Here two identical neural networks are used.  Each of these NNs is trained 

separately for either charge depletion or charge sustaining mode.  One of the outputs 

from these NNs was selected based on SOC as shown in Figure 5.2.  Two NNs are 

selected with 50 neurons in each layer for every NN.  Inputs to the system are linear 

speed demand (v), wheel torque demand ( ), and SOC while engine speed and torque are 

outputs from the system.  Finally these desired engine speeds and torques are used to 

calculate the motor and generator operating points using Equations 2.20 to 2.23.  Since 

we had the optimal results from Section 4.3.2 for both charge depletion and charge 

sustaining mode we used them to train the neural networks.  Here the Levenberg – 

Marquardt algorithm was used to train both NNs and mean squared error is used as the 

performance criterion for each NN.  Finally, NNs are validated for their outputs which 

showed that they are approximately near the desired outputs. 

 

 
 

 

Inputs Modes 

Detection 

NN for SOC 

depleting mode 

NN for SOC 

Charging mode 

Outputs 

Figure 5.2   Neural Network Controller Diagram 
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The pair of neural networks are trained repeatedly such that the performance error 

i.e. mean squared error, is reduced to acceptable values by the end.  Finally, the results of 

the neural network approach are compared with optimal results of the advanced PSO. 
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Figures 5.3 and 5.4 show the comparison of results of the proposed neural network 

and advanced PSO EMS strategy results.  The two targets of engine speed and engine 

torques are compared to the outputs of advanced PSO results. 

 

Finally, this neural network controller is used to simulate vehicle model using 

PSAT.  The vehicle model is simulated for three drive cycles of UDDS. 

 

 

5.2 

It can be seen in Figure 5.5 the engine speed from the neural network is almost 

same as optimum engine speed obtained from the advanced PSO, except the part of the 

third drive cycle from 3000 to 4000 seconds.  Because after 3000 seconds SOC is 

depleted to 30%,  hence the vehicle entered into the SOC sustaining mode.  Hence 

another neural network is applied.  Furthermore, Figure 5.6 shows that the engine torque 

for the NN is almost same as the engine torque for advanced PSO EMS.  But still there 
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are some torque and speed differences between the NN and the advanced PSO results 

towards the end of three drive cycles.  However their impact is less on fuel economy.  

Therefore, it proves that this well trained NN could be used to predict the future sub-

optimum engine speed and the engine torques in real time. 

 

 

 
Figure 5.5   Engine Speed Comparison between Advanced PSO and NN 
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Figure 5.6   Engine Torque Comparison Between Advanced PSO and NN 

 

Figures 5.5 and 5.6 show the engine operating points for the proposed NN and 

advanced PSO methods.  Although there are tiny differences between these two methods, 

it is still tolerable to get real-time controller using the NN.  Therefore, as compared to the 

PSO off-line method, it gives a good chance to make applicable a controller usable in 

commercial cars. 

 

 

 

 

 

 

 

 

 

 

0 500 1000 1500 2000 2500 3000 3500 4000
-20

0

20

40

60

80

100

time (s)

En
gin

e 
To

rq
ue

 (N
m

)

 

 
eng_trq_out (Neural Network) [Nm]
eng_trq_out (Advanced PSO) [Nm]



83 

 

 

 

 

 

 

 

 

 
Figure 5.7   Engine Map with Neural Network  
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Figure 5.8   Engine Map with Advanced PSO 

 

Figures 5.7 and 5.8 show the engine map for both the Neural Network results and 

the advanced PSO results.  These engine operating points show that the neural network 

results are similar but certain operating points are different from the advanced PSO 

results because of the approximation. 
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Figure 5.9   Fuel Consumption of Advanced PSO and Neural Network 

 

Figure 5.9 shows the fuel consumption comparison between the advanced PSO and 

the neural network.  Since the vehicle is operated under pure electric mode before 3000 

seconds, fuel mass increases thereafter for both strategies.  But the fuel consumption for 

the neural network strategy is still low because the SOC for this neural network is used to 

power the vehicle during this time as compared to the advanced PSO SOC.  Furthermore 

after calculating the equivalent fuel consumption of vehicle for both the strategies it is 

found that the equivalent fuel economy for the vehicle with advanced PSO is 180.2 MPG 

whereas for the Neural network it is 180 MPG for two UDDS drive cycles.  These results 

show that the NN provides a sub-optimal result which is expected because of the 

approximation of the Advanced PSO EMS. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

 

 

6.1 

In Chapter 4 Section 4.1 a Rule Based EMS was implemented on two different 

vehicle models, a Powersplit drivetrain and a Parallel drivetrain model.  The results of 

this Rule Based EMS were then compared to the Prius control strategy and Parallel 

control strategy in ADVISOR for different distances travelled for the UDDS drive cycle. 

 

It was observed that with the proposed Rule Based EMS the gas mileage of the 

PHEV is increased by 16% over the Prius control strategy.  The gas MPG of the Rule 

Based control Strategy was also better than that for the Parallel control strategy in 

ADVISOR by about 6%.  The engine efficiency with Rule based EMS also increased 

significantly over that of Prius and Parallel control strategies.  It was therefore concluded 

that of the Rule Based EMS was more effective for the on PHEV compared to HEV 

Energy Management systems on the PHEV for the same battery capacity. 

 

Conclusions 

In Section 4.2 the gradient free algorithm Particle Swarm Optimization was used to 

improve the fuel economy of the vehicle.  So a simplified model of the power split 

drivetrain of an HEV was developed.  This model was used along with PSO to obtain the 

near optimal operating points of the engine while satisfying various component physical 

constraints, as well as vehicle performance constraints.  The resulting optimum operating 

points of the engine obtained from PSO were then given as input to the PSAT model. The 

results from the PSAT model were compared with the PSAT, a default strategy for 

identical power split HEV drivetrain. 
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The results showed significant improvement in MPG for the vehicle with the PSO 

strategy compared to an identical vehicle configuration for the PSAT strategy for almost 

the same electrical consumption.  The improvements showed enhancement in fuel 

economy which was the main objective of the study.  Meanwhile, there was also an 

increase in the powertrain bidirectional path efficiency of the vehicle.  During the 

simulation it was also observed that performance of the vehicle was improved slightly 

while comparing with the PSAT strategy counterpart. 

 

The operating points obtained in this section were only for blended mode strategy. 

Here both engine and/or battery can be used to drive the vehicle even if the battery has 

sufficient potential to drive it which was not desirable for short distances.  Hence control 

strategy was defined accordingly for shorter distances.  For the PHEV vehicle, the 

blended strategy described above was not very effective since it had a large battery.  This 

stored electrical energy, and should be have been used for short drives to get better MPG.  

In Section 4.3 the new optimized strategy based on this concept was obtained. 

 

In Section 4.3 the advanced PSO problem which was formulated in Section 3.3.1 

was implemented using a simplified model developed from the modeling equations of 

each component from Chapter 2.  These results were used in the PSAT model for the 

powersplit drivetrain to provide better accuracy and analysis. 

 

The simulation results showed that optimum results of advanced PSO strategy 

provided good results over the PSAT strategy and the basic PSO strategy.  These 

optimum results were first obtained offline and then implemented on the model.  Since 

the optimization process took a long time to evaluate optimum points, it could not be 

implemented in real time.  To overcome this problem a neural network solution to 

implement this real time control strategy was shown in Chapter 5. 

 

In Chapter 5, the optimal results obtained from the advanced PSO strategy were 

used to train the neural network.   
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The results from the neural network were approximately the same for the entire 

PSO results, thus near optimal control was obtained.   

 

So a possible real-time implementable strategy has been designed step wise from 

the rule based EMS to a real-time sub-optimal strategy.  

 

 

6.2 

In the future, more work can be done to improve the Optimized Energy 

Management System as shown below. 

Recommendations for Future 

 When comparing the neural network results with the advanced PSO results, 

it can be seen that in charge sustaining mode there are some errors in the 

neural network output as compared to the advanced PSO output.  These 

errors can be reduced by training the neural network with better training 

sets. 

 In [19] it is mentioned that the local version of PSO can often provides 

better results as compared to the global version. The near optimal results 

obtained from the advanced PSO are obtained using the global version of 

PSO.  By using the local version of PSO the near optimal results obtained 

for advanced PSO may be improved. 

 The Energy Management System is designed based on prior knowledge of 

the drive cycle.  In future this EMS can be improved by a neural network or 

fuzzy logic such that it can provide real time results independent of prior 

knowledge of the drive cycle. 
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APPENDIX  COMPARED STRATEGIES 

 

 

A.1 

The Prius is a combination of both parallel and series powertrains.  For this 

powertrain, the continuous variable transmission (CVT) is used which consists of a 

planetary gear set connected to the motor, generator and engine.  The planetary gear set 

provides speed coupling between the engine and the generator.  Also there exists a torque 

coupling between the engine and motor. 

 

In the Rule Based Energy Management Control strategy which is being used by the 

Advisor model for the Prius, the power generated by the ADVISOR model for the Prius, 

the power generated by the engine is controlled power while the remaining power is 

provided by the motor.  The engine ON/OFF condition is dependent on the state of 

charge (SOC) of the battery, the power requested, the vehicle speed and the engine 

coolant temperature. 

 

The various engine operating modes are selected based on the following set of rules.   

Rule Based EMS for Prius control strategy in ADVISOR 

a) If the SOC of battery is enough the power requested can be provided by the 

battery, the vehicle is operating at low speed and the coolant temperature is 

acceptable, then the vehicle is operated only in electric mode. 

b) If the engine is ON and the state of charge of the battery is above the targeted 

state of charge then the engine and the motor both provide the requested power 

demand. 

c) If the state of charge of the battery goes below the targeted state of charge then 

the engine provides extra power to charge the battery and also powers the vehicle.
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d) If the power requested by the vehicle is negative and the engine is OFF then the 

entire negative requested power is stored in the battery using regenerative 

braking.    

 

 

A.2 

In rule based strategy EMS control strategy for the parallel drivetrain the engine 

power is controlled and the remaining power is delivered by the motor.  But in the 

Parallel powertrain the Gearbox is used.  Here the following control strategy is used. 

 

Rule Based EMS for Parallel control strategy in ADVISOR 

a) If the vehicle speed is below the electric launch speed limit and the state of charge 

of battery is greater than the lower limit then it will be powered entirely by the 

motor in EV mode. 

b) If the power required by the vehicle exceeds the maximum power that can be 

provided by the engine and the State of Charge of the battery is more than its 

power limit then the remaining power is provided by the motor. 

c) When the power required by the vehicle is negative all the negative power is 

stored by the battery via regenerative braking. 

d) The engine may also turn off if the torque required drops below a certain limit, i.e. 

off torque limit in the Figure A.1, if the state of charge is greater than the lower 

limit of state of charge. 

 

 

 

 

 

 

 

 

 



94 
 

 

 
 

 

 
 

 

If the state of charge of the battery drops below its lower limit then the engine 

provides the extra power which is then used to charge the battery as shown in 

Figure A.2 while operating above the minimum torque envelope. 
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Figure A.1  Charge Depletion Strategy for Parallel Strategy [17] 

Figure A.2  Charge Sustaining Strategy for Parallel Strategy [17] 
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