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Abstract

Purpose of Review—This review summarizes the role of hypoxia and hypoxia-inducible 

factors (HIFs) in the regulation of stem cell biology, specifically focusing on maintenance, 

differentiation, and stress responses in the context of several stem cell systems. Stem cells for 

different lineages/tissues reside in distinct niches, and are exposed to diverse oxygen 

concentrations. Recent studies have revealed the importance of the hypoxia signaling pathway for 

stem cell functions.

Recent Findings—Hypoxia and HIFs contribute to maintenance of embryonic stem cells, 

generation of induced pluripotent stem cells, functionality of hematopoietic stem cells, and 

survival of leukemia stem cells. Harvest and collection of mouse bone marrow and human cord 

blood cells in ambient air results in fewer hematopoietic stem cells recovered due to the 

phenomenon of Extra PHysiologic Oxygen Shock/Stress (EPHOSS).

Summary—Oxygen is an important factor in the stem cell microenvironment. Hypoxia signaling 

and HIFs play important roles in modeling cellular metabolism in both stem cells and niches to 

regulate stem cell biology, and represent an additional dimension that allows stem cells to maintain 

an undifferentiated status and multilineage differentiation potential.
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Introduction

Interactions between stem cells and their niche microenvironment are critical for stem cell 

self-renewal and protection of the stem cell pool [1–4]. Oxygen is a vital molecule in the 

stem cell microenvironment, serving as a metabolic substrate and signaling mediator [5]. 

While organs and tissues experience a considerably lower range of oxygen tension compared 

with the ambient oxygen levels (normoxia, 21%), measurements in stem cell niche revealed 

even lower oxygen tensions (Table 1) [6–15]. Low oxygen levels (hypoxia) are appreciated 

to maintain a slow-cycling proliferation property, reduced oxidative stress, and 

undifferentiated status in several stem cell populations [16–18].

The effects of hypoxia are primarily mediated by hypoxiainducible factors (HIFs) [19, 20]. 

HIFs are DNA-binding transcriptional factors of the basic-helix-loop-helix-Per-Arnt-Sim 

(bHLH-PAS) superfamily proteins and bind to hypoxia regulated elements (5′-RCGTG-3′, 

HREs) in the promoter and enhancer of hypoxia-inducible genes [21–23]. HIFs are 

heterodimers composed of an alpha subunit (HIF-α) and a beta (HIF-β) subunit, also known 

as aryl-hydrocarbon receptor nuclear translocator (ARNT) [20]. To date, three alpha subunits 

(HIF1A, HIF2A, HIF3A) and two beta subunits (ARNT, ARNT2) have been identified [23–

26]. All of the HIF-α subunits contain an N-terminal bHLH domain for DNA binding, a 

PAS domain for heterodimerization, and an oxygen-dependent degradation (ODD) domain 

for regulation of protein stability. HIF1A is ubiquitously expressed, while expression of 

HIF2A and HIF3A is restricted to specific cell types [27]. ARNT and ARNT2 share 57% 

amino acid sequence identity and both contain bHLH and PAS domains [28, 29].

The HIF-α subunit is regulated by an oxygen-dependent proteolytic degradation, whereas 

the HIF-β subunit is constitutively expressed. Under ambient oxygen levels, HIF-α is 

hydroxylated on proline residues within the ODD domain by prolyl hydroxylases (PHD), 

which is recognized by von Hippel-Lindau (VHL) E3 ubiquitin ligase. VHL targets HIF-α 
for ubiquitin conjugation and proteasomal degradation (Fig. 1) [30–32]. Under hypoxia, 

when PHD activity is suppressed, HIF-α is stabilized and translocated to the nucleus where 

it dimerizes with ARNT to promote transcription of various hypoxia-inducible genes (Fig. 1) 

[33, 34]. HIF-α/ ARNT heterodimer can recruit histone acetyltransferases p300 and CBP to 

activate transcription of target genes [35, 36]. HIF-α activity is also regulated by additional 

protein modifications, such as phosphorylation [37], acetylation [38], and sumoylation [39].

While the roles of hypoxia signaling and HIFs in development have been reviewed by 

others, their effects on stem cells have received scant attention. In this review, we summarize 

recent advances on hypoxia signaling and HIFs with a focus on the regulation of the biology 

of several types of stem cells including pluripotent stem cells (PSCs), hematopoietic stem 

cells (HSCs), and cancer stem cells (CSCs).

Hypoxia and HIFs in Embryonic Stem Cells and Induced Pluripotent Stem 

Cells

Embryonic stem cells (ESCs) are capable of self-renewal and maintenance of pluripotency 

[40]. ESCs have been regarded as a potential replacement for tissues in regenerative 
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medicine due to their pluripotency. Studies have demonstrated the advantage of generating 

ESC lines under hypoxic conditions (5% O2) over ambient air, in terms of increased 

colonies with alkaline phosphatase activity and enhanced cell proliferation [41, 42]. 

Culturing cells in hypoxia reduced spontaneous differentiation and enhanced formation of 

embryoid bodies, and seemed to maintain the pluripotency of the cells [43, 44]. A marker for 

early differentiation (SSEA-1) was less expressed when human ESCs were cultured under 

hypoxia conditions [43]. Culturing human ESCs at hypoxia was correlated with increased 

expression of NANOG, OCT4, and SOX2, main regulators of the undifferentiated status of 

embryonic cells [45]. In addition, HIF2A depletion hampered proliferation and protein 

expressions of OCT4, SOX2, and NANOG in human ESCs [45]. Enhanced maintenance of 

self-renewal and pluripotency of human ESCs was observed when cocultured with human 

fetal liver stromal cells expressing HIF1A, suggesting that the function of HIF1A in the 

microenvironment is important to maintain the undifferentiated state of human ESCs [46].

Hypoxia plays a crucial role in determining the fate of the stem cells [47]. However, there 

are conflicting reports on the effect of hypoxia on ESC differentiation. Reports showed that 

hypoxia maintained self-renewal and prevented differentiation of ESCs [43]. In contrast, 

others revealed that hypoxia promoted differentiation of human ESCs into cardiomyocytes 

[48] and chondrocytes [49]. Hypoxia also promoted mouse ESCs to differentiate to neurons 

[50], endothelial cells, and hematopoietic stem cells [51]. These apparently controversial 

reports on the effect of hypoxia on differentiation may be explained by the stage of stemness 

at which the hypoxia was introduced, and the duration and degree of hypoxia. The 

mechanism through which HIF induces differentiation to different lineages has been 

revealing. Hypoxia primed ESCs to commit to the vascular lineage by suppressing Oct4 

expression via direct binding of HIF1A in the Oct4 promoter region [52]. Another group 

reported that Hif1a induced mouse ESC commitment to arterial endothelia cells through 

upregulation of the transcription factor Etv2 and Notch1 signaling [53•]. Moreover, 

overexpression of Hif2a primed mouse ESCs to commit to cardiomyocytes by upregulating 

β-catenin [54]. Knocking out HIF1A by the CRSIPR-Cas9 system blocked transition from 

naive to primed human ESCs [55].

The groundbreaking finding by Yamanaka and colleagues demonstrated that somatic cells 

could be reprogrammed into induced pluripotent stem cells (iPSCs) by four transcription 

factors (4F; Oct4, Sox2, Klf4 and c-Myc) [56]. The generation of iPSCs was inefficient 

under normoxic conditions at ambient air (21% O2), and the reprogramming efficiency was 

significantly higher under mildly hypoxic conditions (5% O2) [57]. This finding suggests 

that the condition of hypoxia enhances stem cell generation and maintenance, consistent 

with observations in ESCs. One distinct characteristic of ESC and iPSC is their reliance on 

glycolytic metabolism, regardless of oxygen availability [58, 59]. Cellular bioenergetics are 

also extensively remodeled upon generation of iPSCs, from mitochondrial oxidative to 

glycolytic metabolism [60, 61]. Cells with disrupted HIF1A function are refractory to 

reprogramming [61]. Also, a small molecule activation of HIF1A upregulated HIF1A targets 

(PKM2 and PDK3), resulting in increased glycolysis and enhanced reprogramming 

efficiency [61]. One group continued to dissect the HIF regulatory role in metabolic switch 

and reprogramming [62]. They proposed that HIF1A and HIF2A were sufficient to induce 

metabolic switching during reprogramming. They distinguished between HIF1A and HIF2A 
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functions during reprogramming. Both were essential, but HIF2A applied its positive 

regulatory effect early in the process. Interestingly, prolonged stabilization of HIF2A 

impeded iPSC formation through TRAILinduced inhibition of caspase 3 [62]. Another 

report linked hypoxia, mitofusins (Mfn), and HIF1A with reprogramming [63]. Under 

hypoxic conditions, Mfn were downregulated and less expressed. In Mfn1/2 knockdown 

cells, HIF1A was stabilized, resulting in enhanced glycolytic metabolism and induced 

pluripotency [63].

Hypoxia Signaling and HIFs in Tissue-Specific Stem Cells, Using 

Hematopoietic Stem Cells as an Example

Each day, 100 billion new blood cells are produced by the human body. The continuous 

production of these cells depends on the presence of a rare population of HSCs [64–66]. 

HSCs are one of the best characterized adult stem cell types, and HSC transplantation is the 

only curative therapy for a variety of malignant and non-malignant blood diseases [67]. 

HSCs reside in a specialized bone marrow microenvironment, where they are adjacent to 

endothelial cells, osteoblasts, and stromal cells [68, 69]. Direct in vivo measurements 

revealed quite low oxygen tension in the BM of live mice with the lowest (1.3%) oxygen 

tension in deeper peri-sinusoidal regions [70••]. HSCs have a hypoxic profile including high 

levels of HIF1A protein expression [71], suggesting that hypoxia signaling plays an 

important role in HSC biology.

Genetic manipulations of mice have revealed the significance of HIFs in HSCs. Conditional 

deletion of Hif1a in the adult hematopoietic system resulted in loss of the quiescence state, 

and decreased repopulating capability of HSCs [72]. Hif1a null HSCs showed a metabolic 

shift from glycolysis to oxidative phosphorylation, with an increase in oxygen consumption 

rate and a decrease in anaerobic glycolysis [72, 73]. Consistently, the expression of pyruvate 

dehydrogenase kinases, which normally promotes glycolysis, was downregulated in Hif1a 
null HSCs [73]. Overexpression of pyruvate dehydrogenase kinases in Hif1a-null HSCs 

rescued the glycolysis phenotype and restored normal HSC activity. Conditional knockout of 

Meis1 in HSCs resulted in decreased expression of Hif1a and Hif2a, and demonstrated a 

similar metabolic shift pattern (from glycolysis to mitochondria metabolism), loss of HSC 

quiescence, and impaired bone marrow engraftment after transplantation [74, 75]. It has 

been reported that deletion of Hif2a within the hematopoietic system had no impact on HSC 

function [76]; however, knockdown of HIF2A in human CD34+ cells (enriched for HSCs 

and their progenitor cells) resulted in impaired reconstitution capacity [77], suggesting a 

potential distinct role of HIF2A between mouse and human HSCs. Of note, Hif2a-null 

recipient mice failed to sustain hematopoiesis when transplanted with wild-type donor cells 

suggesting the importance and contribution of Hif2a in the HSC microenvironment for 

normal hematopoiesis [78].

Genetic knockouts on negative regulators of Hif resulted in enhanced hypoxia signaling and 

generated a significant phenotype in HSCs. Deletion of Phd2, a Hif prolyl hydroxylase, 

resulted in stabilization of both Hif1a and Hif2a [79]. Recipient mice transplanted with Phd2 
deficient bone marrow cells showed increased engraftment and donor reconstitution which 
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was reliant on Hif1a, indicating that Phd2 depletion and enhanced hypoxia signaling 

promote HSC proliferation after transplantation. Similarly, monoallelic loss of Vhl, an E3 

ligase of Hif, enhanced cell cycle quiescence in HSCs and promoted engraftment after bone 

marrow transplantation [72]. Interestingly, biallelic loss of Vhl caused overstabilization of 

Hifs in HSCs and impaired transplantation capacity, possibly due to dysregulated cell cycle 

status and homing defects [72]. Furthermore, Vhl deletion in osteoblasts increased HSC and 

progenitor frequency, suggesting an important role of Vhl and Hifs in the HSC 

microenvironment [80]. In addition, conditional deletion of Cited2, another negative 

regulator of Hif1a, in the hematopoietic system resulted in loss of HSCs and bone marrow 

failure [81]. These results suggest that appropriate control of levels of Hifs in HSCs and 

their niche are essential for determining stem cell capacity.

HSC transplantation efficacy is a vital factor for successful donor engraftment during 

clinical therapy. Many efforts have been made to enhance human HSC transplantation 

efficacy via ex vivo expansion [82–86] or enhance homing [87•, 88, 89]. HIF1A has been 

reported to be involved in both of these efforts. Pharmacologic increase in HIF1A levels via 

prostaglandin E2 or dimethyloxalylglycine (DMOG) resulted in upregulation of surface 

CXCR4 expression, leading to enhanced HSC homing and engraftment [90]. In addition, 

HIF1A is essential for HSC mobilization induced by using G-CSF and AMD3100; 

pharmacologic stabilization of HIF1A by FG-4497 also enhanced mobilization of 

reconstituting HSCs [91]. NR-101, a novel c-MPL agonist, induced long-term accumulation 

of HIF1A protein and thus promoted ex vivo expansion of human cord blood HSCs, and 

enhanced their repopulating capacity [92].

Our laboratory recently reported that harvest, collection, and processing of mouse bone 

marrow and human cord blood HSCs under hypoxia (3% O2) resulted in 2–5-fold increases 

in the recovery of long-term repopulating HSCs compared with ambient air collection, 

through a phenomenon we named Bextra physiologic oxygen shock/stress^ (EPHOSS) 

[93••, 94]. EPHOSS is mediated by cyclophilin D and the mitochon-drial permeability 

transition pore (MPTP), with links to p53 and HIF1A. By modulating MPTP opening via 

cyclophilin D inhibition genetically or by using the small molecule inhibitor cyclosporine A, 

HSCs were protected from EPHOSS, resulting in increased collection of HSCs. This 

demonstrated that there are greater numbers of HSCs residing in bone marrow than 

previously reported, and suggesting that HSC transplantation could be improved if EPHOSS 

is suppressed by collecting and processing cells under hypoxia, or by using cyclosporine A 

or other modulators. Other means to suppress the phenomenon of EPHOSS for enhanced 

collection of HSCs are currently underway in our laboratory.

Hypoxia Signaling and HIFs in Cancer Stem Cells

Even though medical breakthroughs have advanced cancer care over the past decades, the 

high mortality rate due to disease recurrence remains one of the biggest challenges in the 

field. By definition, cancer stem cells (CSCs) are cells that have gained the abilities of self-

renewal, as well as the capacity to reconstitute the heterogeneity of the tumor [95]. CSCs 

exist in several types of human cancers including blood malignancies [96] and solid tumors 

[97–99]. They are believed to be responsible for distant metastasis, tumor recurrence, and 
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therapy failure [100]. The expression of either HIF1A or HIF2A is positively correlated with 

poor prognosis in most of cancer types [101]. Recent evidence suggested that HIF1A plays a 

critical role for metabolic switch in cancer cells by regulating PKM2 [102]. While the role of 

hypoxia in selecting for solid tumor CSCs has been well-established [103, 104], the role that 

hypoxia and hypoxia-inducible factors play in the development and maintenance of 

leukemia stem cells (LSCs) is still a subject under debate [105]. The striking similarity 

between LSCs and HSCs in self-renewal capacity and the finding that HSCs reside in 

hypoxic niches in the bone marrow spurred interest in whether hypoxia also plays a critical 

role in LSC biology. Unfortunately, this poses an inevitable obstacle in targeting LSCs, 

without harming healthy HSCs.

A recent study demonstrated that the HIF1A–Notch pathway was responsible for sustaining 

CSCs self-renewal in two models of lymphoma and acute myeloid leukemia (AML), 

suggesting that this pathway may be able to be targeted to eliminate CSCs or at least to 

diminish the leukemia-initiating property of AML LSCs [106]. Notably, in the murine 

lymphoma model used (with insertional mutation of the Epm2a gene), the overexpression of 

Hif1a which is critical for CSC survival is interestingly hypoxia-independent because the 

degradation pathway of Hif1a by VHL is concurrently downregulated. In line with this, the 

same group also showed that echinomycin, a Hif1a inhibitor, when administered alone can 

prevent relapse in the MllPTD/WT:Flt3ITD/WT murine model of AML. The authors pointed 

out that this model, by not having the immunological barriers of xenogeneic grafts and 

carrying a spontaneous mutation found in a subgroup of AML patients, faithfully 

represented the human disease [106]. In addition to studies in AML, the roles of HIFs in 

progression and recurrence of PML-RARα-driven acute promyelocytic leukemia (APL) 

have been evaluated in two different human APL cell lines—APL NB4 and U937-PR9 

[107]. Their microarray analysis of leukemic APL samples showed a HIFregulated gene 

profile significantly distinguishable between normal human promyelocytes and leukemic 

promyelocytes. In xenograft experiments, shRNA-induced inhibition of HIF1A reduced cell 

migration, colony forming ability, and prolonged mouse survival [107]. The results were 

confirmed in acute HIF1A inhibition with an RNA antagonist EZN2968, which showed even 

higher efficiency than chronic silencing of HIF1A. Complementary to these studies, the role 

of HIF2A in both normal human HSCs and progenitors, and AML cells was characterized 

[77]. Interestingly, expression of HIF2A in primary AML samples was not significantly 

different from normal bone marrow and varied between patients mostly because of diverse 

genetic abnormalities. However, similar to the findings with normal bone marrow, 

HIF2Aknockdown AML cells showed defects in engraftment of leukemia including in a 

sample from a relapsed case; this defect resulted from endoplasmic reticulum stress-induced 

increase in apoptosis [77]. Thus, both HIF1A and HIF2A appear to be essential for 

protecting AML LSCs and maintenance of leukemia.

In contrast to the above findings, some skepticism has been posed on the therapeutic value of 

inhibition of HIFs in leukemia treatment [108]. Conditional knockout of Hif1a in three 

different well-characterized murine models of AML was used: AML1-ETO9a with no 

relation to Hif1a, and Meis1 and MLL with direct signals for Hif1a. In all three models, the 

status of Hif1a expression did not appear to be critical for either the initiation or progression 

of leukemia. In fact, loss of Hif1a did not have any impact on self-renewal of LSCs and even 
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promoted their proliferation [108]. Adding to this study, others reported that HIF1A and 

HIF2A together acted as suppressors of AML development and had no significant impact on 

disease maintenance [109]. Loss of Hif2a unexpectedly enhanced LSC development and 

shortened AML latency in two murine models of AML (Mll-AF9 and Meis1/Hoxa9) [109].

In addition to AML, the roles of hypoxia and HIFs in other types of LSCs have been 

investigated. Recent evidence suggested that HIF1A and hypoxia are crucial for the survival 

of chronic myeloid leukemia (CML) stem cells. HIF1A and its targets were overexpressed in 

BCRABL-expressing LSCs [110]. Using a BCR-ABL-driven CML murine model, it was 

observed that LSCs from Hif1a knockout mice had higher apoptotic rate and reduced colony 

formation, and were unable to propagate CML in secondary recipient. It was concluded that 

Hif1a is important for both development and maintenance of CML [110]. In agreement with 

these findings, another group also studied the role of hypoxia in CML but used primary 

human CML cells instead. They confirmed that hypoxia nurtured LSCs through upregulation 

of HIF1A even when BCR-ABL1 was effectively inhibited by imatinib [111]. They 

identified a profile of genes upregulated by hypoxia that are essential for cell survival in 

CML cells compared with healthy cord blood CD34+ cells [111]. Similar results were noted 

in bortezomib-resistant CML LSCs using both the K562 cell line and primary patient CML 

cells [112]. While research in the past 5 years has focused mostly on CML and AML, a 

study looked at T cell acute lymphoblastic leukemia (T-ALL) [113]. Intriguingly, HIF1A 

was found to induce expression of β-catenin, and the Wnt-β-catenin pathway was confined 

to the LSC subpopulation. Furthermore, deletion of HIF1A or β-catenin significantly 

reduced the LSC frequency but not the viability of bulk tumor cells.

Conclusions

HIFs are primary mediators of the metabolic switch in the hypoxic environment. Genetic 

manipulation of HIFs and other hypoxia signaling components by gene knockout in mice 

yielded different phenotypes in various stem cell compartments as reviewed above. This 

seems to support the idea that hypoxia signaling is critical in maintenance of stem cell 

function. Physiological oxygen environment or hypoxia greatly enhanced establishment of 

ESC lines, iPSC reprogramming efficiency, and recovery of HSCs. It will be interesting to 

see if they also share similar mechanisms involved in EPHOSS, as mediated by cyclophilin 

D and the MPTP [93••].

Hypoxia and HIFs contribute to the development and survival maintenance of LSCs in a 

number of blood malignancies. However, as in the case of AML, there have been conflicting 

results between studies, possibly due to different experimental designs and technical 

approaches, and further complicated by the genetic heterogeneity of human AML disease. 

Another very important point and particularly relevant for this topic to be considered is that 

the cells studied should be collected and processed in hypoxia to avoid the effects of 

EPHOSS [93••]. As demonstrated by our laboratory, collection of HSCs at ambient O2 

levels induced ROS production and altered cell function, and likely gene expression patterns; 

hence, it would seem to be counterproductive for a true understanding of LSCs to study the 

physiology and pathology of LSCs without maintaining these cells in their native hypoxic 

status. In other types of leukemia, future studies are warranted as well because the concept 
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of hypoxia in drugresistant LSCs is still emerging. Therefore, until a more thoroughly 

understanding of the role of HIFs in leukemia and LSCs is established, whether inhibition of 

HIFs promises therapeutic value will remain a question.
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Fig. 1. 
HIF mediated hypoxia signaling. Under normoxic oxygen tension, HIF-α is hydroxylated on 

proline residues by PHD, which is recognized by VHL E3 ubiquitin ligase. VHL targets 

HIF-α for polyubiquitin conjugation and proteasomal degradation. Under hypoxia, when 

PHD activity is suppressed, HIF-α is stabilized and translocated to the nucleus where it 

dimerizes with HIF-β. HIF-α/HIF-β heterodimer binds to HRE at the promoters of hypoxia-

inducible genes, recruits histone acetyltransferases p300 and CBP to activate transcription of 

target genes. (HIF, hypoxia-inducible factor; PHD, prolyl hydroxylase; OH, hydroxyl group; 

VHL, von Hippel-Lindau; Ub, ubiquitin; HRE, hypoxia regulated elements; CBP, CREB 

binding protein)
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