Hospital Costs Related to Early Extubation After Infant Cardiac Surgery

Kimberly E. McHugh, MD, MSCR, William T. Mahle, MD, Matthew A. Hall, PhD, Mark A. Scheurer, MD, Michael-Alice Moga, MD, MSc, John Friedman, MD, Susan C. Nicolson, MD, Venugopal Amula, MD, MBBS, David S. Cooper, MD, MPH, Marcus Schamberger, MD, Michael Wolf, MD, Lara Shekerdemian, MD, Kristin M. Burns, MD, Kathleen E. Ash, MS, Dustin M. Hipp, MD, MBA, Sara K. Pasquali, MD, MHS, and Pediatric Heart Network Investigators

Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina; Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia; Children’s Hospital Association, Lenexa, Kansas; Department of Critical Care Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pediatrics, University of Utah, Salt Lake City, Utah; Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Department of Critical Care, Texas Children’s Hospital, Houston, Texas; Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; and Department of Pediatrics, University of Michigan C.S. Mott Children’s Hospital, Ann Arbor, Michigan

Abstract

Background—The Pediatric Heart Network Collaborative Learning Study (PHN CLS) increased early extubation rates after infant tetralogy of Fallot (TOF) and coarctation of the aorta (CoA) repair across participating sites by implementing a clinical practice guideline (CPG). The impact of the CPG on hospital costs has not been studied.

Methods—PHN CLS clinical data were linked to cost data from Children’s Hospital Association by matching on indirect identifiers. Hospital costs were evaluated across active and control sites in the pre- and post-CPG periods using generalized linear mixed-effects models. A difference-in-difference approach was used to assess whether changes in cost observed in active sites were beyond secular trends in control sites.

Results—Data were successfully linked on 410 of 428 eligible patients (96%) from four active and four control sites. Mean adjusted cost per case for TOF repair was significantly reduced in the post-CPG period at active sites ($42,833 vs $56,304, p < 0.01) and unchanged at control sites ($47,007 vs $46,476, p = 0.91), with an overall cost reduction of 27% in active versus control sites.

Address correspondence to Dr McHugh, Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, MSC 915, Charleston, SC 29425; mchughke@musc.edu.
Specific categories of cost reduced in the TOF cohort included clinical (−66%, \(p < 0.01 \)), pharmacy (−46%, \(p = 0.04 \)), lab (−44%, \(p < 0.01 \)), and imaging (−32%, \(p < 0.01 \)). There was no change in costs for CoA repair at active or control sites.

Conclusions—The early extubation CPG was associated with a reduction in hospital costs for infants undergoing repair of TOF but not CoA. This CPG represents an opportunity to both optimize clinical outcome and reduce costs for certain infant cardiac surgeries.

In the current healthcare environment there is increasing emphasis on both improving quality of care and reducing costs, or providing high “value” care. Congenital heart disease accounts for the highest hospital costs among all children with birth defects and is among the most frequent high-cost conditions treated at children’s hospitals across all pediatric diseases [1, 2].

Few studies have evaluated specific interventions that may hold the potential to both improve clinical outcomes and lower costs in this population. The Pediatric Heart Network Collaborative Learning Study (PHN CLS) [3] demonstrated that a collaborative learning strategy involving development and implementation of a clinical practice guideline (CPG) was successful in significantly increasing the rate of early extubation (extubation within 6 hours of admission to the intensive care unit) in infants undergoing repair of tetralogy of Fallot (TOF) and coarctation of the aorta (CoA) at active sites compared with controls. At active sites the rate of early extubation increased from 11.7% to 66.9% (\(p < 0.001 \)). Other key findings included a significant decline in postoperative critical care length of stay in the TOF group (44.2 vs 51.8 hours, \(p = 0.04 \)), although there was no change in total hospital length of stay in either TOF or CoA patients. In addition, time to discontinuation of continuous intravenous analgesics and time to introduction of oral feeds were reduced after introducing the CPG with more prominent changes in the TOF group. It is not known whether these changes translated into reductions in hospital costs, because other practices and factors may have influenced cost of care for these patients across hospitals beyond the timing of extubation and associated factors [4, 5].

This study merges PHN CLS clinical data with cost data from the Children’s Hospital Association (CHA) Inpatient Essentials database to study the impact of the CPG on hospital costs. In addition to an assessment of total hospital costs in the pre- and post-CPG periods, we also evaluated specific cost categories to assess which of these may be impacted the most.

Patients and Methods

Data Sources

The PHN CLS was performed over a 2-year period from 2013 to 2015. The methods and main study results have been previously published [3, 6]. Briefly, the investigative team observed clinically important variation in postoperative mechanical ventilation practices and clinical outcomes after infant surgical procedures at five congenital heart programs [6]. One hospital was identified as a positive outlier with much lower median ventilation times and shorter length of stay. Participants engaged in a series of round-robin site visits and then created a CPG to mimic the extubation strategy and associated key practices at the “model”
hospital after infant repair of TOF and CoA. In the main study clinical outcomes at the four active hospitals who implemented the CPG were measured during the 12 months before (pre-CPG) and the 12 months after (post-CPG) implementation and were compared with 5 other PHN sites during the same time period (controls) who continued with usual practice [3].

The Inpatient Essentials database (formally known as the Case Mix database) is a large administrative database maintained by CHA (Lenexa, KS). The database contains total hospital resource utilization and other inpatient data from 90 US children’s hospitals [7].

Linkage

PHN CLS clinical data and hospital cost data from the Inpatient Essentials database were linked at the patient level using the method of probabilistic matching of indirect identifiers as previously described [7, 8]. The following identifiers were used for record linkage: center, gender, date of admission (±1 day), date of discharge (±1 day), and date of birth (±1 day). The analysis performed for this project was a prespecified secondary aim of the primary PHN CLS, which was reviewed and approved by the PHN’s Data and Safety Monitoring Board, as well the individual centers’ Institutional Review Boards with waiver of informed consent.

Study Population

All patients enrolled in the PHN CLS were eligible for inclusion [3]. Similar to the main analysis the “model center” was excluded because it served as the prototype for CPG development. Additionally, one non-US center was excluded from the control sites because it did not contribute data to the CHA Inpatient Essentials database.

Data Collection

Data collected as a part of the PHN CLS have been previously reported [3]. All clinical data for this study were obtained from variables in the PHN CLS. Data contained in CHA Inpatient Essentials database were used to estimate hospital costs as described below. These data consist of daily total hospital charges, hospital and department specific cost-to-charge ratios, and daily line item charges for every service grouped into standard categories, including clinical, pharmacy, imaging, laboratory, supplies, and “other.” Of note, the “other” category is primarily composed of room and board costs, and the clinical service category includes costs related to testing, procedures, and other aspects of clinical care delivery such as mechanical ventilation and other respiratory care. Professional fees are not captured by the CHA or other frequently used administrative datasets and therefore could not be included in the analysis. The CHA does not separate out facility fees from other charges.

Analysis

Total hospital costs were estimated from charges using hospital and year specific cost-to-charge ratios for the time periods before and after CPG implementation with a 3-month wash-out phase for each period. Hospital costs were adjusted for geographic region using the Centers for Medicare & Medicaid Services price wage index, and values were indexed to 2015 US dollars to account for inflation.
Total hospital costs were modeled as continuous variables in mixed-effects models. Separate models were constructed for the TOF and CoA patients. The skewed distribution of cost was accounted for by using a gamma distribution, and a random intercept was used for each hospital to account for patient clustering within center. Models were adjusted for any clinical variables that approached significance in bivariate analyses ($p < 0.2$), which included diagnosis type for the CoA cohort (Table 1).

These models were used in a difference-in-difference analysis. This approach, which uses econometric techniques, isolates changes in outcomes associated with an event of interest above and beyond any changes in a control group not exposed to the event or change [9–11]. This methodology allowed us to evaluate the impact of the CPG on hospital costs at active sites, taking into account cost trends during the study period at the control sites. This approach has been used across several fields to examine a number of outcomes before and after the implementation of various policies or initiatives [9, 12, 13].

Finally, in addition to total hospital costs, categories of cost described in the preceding sections were also assessed, followed by specific line items for which we anticipated there might be reductions given the clinical context and findings of the main CLS study. All analyses were performed using SAS version 9.4 (SAS Institute Inc, Cary, NC). A $p < 0.05$ was considered to be statistically significant.

Results

Study Population

All four active PHN CLS sites and four control sites were included. As described in the preceding section, one model site and one non-US control site were excluded. From these sites data were successfully linked between the CLS PHN and CHA datasets on 410 of 428 eligible patients (96%). The remaining 23 unmatched patients were distributed among 6 sites, with a range of 0 to 5 unmatched patients per site.

Study population characteristics are displayed in Table 1. Median age at operation was 20 days for CoA patients and 153 days for TOF. On average CoA patients underwent an operation on hospital day 4 with 74.3% of hospital costs occurring on or after the day of the surgical procedure. TOF patients underwent operation on average on hospital day 2 with 85.9% of hospital costs occurring on or after the day of the surgical procedure.

TOF Costs Pre- and Post-CPG

The mean adjusted costs per case in the TOF cohort across the pre- and post-CPG periods are shown in Table 2. There was no significant difference in the pre-CPG hospital costs in the active versus control sites ($p = 0.35$). Assessing change over time at the active sites, there was a significant reduction in mean adjusted cost per case after CPG implementation ($56,304 in pre-CPG period vs $42,833 in post-CPG period, $p < 0.001$). At the control sites there was no significant change from the pre- to post-CPG periods (Table 2). Overall our difference-in-difference analysis showed a 27% reduction in hospital costs in the active versus control sites (95% confidence interval, −42% to −13%; $p = 0.03$) in the TOF cohort.
Specific categories of cost are displayed in Figure 1. We found the greatest reduction in hospital costs from the pre- to post-CPG period for the “clinical” category (−66%, \(p < 0.01 \)). Notably for the purpose of this study the clinical category also includes costs related to mechanical ventilation and other respiratory care. Significant reductions were also seen for pharmacy (−46%, \(p = 0.04 \)), laboratory (−44%, \(p < 0.01 \)), and imaging (−32%, \(p < 0.01 \)) costs. There was no significant change in supplies or other costs; of note the “other” category is primarily composed of room and board costs.

In addition to these overall categories we further examined specific line items of interest. Within the clinical category we found significant reductions in costs related to mechanical ventilation (−161%, \(p = 0.03 \)) and nebulized mist treatments (−110%, \(p = 0.04 \)). In the pharmacy domain there were significant reductions for ketamine (−139%, \(p = 0.005 \)) and fentanyl (−125%, \(p < 0.001 \)). In the lab category blood gas costs were reduced (−39%, \(p = 0.01 \)), and there was a trend toward reduction of chest x-ray costs within the imaging domain (−22%, \(p = 0.07 \)).

CoA Costs Pre- and Post-CPG

The mean adjusted costs per case in the CoA cohort across the pre- and post-CPG periods are shown in Table 2. There was no significant change in costs over time in either the active or control sites for CoA repair.

Comment

In this study we merged PHN CLS clinical data with cost data from a large CHA dataset to study the impact of an early extubation CPG on hospital costs after infant cardiac surgical procedures. We found a significant reduction in hospital costs associated with the CPG for infants undergoing TOF repair, whereas there was no change in hospital costs for those undergoing CoA repair.

Although both cohorts in the study had increased rates of early extubation after CPG implementation in the primary study, the cost reduction we found in the present analysis was limited to the TOF group. These observations mirror those from the primary study [3], where improvements in some of the secondary endpoints examined were more prominent in the TOF group than the CoA group. These included reduced intensive care unit length of stay in the TOF group but not the CoA group, a more prominent decrease in time to discontinuation of all continuous sedation/analgesia in the TOF group compared with the CoA group, and significant declines in cumulative doses of specific sedation/analgesia medications in TOF patients compared with no change in CoA patients [3].

These findings were further highlighted by our examination of specific cost categories and line items that were reduced in the TOF cohort. With earlier extubation clinical costs, specifically those related to mechanical ventilation and respiratory care, were reduced. Consistent with the primary study findings regarding analgesia and sedation [3], pharmacy costs and related specific line items were also reduced. Despite the reduced intensive care unit length of stay [3], room and board costs (which comprised most of the “other” category) were not significantly reduced. This may be because the main CLS study demonstrated no
change in total hospital length of stay. Laboratory and imaging costs were lower, which could be related to the deescalation of care that is typically associated with transition from the intensive care unit and/or associated with the shorter duration of mechanical ventilation, as declines in costs related to blood gasses and chest x-rays were seen.

Within the CoA group we hypothesized that the hospital costs associated with noncardiac care of newborns with critical CoA may mask changes from a CPG focused on postoperative care, whereas in contrast most TOF patients are older infants likely admitted from home within 24 hours of the surgical procedure to undergo elective repair. We found that CoA patients did indeed have a longer preoperative hospital stay in our analysis, with a lower proportion of overall hospital costs related to the postoperative period compared with the TOF group.

The potential implications for cost savings related to implementation of this CPG are considerable. For example, recent data from the Society of Thoracic Surgeons Congenital Heart Surgery Database suggest approximately 1,250 TOF repairs occur annually in the United States [14]. Based on the cost estimates for TOF repair in our study and the magnitude of reduction associated with the CPG, this could translate into total cost savings of approximately $10 to 15 million each year for repair of TOF alone.

Through the use of data linkage techniques our study was able to provide unique insights that supplement the primary PHN CLS findings. Specifically by merging clinical PHN CLS data with administrative data from CHA through linking on indirect identifiers, we were able to understand the impact of the quality improvement initiative not only on clinical outcomes but costs of care as well. Similar techniques have been used to merge cost data with trial datasets and registry data [8, 15–18] and highlight how this methodology can foster investigations not otherwise possible with isolated datasets alone. The methods used in the present analysis can be applied to other quality initiatives to support more comprehensive understanding of healthcare value and the impact of various initiatives geared toward optimizing both clinical outcomes and costs of care.

Limitations

There are several limitations to consider. Our results relate to the two forms of infant heart operations examined as a part of the PHN CLS (TOF and CoA repair, both resulting in biventricular circulations and normal oxygen saturations) and may not be generalizable to all forms of congenital heart disease or outside of the context of the eight centers included in this analysis. Regarding the changes in hospital costs observed in our study, it is possible that these could be related to other general improvements in care over time rather than the early extubation CPG. However, the inclusion of control sites and use of a difference-in-difference design to account for secular trends makes this unlikely. The observation of cost reductions in the categories that we would expect to be most impacted by the CPG based on the clinical findings also supports the validity of our findings. It is possible that our analysis was underpowered to detect small changes in hospital costs over time. In addition, although standard methods were used across hospitals to derive estimated hospital costs, it is possible that some cost differences were related more to hospital accounting practices and/or regional differences rather than to actual resources used. However, the design of this study, in which a
center’s data from the post-CPG era were compared with their data from the pre-CPG period, mitigates some of these concerns related to center effects. Finally, given the findings of the accompanying study in this issue of The Annals of Thoracic Surgery by Gaies and colleagues [19] regarding limited sustainability of the early extubation CPG practices and outcomes at most centers, it is possible that some of the gains described here may not persist over time. Further efforts are necessary to investigate strategies to support sustainability, whether related to clinical outcomes or hospital costs.

Conclusion

This study demonstrates that implementation of an early extubation CPG through a collaborative learning approach was associated with reduced hospital costs for certain infant cardiac surgeries, in addition to the improvement in certain clinical outcomes observed during the study period. With the ability to both reduce hospital costs and improve outcomes the early extubation CPG has potential to improve value in infant heart surgery. These results and the unique methodology used in this study can inform future initiatives aimed at improving healthcare value across other patient populations. Further investigation into strategies to promote sustainability is also necessary.

Acknowledgments

Research reported in this publication was conducted by the Pediatric Heart Network (PHN) supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under Award Numbers HL068270, HL068290, HL109673, HL109737, HL109741, HL109743, HL109777, HL109778, HL109781, HL109816, and HL109818. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Dr Pasquali also receives support from the Janette Ferrantino Professorship.

References

Fig 1.
Categories of cost for tetralogy of Fallot repair. Specific categories of cost in the tetralogy of Fallot cohort are displayed, with percent change from pre-CPG to post-CPG on the y-axis. Standard cost categories included clinical, pharmacy, imaging, laboratory, supplies, and “other.” The “other” category is primarily composed of room and board costs. Notable for the present study, the clinical category contains costs related to mechanical ventilation and other respiratory care. There was a significant reduction in clinical, pharmacy, laboratory, and imaging costs, whereas supply and other costs remained unchanged. (CPG = clinical practice guideline.)
Table 1.

Study Population Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>CoA</th>
<th>TOF</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total (n = 163)</td>
<td>Active (n = 85)</td>
<td>Controls (n = 78)</td>
</tr>
<tr>
<td>Male</td>
<td>103 (63%)</td>
<td>53 (62%)</td>
<td>50 (64%)</td>
</tr>
<tr>
<td>Birth weight, kg</td>
<td>3.3 [2.8–3.6]</td>
<td>3.3 [2.8–3.6]</td>
<td>3.2 [2.9–3.6]</td>
</tr>
<tr>
<td>Gestational age < 37 weeks</td>
<td>16 (10.7%)</td>
<td>8 (10.3%)</td>
<td>8 (11.1%)</td>
</tr>
<tr>
<td>Age at surgery, days</td>
<td>20 [7–9]</td>
<td>19 [7–63]</td>
<td>20.5 [8–52]</td>
</tr>
<tr>
<td>Chromosomal anomaly Diagnosis</td>
<td>1 (0.6%)</td>
<td>1 (1.2%)</td>
<td>0</td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolated coarctation</td>
<td>64 (39.3%)</td>
<td>35 (41.2%)</td>
<td>29 (37.2%)</td>
</tr>
<tr>
<td>Isolated coarctation + VSD (not requiring intervention)</td>
<td>21 (12.9%)</td>
<td>7 (8.2%)</td>
<td>14 (17.9%)</td>
</tr>
<tr>
<td>Coarctation + other lesion</td>
<td>78 (47.9%)</td>
<td>43 (50.6%)</td>
<td>35 (44.9%)</td>
</tr>
</tbody>
</table>

Continuous variables are reported as medians with interquartile ranges in brackets.

AVSD = atrioventricular septal defect; NA = not applicable; PS = pulmonary stenosis; TOF = tetralogy of Fallot; VSD = ventricular septal defect.
<table>
<thead>
<tr>
<th>Group</th>
<th>Pre-CPG</th>
<th>Post-CPG</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoA Repair Control</td>
<td>$35,912 ($23,754-$54,291)</td>
<td>$39,053 ($26,459-$57,643)</td>
<td>8.4% (−25%, 41.7%) p = 0.6</td>
</tr>
<tr>
<td>Active</td>
<td>$44,535 ($32,105-$61,777)</td>
<td>$39,196 ($27,552-$55,764)</td>
<td>−12.8% (−41.1%, 15.6%) p = 0.4</td>
</tr>
<tr>
<td>Difference-in-difference</td>
<td>−21.2% (−65.2%, 22.9%) p = 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOF Repair Control</td>
<td>$47,007 ($32,080-$68,882)</td>
<td>$46,476 ($31,847-$67,823)</td>
<td>−1.1% (−20.1%, 17.9%) p = 0.9</td>
</tr>
<tr>
<td>Active</td>
<td>$56,304 ($40,794-$77,711)</td>
<td>$42,833 ($31,061-$59,067)</td>
<td>−27.3% (−41.5%, −13.2%) p < 0.001</td>
</tr>
<tr>
<td>Difference-in-difference</td>
<td>−26.2% (−49.9, −2.5) p = 0.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Change denotes the percent change from pre- to post-clinical practice guideline (CPG) eras.

CoA = coarctation of the aorta; TOF = tetralogy of Fallot.